Exemple #1
0
/*! \fn void MultiNSH(int n, Real *tstop, Real *mratio, Real etavk,
 *                   Real *uxNSH, Real *uyNSH, Real *wxNSH, Real *wyNSH)
 *  \brief Multi-species NSH equilibrium 
 *
 * Input: # of particle types (n), dust stopping time and mass ratio array, and 
 *        drift speed etavk.
 * Output: gas NSH equlibrium velocity (u), and dust NSH equilibrium velocity
 *         array (w).
 */
void MultiNSH(int n, Real *tstop, Real *mratio, Real etavk,
                     Real *uxNSH, Real *uyNSH, Real *wxNSH, Real *wyNSH)
{
  int i,j;
  Real *Lambda1,**Lam1GamP1, **A, **B, **Tmp;

  Lambda1 = (Real*)calloc_1d_array(n, sizeof(Real));     /* Lambda^{-1} */
  Lam1GamP1=(Real**)calloc_2d_array(n, n, sizeof(Real)); /* Lambda1*(1+Gamma) */
  A       = (Real**)calloc_2d_array(n, n, sizeof(Real));
  B       = (Real**)calloc_2d_array(n, n, sizeof(Real));
  Tmp     = (Real**)calloc_2d_array(n, n, sizeof(Real));

  /* definitions */
  for (i=0; i<n; i++){
    for (j=0; j<n; j++)
      Lam1GamP1[i][j] = mratio[j];
    Lam1GamP1[i][i] += 1.0;
    Lambda1[i] = 1.0/(tstop[i]+1.0e-16);
    for (j=0; j<n; j++)
      Lam1GamP1[i][j] *= Lambda1[i];
  }

  /* Calculate A and B */
  MatrixMult(Lam1GamP1, Lam1GamP1, n,n,n, Tmp);
  for (i=0; i<n; i++) Tmp[i][i] += 1.0;
  InverseMatrix(Tmp, n, B);
  for (i=0; i<n; i++)
  for (j=0; j<n; j++)
    B[i][j] *= Lambda1[j];
  MatrixMult(Lam1GamP1, B, n,n,n, A);

  /* Obtain NSH velocities */
  *uxNSH = 0.0;  *uyNSH = 0.0;
  for (i=0; i<n; i++){
    wxNSH[i] = 0.0;
    wyNSH[i] = 0.0;
    for (j=0; j<n; j++){
      wxNSH[i] -= B[i][j];
      wyNSH[i] -= A[i][j];
    }
    wxNSH[i] *= 2.0*etavk;
    wyNSH[i] *= etavk;
    *uxNSH -= mratio[i]*wxNSH[i];
    *uyNSH -= mratio[i]*wyNSH[i];
    wyNSH[i] += etavk;
  }

  free(Lambda1);
  free_2d_array(A);         free_2d_array(B);
  free_2d_array(Lam1GamP1); free_2d_array(Tmp);

  return;
}
Exemple #2
0
bool RGBColorSystem::Data::ValidateParameters( const FVector& x, const FVector& y, const FVector& Y )
{
   try
   {
      volatile Vector M_ = InverseMatrix( SetupMatrix( x, y, Y ) );
      return true;
   }
   catch ( ... )
   {
      return false;
   }
}
Exemple #3
0
Matrix Inverse(Matrix &M)
{
    int dim = M.size();
    Matrix CofactorMatrix(dim);
    Matrix InverseMatrix(dim);

    for(int l=0;l<dim;l++) CofactorMatrix[l].resize(dim);
    for(int l=0;l<dim;l++) InverseMatrix[l].resize(dim);

    for(int i = 0; i < dim; i++)
    {
        for(int m = 0; m < dim; m++)
        {

            Matrix Cofactor(dim-1);
            for(int l=0;l<dim-1;l++) Cofactor[l].resize(dim-1);

            int col=0, row=0;
            for(int j = 0; j < dim; j++)
            {
                if(j != i)
                {
                    row = 0;
                    for(int k = 0; k < dim; k++)
                    {

                        if (k != m)
                        {

                            Cofactor[row][col] = M[k][j];
                            row++;
                        }
                    }
                col++;
                }
            }

            CofactorMatrix[i][m] = ((i+m)%2==1?-1.0:1.0) * Det(Cofactor);
        }
    }


    for(int i=0; i< dim; i++)
    {
        InverseMatrix[i] = (1.0/Det(M))*CofactorMatrix[i];
    }

    return InverseMatrix;
}
int main(int argc, char* argv[])
{
	float *a[3],*b[3]; 
	int i,j;
	for(i=0;i<3;i++)
		a[i] = (float *)malloc(3);
	for(i=0;i<3;i++)
		b[i] = (float *)malloc(3);
	printf("hi");
	a[0][0]=1;
	a[0][1]=2;
	a[0][2]=3;
	a[1][0]=0;
	a[1][1]=1;
	a[1][2]=4;
	a[2][0]=5;
	a[2][1]=6;
	a[2][2]=0;
	if(InverseMatrix(a,b) == -1)
		return 0;

	for(i=0;i<3;i++)
	{
		for(j=0;j<3;j++)
		{
			printf("%f ",c[i][j]);
		}
		printf("\n");
	}
	printf("\n\n\n");
	for(i=0;i<3;i++)
	{
		for(j=0;j<3;j++)
		{
			printf("%f ",b[i][j]);
		}
		printf("\n");
	}
	for(i=0;i<3;i++)
	{
		free(a[i]);
		free(b[i]);
	}
	return 0;
}
Exemple #5
0
void kalmanProcess(kalman_s *mykalman)
{
	int i,j;
	for(i=0;i<NM;i++)
		memset(mykalman->temp_4_4[i],0,sizeof(double)*NM);

	//第一个公式:x(k|k-1) = Ax(k-1|k-1)
	multiplyMatrix(mykalman->A,NS,NS,mykalman->X,NS,1,mykalman->temp_1);                //X=A*X
	for (i=0;i<NS;i++)
		mykalman->X[i][0]=mykalman->temp_1[i][0];

