Exemple #1
0
/**
  Calling this function causes the system to enter a power state equivalent
  to the ACPI G2/S5 or G3 states.

  System shutdown should not return, if it returns, it means the system does
  not support shut down reset.
**/
VOID
EFIAPI
ResetShutdown (
VOID
)
{
  //
  // Reference to QuarkNcSocId BWG
  //  Disable RTC Alarm :  (RTC Enable at PM1BLK + 02h[10]))
  //
  IoWrite16 (PcdGet16 (PcdPm1blkIoBaseAddress) + R_QNC_PM1BLK_PM1E, 0);

  //
  // Firstly, GPE0_EN should be disabled to
  // avoid any GPI waking up the system from S5
  //
  IoWrite32 ((UINT16)(LpcPciCfg32 (R_QNC_LPC_GPE0BLK) & 0xFFFF) + R_QNC_GPE0BLK_GPE0E, 0);

  //
  // Reference to QuarkNcSocId BWG
  //  Disable Resume Well GPIO :  (GPIO bits in GPIOBASE + 34h[8:0])
  //
  IoWrite32 (PcdGet16 (PcdGbaIoBaseAddress) + R_QNC_GPIO_RGGPE_RESUME_WELL, 0);

  //
  // No power button status bit to clear for our platform, go to next step.
  //

  //
  // Finally, transform system into S5 sleep state
  //
  IoAndThenOr32 (PcdGet16 (PcdPm1blkIoBaseAddress) + R_QNC_PM1BLK_PM1C, 0xffffc3ff, B_QNC_PM1BLK_PM1C_SLPEN | V_S5);
}
Exemple #2
0
/**
  Write I/O registers.

  @param[in]  PeiServices  An indirect pointer to the PEI Services Table
                           published by the PEI Foundation.
  @param[in]  This         Pointer to local data for the interface.
  @param[in]  Width        The width of the access. Enumerated in bytes.
  @param[in]  Address      The physical address of the access.
  @param[in]  Count        The number of accesses to perform.
  @param[in]  Buffer       A pointer to the buffer of data.

  @retval EFI_SUCCESS            The function completed successfully.
  @retval EFI_INVALID_PARAMETER  Width is invalid for this EFI system.
  @retval EFI_INVALID_PARAMETER  Buffer is NULL.
  @retval EFI_UNSUPPORTED        The address range specified by Address, Width, 
                                 and Count is not valid for this EFI system.

**/
EFI_STATUS
EFIAPI
CpuIoServiceWrite (
  IN CONST EFI_PEI_SERVICES    **PeiServices,
  IN CONST EFI_PEI_CPU_IO_PPI  *This,
  IN EFI_PEI_CPU_IO_PPI_WIDTH  Width,
  IN UINT64                    Address,
  IN UINTN                     Count,
  IN VOID                      *Buffer
  )
{
  EFI_STATUS                Status;
  UINT8                     InStride;
  UINT8                     OutStride;
  EFI_PEI_CPU_IO_PPI_WIDTH  OperationWidth;
  BOOLEAN                   Aligned;
  UINT8                     *Uint8Buffer;

  //
  // Make sure the parameters are valid
  //
  Status = CpuIoCheckParameter (FALSE, Width, Address, Count, Buffer);
  if (EFI_ERROR (Status)) {
    return Status;
  }

  //
  // Select loop based on the width of the transfer
  //
  InStride = mInStride[Width];
  OutStride = mOutStride[Width];
  OperationWidth = (EFI_PEI_CPU_IO_PPI_WIDTH) (Width & 0x03);
  Aligned = (BOOLEAN)(((UINTN)Buffer & (mInStride[OperationWidth] - 1)) == 0x00);
  for (Uint8Buffer = (UINT8 *)Buffer; Count > 0; Address += InStride, Uint8Buffer += OutStride, Count--) {
    if (OperationWidth == EfiPeiCpuIoWidthUint8) {
      IoWrite8 ((UINTN)Address, *Uint8Buffer);
    } else if (OperationWidth == EfiPeiCpuIoWidthUint16) {
      if (Aligned) {
        IoWrite16 ((UINTN)Address, *((UINT16 *)Uint8Buffer));
      } else {
        IoWrite16 ((UINTN)Address, ReadUnaligned16 ((UINT16 *)Uint8Buffer));
      }
    } else if (OperationWidth == EfiPeiCpuIoWidthUint32) {
      if (Aligned) {
        IoWrite32 ((UINTN)Address, *((UINT32 *)Uint8Buffer));
      } else {
        IoWrite32 ((UINTN)Address, ReadUnaligned32 ((UINT32 *)Uint8Buffer));
      }
    }
  }
  
  return EFI_SUCCESS;
}
/**
  Clear SMI related chipset status and re-enable SMI by setting the EOS bit.

  @retval EFI_SUCCESS The requested operation has been carried out successfully
  @retval EFI_DEVICE_ERROR  The EOS bit could not be set.

**/
EFI_STATUS
SmmClear (
  VOID
  )
{
  UINT16                       PM1BLK_Base;
  UINT16                       GPE0BLK_Base;

  //
  // Get PM1BLK_Base & GPE0BLK_Base
  //
  PM1BLK_Base  = PcdGet16 (PcdPm1blkIoBaseAddress);
  GPE0BLK_Base = PcdGet16 (PcdGpe0blkIoBaseAddress);

  //
  // Clear the Power Button Override Status Bit, it gates EOS from being set.
  // In QuarkNcSocId - Bit is read only. Handled by external SMC, do nothing.
  //

  //
  // Clear the APM SMI Status Bit
  //
  IoWrite32 ((GPE0BLK_Base + R_QNC_GPE0BLK_SMIS), B_QNC_GPE0BLK_SMIS_APM);

  //
  // Set the EOS Bit
  //
  IoOr32 ((GPE0BLK_Base + R_QNC_GPE0BLK_SMIS), B_QNC_GPE0BLK_SMIS_EOS);

  return EFI_SUCCESS;
}
Exemple #4
0
/**
  Sends an 32-bit value to a POST card.

  Sends the 32-bit value specified by Value to a POST card, and returns Value.
  Some implementations of this library function may perform I/O operations
  directly to a POST card device.  Other implementations may send Value to
  ReportStatusCode(), and the status code reporting mechanism will eventually
  display the 32-bit value on the status reporting device.

  PostCode() must actively prevent recursion.  If PostCode() is called while
  processing another any other Post Code Library function, then
  PostCode() must return Value immediately.

  @param  Value  The 32-bit value to write to the POST card.

  @return The 32-bit value to write to the POST card.

**/
UINT32
EFIAPI
PostCode (
  IN UINT32  Value
  )
{
  switch (PcdGet8 (PcdPort80DataWidth)) {
  case 8:
    IoWrite8 (0x80, (UINT8)(Value));
    break;
  case 16:
    IoWrite16 (0x80, (UINT16)(Value));
    break;
  case 32:
    IoWrite32 (0x80, Value);
    break;
  default:
    //
    // Assert on the invalid data width
    //
    ASSERT (FALSE);
    break;
  }

  return Value;
}
Exemple #5
0
/**
  Write to IO space

  Argv[0] - "iowrite"[.#] # is optional width 1, 2, or 4. Default 1
  Argv[1] - Hex IO address
  Argv[2] - Hex data to write

  iow.4 0x3f8 af  ;Do a 32-bit IO write of af to 0x3f8
  iow   0x3f8 af  ;Do an 8-bit IO write of af to 0x3f8

  @param  Argc   Number of command arguments in Argv
  @param  Argv   Array of strings that represent the parsed command line.
                 Argv[0] is the command name

  @return EFI_SUCCESS

**/
EFI_STATUS
EblIoWriteCmd (
  IN UINTN  Argc,
  IN CHAR8  **Argv
  )
{
  UINTN   Width;
  UINTN   Port;
  UINTN   Data;

  if (Argc < 3) {
    return EFI_INVALID_PARAMETER;
  }

  Port = AsciiStrHexToUintn (Argv[1]);
  Data = AsciiStrHexToUintn (Argv[2]);
  Width = WidthFromCommandName (Argv[0], 1);

  if (Width == 1) {
    IoWrite8 (Port, (UINT8)Data);
  } else if (Width == 2) {
    IoWrite16 (Port, (UINT16)Data);
  } else if (Width == 4) {
    IoWrite32 (Port, (UINT32)Data);
  } else {
    return EFI_INVALID_PARAMETER;
  }
  return EFI_SUCCESS;
}
Exemple #6
0
/**
  32-bit I/O write operations.

