/*ARGSUSED*/ void trap(struct trapframe *frame) { struct proc *p = curproc; int type = (int)frame->tf_trapno; struct pcb *pcb; extern char doreti_iret[], resume_iret[]; caddr_t onfault; int error; uint64_t cr2; union sigval sv; uvmexp.traps++; pcb = (p != NULL && p->p_addr != NULL) ? &p->p_addr->u_pcb : NULL; #ifdef DEBUG if (trapdebug) { printf("trap %d code %lx rip %lx cs %lx rflags %lx cr2 %lx " "cpl %x\n", type, frame->tf_err, frame->tf_rip, frame->tf_cs, frame->tf_rflags, rcr2(), curcpu()->ci_ilevel); printf("curproc %p\n", curproc); if (curproc) printf("pid %d\n", p->p_pid); } #endif if (!KERNELMODE(frame->tf_cs, frame->tf_rflags)) { type |= T_USER; p->p_md.md_regs = frame; } switch (type) { default: we_re_toast: #ifdef KGDB if (kgdb_trap(type, frame)) return; else { /* * If this is a breakpoint, don't panic * if we're not connected. */ if (type == T_BPTFLT) { printf("kgdb: ignored %s\n", trap_type[type]); return; } } #endif #ifdef DDB if (kdb_trap(type, 0, frame)) return; #endif if (frame->tf_trapno < trap_types) printf("fatal %s", trap_type[frame->tf_trapno]); else printf("unknown trap %ld", (u_long)frame->tf_trapno); printf(" in %s mode\n", (type & T_USER) ? "user" : "supervisor"); printf("trap type %d code %lx rip %lx cs %lx rflags %lx cr2 " " %lx cpl %x rsp %lx\n", type, frame->tf_err, (u_long)frame->tf_rip, frame->tf_cs, frame->tf_rflags, rcr2(), curcpu()->ci_ilevel, frame->tf_rsp); panic("trap type %d, code=%lx, pc=%lx", type, frame->tf_err, frame->tf_rip); /*NOTREACHED*/ case T_PROTFLT: case T_SEGNPFLT: case T_ALIGNFLT: case T_TSSFLT: if (p == NULL) goto we_re_toast; /* Check for copyin/copyout fault. */ if (pcb->pcb_onfault != 0) { error = EFAULT; copyfault: frame->tf_rip = (u_int64_t)pcb->pcb_onfault; frame->tf_rax = error; return; } /* * Check for failure during return to user mode. * We do this by looking at the address of the * instruction that faulted. */ if (frame->tf_rip == (u_int64_t)doreti_iret) { frame->tf_rip = (u_int64_t)resume_iret; return; } goto we_re_toast; case T_PROTFLT|T_USER: /* protection fault */ case T_TSSFLT|T_USER: case T_SEGNPFLT|T_USER: case T_STKFLT|T_USER: case T_NMI|T_USER: #ifdef TRAP_SIGDEBUG printf("pid %d (%s): BUS at rip %lx addr %lx\n", p->p_pid, p->p_comm, frame->tf_rip, rcr2()); frame_dump(frame); #endif sv.sival_ptr = (void *)frame->tf_rip; KERNEL_LOCK(); trapsignal(p, SIGBUS, type & ~T_USER, BUS_OBJERR, sv); KERNEL_UNLOCK(); goto out; case T_ALIGNFLT|T_USER: sv.sival_ptr = (void *)frame->tf_rip; KERNEL_LOCK(); trapsignal(p, SIGBUS, type & ~T_USER, BUS_ADRALN, sv); KERNEL_UNLOCK(); goto out; case T_PRIVINFLT|T_USER: /* privileged instruction fault */ sv.sival_ptr = (void *)frame->tf_rip; KERNEL_LOCK(); trapsignal(p, SIGILL, type & ~T_USER, ILL_PRVOPC, sv); KERNEL_UNLOCK(); goto out; case T_FPOPFLT|T_USER: /* coprocessor operand fault */ #ifdef TRAP_SIGDEBUG printf("pid %d (%s): ILL at rip %lx addr %lx\n", p->p_pid, p->p_comm, frame->tf_rip, rcr2()); frame_dump(frame); #endif sv.sival_ptr = (void *)frame->tf_rip; KERNEL_LOCK(); trapsignal(p, SIGILL, type & ~T_USER, ILL_COPROC, sv); KERNEL_UNLOCK(); goto out; case T_ASTFLT|T_USER: /* Allow process switch */ uvmexp.softs++; if (p->p_flag & P_OWEUPC) { KERNEL_LOCK(); ADDUPROF(p); KERNEL_UNLOCK(); } /* Allow a forced task switch. */ if (curcpu()->ci_want_resched) preempt(NULL); goto out; case T_BOUND|T_USER: sv.sival_ptr = (void *)frame->tf_rip; KERNEL_LOCK(); trapsignal(p, SIGFPE, type &~ T_USER, FPE_FLTSUB, sv); KERNEL_UNLOCK(); goto out; case T_OFLOW|T_USER: sv.sival_ptr = (void *)frame->tf_rip; KERNEL_LOCK(); trapsignal(p, SIGFPE, type &~ T_USER, FPE_INTOVF, sv); KERNEL_UNLOCK(); goto out; case T_DIVIDE|T_USER: sv.sival_ptr = (void *)frame->tf_rip; KERNEL_LOCK(); trapsignal(p, SIGFPE, type &~ T_USER, FPE_INTDIV, sv); KERNEL_UNLOCK(); goto out; case T_ARITHTRAP|T_USER: case T_XMM|T_USER: fputrap(frame); goto out; case T_PAGEFLT: /* allow page faults in kernel mode */ if (p == NULL) goto we_re_toast; cr2 = rcr2(); KERNEL_LOCK(); goto faultcommon; case T_PAGEFLT|T_USER: { /* page fault */ vaddr_t va, fa; struct vmspace *vm; struct vm_map *map; vm_prot_t ftype; extern struct vm_map *kernel_map; cr2 = rcr2(); KERNEL_LOCK(); faultcommon: vm = p->p_vmspace; if (vm == NULL) goto we_re_toast; fa = cr2; va = trunc_page((vaddr_t)cr2); /* * It is only a kernel address space fault iff: * 1. (type & T_USER) == 0 and * 2. pcb_onfault not set or * 3. pcb_onfault set but supervisor space fault * The last can occur during an exec() copyin where the * argument space is lazy-allocated. */ if (type == T_PAGEFLT && va >= VM_MIN_KERNEL_ADDRESS) map = kernel_map; else map = &vm->vm_map; if (frame->tf_err & PGEX_W) ftype = VM_PROT_WRITE; else if (frame->tf_err & PGEX_I) ftype = VM_PROT_EXECUTE; else ftype = VM_PROT_READ; #ifdef DIAGNOSTIC if (map == kernel_map && va == 0) { printf("trap: bad kernel access at %lx\n", va); goto we_re_toast; } #endif /* Fault the original page in. */ onfault = pcb->pcb_onfault; pcb->pcb_onfault = NULL; error = uvm_fault(map, va, frame->tf_err & PGEX_P? VM_FAULT_PROTECT : VM_FAULT_INVALID, ftype); pcb->pcb_onfault = onfault; if (error == 0) { if (map != kernel_map) uvm_grow(p, va); if (type == T_PAGEFLT) { KERNEL_UNLOCK(); return; } KERNEL_UNLOCK(); goto out; } if (error == EACCES) { error = EFAULT; } if (type == T_PAGEFLT) { if (pcb->pcb_onfault != 0) { KERNEL_UNLOCK(); goto copyfault; } printf("uvm_fault(%p, 0x%lx, 0, %d) -> %x\n", map, va, ftype, error); goto we_re_toast; } if (error == ENOMEM) { printf("UVM: pid %d (%s), uid %d killed: out of swap\n", p->p_pid, p->p_comm, p->p_cred && p->p_ucred ? (int)p->p_ucred->cr_uid : -1); sv.sival_ptr = (void *)fa; trapsignal(p, SIGKILL, T_PAGEFLT, SEGV_MAPERR, sv); } else { #ifdef TRAP_SIGDEBUG printf("pid %d (%s): SEGV at rip %lx addr %lx\n", p->p_pid, p->p_comm, frame->tf_rip, va); frame_dump(frame); #endif sv.sival_ptr = (void *)fa; trapsignal(p, SIGSEGV, T_PAGEFLT, SEGV_MAPERR, sv); } KERNEL_UNLOCK(); break; } case T_TRCTRAP: goto we_re_toast; case T_BPTFLT|T_USER: /* bpt instruction fault */ case T_TRCTRAP|T_USER: /* trace trap */ #ifdef MATH_EMULATE trace: #endif KERNEL_LOCK(); trapsignal(p, SIGTRAP, type &~ T_USER, TRAP_BRKPT, sv); KERNEL_UNLOCK(); break; #if NISA > 0 case T_NMI: #if defined(KGDB) || defined(DDB) /* NMI can be hooked up to a pushbutton for debugging */ printf ("NMI ... going to debugger\n"); #ifdef KGDB if (kgdb_trap(type, frame)) return; #endif #ifdef DDB if (kdb_trap(type, 0, frame)) return; #endif #endif /* KGDB || DDB */ /* machine/parity/power fail/"kitchen sink" faults */ if (x86_nmi() != 0) goto we_re_toast; else return; #endif /* NISA > 0 */ } if ((type & T_USER) == 0) return; out: userret(p); }