	//第二个公式: P = A*P*A'+Q
	multiplyMatrix(mykalman->A,NS,NS,mykalman->P,NS,NS,mykalman->temp_2_1);	             //temp_2_1 = A*P
	transpositionMatrix(mykalman->A, mykalman->temp_2, NS, NS);                        //temp_2 = A'
	multiplyMatrix(mykalman->temp_2_1,NS,NS,mykalman->temp_2,NS,NS,mykalman->P);         //P = A*P*A’ 
	addMatrix(mykalman->P,NS,NS,mykalman->Q,NS,NS,mykalman->P);                         //P = A*P*A’+Q

	//第三个公式: X = X+K*[Z-H*X]
    multiplyMatrix(mykalman->H,NM,NS,mykalman->X,NS,1,mykalman->temp_3_1);               //temp_3_1=H*X
	subMatrix(mykalman->Z,NM,1,mykalman->temp_3_1,NM,1,mykalman->temp_3_1);             //temp_3_1=Z-H*X    
	multiplyMatrix(mykalman->K,NS,NM,mykalman->temp_3_1,NM,1,mykalman->temp_3_2);       //temp_3_2 = K*(Z-H*X)
	addMatrix(mykalman->X,NS,1,mykalman->temp_3_2,NS,1,mykalman->X);                 //X = X+ K*(Z-H*X)

	//第四个公式:K = P*H'/[H*P*H'+R]
	transpositionMatrix(mykalman->H,mykalman->temp_4_3,NM,NS);                      //temp_4_3 = H'
	multiplyMatrix(mykalman->P,NS,NS,mykalman->temp_4_3,NS,NM,mykalman->temp_4_1);    //temp_4_1 = P*H'
	multiplyMatrix(mykalman->H,NM,NS,mykalman->temp_4_1,NS,NM,mykalman->temp_4_2);    //temp_4_2 =H*P*H'
	addMatrix(mykalman->temp_4_2,NM,NM,mykalman->R,NM,NM,mykalman->temp_4_2);         //temp_4_2 =H*P*H'+R
	InverseMatrix(mykalman->temp_4_2, mykalman->temp_4_4, NM,NM);                  //temp_4_4=~(H*P*H'+R)
	multiplyMatrix(mykalman->temp_4_1,NS,NM,mykalman->temp_4_4,NM,NM,mykalman->K);   //K = P*H'*~(H*P*H'+R)

	//第五个公式:P = [I-K*H]*P
	multiplyMatrix(mykalman->K,NS,NM,mykalman->H,NM,NS,mykalman->temp_5);            //temp_5 = K*H
	subMatrix(mykalman->E,NS,NS,mykalman->temp_5,NS,NS,mykalman->temp_5_1);          //temp_5_1 = E-K*H
	multiplyMatrix(mykalman->temp_5_1,NS,NS,mykalman->P,NS,NS,mykalman->temp_5_2);  //temp_5_2 = (E-K*H)*P

	for (i=0;i<NS;i++)
		for (j=0;j<NS;j++)
          mykalman->P[i][j] = mykalman->temp_5_2[i][j];
}
Exemple #6
0
void cCamera::Update(float deltaTime)
{
	UpdateInput(deltaTime);
	esMatrixLoadIdentity( & Camera );
	if(m_enabled)
	{
		cVector2di mousePos=INPUT->getMousePos();
		float rotatex=(float)(mousePos.x-m_prevMouseX);
		float rotatey=(float)(mousePos.y-m_prevMouseY);
		m_currentRot.x+=rotatex;
		m_currentRot.z+=rotatey;
		m_prevMouseX=mousePos.x;
		m_prevMouseY=mousePos.y;
	}


	esTranslate(&Camera,m_currentPos.x,m_currentPos.y,m_currentPos.z);
	esRotate(&Camera,m_currentRot.x,0,1,0);
	esRotate(&Camera,m_currentRot.z,1,0,0);
	
	InverseMatrix(Camera,View);
}
OSErr QTTarg_AddTextToggleButtonTrack (Movie theMovie)
{
	Track					myTrack = NULL;
	Media					myMedia = NULL;
	MatrixRecord			myMatrix;
	RGBColor				myKeyColor;
	Fixed					myWidth, myHeight;
	TimeValue				myDuration = 0L;
	TimeValue				myTimeScale = 0L;
	OSErr					myErr = noErr;

	//////////
	//
	// get some information about the target movie
	//
	//////////

	if (theMovie == NULL) {
		myErr = paramErr;
		goto bail;
	}

	myWidth = Long2Fix(2 * kButtonWidth);
	myHeight = Long2Fix(2 * kButtonHeight);
	myDuration = GetMovieDuration(theMovie);
	myTimeScale = GetMovieTimeScale(theMovie);
	
	//////////
	//
	// create a new sprite track in the target movie
	//
	//////////
	
	myTrack = NewMovieTrack(theMovie, myWidth, myHeight, kNoVolume);
	myMedia = NewTrackMedia(myTrack, SpriteMediaType, myTimeScale, NULL, 0);

	// set the track matrix to compensate for any existing movie matrix
	GetMovieMatrix(theMovie, &myMatrix);
	if (InverseMatrix(&myMatrix, &myMatrix))
		SetTrackMatrix(myTrack, &myMatrix);

	myErr = BeginMediaEdits(myMedia);
	if (myErr != noErr)
		goto bail;
	
	//////////
	//
	// add sprite images and sprites to the sprite track; add actions to the sprites
	//
	//////////
	
	QTTarg_AddTextButtonSamplesToMedia(myMedia, 2 * kButtonWidth, 2 * kButtonHeight, myDuration);
	
	//////////
	//
	// insert media into track
	//
	//////////
	
	myErr = EndMediaEdits(myMedia);
	if (myErr != noErr)
		goto bail;
	