  @param[in] PeiServices  An indirect pointer to the PEI Services Table published
                          by the PEI Foundation.
  @param[in] This         Pointer to local data for the interface.
  @param[in] Address      The physical address of the access.
  @param[in] Data         The data to write.

**/
VOID
EFIAPI
CpuIoWrite32 (
  IN CONST EFI_PEI_SERVICES    **PeiServices,
  IN CONST EFI_PEI_CPU_IO_PPI  *This,
  IN UINT64                    Address,
  IN UINT32                    Data
  )
{
  IoWrite32 ((UINTN)Address, Data);
}
Exemple #7
0
VOID
EFIAPI
DisableAcpiCallback (
  IN  EFI_HANDLE                    DispatchHandle,
  IN  EFI_SMM_SW_DISPATCH_CONTEXT   *DispatchContext
  )
{
  UINT16 Pm1Cnt;

  IoWrite16(mAcpiBaseAddr + R_PCH_ACPI_PM1_STS, 0xffff);
  IoWrite16(mAcpiBaseAddr + R_PCH_ACPI_PM1_EN, mPM1_SaveState16);

  IoWrite32(mAcpiBaseAddr + R_PCH_ACPI_GPE0a_STS, 0xffffffff);
  IoWrite32(mAcpiBaseAddr + R_PCH_ACPI_GPE0a_EN, mGPE_SaveState32);

  //
  // Disable SCI
  //
  Pm1Cnt = IoRead16(mAcpiBaseAddr + R_PCH_ACPI_PM1_CNT);
  Pm1Cnt &= ~B_PCH_ACPI_PM1_CNT_SCI_EN;
  IoWrite16(mAcpiBaseAddr + R_PCH_ACPI_PM1_CNT, Pm1Cnt);

}
Exemple #8
0
/**
  Triggers a run time or boot time SMI.

  This function triggers a software SMM interrupt and set the APMC status with an 8-bit Data.

  @param  Data                 The value to set the APMC status.

**/
VOID
InternalTriggerSmi (
  IN UINT8                     Data
  )
{
  UINT16        PM1BLK_Base;
  UINT16        GPE0BLK_Base;
  UINT32        NewValue;

  //
  // Get PM1BLK_Base & GPE0BLK_Base
  //
  PM1BLK_Base = PcdGet16 (PcdPm1blkIoBaseAddress);
  GPE0BLK_Base = (UINT16)(LpcPciCfg32 (R_QNC_LPC_GPE0BLK) & 0xFFFF);


  //
  // Enable APM SMI
  //
  IoOr32 ((GPE0BLK_Base + R_QNC_GPE0BLK_SMIE), B_QNC_GPE0BLK_SMIE_APM);

  //
  // Enable SMI globally
  //
  NewValue = QNCPortRead (QUARK_NC_HOST_BRIDGE_SB_PORT_ID, QNC_MSG_FSBIC_REG_HMISC);
  NewValue |= SMI_EN;
  QNCPortWrite (QUARK_NC_HOST_BRIDGE_SB_PORT_ID, QNC_MSG_FSBIC_REG_HMISC, NewValue);

  //
  // Set APM_STS
  //
  IoWrite8 (PcdGet16 (PcdSmmDataPort), Data);

  //
  // Generate the APM SMI
  //
  IoWrite8 (PcdGet16 (PcdSmmActivationPort), PcdGet8 (PcdSmmActivationData));

  //
  // Clear the APM SMI Status Bit
  //
  IoWrite32 ((GPE0BLK_Base + R_QNC_GPE0BLK_SMIS), B_QNC_GPE0BLK_SMIS_APM);

  //
  // Set the EOS Bit
  //
  IoOr32 ((GPE0BLK_Base + R_QNC_GPE0BLK_SMIS), B_QNC_GPE0BLK_SMIS_EOS);
}
Exemple #9
0
/**
  Write I/O registers.

  The I/O operations are carried out exactly as requested. The caller is responsible 
  for satisfying any alignment and I/O width restrictions that a PI System on a 
  platform might require. For example on some platforms, width requests of 
  EfiCpuIoWidthUint64 do not work. Misaligned buffers, on the other hand, will 
  be handled by the driver.
  
  If Width is EfiCpuIoWidthUint8, EfiCpuIoWidthUint16, EfiCpuIoWidthUint32, 
  or EfiCpuIoWidthUint64, then both Address and Buffer are incremented for 
  each of the Count operations that is performed.
  
  If Width is EfiCpuIoWidthFifoUint8, EfiCpuIoWidthFifoUint16, 
  EfiCpuIoWidthFifoUint32, or EfiCpuIoWidthFifoUint64, then only Buffer is 
  incremented for each of the Count operations that is performed. The read or 
  write operation is performed Count times on the same Address.
  
  If Width is EfiCpuIoWidthFillUint8, EfiCpuIoWidthFillUint16, 
  EfiCpuIoWidthFillUint32, or EfiCpuIoWidthFillUint64, then only Address is 
  incremented for each of the Count operations that is performed. The read or 
  write operation is performed Count times from the first element of Buffer.
  
  @param[in]  This     A pointer to the EFI_CPU_IO2_PROTOCOL instance.
  @param[in]  Width    Signifies the width of the I/O or Memory operation.
  @param[in]  Address  The base address of the I/O operation. 
  @param[in]  Count    The number of I/O operations to perform. The number of 
                       bytes moved is Width size * Count, starting at Address.
  @param[in]  Buffer   For read operations, the destination buffer to store the results.
                       For write operations, the source buffer from which to write data.

  @retval EFI_SUCCESS            The data was read from or written to the PI system.
  @retval EFI_INVALID_PARAMETER  Width is invalid for this PI system.
  @retval EFI_INVALID_PARAMETER  Buffer is NULL.
  @retval EFI_UNSUPPORTED        The Buffer is not aligned for the given Width.
  @retval EFI_UNSUPPORTED        The address range specified by Address, Width, 
                                 and Count is not valid for this PI system.
                                 
