EFIAPI
AllocateRuntimePages (
  IN UINTN  Pages
  )
{
  return InternalAllocatePages (EfiRuntimeServicesData, Pages);
}
EFIAPI
AllocatePages (
  IN UINTN  Pages
  )
{
  return InternalAllocatePages (EfiBootServicesData, Pages);
}
EFIAPI
AllocateReservedPages (
  IN UINTN  Pages
  )
{
  return InternalAllocatePages (EfiReservedMemoryType, Pages);
}
Exemple #4
0
/**
  Allocates one or more 4KB pages of a certain memory type at a specified alignment.

  Allocates the number of 4KB pages specified by Pages of a certain memory type with an alignment
  specified by Alignment.  The allocated buffer is returned.  If Pages is 0, then NULL is returned.
  If there is not enough memory at the specified alignment remaining to satisfy the request, then
  NULL is returned.
  If Alignment is not a power of two and Alignment is not zero, then ASSERT().

  @param  MemoryType            The type of memory to allocate.
  @param  Pages                 The number of 4 KB pages to allocate.
  @param  Alignment             The requested alignment of the allocation.  Must be a power of two.
                                If Alignment is zero, then byte alignment is used.

  @return A pointer to the allocated buffer or NULL if allocation fails.

**/
VOID *
InternalAllocateAlignedPages (
  IN EFI_MEMORY_TYPE  MemoryType,  
  IN UINTN            Pages,
  IN UINTN            Alignment
  )
{
  VOID    *Memory;
  UINTN   AlignmentMask;

  //
  // Alignment must be a power of two or zero.
  //
  ASSERT ((Alignment & (Alignment - 1)) == 0);

  if (Pages == 0) {
    return NULL;
  }
  //
  // Make sure that Pages plus EFI_SIZE_TO_PAGES (Alignment) does not overflow.
  //
  ASSERT (Pages <= (MAX_ADDRESS - EFI_SIZE_TO_PAGES (Alignment)));
  //
  // We would rather waste some memory to save PEI code size.
  //
  Memory = InternalAllocatePages (MemoryType, Pages + EFI_SIZE_TO_PAGES (Alignment));
  if (Alignment == 0) {
    AlignmentMask = Alignment;
  } else {
    AlignmentMask = Alignment - 1;  
  }
  return (VOID *) (UINTN) (((UINTN) Memory + AlignmentMask) & ~AlignmentMask);
}
Exemple #5
0
/**
  Allocates a buffer of a certain pool type.

  Allocates the number bytes specified by AllocationSize of a certain pool type and returns a
  pointer to the allocated buffer.  If AllocationSize is 0, then a valid buffer of 0 size is
  returned.  If there is not enough memory remaining to satisfy the request, then NULL is returned.

  @param  MemoryType            The type of memory to allocate.
  @param  AllocationSize        The number of bytes to allocate.

  @return A pointer to the allocated buffer or NULL if allocation fails.

**/
VOID *
InternalAllocatePool (
  IN EFI_MEMORY_TYPE  MemoryType,
  IN UINTN            AllocationSize
  )
{
  //
  // If we need lots of small runtime/reserved memory type from PEI in the future,
  // we can consider providing a more complex algorithm that allocates runtime pages and
  // provide pool allocations from those pages.
  //
  return InternalAllocatePages (MemoryType, EFI_SIZE_TO_PAGES (AllocationSize));
}
EFIAPI
AllocatePages (
  IN UINTN  Pages
  )
{
  VOID  *Buffer;

  Buffer = InternalAllocatePages (EfiBootServicesData, Pages);
  if (Buffer != NULL) {
    MemoryProfileLibRecord (
      (PHYSICAL_ADDRESS) (UINTN) RETURN_ADDRESS(0),
      MEMORY_PROFILE_ACTION_LIB_ALLOCATE_PAGES,
      EfiBootServicesData,
      Buffer,
      EFI_PAGES_TO_SIZE (Pages),
      NULL
      );
  }
  return Buffer;
}
Exemple #7
0
/**
  Allocates one or more 4KB pages of a certain memory type at a specified alignment.