/* * trap(frame): exception, fault, and trap interface to BSD kernel. * * This common code is called from assembly language IDT gate entry routines * that prepare a suitable stack frame, and restore this frame after the * exception has been processed. Note that the effect is as if the arguments * were passed call by reference. */ void trap(struct trapframe *frame) { struct lwp *l = curlwp; struct proc *p; struct pcb *pcb; extern char fusubail[], kcopy_fault[], return_address_fault[], IDTVEC(osyscall)[]; struct trapframe *vframe; ksiginfo_t ksi; void *onfault; int type, error; uint32_t cr2; bool pfail; if (__predict_true(l != NULL)) { pcb = lwp_getpcb(l); p = l->l_proc; } else { /* * this can happen eg. on break points in early on boot. */ pcb = NULL; p = NULL; } type = frame->tf_trapno; #ifdef DEBUG if (trapdebug) { trap_print(frame, l); } #endif if (type != T_NMI && !KERNELMODE(frame->tf_cs, frame->tf_eflags)) { type |= T_USER; l->l_md.md_regs = frame; pcb->pcb_cr2 = 0; LWP_CACHE_CREDS(l, p); } #ifdef KDTRACE_HOOKS /* * A trap can occur while DTrace executes a probe. Before * executing the probe, DTrace blocks re-scheduling and sets * a flag in its per-cpu flags to indicate that it doesn't * want to fault. On returning from the the probe, the no-fault * flag is cleared and finally re-scheduling is enabled. * * If the DTrace kernel module has registered a trap handler, * call it and if it returns non-zero, assume that it has * handled the trap and modified the trap frame so that this * function can return normally. */ if ((type == T_PROTFLT || type == T_PAGEFLT) && dtrace_trap_func != NULL) { if ((*dtrace_trap_func)(frame, type)) { return; } } #endif switch (type) { case T_ASTFLT: /*FALLTHROUGH*/ default: we_re_toast: if (type == T_TRCTRAP) check_dr0(); else trap_print(frame, l); if (kdb_trap(type, 0, frame)) return; if (kgdb_trap(type, frame)) return; /* * If this is a breakpoint, don't panic if we're not connected. */ if (type == T_BPTFLT && kgdb_disconnected()) { printf("kgdb: ignored %s\n", trap_type[type]); return; } panic("trap"); /*NOTREACHED*/ case T_PROTFLT: case T_SEGNPFLT: case T_ALIGNFLT: case T_TSSFLT: if (p == NULL) goto we_re_toast; /* Check for copyin/copyout fault. */ onfault = onfault_handler(pcb, frame); if (onfault != NULL) { copyefault: error = EFAULT; copyfault: frame->tf_eip = (uintptr_t)onfault; frame->tf_eax = error; return; } /* * Check for failure during return to user mode. * This can happen loading invalid values into the segment * registers, or during the 'iret' itself. * * We do this by looking at the instruction we faulted on. * The specific instructions we recognize only happen when * returning from a trap, syscall, or interrupt. */ kernelfault: KSI_INIT_TRAP(&ksi); ksi.ksi_signo = SIGSEGV; ksi.ksi_code = SEGV_ACCERR; ksi.ksi_trap = type; switch (*(u_char *)frame->tf_eip) { case 0xcf: /* iret */ /* * The 'iret' instruction faulted, so we have the * 'user' registers saved after the kernel %eip:%cs:%fl * of the 'iret' and below that the user %eip:%cs:%fl * the 'iret' was processing. * We must delete the 3 words of kernel return address * from the stack to generate a normal stack frame * (eg for sending a SIGSEGV). */ vframe = (void *)((int *)frame + 3); if (KERNELMODE(vframe->tf_cs, vframe->tf_eflags)) goto we_re_toast; memmove(vframe, frame, offsetof(struct trapframe, tf_eip)); /* Set the faulting address to the user %eip */ ksi.ksi_addr = (void *)vframe->tf_eip; break; case 0x8e: switch (*(uint32_t *)frame->tf_eip) { case 0x8e242c8e: /* mov (%esp,%gs), then */ case 0x0424648e: /* mov 0x4(%esp),%fs */ case 0x0824448e: /* mov 0x8(%esp),%es */ case 0x0c245c8e: /* mov 0xc(%esp),%ds */ break; default: goto we_re_toast; } /* * We faulted loading one if the user segment registers. * The stack frame containing the user registers is * still valid and is just below the %eip:%cs:%fl of * the kernel fault frame. */ vframe = (void *)(&frame->tf_eflags + 1); if (KERNELMODE(vframe->tf_cs, vframe->tf_eflags)) goto we_re_toast; /* There is no valid