**/
EFI_STATUS
EFIAPI
CpuIoServiceWrite (
  IN EFI_CPU_IO2_PROTOCOL       *This,
  IN EFI_CPU_IO_PROTOCOL_WIDTH  Width,
  IN UINT64                     Address,
  IN UINTN                      Count,
  IN VOID                       *Buffer
  )
{
  EFI_STATUS                 Status;
  UINT8                      InStride;
  UINT8                      OutStride;
  EFI_CPU_IO_PROTOCOL_WIDTH  OperationWidth;
  UINT8                      *Uint8Buffer;

  //
  // Make sure the parameters are valid
  //
  Status = CpuIoCheckParameter (FALSE, Width, Address, Count, Buffer);
  if (EFI_ERROR (Status)) {
    return Status;
  }

  //
  // Select loop based on the width of the transfer
  //
  InStride = mInStride[Width];
  OutStride = mOutStride[Width];
  OperationWidth = (EFI_CPU_IO_PROTOCOL_WIDTH) (Width & 0x03);
  for (Uint8Buffer = (UINT8 *)Buffer; Count > 0; Address += InStride, Uint8Buffer += OutStride, Count--) {
    if (OperationWidth == EfiCpuIoWidthUint8) {
      IoWrite8 ((UINTN)Address, *Uint8Buffer);
    } else if (OperationWidth == EfiCpuIoWidthUint16) {
      IoWrite16 ((UINTN)Address, *((UINT16 *)Uint8Buffer));
    } else if (OperationWidth == EfiCpuIoWidthUint32) {
      IoWrite32 ((UINTN)Address, *((UINT32 *)Uint8Buffer));
    }
  }
  
  return EFI_SUCCESS;
}
Exemple #10
0
VOID
EFIAPI
S4S5CallBack (
  IN  EFI_HANDLE                    DispatchHandle,
  IN  EFI_SMM_SX_DISPATCH_CONTEXT   *DispatchContext
  )
{

  UINT32        Data32;

  //
  // Enable/Disable USB Charging
  //
  if (mSystemConfiguration.UsbCharging == 0x01) {
    Data32 = IoRead32 (GPIO_BASE_ADDRESS + R_PCH_GPIO_SC_LVL);
    Data32 |= BIT8;
    IoWrite32(GPIO_BASE_ADDRESS + R_PCH_GPIO_SC_LVL, Data32);
  }

}
Exemple #11
0
EFI_STATUS
RestoreState (
  VOID
  )
/*++

Routine Description:

  Restore Index registers to avoid corrupting the foreground environment

Arguments:
  None

Returns:
  Status - EFI_SUCCESS

--*/
{
  IoWrite32 (EFI_PCI_ADDRESS_PORT, mPciAddress);
  return EFI_SUCCESS;
}
Exemple #12
0
/**
  Write I/O registers.

  The I/O operations are carried out exactly as requested.  The caller is 
  responsible for any alignment and I/O width issues that the bus, device, 
  platform, or type of I/O might require.

  @param[in]  This     The EFI_SMM_CPU_IO2_PROTOCOL instance.
  @param[in]  Width    Signifies the width of the I/O operations.
  @param[in]  Address  The base address of the I/O operations.  The caller is 
                       responsible for aligning the Address if required. 
  @param[in]  Count    The number of I/O operations to perform.
  @param[in]  Buffer   For read operations, the destination buffer to store 
                       the results.  For write operations, the source buffer 
                       from which to write data.

  @retval EFI_SUCCESS            The data was read from or written to the device.
  @retval EFI_UNSUPPORTED        The Address is not valid for this system.
  @retval EFI_INVALID_PARAMETER  Width or Count, or both, were invalid.
  @retval EFI_OUT_OF_RESOURCES   The request could not be completed due to a 
                                 lack of resources

**/
EFI_STATUS
EFIAPI
CpuIoServiceWrite (
  IN CONST EFI_SMM_CPU_IO2_PROTOCOL  *This,
  IN EFI_SMM_IO_WIDTH                Width,
  IN UINT64                          Address,
  IN UINTN                           Count,
  IN VOID                            *Buffer
  )
{
  EFI_STATUS  Status;
  UINT8       Stride;
  UINT8       *Uint8Buffer;

  //
  // Make sure the parameters are valid
  //
  Status = CpuIoCheckParameter (FALSE, Width, Address, Count, Buffer);
  if (EFI_ERROR (Status)) {
    return Status;
  }

  //
  // Select loop based on the width of the transfer
  //
  Stride = mStride[Width];
  for (Uint8Buffer = (UINT8 *)Buffer; Count > 0; Address += Stride, Uint8Buffer += Stride, Count--) {
    if (Width == SMM_IO_UINT8) {
      IoWrite8 ((UINTN)Address, *Uint8Buffer);
    } else if (Width == SMM_IO_UINT16) {
      IoWrite16 ((UINTN)Address, *((UINT16 *)Uint8Buffer));
    } else if (Width == SMM_IO_UINT32) {
      IoWrite32 ((UINTN)Address, *((UINT32 *)Uint8Buffer));
    }
  }
  
  return EFI_SUCCESS;
}
//
// Routines local to this source module.
//
STATIC
VOID
LegacyGpioSetLevel (
  IN CONST UINT32                         LevelRegOffset,
  IN CONST UINT32                         GpioNum,
  IN CONST BOOLEAN                        HighLevel
  )
{
  UINT32                            RegValue;
  UINT32                            GpioBaseAddress;
  UINT32                            GpioNumMask;

  GpioBaseAddress =  LpcPciCfg32 (R_QNC_LPC_GBA_BASE) & B_QNC_LPC_GPA_BASE_MASK;
  ASSERT (GpioBaseAddress > 0);

  RegValue = IoRead32 (GpioBaseAddress + LevelRegOffset);
  GpioNumMask = (1 << GpioNum);
  if (HighLevel) {
    RegValue |= (GpioNumMask);
  } else {
    RegValue &= ~(GpioNumMask);
  }
  IoWrite32 (GpioBaseAddress + R_QNC_GPIO_RGLVL_RESUME_WELL, RegValue);
}
Exemple #14
0
/**
  Calling this function causes the system to enter a power state for capsule
  update.

  Reset update should not return, if it returns, it means the system does
  not support capsule update.

**/
VOID
EFIAPI
EnterS3WithImmediateWake (
VOID
)
{
  UINT8     Data8;
  UINT16    Data16;
  UINT32    Data32;
  UINTN     Eflags;
  UINTN     RegCr0;
  EFI_TIME  EfiTime;
  UINT32    SmiEnSave;

  Eflags  = AsmReadEflags ();
  if ( (Eflags & 0x200) ) {
     DisableInterrupts ();
  }

  //
  //  Write all cache data to memory because processor will lost power
  //
  AsmWbinvd();
  RegCr0 = AsmReadCr0();
  AsmWriteCr0 (RegCr0 | 0x060000000);

  SmiEnSave = QNCPortRead (QUARK_NC_HOST_BRIDGE_SB_PORT_ID, QNC_MSG_FSBIC_REG_HMISC);
  QNCPortWrite (QUARK_NC_HOST_BRIDGE_SB_PORT_ID, QNC_MSG_FSBIC_REG_HMISC, (SmiEnSave & ~SMI_EN));

  //
  // Pogram RTC alarm for immediate WAKE
  //

  //
  // Disable SMI sources
  //
  IoWrite16 (PcdGet16 (PcdGpe0blkIoBaseAddress) + R_QNC_GPE0BLK_SMIE, 0);

  //
  // Disable RTC alarm interrupt
  //
  IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, RTC_ADDRESS_REGISTER_B);
  Data8 = IoRead8 (PCAT_RTC_DATA_REGISTER);
  IoWrite8 (PCAT_RTC_DATA_REGISTER, (Data8 & ~BIT5));

  //
  // Clear RTC alarm if already set
  //
  IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, RTC_ADDRESS_REGISTER_C);
  Data8 = IoRead8 (PCAT_RTC_DATA_REGISTER);              // Read clears alarm status

  //
  // Disable all WAKE events
  //
  IoWrite16 (PcdGet16 (PcdPm1blkIoBaseAddress) + R_QNC_PM1BLK_PM1E, B_QNC_PM1BLK_PM1E_PWAKED);

  //
  // Clear all WAKE status bits
  //
  IoWrite16 (PcdGet16 (PcdPm1blkIoBaseAddress) + R_QNC_PM1BLK_PM1S, B_QNC_PM1BLK_PM1S_ALL);

  //
  // Avoid RTC rollover
  //
  do {
    WaitForRTCUpdate();
    IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, RTC_ADDRESS_SECONDS);
    EfiTime.Second = IoRead8 (PCAT_RTC_DATA_REGISTER);
  } while (EfiTime.Second > PLATFORM_RTC_ROLLOVER_LIMIT);