  Allocates the number of 4KB pages specified by Pages of a certain memory type with an alignment
  specified by Alignment.  The allocated buffer is returned.  If Pages is 0, then NULL is returned.
  If there is not enough memory at the specified alignment remaining to satisfy the request, then
  NULL is returned.
  If Alignment is not a power of two and Alignment is not zero, then ASSERT().
  If Pages plus EFI_SIZE_TO_PAGES (Alignment) overflows, then ASSERT().

  @param  MemoryType            The type of memory to allocate.
  @param  Pages                 The number of 4 KB pages to allocate.
  @param  Alignment             The requested alignment of the allocation.
                                Must be a power of two.
                                If Alignment is zero, then byte alignment is used.

  @return A pointer to the allocated buffer or NULL if allocation fails.

**/
VOID *
InternalAllocateAlignedPages (
  IN EFI_MEMORY_TYPE  MemoryType,
  IN UINTN            Pages,
  IN UINTN            Alignment
  )
{
  EFI_PHYSICAL_ADDRESS   Memory;
  EFI_PHYSICAL_ADDRESS   AlignedMemory;
  EFI_PEI_HOB_POINTERS   Hob;
  BOOLEAN                SkipBeforeMemHob;
  BOOLEAN                SkipAfterMemHob;
  EFI_PHYSICAL_ADDRESS   HobBaseAddress;
  UINT64                 HobLength;
  EFI_MEMORY_TYPE        HobMemoryType;
  UINTN                  TotalPages;

  //
  // Alignment must be a power of two or zero.
  //
  ASSERT ((Alignment & (Alignment - 1)) == 0);

  if (Pages == 0) {
    return NULL;
  }
  //
  // Make sure that Pages plus EFI_SIZE_TO_PAGES (Alignment) does not overflow.
  //
  ASSERT (Pages <= (MAX_ADDRESS - EFI_SIZE_TO_PAGES (Alignment)));

  //
  // We would rather waste some memory to save PEI code size.
  // meaning in addition to the requested size for the aligned mem,
  // we simply reserve an overhead memory equal to Alignmemt(page-aligned), no matter what.
  // The overhead mem size could be reduced later with more involved malloc mechanisms
  // (e.g., somthing that can detect the alignment boundary before allocating memory or
  //  can request that memory be allocated at a certain address that is aleady aligned).
  //
  TotalPages = Pages + (Alignment <= EFI_PAGE_SIZE ? 0 : EFI_SIZE_TO_PAGES(Alignment));
  Memory = (EFI_PHYSICAL_ADDRESS) (UINTN) InternalAllocatePages (MemoryType, TotalPages);
  if (Memory == 0) {
    DEBUG((DEBUG_INFO, "Out of memory resource! \n"));
    return NULL;
  }
  DEBUG ((DEBUG_INFO, "Allocated Memory unaligned: Address = 0x%LX, Pages = 0x%X, Type = %d \n", Memory, TotalPages, (UINTN) MemoryType));

  //
  // Alignment calculation
  //
  AlignedMemory = Memory;
  if (Alignment > EFI_PAGE_SIZE) {
    AlignedMemory = ALIGN_VALUE (Memory, Alignment);
  }
  DEBUG ((DEBUG_INFO, "After aligning to 0x%X bytes: Address = 0x%LX, Pages = 0x%X \n", Alignment, AlignedMemory, Pages));