	// add the media to the track
	InsertMediaIntoTrack(myTrack, 0, 0, GetMediaDuration(myMedia), fixed1);
		
	//////////
	//
	// set the sprite track properties
	//
	//////////
	
	QTTarg_SetTrackProperties(myMedia, kNoQTIdleEvents);				// no idle events
	
	myKeyColor.red = myKeyColor.green = myKeyColor.blue = 0xffff;		// white
	MediaSetGraphicsMode(GetMediaHandler(myMedia), transparent, &myKeyColor);
	
	// make sure that the sprite track is in the frontmost layer
	SetTrackLayer(myTrack, kMaxLayerNumber);
	SetTrackLayer(myTrack, QTTarg_GetLowestLayerInMovie(theMovie) - 1);
		
bail:
	return(myErr);
}
Exemple #8
0
CameraMatrix::CameraMatrix(double* paramaters,double* joints,double x, double y, double bearing, bool bottomCamera)
{
    // Initialise the matrix variables
    leftCam = Matrix(4,4,true);
    rightCam = Matrix(4,4,true);

    // Set the constants
    const double TORSO_HEIGHT = 21.55,HEAD_DEPTH = 5.39,HEAD_HEIGHT = 6.79;
    const double FOOT_HEIGHT = 4.6,TIBIA_LENGTH = 10,THIGH_LENGTH = 10;
    const double LEFT_HIP_OFFSET = -5, RIGHT_HIP_OFFSET = 5;

    // Declare all the transformation matrices
    Matrix lPositionTrans,rPositionTrans,bearingRot,footHeightTrans,tibiaTrans,thighTrans, torsoTrans;
    Matrix headYawRot,headPitchRot,headTrans;
    Matrix lHipYawPitchRot,lHipRollRot,lHipPitchRot,lKneePitchRot,lAnklePitchRot,lAnkleRollRot,lHipOffsetTrans;
    Matrix rHipYawPitchRot,rHipRollRot,rHipPitchRot,rKneePitchRot,rAnklePitchRot,rAnkleRollRot,rHipOffsetTrans;
    Matrix headYawParamaterRot,headPitchParamaterRot,lHipPitchParamaterRot,lHipRollParamaterRot,
        rHipPitchParamaterRot,rHipRollParamaterRot;


    // Set all the transformation matrices
    bearingRot = Rot(bearing, 'z');
    footHeightTrans = Trans(0,0,FOOT_HEIGHT);
    tibiaTrans = Trans(0,0,TIBIA_LENGTH);
    thighTrans = Trans(0,0,THIGH_LENGTH);
    torsoTrans = Trans(0,0,TORSO_HEIGHT);
    headYawRot = Rot(joints[0],'z');

    if (bottomCamera)
    {
        headPitchRot = Rot(joints[1]+40, 'y');
        headTrans = Trans(HEAD_DEPTH-0.51,0,HEAD_HEIGHT-4.409);
    }
    else
    {
        headPitchRot = Rot(joints[1], 'y');
        headTrans = Trans(HEAD_DEPTH,0,HEAD_HEIGHT);
    }

    lHipYawPitchRot = Rot(joints[10]/2,'z') * Rot(joints[10]/2,'y');
    lHipRollRot = Rot(joints[11],'x');
    lHipPitchRot = Rot(joints[12],'y');
    lKneePitchRot = Rot(joints[13],'y');
    lAnklePitchRot = Rot(joints[14],'y');
    lAnkleRollRot = Rot(joints[15],'x');
    lHipOffsetTrans = Trans(0,LEFT_HIP_OFFSET,0);

    rHipYawPitchRot = Rot(-joints[16]/2,'z') * Rot(joints[16]/2,'y');
    rHipRollRot = Rot(joints[17],'x');
    rHipPitchRot = Rot(joints[18],'y');
    rKneePitchRot = Rot(joints[19],'y');
    rAnklePitchRot = Rot(joints[20],'y');
    rAnkleRollRot = Rot(joints[21],'x');
    rHipOffsetTrans = Trans(0,RIGHT_HIP_OFFSET,0);

    headYawParamaterRot = Rot(paramaters[0],'z');
    headPitchParamaterRot = Rot(paramaters[1],'y');
    lHipPitchParamaterRot = Rot(paramaters[2],'y');
    lHipRollParamaterRot = Rot(paramaters[3],'x');
    rHipPitchParamaterRot = Rot(paramaters[4],'y');
    rHipRollParamaterRot = Rot(paramaters[5],'x');

    //Find position of each foot by working backwards from hip
    Matrix leftLegTemp = Matrix(4,1);
    Matrix rightLegTemp = Matrix(4,1);
    leftLegTemp[3][0] = 1;
    rightLegTemp[3][0] = 1;

    leftLegTemp = bearingRot * InverseMatrix(footHeightTrans * lAnkleRollRot * lAnklePitchRot * tibiaTrans * lKneePitchRot *
               thighTrans * lHipPitchRot * lHipRollRot * lHipYawPitchRot * lHipOffsetTrans) * leftLegTemp;

    rightLegTemp = bearingRot * InverseMatrix(footHeightTrans * rAnkleRollRot * rAnklePitchRot * tibiaTrans * rKneePitchRot *
               thighTrans * rHipPitchRot * rHipRollRot * rHipYawPitchRot * rHipOffsetTrans) * rightLegTemp;

    // Create both position transformations based on position of feet
    lPositionTrans = Trans(x+leftLegTemp[0][0],y+leftLegTemp[1][0],0);
    rPositionTrans = Trans(x+rightLegTemp[0][0],y+rightLegTemp[1][0],0);

    //Create total leg and torso transformations

    Matrix totalLeftLegTransformation = lPositionTrans * bearingRot * footHeightTrans * lAnkleRollRot * lAnklePitchRot *
                                        tibiaTrans * lKneePitchRot * thighTrans * lHipPitchRot * lHipPitchParamaterRot *
                                        lHipRollRot * lHipRollParamaterRot * lHipYawPitchRot * lHipOffsetTrans;