  //
  // Read RTC time
  //
  IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, RTC_ADDRESS_HOURS);
  EfiTime.Hour = IoRead8 (PCAT_RTC_DATA_REGISTER);
  IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, RTC_ADDRESS_MINUTES);
  EfiTime.Minute = IoRead8 (PCAT_RTC_DATA_REGISTER);
  IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, RTC_ADDRESS_SECONDS);
  EfiTime.Second = IoRead8 (PCAT_RTC_DATA_REGISTER);

  //
  // Set RTC alarm
  //

  //
  // Add PLATFORM_WAKE_SECONDS_BUFFER to current EfiTime.Second
  // The maths is to allow for the fact we are adding to a BCD number and require the answer to be BCD (EfiTime.Second)
  //
  if ((BCD_BASE - (EfiTime.Second & 0x0F)) <= PLATFORM_WAKE_SECONDS_BUFFER) {
    Data8 = (((EfiTime.Second & 0xF0) + 0x10) + (PLATFORM_WAKE_SECONDS_BUFFER - (BCD_BASE - (EfiTime.Second & 0x0F))));
  } else {
    Data8 = EfiTime.Second + PLATFORM_WAKE_SECONDS_BUFFER;
  }

  IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, RTC_ADDRESS_HOURS_ALARM);
  IoWrite8 (PCAT_RTC_DATA_REGISTER, EfiTime.Hour);
  IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, RTC_ADDRESS_MINUTES_ALARM);
  IoWrite8 (PCAT_RTC_DATA_REGISTER, EfiTime.Minute);
  IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, RTC_ADDRESS_SECONDS_ALARM);
  IoWrite8 (PCAT_RTC_DATA_REGISTER, Data8);

  //
  // Enable RTC alarm interrupt
  //
  IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, RTC_ADDRESS_REGISTER_B);
  Data8 = IoRead8 (PCAT_RTC_DATA_REGISTER);
  IoWrite8 (PCAT_RTC_DATA_REGISTER, (Data8 | BIT5));

  //
  // Enable RTC alarm as WAKE event
  //
  Data16 = IoRead16 (PcdGet16 (PcdPm1blkIoBaseAddress) + R_QNC_PM1BLK_PM1E);
  IoWrite16 (PcdGet16 (PcdPm1blkIoBaseAddress) + R_QNC_PM1BLK_PM1E, (Data16 | B_QNC_PM1BLK_PM1E_RTC));

  //
  // Enter S3
  //
  Data32 = IoRead32 (PcdGet16 (PcdPm1blkIoBaseAddress) + R_QNC_PM1BLK_PM1C);
  Data32  = (UINT32) ((Data32 & 0xffffc3fe) | V_S3 | B_QNC_PM1BLK_PM1C_SCIEN);
  IoWrite32 (PcdGet16 (PcdPm1blkIoBaseAddress) + R_QNC_PM1BLK_PM1C, Data32);
  Data32 = Data32 | B_QNC_PM1BLK_PM1C_SLPEN;
  IoWrite32 (PcdGet16 (PcdPm1blkIoBaseAddress) + R_QNC_PM1BLK_PM1C, Data32);

  //
  // Enable Interrupt if it's enabled before
  //
  if ( (Eflags & 0x200) ) {
     EnableInterrupts ();
  }
}
Exemple #15
0
VOID
EFIAPI
EnableAcpiCallback (
  IN  EFI_HANDLE                    DispatchHandle,
  IN  EFI_SMM_SW_DISPATCH_CONTEXT   *DispatchContext
  )
{
  UINT32 SmiEn;
  UINT16 Pm1Cnt;
  UINT16 wordValue;
  UINT32 RegData32;

  //
  // Disable SW SMI Timer
  //
  SmiEn = IoRead32(mAcpiBaseAddr + R_PCH_SMI_EN);
  SmiEn &= ~B_PCH_SMI_STS_SWSMI_TMR;
  IoWrite32(mAcpiBaseAddr + R_PCH_SMI_EN, SmiEn);

  wordValue = IoRead16(mAcpiBaseAddr + R_PCH_ACPI_PM1_STS);
  if(wordValue & B_PCH_ACPI_PM1_STS_WAK) {
	  IoWrite32((mAcpiBaseAddr + R_PCH_ACPI_GPE0a_EN), 0x0000);
	  IoWrite32((mAcpiBaseAddr + R_PCH_ACPI_GPE0a_STS), 0xffffffff);
  }
  else {
		mPM1_SaveState16 = IoRead16(mAcpiBaseAddr + R_PCH_ACPI_PM1_EN);

		//
		// Disable PM sources except power button
		//
    // power button is enabled only for PCAT. Disabled it on Tablet platform
    //
    IoWrite16(mAcpiBaseAddr + R_PCH_ACPI_PM1_EN, B_PCH_ACPI_PM1_EN_PWRBTN);
		IoWrite16(mAcpiBaseAddr + R_PCH_ACPI_PM1_STS, 0xffff);

		mGPE_SaveState32 = IoRead16(mAcpiBaseAddr + R_PCH_ACPI_GPE0a_EN);
		IoWrite32(mAcpiBaseAddr + R_PCH_ACPI_GPE0a_EN, 0x0000);
		IoWrite32(mAcpiBaseAddr + R_PCH_ACPI_GPE0a_STS, 0xffffffff);

  }

  //
  // Guarantee day-of-month alarm is invalid (ACPI 5.0 Section 4.8.2.4 "Real Time Clock Alarm")
  // Clear Status D reg VM bit, Date of month Alarm to make Data in CMOS RAM is no longer Valid
  //
  IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, RTC_ADDRESS_REGISTER_D);
  IoWrite8 (PCAT_RTC_DATA_REGISTER, 0x0);


	RegData32 = IoRead32(ACPI_BASE_ADDRESS + R_PCH_ALT_GP_SMI_EN);
	RegData32 &= ~(BIT7);
    IoWrite32((ACPI_BASE_ADDRESS + R_PCH_ALT_GP_SMI_EN), RegData32);


  //
  // Enable SCI
  //
  Pm1Cnt = IoRead16(mAcpiBaseAddr + R_PCH_ACPI_PM1_CNT);
  Pm1Cnt |= B_PCH_ACPI_PM1_CNT_SCI_EN;
  IoWrite16(mAcpiBaseAddr + R_PCH_ACPI_PM1_CNT, Pm1Cnt);


}
// ------------------------------------------------------------------------------------------------
void PciWrite32(uint32 id, uint32 reg, uint32 data)
{
    uint32 address = 0x80000000 | id | (reg & 0xfc);
    IoWrite32(PCI_CONFIG_ADDR, address);
    IoWrite32(PCI_CONFIG_DATA, data);
}
// ------------------------------------------------------------------------------------------------
void PciWrite16(uint32 id, uint32 reg, uint16 data)
{
    uint32 address = 0x80000000 | id | (reg & 0xfc);
    IoWrite32(PCI_CONFIG_ADDR, address);
    outportw(PCI_CONFIG_DATA + (reg & 0x02), data);
}
// ------------------------------------------------------------------------------------------------
uint32 PciRead32(uint32 id, uint32 reg)
{
    uint32 addr = 0x80000000 | id | (reg & 0xfc);
    IoWrite32(PCI_CONFIG_ADDR, addr);
    return IoRead32(PCI_CONFIG_DATA);
}
Exemple #19
0
/**

  This function is IO instruction handler.

