/* * Get the latestRemovedXid from the heap pages pointed at by the index * tuples being deleted. This puts the work for calculating latestRemovedXid * into the recovery path rather than the primary path. * * It's possible that this generates a fair amount of I/O, since an index * block may have hundreds of tuples being deleted. Repeat accesses to the * same heap blocks are common, though are not yet optimised. * * XXX optimise later with something like XLogPrefetchBuffer() */ static TransactionId btree_xlog_delete_get_latestRemovedXid(XLogReaderState *record) { xl_btree_delete *xlrec = (xl_btree_delete *) XLogRecGetData(record); OffsetNumber *unused; Buffer ibuffer, hbuffer; Page ipage, hpage; RelFileNode rnode; BlockNumber blkno; ItemId iitemid, hitemid; IndexTuple itup; HeapTupleHeader htuphdr; BlockNumber hblkno; OffsetNumber hoffnum; TransactionId latestRemovedXid = InvalidTransactionId; int i; /* * If there's nothing running on the standby we don't need to derive a * full latestRemovedXid value, so use a fast path out of here. This * returns InvalidTransactionId, and so will conflict with all HS * transactions; but since we just worked out that that's zero people, * it's OK. * * XXX There is a race condition here, which is that a new backend might * start just after we look. If so, it cannot need to conflict, but this * coding will result in throwing a conflict anyway. */ if (CountDBBackends(InvalidOid) == 0) return latestRemovedXid; /* * In what follows, we have to examine the previous state of the index * page, as well as the heap page(s) it points to. This is only valid if * WAL replay has reached a consistent database state; which means that * the preceding check is not just an optimization, but is *necessary*. We * won't have let in any user sessions before we reach consistency. */ if (!reachedConsistency) elog(PANIC, "btree_xlog_delete_get_latestRemovedXid: cannot operate with inconsistent data"); /* * Get index page. If the DB is consistent, this should not fail, nor * should any of the heap page fetches below. If one does, we return * InvalidTransactionId to cancel all HS transactions. That's probably * overkill, but it's safe, and certainly better than panicking here. */ XLogRecGetBlockTag(record, 0, &rnode, NULL, &blkno); ibuffer = XLogReadBufferExtended(rnode, MAIN_FORKNUM, blkno, RBM_NORMAL); if (!BufferIsValid(ibuffer)) return InvalidTransactionId; LockBuffer(ibuffer, BT_READ); ipage = (Page) BufferGetPage(ibuffer); /* * Loop through the deleted index items to obtain the TransactionId from * the heap items they point to. */ unused = (OffsetNumber *) ((char *) xlrec + SizeOfBtreeDelete); for (i = 0; i < xlrec->nitems; i++) { /* * Identify the index tuple about to be deleted */ iitemid = PageGetItemId(ipage, unused[i]); itup = (IndexTuple) PageGetItem(ipage, iitemid); /* * Locate the heap page that the index tuple points at */ hblkno = ItemPointerGetBlockNumber(&(itup->t_tid)); hbuffer = XLogReadBufferExtended(xlrec->hnode, MAIN_FORKNUM, hblkno, RBM_NORMAL); if (!BufferIsValid(hbuffer)) { UnlockReleaseBuffer(ibuffer); return InvalidTransactionId; } LockBuffer(hbuffer, BUFFER_LOCK_SHARE); hpage = (Page) BufferGetPage(hbuffer); /* * Look up the heap tuple header that the index tuple points at by * using the heap node supplied with the xlrec. We can't use * heap_fetch, since it uses ReadBuffer rather than XLogReadBuffer. * Note that we are not looking at tuple data here, just headers. */ hoffnum = ItemPointerGetOffsetNumber(&(itup->t_tid)); hitemid = PageGetItemId(hpage, hoffnum); /* * Follow any redirections until we find something useful. */ while (ItemIdIsRedirected(hitemid)) { hoffnum = ItemIdGetRedirect(hitemid); hitemid = PageGetItemId(hpage, hoffnum); CHECK_FOR_INTERRUPTS(); } /* * If the heap item has storage, then read the header and use that to * set latestRemovedXid. * * Some LP_DEAD items may not be accessible, so we ignore them. */ if (ItemIdHasStorage(hitemid)) { htuphdr = (HeapTupleHeader) PageGetItem(hpage, hitemid); HeapTupleHeaderAdvanceLatestRemovedXid(htuphdr, &latestRemovedXid); } else if (ItemIdIsDead(hitemid)) { /* * Conjecture: if hitemid is dead then it had xids before the xids * marked on LP_NORMAL items. So we just ignore this item and move * onto the next, for the purposes of calculating * latestRemovedxids. */ } else Assert(!ItemIdIsUsed(hitemid)); UnlockReleaseBuffer(hbuffer); } UnlockReleaseBuffer(ibuffer); /* * If all heap tuples were LP_DEAD then we will be returning * InvalidTransactionId here, which avoids conflicts. This matches * existing logic which assumes that LP_DEAD tuples must already be older * than the latestRemovedXid on the cleanup record that set them as * LP_DEAD, hence must already have generated a conflict. */ return latestRemovedXid; }
/* * Prune specified item pointer or a HOT chain originating at that item. * * If the item is an index-referenced tuple (i.e. not a heap-only tuple), * the HOT chain is pruned by removing all DEAD tuples at the start of the HOT * chain. We also prune any RECENTLY_DEAD tuples preceding a DEAD tuple. * This is OK because a RECENTLY_DEAD tuple preceding a DEAD tuple is really * DEAD, the OldestXmin test is just too coarse to detect it. * * The root line pointer is redirected to the tuple immediately after the * latest DEAD tuple. If all tuples in the chain are DEAD, the root line * pointer is marked LP_DEAD. (This includes the case of a DEAD simple * tuple, which we treat as a chain of length 1.) * * OldestXmin is the cutoff XID used to identify dead tuples. * * We don't actually change the page here, except perhaps for hint-bit updates * caused by HeapTupleSatisfiesVacuum. We just add entries to the arrays in * prstate showing the changes to be made. Items to be redirected are added * to the redirected[] array (two entries per redirection); items to be set to * LP_DEAD state are added to nowdead[]; and items to be set to LP_UNUSED * state are added to nowunused[]. * * If redirect_move is true, we intend to get rid of redirecting line pointers, * not just make redirection entries. * * Returns the number of tuples (to be) deleted from the page. */ static int heap_prune_chain(Relation relation, Buffer buffer, OffsetNumber rootoffnum, TransactionId OldestXmin, PruneState *prstate, bool redirect_move) { int ndeleted = 0; Page dp = (Page) BufferGetPage(buffer); TransactionId priorXmax = InvalidTransactionId; ItemId rootlp; HeapTupleHeader htup; OffsetNumber latestdead = InvalidOffsetNumber, redirect_target = InvalidOffsetNumber, maxoff = PageGetMaxOffsetNumber(dp), offnum; OffsetNumber chainitems[MaxHeapTuplesPerPage]; int nchain = 0, i; rootlp = PageGetItemId(dp, rootoffnum); /* * If it's a heap-only tuple, then it is not the start of a HOT chain. */ if (ItemIdIsNormal(rootlp)) { htup = (HeapTupleHeader) PageGetItem(dp, rootlp); if (HeapTupleHeaderIsHeapOnly(htup)) { /* * If the tuple is DEAD and doesn't chain to anything else, mark * it unused immediately. (If it does chain, we can only remove * it as part of pruning its chain.) * * We need this primarily to handle aborted HOT updates, that is, * XMIN_INVALID heap-only tuples. Those might not be linked to by * any chain, since the parent tuple might be re-updated before * any pruning occurs. So we have to be able to reap them * separately from chain-pruning. (Note that * HeapTupleHeaderIsHotUpdated will never return true for an * XMIN_INVALID tuple, so this code will work even when there were * sequential updates within the aborted transaction.) * * Note that we might first arrive at a dead heap-only tuple * either here or while following a chain below. Whichever path * gets there first will mark the tuple unused. */ if (HeapTupleSatisfiesVacuum(relation, htup, OldestXmin, buffer) == HEAPTUPLE_DEAD && !HeapTupleHeaderIsHotUpdated(htup)) { heap_prune_record_unused(prstate, rootoffnum); ndeleted++; } /* Nothing more