    Matrix totalRightLegTransformation = rPositionTrans * bearingRot * footHeightTrans * rAnkleRollRot * rAnklePitchRot *
                                        tibiaTrans * rKneePitchRot * thighTrans * rHipPitchRot * rHipPitchParamaterRot *
                                        rHipRollRot * rHipRollParamaterRot * rHipYawPitchRot * rHipOffsetTrans;

    Matrix totalTorsoTransformation = torsoTrans * headYawRot * headYawParamaterRot * headPitchRot * headPitchParamaterRot
                                      * headTrans;


    // Create total transformation matrices. Note: inverted to provide World-to-Camera coordinates
    leftCam = InverseMatrix(totalLeftLegTransformation * totalTorsoTransformation);
    rightCam = InverseMatrix(totalRightLegTransformation * totalTorsoTransformation);



    // Create matrix transform axis from robot coordinate system
    // to vision coordinate system (NOT screen coordinates)


    /*
    Robot Coordinate System     Vision Coordinate System

             z                    y
             |  x                  |  z
             | /                   | /
       y_____|/                    |/_____ x


    */

    Matrix axisTransform = Matrix(4,4);
    axisTransform[0][1] = -1;
    axisTransform[1][2] = 1;
    axisTransform[2][0] = 1;
    axisTransform[3][3] = 1;

    //Multiply camera by axis transformation to get World-to-Vision transformation
    leftCam = axisTransform * leftCam;
    rightCam = axisTransform * rightCam;
}
Exemple #9
0
//*****************************************************************************
// Calculate Euler Angle with Kalman Filter
//*****************************************************************************
void KalmanFilter(){
	float a[3], w[3], L[3], t[4], m_dot[3],q[4];
	float norm, inner_q;
	float q1[4], q2[4], psi;
	float buff_arr[4][4];
	int i,j,k,l;

	// 1. IMU to Quatornion
	GetFromMPU6050(a, 1);

	GetFromMPU6050(w, 0);

	w[0] -= _gyro_offset[0];
	w[1] -= _gyro_offset[1];
	w[2] -= _gyro_offset[2];

	norm = sqrtf(a[0]*a[0] + a[1]*a[1] + a[2]*a[2]);
	a[0] /= norm;
	a[1] /= norm;
	a[2] /= norm;
	if(a[2] >= 0.0){
		q1[0] = sqrtf((1+a[2])/2);
		q1[1]=  a[1]/sqrtf(2*(1+a[2]));
		q1[2] = -a[0]/sqrtf(2*(1+a[2]));
		q1[3] = 0;
	}else{
		q1[0] = a[1]/sqrtf(2*(1-a[2]));
		q1[1] = sqrtf((1-a[2])/2);
		q1[2] = 0;
		q1[3] = a[0]/sqrtf(2*(1-a[2]));
	}

	// q_mag
	m_dot[0] = w[1]*m[2]-w[2]*m[1];
	m_dot[1] = w[2]*m[0]-w[0]*m[2];
	m_dot[2] = w[0]*m[1]-w[1]*m[0];

	m[0] = m[0] - m_dot[0]*dt;
	m[1] = m[1] - m_dot[1]*dt;
	m[2] = m[2] - m_dot[2]*dt;

	norm = sqrtf(m[0]*m[0] + m[1]*m[1] + m[2]*m[2]);
	m[0] /= norm;
	m[1] /= norm;
	m[2] /= norm;

	t[0] = -q1[1]*m[0] - q1[2]*m[1] - q1[3]*m[2];
	t[1] =  q1[0]*m[0] - q1[3]*m[1] + q1[2]*m[2];
	t[2] =  q1[3]*m[0] + q1[0]*m[1] - q1[1]*m[2];
	t[3] = -q1[2]*m[0] + q1[1]*m[1] + q1[0]*m[2];

	L[0] = t[1]*q1[0] - t[0]*q1[1] + t[3]*q1[2] - t[2]*q1[3];
	L[1] = t[2]*q1[0] - t[3]*q1[1] - t[0]*q1[2] + t[1]*q1[3];
	L[2] = t[3]*q1[0] + t[2]*q1[1] - t[1]*q1[2] - t[0]*q1[3];


	psi = atan2f(L[1],L[0]);
	q2[0] = cosf(psi/2.0);
	q2[1] = 0;
	q2[2] = 0;
	q2[3] = -sinf(psi/2.0);

	// q
	q[0] = q2[0]*q1[0] - q2[1]*q1[1] - q2[2]*q1[2] - q2[3]*q1[3];
	q[1] = q2[1]*q1[0] + q2[0]*q1[1] - q2[3]*q1[2] + q2[2]*q1[3];
	q[2] = q2[2]*q1[0] + q2[3]*q1[1] + q2[0]*q1[2] - q2[1]*q1[3];
	q[3] = q2[3]*q1[0] - q2[2]*q1[1] + q2[1]*q1[2] + q2[0]*q1[3];

	// 2. Remove quatornion discontiunity
	inner_q = q_kalman[0]*q[0] + q_kalman[1]*q[1] + q_kalman[2]*q[2] + q_kalman[3]*q[3];
	if(inner_q < 0){
		q[0] = -q[0];
		q[1] = -q[1];
		q[2] = -q[2];
		q[3] = -q[3];
	}

	// 3. Kalman Filter
		// 3.1. System Variables
	A[0][0] =          1;	A[0][1] = -dt/2*w[0];	A[0][2] = -dt/2*w[1];	A[0][3] = -dt/2*w[2];
	A[1][0] =  dt/2*w[0];	A[1][1] =          1;	A[1][2] =  dt/2*w[2];	A[1][3] = -dt/2*w[1];
	A[2][0] =  dt/2*w[1];	A[2][1] = -dt/2*w[2];	A[2][2] =          1;	A[2][3] =  dt/2*w[0];
	A[3][0] =  dt/2*w[2];	A[3][1] =  dt/2*w[1];	A[3][2] = -dt/2*w[0];	A[3][3] =          1;