  @param Index CPU index

**/
VOID
IoHandler (
  IN UINT32 Index
  )
{
  VM_EXIT_QUALIFICATION   Qualification;
  UINT16                  Port;
  UINTN                   *DataPtr;
  IO_WRITE_HANDLER_ITEM   *IoWriteHandler;
  IO_READ_HANDLER_ITEM    *IoReadHandler;
  UINT32                  Action;
  UINT32                  Value;
  UINTN                   LinearAddr;

  Qualification.UintN = VmReadN (VMCS_N_RO_EXIT_QUALIFICATION_INDEX);

  Port = (UINT16)Qualification.IoInstruction.PortNum;
  DataPtr = (UINTN *)&mGuestContextCommon.GuestContextPerCpu[Index].Register.Rax;

  if (Qualification.IoInstruction.Rep) {
    UINT64 RcxMask;

    RcxMask = 0xFFFFFFFFFFFFFFFFull;
    if ((mGuestContextCommon.GuestContextPerCpu[Index].EFER & IA32_EFER_MSR_MLA) == 0) {
      RcxMask = 0xFFFFFFFFull;
    }
    if ((mGuestContextCommon.GuestContextPerCpu[Index].Register.Rcx & RcxMask) == 0) {
      // Skip
      VmWriteN (VMCS_N_GUEST_RIP_INDEX, VmReadN(VMCS_N_GUEST_RIP_INDEX) + VmRead32(VMCS_32_RO_VMEXIT_INSTRUCTION_LENGTH_INDEX));
      return ;
    }
  }

  if (Port == 0xB2) {
    DEBUG ((EFI_D_INFO, "(FRM) !!! SmiCmd(0xb2) - 0x%02x !!!\n", (UINT8)*DataPtr));
  }

  if ((mHostContextCommon.ResetIoPortBaseAddress != 0) && (Port == mHostContextCommon.ResetIoPortBaseAddress) && (Qualification.IoInstruction.Direction == 0)) {
    IoResetHandler (Index, Port, (UINT8)*DataPtr);
  } else if ((Port == mHostContextCommon.AcpiPmControlIoPortBaseAddress) && (Qualification.IoInstruction.Direction == 0)) {
    IoAcpiHandler (Index, Port, (UINT32)*DataPtr);
  }

  if (Qualification.IoInstruction.String) {
    LinearAddr = VmReadN (VMCS_N_RO_GUEST_LINEAR_ADDR_INDEX);
    if (VmReadN (VMCS_N_GUEST_CR0_INDEX) & CR0_PG) {
      DataPtr = (UINTN *)(UINTN)GuestVirtualToGuestPhysical (Index, LinearAddr);
    } else {
      DataPtr = (UINTN *)LinearAddr;
    }

    if (VmReadN (VMCS_N_GUEST_RFLAGS_INDEX) & RFLAGS_DF) {
      if (Qualification.IoInstruction.Direction) {
        mGuestContextCommon.GuestContextPerCpu[Index].Register.Rdi -= Qualification.IoInstruction.Size + 1;
      } else {
        mGuestContextCommon.GuestContextPerCpu[Index].Register.Rsi -= Qualification.IoInstruction.Size + 1;
      }
    } else {
      if (Qualification.IoInstruction.Direction) {
        mGuestContextCommon.GuestContextPerCpu[Index].Register.Rdi += Qualification.IoInstruction.Size + 1;
      } else {
        mGuestContextCommon.GuestContextPerCpu[Index].Register.Rsi += Qualification.IoInstruction.Size + 1;
      }
    }
  }

  if (Qualification.IoInstruction.Direction) { // IN
    IoReadHandler = FindIoReadHandler (Port, Qualification.IoInstruction.Size + 1);
    if (IoReadHandler != NULL) {
      Action = IO_ACTION_NO_ACTION;
      Value = 0;
      IoReadHandler->Handler (IoReadHandler->Context, Port, &Value, &Action);
      if (Action == IO_ACTION_NO_ACTION) {
        switch (Qualification.IoInstruction.Size) {
        case 0:
          *(UINT8 *)DataPtr = (UINT8)Value;
          goto Ret;
          break;
        case 1:
          *(UINT16 *)DataPtr = (UINT16)Value;
          goto Ret;
          break;
        case 3:
          *(UINT32 *)DataPtr = Value;
          goto Ret;
          break;
        default:
          break;
        }
        goto Ret;
      } else {
        // Passthrough
      }
    }
    switch (Qualification.IoInstruction.Size) {
    case 0:
      *(UINT8 *)DataPtr = IoRead8 (Port);
      goto Ret;
      break;
    case 1:
      *(UINT16 *)DataPtr = IoRead16 (Port);
      goto Ret;
      break;
    case 3:
      *(UINT32 *)DataPtr = IoRead32 (Port);
      goto Ret;
      break;
    default:
      break;
    }
  } else { // OUT
    IoWriteHandler = FindIoWriteHandler (Port, Qualification.IoInstruction.Size + 1);
    if (IoWriteHandler != NULL) {
      Action = IO_ACTION_NO_ACTION;
      Value = (UINT32)*DataPtr;
      IoWriteHandler->Handler (IoWriteHandler->Context, Port, Value, &Action);
      if (Action == IO_ACTION_NO_ACTION) {
        goto Ret;
      } else {
        // Passthrough
      }
    }
    switch (Qualification.IoInstruction.Size) {
    case 0:
      IoWrite8 (Port, (UINT8)*DataPtr);
      goto Ret;
      break;
    case 1:
      IoWrite16 (Port, (UINT16)*DataPtr);
      goto Ret;
      break;
    case 3:
      IoWrite32 (Port, (UINT32)*DataPtr);
      goto Ret;
      break;
    default:
      break;
    }
  }

  DEBUG ((EFI_D_ERROR, "(FRM) !!!IoHandler!!!\n"));
  DumpVmcsAllField ();

  CpuDeadLoop ();

Ret:
  if (Qualification.IoInstruction.Rep) {
    // replay
    mGuestContextCommon.GuestContextPerCpu[Index].Register.Rcx --;
    return ;
  }

  VmWriteN (VMCS_N_GUEST_RIP_INDEX, VmReadN(VMCS_N_GUEST_RIP_INDEX) + VmRead32(VMCS_32_RO_VMEXIT_INSTRUCTION_LENGTH_INDEX));
  return ;
}
EFI_STATUS
ConfigureSoCGpio (
  IN SYSTEM_CONFIGURATION  *SystemConfiguration
  )
{

    DEBUG ((EFI_D_ERROR, "ConfigureSoCGpio------------start\n"));
    if (SystemConfiguration->eMMCBootMode== 1) {// Auto detection mode
     DEBUG ((EFI_D_ERROR, "Auto detection mode------------start\n"));

     //
     //Silicon Steppings
     //
     switch (PchStepping()) {
       case PchA0:  // SOC A0 and A1
       case PchA1:
         DEBUG ((EFI_D_ERROR, "SOC A0/A1: eMMC 4.41 GPIO Configuration\n"));
         SystemConfiguration->LpsseMMCEnabled            = 1;
         SystemConfiguration->LpsseMMC45Enabled          = 0;
         break;
       case PchB0:  // SOC B0 and later
       default:
         DEBUG ((EFI_D_ERROR, "SOC B0 and later: eMMC 4.5 GPIO Configuration\n"));
         SystemConfiguration->LpsseMMCEnabled            = 0;
         SystemConfiguration->LpsseMMC45Enabled          = 1;
         break;
     }
    } else if (SystemConfiguration->eMMCBootMode == 2) { // eMMC 4.41
        DEBUG ((EFI_D_ERROR, "Force to eMMC 4.41 GPIO Configuration\n"));
        SystemConfiguration->LpsseMMCEnabled            = 1;
        SystemConfiguration->LpsseMMC45Enabled          = 0;
    } else if (SystemConfiguration->eMMCBootMode == 3) { // eMMC 4.5
         DEBUG ((EFI_D_ERROR, "Force to eMMC 4.5 GPIO Configuration\n"));
         SystemConfiguration->LpsseMMCEnabled            = 0;
         SystemConfiguration->LpsseMMC45Enabled          = 1;