to do */ return ndeleted; } } /* Start from the root tuple */ offnum = rootoffnum; /* while not end of the chain */ for (;;) { ItemId lp; bool tupdead, recent_dead; /* Some sanity checks */ if (offnum < FirstOffsetNumber || offnum > maxoff) break; /* If item is already processed, stop --- it must not be same chain */ if (prstate->marked[offnum]) break; lp = PageGetItemId(dp, offnum); /* Unused item obviously isn't part of the chain */ if (!ItemIdIsUsed(lp)) break; /* * If we are looking at the redirected root line pointer, jump to the * first normal tuple in the chain. If we find a redirect somewhere * else, stop --- it must not be same chain. */ if (ItemIdIsRedirected(lp)) { if (nchain > 0) break; /* not at start of chain */ chainitems[nchain++] = offnum; offnum = ItemIdGetRedirect(rootlp); continue; } /* * Likewise, a dead item pointer can't be part of the chain. (We * already eliminated the case of dead root tuple outside this * function.) */ if (ItemIdIsDead(lp)) break; Assert(ItemIdIsNormal(lp)); htup = (HeapTupleHeader) PageGetItem(dp, lp); /* * Check the tuple XMIN against prior XMAX, if any */ if (TransactionIdIsValid(priorXmax) && !TransactionIdEquals(HeapTupleHeaderGetXmin(htup), priorXmax)) break; /* * OK, this tuple is indeed a member of the chain. */ chainitems[nchain++] = offnum; /* * Check tuple's visibility status. */ tupdead = recent_dead = false; switch (HeapTupleSatisfiesVacuum(relation, htup, OldestXmin, buffer)) { case HEAPTUPLE_DEAD: tupdead = true; break; case HEAPTUPLE_RECENTLY_DEAD: recent_dead = true; /* * This tuple may soon become DEAD. Update the hint field so * that the page is reconsidered for pruning in future. */ heap_prune_record_prunable(prstate, HeapTupleHeaderGetXmax(htup)); break; case HEAPTUPLE_DELETE_IN_PROGRESS: /* * This tuple may soon become DEAD. Update the hint field so * that the page is reconsidered for pruning in future. */ heap_prune_record_prunable(prstate, HeapTupleHeaderGetXmax(htup)); break; case HEAPTUPLE_LIVE: case HEAPTUPLE_INSERT_IN_PROGRESS: /* * If we wanted to optimize for aborts, we might consider * marking the page prunable when we see INSERT_IN_PROGRESS. * But we don't. See related decisions about when to mark the * page prunable in heapam.c. */ break; default: elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result"); break; } /* * Remember the last DEAD tuple seen. We will advance past * RECENTLY_DEAD tuples just in case there's a DEAD one after them; * but we can't advance past anything else. (XXX is it really worth * continuing to scan beyond RECENTLY_DEAD? The case where we will * find another DEAD tuple is a fairly unusual corner case.) */ if (tupdead) latestdead = offnum; else if (!recent_dead) break; /* * If the tuple is not HOT-updated, then we are at the end of this * HOT-update chain. */ if (!HeapTupleHeaderIsHotUpdated(htup)) break; /* * Advance to next chain member. */ Assert(ItemPointerGetBlockNumber(&htup->t_ctid) == BufferGetBlockNumber(buffer)); offnum = ItemPointerGetOffsetNumber(&htup->t_ctid); priorXmax = HeapTupleHeaderGetXmax(htup); } /* * If we found a DEAD tuple in the chain, adjust the HOT chain so that all * the DEAD tuples at the start of the chain are removed and the root line * pointer is appropriately redirected. */ if (OffsetNumberIsValid(latestdead)) { /* * Mark as unused each intermediate item that we are able to remove * from the chain. * * When the previous item is the last dead tuple seen, we are at the * right candidate for redirection. */ for (i = 1; (i < nchain) && (chainitems[i - 1] != latestdead); i++) { heap_prune_record_unused(prstate, chainitems[i]); ndeleted++; } /* * If the root entry had been a normal tuple, we are deleting it, so * count it in the result. But changing a redirect (even to DEAD * state) doesn't count. */ if (ItemIdIsNormal(rootlp)) ndeleted++; /* * If the DEAD tuple is at the end of the chain, the entire chain is * dead and the root line pointer can