  //
  // In general three HOBs cover the total allocated space.
  // The aligned portion is covered by the aligned mem HOB and
  // the unaligned(to be freed) portions before and after the aligned portion are covered by newly created HOBs.
  //
  // Before mem HOB covers the region between "Memory" and "AlignedMemory"
  // Aligned mem HOB covers the region between "AlignedMemory" and "AlignedMemory + EFI_PAGES_TO_SIZE(Pages)"
  // After mem HOB covers the region between "AlignedMemory + EFI_PAGES_TO_SIZE(Pages)" and "Memory + EFI_PAGES_TO_SIZE(TotalPages)"
  //
  // The before or after mem HOBs need to be skipped under special cases where the aligned portion
  // touches either the top or bottom of the original allocated space.
  //
  SkipBeforeMemHob = FALSE;
  SkipAfterMemHob  = FALSE;
  if (Memory == AlignedMemory) {
    SkipBeforeMemHob = TRUE;
  }
  if ((Memory + EFI_PAGES_TO_SIZE(TotalPages)) == (AlignedMemory + EFI_PAGES_TO_SIZE(Pages))) {
    //
    // This condition is never met in the current implementation.
    // There is always some after-mem since the overhead mem(used in TotalPages)
    // is no less than Alignment.
    //
    SkipAfterMemHob = TRUE;
  }

  //
  // Search for the mem HOB referring to the original(unaligned) allocation
  // and update the size and type if needed.
  //
  Hob.Raw = GetFirstHob (EFI_HOB_TYPE_MEMORY_ALLOCATION);
  while (Hob.Raw != NULL) {
    if (Hob.MemoryAllocation->AllocDescriptor.MemoryBaseAddress == Memory) {
      break;
    }
    Hob.Raw = GET_NEXT_HOB (Hob);
    Hob.Raw = GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, Hob.Raw);
  }
  ASSERT (Hob.Raw != NULL);
  if (SkipBeforeMemHob) {
    //
    // Use this HOB as aligned mem HOB as there is no portion before it.
    //
    HobLength = EFI_PAGES_TO_SIZE(Pages);
    Hob.MemoryAllocation->AllocDescriptor.MemoryLength = HobLength;
  } else {
    //
    // Use this HOB as before mem HOB and create a new HOB for the aligned portion
    //
    HobLength = (AlignedMemory - Memory);
    Hob.MemoryAllocation->AllocDescriptor.MemoryLength = HobLength;
    Hob.MemoryAllocation->AllocDescriptor.MemoryType = EfiConventionalMemory;
  }

  HobBaseAddress = Hob.MemoryAllocation->AllocDescriptor.MemoryBaseAddress;
  HobMemoryType = Hob.MemoryAllocation->AllocDescriptor.MemoryType;

  //
  // Build the aligned mem HOB if needed
  //
  if (!SkipBeforeMemHob) {
    DEBUG((DEBUG_INFO, "Updated before-mem HOB with BaseAddress = %LX, Length = %LX, MemoryType = %d \n",
      HobBaseAddress, HobLength, (UINTN) HobMemoryType));

    HobBaseAddress = AlignedMemory;
    HobLength = EFI_PAGES_TO_SIZE(Pages);
    HobMemoryType = MemoryType;

    BuildMemoryAllocationHob (
      HobBaseAddress,
      HobLength,
      HobMemoryType
      );

    DEBUG((DEBUG_INFO, "Created aligned-mem HOB with BaseAddress = %LX, Length = %LX, MemoryType = %d \n",
      HobBaseAddress, HobLength, (UINTN) HobMemoryType));
  } else {
    if (HobBaseAddress != 0) {
      DEBUG((DEBUG_INFO, "Updated aligned-mem HOB with BaseAddress = %LX, Length = %LX, MemoryType = %d \n",
        HobBaseAddress, HobLength, (UINTN) HobMemoryType));
    }
  }


  //
  // Build the after mem HOB if needed
  //
  if (!SkipAfterMemHob) {
    HobBaseAddress = AlignedMemory + EFI_PAGES_TO_SIZE(Pages);
    HobLength = (Memory + EFI_PAGES_TO_SIZE(TotalPages)) - (AlignedMemory + EFI_PAGES_TO_SIZE(Pages));
    HobMemoryType = EfiConventionalMemory;

    BuildMemoryAllocationHob (
      HobBaseAddress,
      HobLength,
      HobMemoryType
      );

    DEBUG((DEBUG_INFO, "Created after-mem HOB with BaseAddress = %LX, Length = %LX, MemoryType = %d \n",
      HobBaseAddress, HobLength, (UINTN) HobMemoryType));
  }

  return (VOID *) (UINTN) AlignedMemory;
}