    } else { // Disable eMMC controllers
         DEBUG ((EFI_D_ERROR, "Disable eMMC GPIO controllers\n"));
         SystemConfiguration->LpsseMMCEnabled            = 0;
         SystemConfiguration->LpsseMMC45Enabled          = 0;
    }

  /*
  20.1.1  EMMC
  SDMMC1_CLK -         write 0x2003ED01 to IOBASE + 0x03E0
  SDMMC1_CMD -        write 0x2003EC81 to IOBASE + 0x0390
  SDMMC1_D0 -           write 0x2003EC81 to IOBASE + 0x03D0
  SDMMC1_D1 -           write 0x2003EC81 to IOBASE + 0x0400
  SDMMC1_D2 -           write 0x2003EC81 to IOBASE + 0x03B0
  SDMMC1_D3_CD_B - write 0x2003EC81 to IOBASE + 0x0360
  MMC1_D4_SD_WE -   write 0x2003EC81 to IOBASE + 0x0380
  MMC1_D5 -                write 0x2003EC81 to IOBASE + 0x03C0
  MMC1_D6 -                write 0x2003EC81 to IOBASE + 0x0370
  MMC1_D7 -                write 0x2003EC81 to IOBASE + 0x03F0
  MMC1_RESET_B -       write 0x2003ED01 to IOBASE + 0x0330
  */
  if (SystemConfiguration->LpsseMMCEnabled== 1) {
    MmioWrite32 (IO_BASE_ADDRESS + 0x03E0, 0x2003ED01); //EMMC 4.41
    MmioWrite32 (IO_BASE_ADDRESS + 0x0390, 0x2003EC81);
    MmioWrite32 (IO_BASE_ADDRESS + 0x03D0, 0x2003EC81);
    MmioWrite32 (IO_BASE_ADDRESS + 0x0400, 0x2003EC81);
    MmioWrite32 (IO_BASE_ADDRESS + 0x03B0, 0x2003EC81);
    MmioWrite32 (IO_BASE_ADDRESS + 0x0360, 0x2003EC81);
    MmioWrite32 (IO_BASE_ADDRESS + 0x0380, 0x2003EC81);
    MmioWrite32 (IO_BASE_ADDRESS + 0x03C0, 0x2003EC81);
    MmioWrite32 (IO_BASE_ADDRESS + 0x0370, 0x2003EC81);
    MmioWrite32 (IO_BASE_ADDRESS + 0x03F0, 0x2003EC81);
    MmioWrite32 (IO_BASE_ADDRESS + 0x0330, 0x2003ED01);
  }

  /*
  eMMC 4.5 controller
  SDMMC1_CLK -         write 0x2003ED03 to IOBASE + 0x03E0
  SDMMC1_CMD -        write 0x2003EC83 to IOBASE + 0x0390
  SDMMC1_D0 -           write 0x2003EC83 to IOBASE + 0x03D0
  SDMMC1_D1 -           write 0x2003EC83 to IOBASE + 0x0400
  SDMMC1_D2 -           write 0x2003EC83 to IOBASE + 0x03B0
  SDMMC1_D3_CD_B -  write 0x2003EC83 to IOBASE + 0x0360
  MMC1_D4_SD_WE -   write 0x2003EC83 to IOBASE + 0x0380
  MMC1_D5 -                write 0x2003EC83 to IOBASE + 0x03C0
  MMC1_D6 -                write 0x2003EC83 to IOBASE + 0x0370
  MMC1_D7 -                write 0x2003EC83 to IOBASE + 0x03F0
  MMC1_RESET_B -       write 0x2003ED03 to IOBASE + 0x0330
  */
  if (SystemConfiguration->LpsseMMC45Enabled== 1) {
    MmioWrite32 (IO_BASE_ADDRESS + 0x03E0, 0x2003ED03); // EMMC 4.5
    MmioWrite32 (IO_BASE_ADDRESS + 0x0390, 0x2003EC83);
    MmioWrite32 (IO_BASE_ADDRESS + 0x03D0, 0x2003EC83);
    MmioWrite32 (IO_BASE_ADDRESS + 0x0400, 0x2003EC83);
    MmioWrite32 (IO_BASE_ADDRESS + 0x03B0, 0x2003EC83);
    MmioWrite32 (IO_BASE_ADDRESS + 0x0360, 0x2003EC83);
    MmioWrite32 (IO_BASE_ADDRESS + 0x0380, 0x2003EC83);
    MmioWrite32 (IO_BASE_ADDRESS + 0x03C0, 0x2003EC83);
    MmioWrite32 (IO_BASE_ADDRESS + 0x0370, 0x2003EC83);
    MmioWrite32 (IO_BASE_ADDRESS + 0x03F0, 0x2003EC83);
    MmioWrite32 (IO_BASE_ADDRESS + 0x0330, 0x2003ED03);

  }

//
// Change GPIOC_0 setting to allow MMIO access under Android.
//
  IoWrite32 (GPIO_BASE_ADDRESS + R_PCH_GPIO_SC_USE_SEL,
           (IoRead32(GPIO_BASE_ADDRESS + R_PCH_GPIO_SC_USE_SEL) & (UINT32)~BIT0));
  DEBUG ((EFI_D_ERROR, "ConfigureSoCGpio------------end\n"));
  return EFI_SUCCESS;
}
Exemple #21
0
EFI_STATUS
EnableAcpiCallback (
  IN  EFI_HANDLE                    DispatchHandle,
  IN  CONST VOID                    *DispatchContext,
  IN  OUT VOID                      *CommBuffer,
  IN  OUT UINTN                     *CommBufferSize
  )
/*++

Routine Description:
  SMI handler to enable ACPI mode

  Dispatched on reads from APM port with value 0xA0

  Disables the SW SMI Timer.
  ACPI events are disabled and ACPI event status is cleared.
  SCI mode is then enabled.

   Disable SW SMI Timer

   Clear all ACPI event status and disable all ACPI events
   Disable PM sources except power button
   Clear status bits

   Disable GPE0 sources
   Clear status bits

   Disable GPE1 sources
   Clear status bits

   Guarantee day-of-month alarm is invalid (ACPI 1.0 section 4.7.2.4)

   Enable SCI

Arguments:
  DispatchHandle  - EFI Handle
  DispatchContext - Pointer to the EFI_SMM_SW_DISPATCH_CONTEXT

Returns:
  Nothing

--*/
{
  EFI_STATUS  Status;
  UINT32      SmiEn;
  UINT16      Pm1Cnt;
  UINT8       Data8;

  Status  = GetAllQncPmBase (gSmst);
  ASSERT_EFI_ERROR (Status);

  SmiEn = IoRead32 (mAcpiSmm.QncGpe0Base + R_QNC_GPE0BLK_SMIE);

  //
  // Disable SW SMI Timer
  //
  SmiEn &= ~(B_QNC_GPE0BLK_SMIE_SWT);
  IoWrite32 (mAcpiSmm.QncGpe0Base + R_QNC_GPE0BLK_SMIE, SmiEn);

  //
  // Guarantee day-of-month alarm is invalid (ACPI 1.0 section 4.7.2.4)
  //
  Data8 = RTC_ADDRESS_REGISTER_D;
  IoWrite8 (R_IOPORT_CMOS_STANDARD_INDEX, Data8);
  Data8 = 0x0;
  IoWrite8 (R_IOPORT_CMOS_STANDARD_DATA, Data8);

  //
  // Enable SCI
  //
  Pm1Cnt = IoRead16 (mAcpiSmm.QncPmBase + R_QNC_PM1BLK_PM1C);
  Pm1Cnt |= B_QNC_PM1BLK_PM1C_SCIEN;
  IoWrite16 (mAcpiSmm.QncPmBase + R_QNC_PM1BLK_PM1C, Pm1Cnt);

  //
  // Do platform specific stuff for ACPI enable SMI
  //


  return EFI_SUCCESS;
}
Exemple #22
0
/**
  Write I/O registers.