be marked dead. Otherwise just * redirect the root to the correct chain member. */ if (i >= nchain) heap_prune_record_dead(prstate, rootoffnum); else { heap_prune_record_redirect(prstate, rootoffnum, chainitems[i]); /* If the redirection will be a move, need more processing */ if (redirect_move) redirect_target = chainitems[i]; } } else if (nchain < 2 && ItemIdIsRedirected(rootlp)) { /* * We found a redirect item that doesn't point to a valid follow-on * item. This can happen if the loop in heap_page_prune caused us to * visit the dead successor of a redirect item before visiting the * redirect item. We can clean up by setting the redirect item to * DEAD state. */ heap_prune_record_dead(prstate, rootoffnum); } else if (redirect_move && ItemIdIsRedirected(rootlp)) { /* * If we desire to eliminate LP_REDIRECT items by moving tuples, make * a redirection entry for each redirected root item; this will cause * heap_page_prune_execute to actually do the move. (We get here only * when there are no DEAD tuples in the chain; otherwise the * redirection entry was made above.) */ heap_prune_record_redirect(prstate, rootoffnum, chainitems[1]); redirect_target = chainitems[1]; } /* * If we are going to implement a redirect by moving tuples, we have to * issue a cache invalidation against the redirection target tuple, * because its CTID will be effectively changed by the move. Note that * CacheInvalidateHeapTuple only queues the request, it doesn't send it; * if we fail before reaching EndNonTransactionalInvalidation, nothing * happens and no harm is done. */ if (OffsetNumberIsValid(redirect_target)) { ItemId firstlp = PageGetItemId(dp, redirect_target); HeapTupleData firsttup; Assert(ItemIdIsNormal(firstlp)); /* Set up firsttup to reference the tuple at its existing CTID */ firsttup.t_data = (HeapTupleHeader) PageGetItem(dp, firstlp); firsttup.t_len = ItemIdGetLength(firstlp); ItemPointerSet(&firsttup.t_self, BufferGetBlockNumber(buffer), redirect_target); CacheInvalidateHeapTuple(relation, &firsttup); } return ndeleted; }
/* * For all items in this page, find their respective root line pointers. * If item k is part of a HOT-chain with root at item j, then we set * root_offsets[k - 1] = j. * * The passed-in root_offsets array must have MaxHeapTuplesPerPage entries. * We zero out all unused entries. * * The function must be called with at least share lock on the buffer, to * prevent concurrent prune operations. * * Note: The information collected here is valid only as long as the caller * holds a pin on the buffer. Once pin is released, a tuple might be pruned * and reused by a completely unrelated tuple. */ void heap_get_root_tuples(Page page, OffsetNumber *root_offsets) { OffsetNumber offnum, maxoff; MemSet(root_offsets, 0, MaxHeapTuplesPerPage * sizeof(OffsetNumber)); maxoff = PageGetMaxOffsetNumber(page); for (offnum = FirstOffsetNumber; offnum <= maxoff; offnum = OffsetNumberNext(offnum)) { ItemId lp = PageGetItemId(page, offnum); HeapTupleHeader htup; OffsetNumber nextoffnum; TransactionId priorXmax; /* skip unused and dead items */ if (!ItemIdIsUsed(lp) || ItemIdIsDead(lp)) continue; if (ItemIdIsNormal(lp)) { htup = (HeapTupleHeader) PageGetItem(page, lp); /* * Check if this tuple is part of a HOT-chain rooted at some other * tuple. If so, skip it for now; we'll process it when we find * its root. */ if (HeapTupleHeaderIsHeapOnly(htup)) continue; /* * This is either a plain tuple or the root of a HOT-chain. * Remember it in the mapping. */ root_offsets[offnum - 1] = offnum; /* If it's not the start of a HOT-chain, we're done with it */ if (!HeapTupleHeaderIsHotUpdated(htup)) continue; /* Set up to scan the HOT-chain */ nextoffnum = ItemPointerGetOffsetNumber(&htup->t_ctid); priorXmax = HeapTupleHeaderGetXmax(htup); } else { /* Must be a redirect item. We do not set its root_offsets entry */ Assert(ItemIdIsRedirected(lp)); /* Set up to scan the HOT-chain */ nextoffnum = ItemIdGetRedirect(lp); priorXmax = InvalidTransactionId; } /* * Now follow the HOT-chain and collect other tuples in the chain. * * Note: Even though this is a nested loop, the complexity of the * function is O(N) because a tuple in the page should be visited not * more than twice, once in the outer loop and once in HOT-chain * chases. */ for (;;) { lp = PageGetItemId(page, nextoffnum); /* Check for broken chains */ if (!ItemIdIsNormal(lp)) break; htup = (HeapTupleHeader) PageGetItem(page, lp); if (TransactionIdIsValid(priorXmax) && !TransactionIdEquals(priorXmax, HeapTupleHeaderGetXmin(htup))) break; /* Remember the root line pointer for this item */ root_offsets[nextoffnum - 1] = offnum; /* Advance to next chain member, if any */ if (!HeapTupleHeaderIsHotUpdated(htup)) break; nextoffnum = ItemPointerGetOffsetNumber(&htup->t_ctid); priorXmax = HeapTupleHeaderGetXmax(htup); } } }
/* ---------------- * index_getnext - get the next heap tuple from a scan * * The result is the next heap tuple satisfying the scan keys and the * snapshot, or NULL if no more matching tuples exist. On success, * the buffer containing the heap tuple is pinned (the pin will be dropped * at the next index_getnext or index_endscan). * * Note: caller must check scan->xs_recheck, and perform rechecking of the * scan keys if required. We do not do that here because we don't have * enough information to do it efficiently in the general case. * ---------------- */ HeapTuple index_getnext(IndexScanDesc scan, ScanDirection direction) { HeapTuple heapTuple = &scan->xs_ctup; ItemPointer tid = &heapTuple->t_self; FmgrInfo *procedure; SCAN_CHECKS; GET_SCAN_PROCEDURE(amgettuple); Assert(TransactionIdIsValid(RecentGlobalXmin)); /* * We always reset xs_hot_dead; if we are here then either we are just * starting the scan, or we previously returned a visible tuple, and in * either case it's inappropriate to kill the prior index entry. */ scan->xs_hot_dead = false; for (;;) { OffsetNumber offnum; bool at_chain_start; Page dp; if (scan->xs_next_hot != InvalidOffsetNumber) { /* * We are resuming scan of a HOT chain after having returned an * earlier member. Must still hold pin on current heap page. */ Assert(BufferIsValid(scan->xs_cbuf)); Assert(ItemPointerGetBlockNumber(tid) == BufferGetBlockNumber(scan->xs_cbuf)); Assert(TransactionIdIsValid(scan->xs_prev_xmax)); offnum = scan->xs_next_hot; at_chain_start = false; scan->xs_next_hot = InvalidOffsetNumber; } else { bool found; Buffer prev_buf; /* * If we scanned a whole HOT chain and found only dead tuples, * tell index AM to kill its entry for that TID. We do not do this * when in recovery because it may violate MVCC to do so. see * comments in RelationGetIndexScan(). */ if (!scan->xactStartedInRecovery) scan->kill_prior_tuple = scan->xs_hot_dead; /* * The AM's gettuple proc finds the next index entry matching the * scan keys, and puts the TID in xs_ctup.t_self (ie, *tid). It * should also set scan->xs_recheck, though we pay no attention to * that here. */ found = DatumGetBool(FunctionCall2(procedure, PointerGetDatum(scan), Int32GetDatum(direction))); /* Reset kill flag immediately for safety */ scan->kill_prior_tuple = false; /* If we're out of index entries, break out of outer loop */ if (!found) break; pgstat_count_index_tuples(scan->indexRelation, 1); /* Switch to correct buffer if we don't have it already */ prev_buf = scan->xs_cbuf; scan->xs_cbuf = ReleaseAndReadBuffer(scan->xs_cbuf, scan->heapRelation, ItemPointerGetBlockNumber(tid)); /* * Prune page, but only if we weren't already on this page */ if (prev_buf != scan->xs_cbuf) heap_page_prune_opt(scan->heapRelation, scan->xs_cbuf, RecentGlobalXmin); /* Prepare to scan HOT chain starting at index-referenced offnum */ offnum = ItemPointerGetOffsetNumber(tid); at_chain_start = true; /* We don't know what the first tuple's xmin should be */ scan->xs_prev_xmax = InvalidTransactionId; /* Initialize flag to detect if all entries are dead */ scan->xs_hot_dead = true; } /* Obtain share-lock on the buffer so we can examine visibility */ LockBuffer(scan->xs_cbuf, BUFFER_LOCK_SHARE); dp = (Page) BufferGetPage(scan->xs_cbuf); /* Scan through possible multiple members of HOT-chain */ for (;;) { ItemId lp; ItemPointer ctid; bool valid; /* check for bogus TID */ if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(dp)) break; lp = PageGetItemId(dp, offnum); /* check for unused, dead, or redirected items */ if (!ItemIdIsNormal(lp)) { /* We should only see a redirect at start of chain */ if (ItemIdIsRedirected(lp) && at_chain_start) { /* Follow the redirect */ offnum = ItemIdGetRedirect(lp); at_chain_start = false; continue; } /* else must be end of chain */ break; } /* * We must initialize all of *heapTuple (ie, scan->xs_ctup) since * it is returned to the executor on success. */ heapTuple->t_data = (HeapTupleHeader) PageGetItem(dp, lp); heapTuple->t_len = ItemIdGetLength(lp); ItemPointerSetOffsetNumber(tid, offnum); heapTuple->t_tableOid = RelationGetRelid(scan->heapRelation); ctid = &heapTuple->t_data->t_ctid; /* * Shouldn't see a HEAP_ONLY tuple at chain start. (This test * should be unnecessary, since the chain root can't be removed * while we have pin on the index entry, but let's make it * anyway.) */ if (at_chain_start && HeapTupleIsHeapOnly(heapTuple)) break; /* * The xmin should match the previous xmax value, else chain is * broken. (Note: this test is not optional because it protects * us against the case where the prior chain member's xmax aborted * since we looked at it.) */ if (TransactionIdIsValid(scan->xs_prev_xmax) && !TransactionIdEquals(scan->xs_prev_xmax, HeapTupleHeaderGetXmin(heapTuple->t_data))) break; /* If it's visible per the snapshot, we must return it */ valid = HeapTupleSatisfiesVisibility(heapTuple, scan->xs_snapshot, scan->xs_cbuf); CheckForSerializableConflictOut(valid, scan->heapRelation, heapTuple, scan->xs_cbuf); if (valid) { /* * If the snapshot is MVCC, we know that it could accept at * most one member of the HOT chain, so we can skip examining * any more members. Otherwise, check for continuation of the * HOT-chain, and set state for next time. */ if (IsMVCCSnapshot(scan->xs_snapshot) && !IsolationIsSerializable()) scan->xs_next_hot = InvalidOffsetNumber; else if (HeapTupleIsHotUpdated(heapTuple)) { Assert(ItemPointerGetBlockNumber(ctid) == ItemPointerGetBlockNumber(tid)); scan->xs_next_hot = ItemPointerGetOffsetNumber(ctid); scan->xs_prev_xmax = HeapTupleHeaderGetXmax(heapTuple->t_data); } else scan->xs_next_hot = InvalidOffsetNumber; PredicateLockTuple(scan->heapRelation, heapTuple); LockBuffer(scan->xs_cbuf, BUFFER_LOCK_UNLOCK); pgstat_count_heap_fetch(scan->indexRelation); return heapTuple; } /* * If we can't see it, maybe no one else can either. Check to see * if the tuple is dead to all transactions. If we find that all * the tuples in the HOT chain are dead, we'll signal the index AM * to not return that TID on future indexscans. */ if (scan->xs_hot_dead && HeapTupleSatisfiesVacuum(heapTuple->t_data, RecentGlobalXmin, scan->xs_cbuf) != HEAPTUPLE_DEAD) scan->xs_hot_dead = false; /* * Check to see if HOT chain continues past this tuple; if so * fetch the next offnum (we don't bother storing it into * xs_next_hot, but must store xs_prev_xmax), and loop around. */ if (HeapTupleIsHotUpdated(heapTuple)) { Assert(ItemPointerGetBlockNumber(ctid) == ItemPointerGetBlockNumber(tid)); offnum = ItemPointerGetOffsetNumber(ctid); at_chain_start = false; scan->xs_prev_xmax = HeapTupleHeaderGetXmax(heapTuple->t_data); } else break; /* end of chain */ } /* loop over a single HOT chain */ LockBuffer(scan->xs_cbuf, BUFFER_LOCK_UNLOCK); /* Loop around to ask index AM for another TID */ scan->xs_next_hot = InvalidOffsetNumber; } /* Release any held pin on a heap page */ if (BufferIsValid(scan->xs_cbuf)) { ReleaseBuffer(scan->xs_cbuf); scan->xs_cbuf = InvalidBuffer; } return NULL; /* failure exit */ }