		// 3.2. xp = A*x
	xp[0] = A[0][0]*q_kalman[0] + A[0][1]*q_kalman[1] + A[0][2]*q_kalman[2] + A[0][3]*q_kalman[3];
	xp[1] = A[1][0]*q_kalman[0] + A[1][1]*q_kalman[1] + A[1][2]*q_kalman[2] + A[1][3]*q_kalman[3];
	xp[2] = A[2][0]*q_kalman[0] + A[2][1]*q_kalman[1] + A[2][2]*q_kalman[2] + A[2][3]*q_kalman[3];
	xp[3] = A[3][0]*q_kalman[0] + A[3][1]*q_kalman[1] + A[3][2]*q_kalman[2] + A[3][3]*q_kalman[3];

		// 3.3. Pp = A*P*A' + Q
	for(i=0;i<4;i++){
		for(j=0;j<4;j++){
			Pp[i][j] = 0;
			for(k=0;k<4;k++){
				for(l=0;l<4;l++)
					Pp[i][j] += A[i][l]*P_kalman[l][k]*A[j][k];
			}
			if(i==j)
				Pp[i][j] += Q_q;

			buff_arr[i][j] = Pp[i][j];
		}
	}

		// 3.4. K = Pp*inv(Pp+R)
	buff_arr[0][0] += R_r;
	buff_arr[1][1] += R_r;
	buff_arr[2][2] += R_r;
	buff_arr[3][3] += R_r;

	InverseMatrix(buff_arr,4);

	for(i=0;i<4;i++){
		for(j=0;j<4;j++)
			K[i][j] = Pp[i][0]*buff_arr[0][j] + Pp[i][1]*buff_arr[1][j] + Pp[i][2]*buff_arr[2][j] + Pp[i][3]*buff_arr[3][j];
	}

		// 3.5. Update q_kalman = xp + K(q-xp)
	for(i=0;i<4;i++){
		q_kalman[i] = xp[i];
		for(j=0;j<4;j++){
			q_kalman[i] += K[i][j]*(q[j]-xp[j]);
		}
	}

		// 3.6.Update P_kalman = Pp - K*Pp
	for(i=0;i<4;i++){
		for(j=0;j<4;j++){
			P_kalman[i][j] = Pp[i][j];
			for(k=0;k<4;k++)
				P_kalman[i][j] -= K[i][k]*Pp[k][j];
		}
	}

	_quaternion[0] = _q_offset[0]*q_kalman[0] - _q_offset[1]*q_kalman[1] - _q_offset[2]*q_kalman[2] + _q_offset[3]*q_kalman[3];
	_quaternion[1] = _q_offset[1]*q_kalman[0] + _q_offset[0]*q_kalman[1] - _q_offset[3]*q_kalman[2] - _q_offset[2]*q_kalman[3];
	_quaternion[2] = _q_offset[2]*q_kalman[0] + _q_offset[3]*q_kalman[1] + _q_offset[0]*q_kalman[2] + _q_offset[1]*q_kalman[3];
	_quaternion[3] =-_q_offset[3]*q_kalman[0] + _q_offset[2]*q_kalman[1] - _q_offset[1]*q_kalman[2] + _q_offset[0]*q_kalman[3];

	// 4. Euler Angle
	_euler_angle[0] = atan2f(2.0*(_quaternion[2]*_quaternion[3]+_quaternion[0]*_quaternion[1]), 1.0-2.0*(_quaternion[1]*_quaternion[1]+_quaternion[2]*_quaternion[2]));
	_euler_angle[1] = asinf(2.0*(_quaternion[0]*_quaternion[2]-_quaternion[3]*_quaternion[1]));
	_euler_angle[2] = atan2f(2.0*(_quaternion[1]*_quaternion[2]+_quaternion[0]*_quaternion[3]), 1.0-2.0*(_quaternion[2]*_quaternion[2]+_quaternion[3]*_quaternion[3]));

	_w_gyro[0] = w[0];
	_w_gyro[1] = w[1];
	_w_gyro[2] = w[2];
}
Exemple #10
0
//Takes a snapshot with the given camera. 
//Arguments: 
//  The Runge-Kutta method to be used.
//  The filename.
//  Maximum number of steps a light ray may take.
//  The maximum distance from the black hole a ray is allowed to go before it is stopped. 
//  The initial step size.
//  Coordinate code specifying the output coordinates to say where the light ray ends up. 
//  A coordinate test function. 
void Camera3D::Snapshot(RungeKuttaForm const *solvedata, char const*file, int maxsteps, double maxdistance, double initstep, double errscale, int outputcoordinate, int (*coordtest)(int, double[], double[]))
{
    double error[17];
    double *lambda1, *lambda2, *temp, *dlambda1, *dlambda2;
    lambda1 = new double[17]; lambda2 = new double[17]; dlambda1 = new double[17]; dlambda2 = new double[17];
    double step, s, dist, distmin, distmax, previousdist, *v;
    int presentcoordinate, newcoordinate;
    ofstream out;
    out.open(file);
    int i, j, counter = 0, outeradjustments;
    double maxdistancesquared = maxdistance*maxdistance;
    double stepmax, stepmin;
    bool initeval;
    double inversedirections[16];
    void (*initialderivatives)(double, double[], double[]);
    void (*derivatives)(double, double[], double[]);
    double (*initialdistance)(double[]);
    double (*distance)(double[]);
    RungeKuttaData *solver = new RungeKuttaData(solvedata, 8);