  @param[in]  PeiServices  An indirect pointer to the PEI Services Table
                           published by the PEI Foundation.
  @param[in]  This         Pointer to local data for the interface.
  @param[in]  Width        The width of the access. Enumerated in bytes.
  @param[in]  Address      The physical address of the access.
  @param[in]  Count        The number of accesses to perform.
  @param[in]  Buffer       A pointer to the buffer of data.

  @retval EFI_SUCCESS            The function completed successfully.
  @retval EFI_INVALID_PARAMETER  Width is invalid for this EFI system.
  @retval EFI_INVALID_PARAMETER  Buffer is NULL.
  @retval EFI_UNSUPPORTED        The address range specified by Address, Width,
                                 and Count is not valid for this EFI system.

**/
EFI_STATUS
EFIAPI
CpuIoServiceWrite (
  IN CONST EFI_PEI_SERVICES    **PeiServices,
  IN CONST EFI_PEI_CPU_IO_PPI  *This,
  IN EFI_PEI_CPU_IO_PPI_WIDTH  Width,
  IN UINT64                    Address,
  IN UINTN                     Count,
  IN VOID                      *Buffer
  )
{
  EFI_STATUS                Status;
  UINT8                     InStride;
  UINT8                     OutStride;
  EFI_PEI_CPU_IO_PPI_WIDTH  OperationWidth;
  BOOLEAN                   Aligned;
  UINT8                     *Uint8Buffer;

  //
  // Make sure the parameters are valid
  //
  Status = CpuIoCheckParameter (FALSE, Width, Address, Count, Buffer);
  if (EFI_ERROR (Status)) {
    return Status;
  }

  //
  // Select loop based on the width of the transfer
  //
  InStride = mInStride[Width];
  OutStride = mOutStride[Width];
  OperationWidth = (EFI_PEI_CPU_IO_PPI_WIDTH) (Width & 0x03);

  //
  // Fifo operations supported for (mInStride[Width] == 0)
  //
  if (InStride == 0) {
    switch (OperationWidth) {
    case EfiPeiCpuIoWidthUint8:
      IoWriteFifo8 ((UINTN)Address, Count, Buffer);
      return EFI_SUCCESS;
    case EfiPeiCpuIoWidthUint16:
      IoWriteFifo16 ((UINTN)Address, Count, Buffer);
      return EFI_SUCCESS;
    case EfiPeiCpuIoWidthUint32:
      IoWriteFifo32 ((UINTN)Address, Count, Buffer);
      return EFI_SUCCESS;
    default:
      //
      // The CpuIoCheckParameter call above will ensure that this
      // path is not taken.
      //
      ASSERT (FALSE);
      break;
    }
  }

  Aligned = (BOOLEAN)(((UINTN)Buffer & (mInStride[OperationWidth] - 1)) == 0x00);
  for (Uint8Buffer = (UINT8 *)Buffer; Count > 0; Address += InStride, Uint8Buffer += OutStride, Count--) {
    if (OperationWidth == EfiPeiCpuIoWidthUint8) {
      IoWrite8 ((UINTN)Address, *Uint8Buffer);
    } else if (OperationWidth == EfiPeiCpuIoWidthUint16) {
      if (Aligned) {
        IoWrite16 ((UINTN)Address, *((UINT16 *)Uint8Buffer));
      } else {
        IoWrite16 ((UINTN)Address, ReadUnaligned16 ((UINT16 *)Uint8Buffer));
      }
    } else if (OperationWidth == EfiPeiCpuIoWidthUint32) {
      if (Aligned) {
        IoWrite32 ((UINTN)Address, *((UINT32 *)Uint8Buffer));
      } else {
        IoWrite32 ((UINTN)Address, ReadUnaligned32 ((UINT32 *)Uint8Buffer));
      }
    }
  }

  return EFI_SUCCESS;
}
// ------------------------------------------------------------------------------------------------
uint8 PciRead8(uint32 id, uint32 reg)
{
    uint32 addr = 0x80000000 | id | (reg & 0xfc);
    IoWrite32(PCI_CONFIG_ADDR, addr);
    return inportb(PCI_CONFIG_DATA + (reg & 0x03));
}
Exemple #24
0
/**

  This function is IO instruction handler for SMM.

  @param Index CPU index

**/
VOID
SmmIoHandler (
  IN UINT32 Index
  )
{
  VM_EXIT_QUALIFICATION   Qualification;
  UINT16                  Port;
  UINTN                   *DataPtr;
  UINTN                   LinearAddr;
  X86_REGISTER            *Reg;
  STM_RSC_IO_DESC         *IoDesc;
  STM_RSC_PCI_CFG_DESC    *PciCfgDesc;
  UINT32                  PciAddress;
  STM_RSC_IO_DESC         LocalIoDesc;
  STM_RSC_PCI_CFG_DESC    *LocalPciCfgDescPtr;
  UINT8                   LocalPciCfgDescBuf[STM_LOG_ENTRY_SIZE];

  Reg = &mGuestContextCommonSmm.GuestContextPerCpu[Index].Register;

  Qualification.UintN = VmReadN (VMCS_N_RO_EXIT_QUALIFICATION_INDEX);

  if (Qualification.IoInstruction.Operand != 0) {
    Port = (UINT16)Qualification.IoInstruction.PortNum;
  } else {
    Port = (UINT16)Reg->Rdx;
  }
  DataPtr = (UINTN *)&Reg->Rax;

  //
  // We need handle case that CF9 is protected, but CF8, CFC need to be pass-through.
  // But DWORD CF8 programming will be caught here.
  // So add check here. CF8 will be bypassed, because it does not in CF9 scope.
  //
  IoDesc = GetStmResourceIo (mHostContextCommon.MleProtectedResource.Base, Port);
  if (IoDesc != NULL) {
    DEBUG ((EFI_D_ERROR, "IO violation!\n"));
    AddEventLogForResource (EvtHandledProtectionException, (STM_RSC *)IoDesc);
    SmmExceptionHandler (Index);
    CpuDeadLoop ();
  }

  IoDesc = GetStmResourceIo ((STM_RSC *)(UINTN)mGuestContextCommonSmm.BiosHwResourceRequirementsPtr, Port);
  if (IoDesc == NULL) {
    ZeroMem (&LocalIoDesc, sizeof(LocalIoDesc));
    LocalIoDesc.Hdr.RscType = IO_RANGE;
    LocalIoDesc.Hdr.Length = sizeof(LocalIoDesc);
    LocalIoDesc.Base = Port;
    LocalIoDesc.Length = (UINT16)(Qualification.IoInstruction.Size + 1);
    AddEventLogForResource (EvtBiosAccessToUnclaimedResource, (STM_RSC *)&LocalIoDesc);
  }

  //
  // Check PCI - 0xCF8, 0xCFC~0xCFF access
  //
  if (Port == 0xCF8) {
    // Access PciAddress

    //
    // We need make sure PciAddress access and PciData access is atomic.
    //
    AcquireSpinLock (&mHostContextCommon.PciLock);
  }
  if ((Port >= 0xCFC) && (Port <= 0xCFF)) {
    // Access PciData