    //The different coordinate schemes:
    //0: past EF coordinates
    //1: future EF coordinates
    //2: cartesian r > 0.
    //3: cartesian r < 0.
    switch (coordinate){
        case PAST_EF:
            initialderivatives = DerivativesPastEddingtonFinkelstein;
            initialdistance = DistancePastEddingtonFinkelstein;
            break;

        case FUTURE_EF:
            initialderivatives = DerivativesFutureEddingtonFinkelstein;
            initialdistance = DistanceFutureEddingtonFinkelstein;
            break;

        case CARTESIAN_POSITIVE_R:
            initialderivatives = DerivativesCartesian;
            initialdistance = DistanceCartesian;
            break;

        case CARTESIAN_NEGATIVE_R:
            initialderivatives = DerivativesCartesian;
            initialdistance = DistanceCartesian;
            break;
    }

    InverseMatrix(inversedirections, directions);

    out << pixh << " " << pixv << endl;

    for(i=0;i<pix;i++)
    {
        s = 0.0; step = initstep;
        dist = 0.0;
        for(j = 0; j < 4; j++) lambda1[j] = pos[j];
        while(j < 8) {lambda1[j] = light[13*i+j-4];j++;}
        for(j = 0; j < 8; j++) lambda2[j] = lambda1[j];

        derivatives = initialderivatives;
        distance = initialdistance;
        initeval = true;
        presentcoordinate = coordinate;

        for(j=0;j<maxsteps;j++)
        {
            counter ++;

            if(initeval)derivatives(0.0, lambda1, dlambda1);
            initeval = false;

            step = solver->timestep(derivatives, lambda1, dlambda1, 0.0, step, 1., errscale, lambda2, error, dlambda2);
            if (((step >= -.0000001)&&(step <= .0000001)) || isnan(step) || isinf(step))   break;

            distmin = dist;
            dist = distance(lambda2);

            //If the light ray goes outside the max distance, it is necessary to track it
            //  to find its location at exactly that distance. This loop tests different
            //  lengths for the last time step until the light ray is as close as possible
            //  to the max distance. IF this is not done, the picture comes out a little 
            //  funny-looking. 
            if (dist > maxdistancesquared)
            {
                outeradjustments = 0;
                previousdist = pow(dist, .5);
                distmin = pow(distmin, .5);
                distmax = previousdist;
                stepmax = step; stepmin = 0;
                while(true)
                {
                    dist = pow(dist, .5);

                    if(dist < maxdistance) {
                        stepmin = step;
                        distmin = dist;
                    } else {
                        if(dist - DISTANCERANGE < maxdistance) break;
                        else {
                            stepmax = step; distmax = dist;
                        }
                    }

                    step = stepmin + (stepmax - stepmin)*(maxdistance - distmin)/(distmax - distmin);
                    solver->step(derivatives, lambda1, dlambda2, 0.0, step, lambda2, error, dlambda2);

                    dist = distance(lambda2);

                    if(outeradjustments > MAXOUTERADJUSTMENTS) break; 
                    outeradjustments++;
                }
                break;
            }

            v = &lambda1[4];
            //Test if a coordinate change is needed. 
            newcoordinate = coordtest(presentcoordinate, lambda2, lambda2);
            if(newcoordinate != presentcoordinate) {
                switch (newcoordinate){
                    case PAST_EF:
                        derivatives = DerivativesPastEddingtonFinkelstein;
                        distance = DistancePastEddingtonFinkelstein;
                        break;
                    case FUTURE_EF:
                        derivatives = DerivativesFutureEddingtonFinkelstein;
                        distance = DistanceFutureEddingtonFinkelstein;
                        break;
                    case CARTESIAN_POSITIVE_R:
                        derivatives = DerivativesCartesian;
                        distance = DistanceCartesian;
                        break;
                    case CARTESIAN_NEGATIVE_R:
                        derivatives = DerivativesCartesian;
                        distance = DistanceCartesian;
                        break;
                }
                CoordinateSwitch(blackhole, lambda2, v, 1, newcoordinate, presentcoordinate);
                initeval = true;
            }
            presentcoordinate = newcoordinate;

            temp = lambda1; lambda1 = lambda2; lambda2 = temp;
            temp = dlambda1; dlambda1 = dlambda2; dlambda2 = temp;
        }
        CoordinateSwitch(blackhole, lambda2, &lambda2[4], 1, 4, presentcoordinate);

    }
    delete solver;
    delete[] lambda1; delete[] lambda2; delete[] dlambda1; delete[] dlambda2;
}
Exemple #11
0
static void MatrixInv(double matrix_in [3][3], double matrix_out [3][3])   
{   
    int userN = 3;   
    int userM = 2;   
    int row = 0;   
    int column = 0;   
  
    double** matrixA;   
    double** inversedMatrixA;   
    double** multiplicationalMatrixA;   
    double determinantResult = 0;   
  
    matrixA = (double**)malloc(sizeof(double*) * userN);   
    for (row = 0; row < userN; row++)   
    {   
        matrixA[row] = (double*)malloc(sizeof(double) * userN);   
    } /* for (row = 0; row < userN; row++) */  
  
    for (row = 0; row < userN; row++)   
    {   
        for (column = 0; column < userN; column++)   
        {   
            matrixA[row][column] = matrix_in[row][column];
        } /* for (column = 0; column < userN; column++) */  
    } /* for (row = 0; row < userN; row++) */  
 
    determinantResult = Determinant(matrixA, userN);   
  
    if (!determinantResult)   
    {   
        printf("\nNo determinant(A)\n");   
    }
    else  
    {   
        inversedMatrixA = (double**)malloc(sizeof(double*) * userN);   
        multiplicationalMatrixA = (double**)malloc(sizeof(double*) * userN);   
  
        for (row = 0; row < userN; row++)   
        {   
            inversedMatrixA[row] = (double*)malloc(sizeof(double) * userN);   
            multiplicationalMatrixA[row] =   
                                        (double*)malloc(sizeof(double) * userN);   
        }
  
        InverseMatrix(matrixA, inversedMatrixA, userN, determinantResult);   
  
        for (row = 0; row < userN; row++)   
        {   
            for (column = 0; column < userN; column++)   
            {   
		matrix_out[row][column] = inversedMatrixA[row][column];
            }
        }
  
/*        MultiplicationMatrix(matrixA, inversedMatrixA,   
                                multiplicationalMatrixA, userN);   
  
        printf("\nA'A = \n");   
        for (row = 0; row < userN; row++)   
        {   
            for (column = 0; column < userN; column++)   
            {   
                printf("%15.5lf ", multiplicationalMatrixA[row][column]);   
                if (column % userN == userM)   
                {   
                    printf("\n");   
                }
            }
        }
*/  
        for(row = 0; row < userN; row++)   
        {   
            free(multiplicationalMatrixA[row]);   
            free(inversedMatrixA[row]);   
        } /* for(row = 0; row < userN; row++) */  
  
        free(multiplicationalMatrixA);   
        free(inversedMatrixA);   
    }   
  
    for(row = 0; row < userN; row++)   
    {   
        free(matrixA[row]);   
    } /* for(row = 0; row < userN; row++) */  
    free(matrixA);   
}   
Exemple #12
0
  void Arnoldi<SCAL>::Calc (int numval, Array<Complex> & lam, int numev, 
                            Array<shared_ptr<BaseVector>> & hevecs, 
                            const BaseMatrix * pre) const
  { 
    static Timer t("arnoldi");    
    static Timer t2("arnoldi - orthogonalize");    
    static Timer t3("arnoldi - compute large vectors");

    RegionTimer reg(t);

    auto hv  = a.CreateVector();
    auto hv2 = a.CreateVector();
    auto hva = a.CreateVector();
    auto hvm = a.CreateVector();
   
    int n = hv.FV<SCAL>().Size();    
    int m = min2 (numval, n);


    Matrix<SCAL> matH(m);
    Array<shared_ptr<BaseVector>> abv(m);
    for (int i = 0; i < m; i++)
      abv[i] = a.CreateVector();

    auto mat_shift = a.CreateMatrix();
    mat_shift->AsVector() = a.AsVector() - shift*b.AsVector();  
    shared_ptr<BaseMatrix> inv;
    if (!pre)
      inv = mat_shift->InverseMatrix (freedofs);
    else
      {
        auto itso = make_shared<GMRESSolver<double>> (*mat_shift, *pre);
        itso->SetPrintRates(1);
        itso->SetMaxSteps(2000);
        inv = itso;
      }

    hv.SetRandom();
    hv.SetParallelStatus (CUMULATED);
    FlatVector<SCAL> fv = hv.FV<SCAL>();
    if (freedofs)
      for (int i = 0; i < hv.Size(); i++)
	if (! (*freedofs)[i] ) fv(i) = 0;

    t2.Start();
    // matV = SCAL(0.0);   why ?
    matH = SCAL(0.0);

    *hv2 = *hv;
    SCAL len = sqrt (S_InnerProduct<SCAL> (*hv, *hv2)); // parallel
    *hv /= len;
    
    for (int i = 0; i < m; i++)
      {
	cout << IM(1) << "\ri = " << i << "/" << m << flush;
	/*
	for (int j = 0; j < n; j++)
	  matV(i,j) = hv.FV<SCAL>()(j);
	*/
	*abv[i] = *hv;

	*hva = b * *hv;
	*hvm = *inv * *hva;

	for (int j = 0; j <= i; j++)
	  {
            /*
            SCAL sum = 0.0;
	    for (int k = 0; k < n; k++)
	      sum += hvm.FV<SCAL>()(k) * matV(j,k);
	    matH(j,i) = sum;
	    for (int k = 0; k < n; k++)
	      hvm.FV<SCAL>()(k) -= sum * matV(j,k);
            */
            /*
            SCAL sum = 0.0;
            FlatVector<SCAL> abvj = abv[j] -> FV<SCAL>();
            FlatVector<SCAL> fv_hvm = hvm.FV<SCAL>();
	    for (int k = 0; k < n; k++)
	      sum += fv_hvm(k) * abvj(k);
	    matH(j,i) = sum;
	    for (int k = 0; k < n; k++)
	      fv_hvm(k) -= sum * abvj(k);
            */

	    matH(j,i) = S_InnerProduct<SCAL> (*hvm, *abv[j]);
	    *hvm -= matH(j,i) * *abv[j];
	  }
		
	*hv = *hvm;
	*hv2 = *hv;
	SCAL len = sqrt (S_InnerProduct<SCAL> (*hv, *hv2));
	if (i<m-1) matH(i+1,i) = len; 
	
	*hv /= len;
      }
      
    t2.Stop();
    t2.AddFlops (double(n)*m*m);
    cout << "n = " << n << ", m = " << m << " n*m*m = " << n*m*m << endl;
    cout << IM(1) << "\ri = " << m << "/" << m << endl;	    

	    
    Vector<Complex> lami(m);
    Matrix<Complex> evecs(m);    
    Matrix<Complex> matHt(m);

    matHt = Trans (matH);
    
    evecs = Complex (0.0);
    lami = Complex (0.0);

    cout << "Solve Hessenberg evp with Lapack ... " << flush;
    LapackHessenbergEP (matH.Height(), &matHt(0,0), &lami(0), &evecs(0,0));
    cout << "done" << endl;
	    
    for (int i = 0; i < m; i++)
      lami(i) =  1.0 / lami(i) + shift;

    lam.SetSize (m);
    for (int i = 0; i < m; i++)
      lam[i] = lami(i);

    t3.Start();
    if (numev>0)
      {
	int nout = min2 (numev, m); 
	hevecs.SetSize(nout);
	for (int i = 0; i< nout; i++)
	  {
	    hevecs[i] = a.CreateVector();
	    *hevecs[i] = 0;
	    for (int j = 0; j < m; j++)
	      *hevecs[i] += evecs(i,j) * *abv[j];
	    // hevecs[i]->FVComplex() = Trans(matV)*evecs.Row(i);
	  }
      }
    t3.Stop();
  } 
Exemple #13
0
void RGBColorSystem::Data::Initialize()
{
   /*
    * Normalize luminance coefficients
    */
   double s = Y.Sum();
   if ( 1 + s == 1 )
      throw Error( "Invalid luminance coefficients in RGB working color space initialization." );
   Y /= s;