    //
    // AcquireLock to prevent 0xCF8 access
    //
    AcquireSpinLock (&mHostContextCommon.PciLock);
    PciAddress = IoRead32 (0xCF8);
    PciCfgDesc = GetStmResourcePci (
                   mHostContextCommon.MleProtectedResource.Base,
                   BUS_FROM_CF8_ADDRESS(PciAddress),
                   DEVICE_FROM_CF8_ADDRESS(PciAddress),
                   FUNCTION_FROM_CF8_ADDRESS(PciAddress),
                   REGISTER_FROM_CF8_ADDRESS(PciAddress) + (Port & 0x3),
                   (Qualification.IoInstruction.Direction != 0) ? STM_RSC_PCI_CFG_R : STM_RSC_PCI_CFG_W
                   );
    if (PciCfgDesc != NULL) {
      DEBUG ((EFI_D_ERROR, "IO (PCI) violation!\n"));
      AddEventLogForResource (EvtHandledProtectionException, (STM_RSC *)PciCfgDesc);
      ReleaseSpinLock (&mHostContextCommon.PciLock);
      SmmExceptionHandler (Index);
      CpuDeadLoop ();
    }

    PciCfgDesc = GetStmResourcePci (
                   (STM_RSC *)(UINTN)mGuestContextCommonSmm.BiosHwResourceRequirementsPtr,
                   BUS_FROM_CF8_ADDRESS(PciAddress),
                   DEVICE_FROM_CF8_ADDRESS(PciAddress),
                   FUNCTION_FROM_CF8_ADDRESS(PciAddress),
                   REGISTER_FROM_CF8_ADDRESS(PciAddress) + (Port & 0x3),
                   (Qualification.IoInstruction.Direction != 0) ? STM_RSC_PCI_CFG_R : STM_RSC_PCI_CFG_W
                   );
    if (PciCfgDesc == NULL) {
      DEBUG((EFI_D_ERROR, "Add unclaimed PCI_RSC!\n"));
      LocalPciCfgDescPtr = (STM_RSC_PCI_CFG_DESC *)LocalPciCfgDescBuf;
      ZeroMem (LocalPciCfgDescBuf, sizeof(LocalPciCfgDescBuf));
      LocalPciCfgDescPtr->Hdr.RscType = PCI_CFG_RANGE;
      LocalPciCfgDescPtr->Hdr.Length = sizeof(STM_RSC_PCI_CFG_DESC); // BUGBUG: Just report this PCI device, it is hard to create PCI hierachy here.
      LocalPciCfgDescPtr->RWAttributes = (Qualification.IoInstruction.Direction != 0) ? STM_RSC_PCI_CFG_R : STM_RSC_PCI_CFG_W;
      LocalPciCfgDescPtr->Base = REGISTER_FROM_CF8_ADDRESS(PciAddress) + (Port & 0x3);
      LocalPciCfgDescPtr->Length = (UINT16)(Qualification.IoInstruction.Size + 1);
      LocalPciCfgDescPtr->OriginatingBusNumber = BUS_FROM_CF8_ADDRESS(PciAddress);
      LocalPciCfgDescPtr->LastNodeIndex = 0;
      LocalPciCfgDescPtr->PciDevicePath[0].Type = 1;
      LocalPciCfgDescPtr->PciDevicePath[0].Subtype = 1;
      LocalPciCfgDescPtr->PciDevicePath[0].Length = sizeof(STM_PCI_DEVICE_PATH_NODE);
      LocalPciCfgDescPtr->PciDevicePath[0].PciFunction = FUNCTION_FROM_CF8_ADDRESS(PciAddress);
      LocalPciCfgDescPtr->PciDevicePath[0].PciDevice = DEVICE_FROM_CF8_ADDRESS(PciAddress);
      AddEventLogForResource (EvtBiosAccessToUnclaimedResource, (STM_RSC *)LocalPciCfgDescPtr);
    }
  }

  if (Qualification.IoInstruction.Rep != 0) {
    UINT64 RcxMask;

    RcxMask = 0xFFFFFFFFFFFFFFFFull;
    if ((mGuestContextCommonSmm.GuestContextPerCpu[Index].Efer & IA32_EFER_MSR_MLA) == 0) {
      RcxMask = 0xFFFFFFFFull;
    }
    if ((Reg->Rcx & RcxMask) == 0) {
      // Skip
      if ((Port == 0xCF8) || ((Port >= 0xCFC) && (Port <= 0xCFF))) {
        ReleaseSpinLock (&mHostContextCommon.PciLock);
      }
      VmWriteN (VMCS_N_GUEST_RIP_INDEX, VmReadN(VMCS_N_GUEST_RIP_INDEX) + VmRead32(VMCS_32_RO_VMEXIT_INSTRUCTION_LENGTH_INDEX));
      return ;
    }
  }

  if (Qualification.IoInstruction.String != 0) {
    LinearAddr = VmReadN (VMCS_N_RO_GUEST_LINEAR_ADDR_INDEX);
    if (VmReadN (VMCS_N_GUEST_CR0_INDEX) & CR0_PG) {
      DataPtr = (UINTN *)(UINTN)GuestLinearToHostPhysical (Index, LinearAddr);
    } else {
      DataPtr = (UINTN *)LinearAddr;
    }

    if ((VmReadN (VMCS_N_GUEST_RFLAGS_INDEX) & RFLAGS_DF) != 0) {
      if (Qualification.IoInstruction.Direction != 0) {
        Reg->Rdi -= Qualification.IoInstruction.Size + 1;
      } else {
        Reg->Rsi -= Qualification.IoInstruction.Size + 1;
      }
    } else {
      if (Qualification.IoInstruction.Direction != 0) {
        Reg->Rdi += Qualification.IoInstruction.Size + 1;
      } else {
        Reg->Rsi += Qualification.IoInstruction.Size + 1;
      }
    }
  }

  if (Qualification.IoInstruction.Direction != 0) { // IN
    switch (Qualification.IoInstruction.Size) {
    case 0:
      *(UINT8 *)DataPtr = IoRead8 (Port);
      goto Ret;
      break;
    case 1:
      *(UINT16 *)DataPtr = IoRead16 (Port);
      goto Ret;
      break;
    case 3:
      *(UINT32 *)DataPtr = IoRead32 (Port);
      goto Ret;
      break;
    default:
      break;
    }
  } else { // OUT
    switch (Qualification.IoInstruction.Size) {
    case 0:
      IoWrite8 (Port, (UINT8)*DataPtr);
      goto Ret;
      break;
    case 1:
      IoWrite16 (Port, (UINT16)*DataPtr);
      goto Ret;
      break;
    case 3:
      IoWrite32 (Port, (UINT32)*DataPtr);
      goto Ret;
      break;
    default:
      break;
    }
  }

  if ((Port == 0xCF8) || ((Port >= 0xCFC) && (Port <= 0xCFF))) {
    ReleaseSpinLock (&mHostContextCommon.PciLock);
  }
  DEBUG ((EFI_D_INFO, "!!!IoHandler!!!\n"));
  DumpVmcsAllField ();

  CpuDeadLoop ();

Ret:
  if ((Port == 0xCF8) || ((Port >= 0xCFC) && (Port <= 0xCFF))) {
    ReleaseSpinLock (&mHostContextCommon.PciLock);
  }
  if (Qualification.IoInstruction.Rep != 0) {
    // replay
    Reg->Rcx --;
    return ;
  }

  VmWriteN (VMCS_N_GUEST_RIP_INDEX, VmReadN(VMCS_N_GUEST_RIP_INDEX) + VmRead32(VMCS_32_RO_VMEXIT_INSTRUCTION_LENGTH_INDEX));
  return ;
}
// ------------------------------------------------------------------------------------------------
uint16 PciRead16(uint32 id, uint32 reg)
{
    uint32 addr = 0x80000000 | id | (reg & 0xfc);
    IoWrite32(PCI_CONFIG_ADDR, addr);
    return IoRead16(PCI_CONFIG_DATA + (reg & 0x02));
}