   /*
    * RGB -> XYZ transformation matrix M
    */
   M = SetupMatrix( x, y, Y );

   /*
    * CIE X and CIE Z normalization coefficients
    */
   mX = M11 + M12 + M13;
   mZ = M31 + M32 + M33;

   /*
    * XYZ -> RGB inverse matrix M_
    */
   M_ = InverseMatrix( M );

   /*
    * Inverse gamma
    */
   if ( 1 + gamma == 1 || gamma < 0 )
      throw Error( "Invalid gamma value in RGB working color space initialization." );
   gammaInv = 1/gamma;

   /*
    * Find normalization coefficients for CIE a, b, c channels
    *
    * The idea here is to maximize dynamic range usage for each channel
    * (coding efficiency) while ensuring that they will be constrained to the
    * nominal range [0,1].
    */

   sample minab = 100, maxab = -100, maxc = -100;

   int minabR = 0, minabG = 0, minabB = 0;
   int maxabR = 0, maxabG = 0, maxabB = 0;
   int maxcR = 0, maxcG = 0, maxcB = 0;

   for ( int ri = 0; ri < 10; ++ri )
   {
      sample R = sample( ri/9.0 );

      for ( int gi = 0; gi < 10; ++gi )
      {
         sample G = sample( gi/9.0 );

         for ( int bi = 0; bi < 10; ++bi )
         {
            sample B = sample( bi/9.0 );

            sample X, Y, Z;
            RGBToCIEXYZ( X, Y, Z, R, G, B );

            RGBColorSystem::XYZLab( X );
            RGBColorSystem::XYZLab( Y );
            RGBColorSystem::XYZLab( Z );

            sample a = 5*(X - Y);
            sample b = 2*(Y - Z);
            sample c = Sqrt( a*a + b*b );

            sample mn = Min( a, b );
            sample mx = Max( a, b );

            if ( mn < minab )
            {
               minab = mn;
               minabR = ri;
               minabG = gi;
               minabB = bi;
            }

            if ( mx > maxab )
            {
               maxab = mx;
               maxabR = ri;
               maxabG = gi;
               maxabB = bi;
            }

            if ( c > maxc )
            {
               maxc = c;
               maxcR = ri;
               maxcG = gi;
               maxcB = bi;
            }
         }
      }
   }

   sample R0, R1, G0, G1, B0, B1;

   R0 = Max( 0, minabR-1 )/9.0;
   R1 = Min( 9, minabR+1 )/9.0;

   G0 = Max( 0, minabG-1 )/9.0;
   G1 = Min( 9, minabG+1 )/9.0;

   B0 = Max( 0, minabB-1 )/9.0;
   B1 = Min( 9, minabB+1 )/9.0;

   for ( sample R = R0; R < R1; R += 0.01 )
      for ( sample G = G0; G < G1; G += 0.01 )
         for ( sample B = B0; B < B1; B += 0.01 )
         {
            sample X, Y, Z;
            RGBToCIEXYZ( X, Y, Z, R, G, B );

            RGBColorSystem::XYZLab( X );
            RGBColorSystem::XYZLab( Y );
            RGBColorSystem::XYZLab( Z );

            sample mn = Min( 5*(X - Y), 2*(Y - Z) );
            if ( mn < minab )
               minab = mn;
         }

   R0 = Max( 0, maxabR-1 )/9.0;
   R1 = Min( 9, maxabR+1 )/9.0;

   G0 = Max( 0, maxabG-1 )/9.0;
   G1 = Min( 9, maxabG+1 )/9.0;

   B0 = Max( 0, maxabB-1 )/9.0;
   B1 = Min( 9, maxabB+1 )/9.0;

   for ( sample R = R0; R < R1; R += 0.01 )
      for ( sample G = G0; G < G1; G += 0.01 )
         for ( sample B = B0; B < B1; B += 0.01 )
         {
            sample X, Y, Z;
            RGBToCIEXYZ( X, Y, Z, R, G, B );

            RGBColorSystem::XYZLab( X );
            RGBColorSystem::XYZLab( Y );
            RGBColorSystem::XYZLab( Z );

            sample mx = Max( 5*(X - Y), 2*(Y - Z) );
            if ( mx > maxab )
               maxab = mx;
         }

   R0 = Max( 0, maxcR-1 )/9.0;
   R1 = Min( 9, maxcR+1 )/9.0;

   G0 = Max( 0, maxcG-1 )/9.0;
   G1 = Min( 9, maxcG+1 )/9.0;

   B0 = Max( 0, maxcB-1 )/9.0;
   B1 = Min( 9, maxcB+1 )/9.0;

   for ( sample R = R0; R < R1; R += 0.01 )
      for ( sample G = G0; G < G1; G += 0.01 )
         for ( sample B = B0; B < B1; B += 0.01 )
         {
            sample X, Y, Z;
            RGBToCIEXYZ( X, Y, Z, R, G, B );

            RGBColorSystem::XYZLab( X );
            RGBColorSystem::XYZLab( Y );
            RGBColorSystem::XYZLab( Z );

            sample a = 5*(X - Y);
            sample b = 2*(Y - Z);
            sample c = Sqrt( a*a + b*b );

            if ( c > maxc )
               maxc = c;
         }

   abOffset = -minab + 0.05;
   abDelta  =  maxab - minab + 0.1;
   cDelta   =  maxc + 0.05;
}