address for the fault */ break; default: goto we_re_toast; } /* * We might have faulted trying to execute the * trampoline for a local (nested) signal handler. * Only generate SIGSEGV if the user %cs isn't changed. * (This is only strictly necessary in the 'iret' case.) */ if (!pmap_exec_fixup(&p->p_vmspace->vm_map, vframe, pcb)) { /* Save outer frame for any signal return */ l->l_md.md_regs = vframe; (*p->p_emul->e_trapsignal)(l, &ksi); } /* Return to user by reloading the user frame */ trap_return_fault_return(vframe); /* NOTREACHED */ case T_PROTFLT|T_USER: /* protection fault */ case T_TSSFLT|T_USER: case T_SEGNPFLT|T_USER: case T_STKFLT|T_USER: case T_ALIGNFLT|T_USER: KSI_INIT_TRAP(&ksi); ksi.ksi_addr = (void *)rcr2(); switch (type) { case T_SEGNPFLT|T_USER: case T_STKFLT|T_USER: ksi.ksi_signo = SIGBUS; ksi.ksi_code = BUS_ADRERR; break; case T_TSSFLT|T_USER: ksi.ksi_signo = SIGBUS; ksi.ksi_code = BUS_OBJERR; break; case T_ALIGNFLT|T_USER: ksi.ksi_signo = SIGBUS; ksi.ksi_code = BUS_ADRALN; break; case T_PROTFLT|T_USER: #ifdef VM86 if (frame->tf_eflags & PSL_VM) { vm86_gpfault(l, type & ~T_USER); goto out; } #endif /* * If pmap_exec_fixup does something, * let's retry the trap. */ if (pmap_exec_fixup(&p->p_vmspace->vm_map, frame, pcb)){ goto out; } ksi.ksi_signo = SIGSEGV; ksi.ksi_code = SEGV_ACCERR; break; default: KASSERT(0); break; } goto trapsignal; case T_PRIVINFLT|T_USER: /* privileged instruction fault */ case T_FPOPFLT|T_USER: /* coprocessor operand fault */ KSI_INIT_TRAP(&ksi); ksi.ksi_signo = SIGILL; ksi.ksi_addr = (void *) frame->tf_eip; switch (type) { case T_PRIVINFLT|T_USER: ksi.ksi_code = ILL_PRVOPC; break; case T_FPOPFLT|T_USER: ksi.ksi_code = ILL_COPROC; break; default: ksi.ksi_code = 0; break; } goto trapsignal; case T_ASTFLT|T_USER: /* Allow process switch. */ //curcpu()->ci_data.cpu_nast++; if (l->l_pflag & LP_OWEUPC) { l->l_pflag &= ~LP_OWEUPC; ADDUPROF(l); } /* Allow a forced task switch. */ if (curcpu()->ci_want_resched) { preempt(); } goto out; case T_BOUND|T_USER: case T_OFLOW|T_USER: case T_DIVIDE|T_USER: KSI_INIT_TRAP(&ksi); ksi.ksi_signo = SIGFPE; ksi.ksi_addr = (void *)frame->tf_eip; switch (type) { case T_BOUND|T_USER: ksi.ksi_code = FPE_FLTSUB; break; case T_OFLOW|T_USER: ksi.ksi_code = FPE_INTOVF; break; case T_DIVIDE|T_USER: ksi.ksi_code = FPE_INTDIV; break; default: ksi.ksi_code = 0; break; } goto trapsignal; case T_PAGEFLT: /* Allow page faults in kernel mode. */ if (__predict_false(l == NULL)) goto we_re_toast; /* * fusubail is used by [fs]uswintr() to prevent page faulting * from inside the profiling interrupt. */ onfault = pcb->pcb_onfault; if (onfault == fusubail || onfault == return_address_fault) { goto copyefault; } if (cpu_intr_p() || (l->l_pflag & LP_INTR) != 0) { goto we_re_toast; } cr2 = rcr2(); goto faultcommon; case T_PAGEFLT|T_USER: { /* page fault */ register vaddr_t va; register struct vmspace *vm; register struct vm_map *map; vm_prot_t ftype; extern struct vm_map *kernel_map; cr2 = rcr2(); faultcommon: vm = p->p_vmspace; if (__predict_false(vm == NULL)) { goto we_re_toast; } pcb->pcb_cr2 = cr2; va = trunc_page((vaddr_t)cr2); /* * It is only a kernel address space fault iff: * 1. (type & T_USER) == 0 and * 2. pcb_onfault not set or * 3. pcb_onfault set but supervisor space fault * The last can occur during an exec() copyin where the * argument space is lazy-allocated. */ if (type == T_PAGEFLT && va >= KERNBASE) map = kernel_map; else map = &vm->vm_map; if (frame->tf_err & PGEX_W) ftype = VM_PROT_WRITE; else if (frame->tf_err & PGEX_X) ftype = VM_PROT_EXECUTE; else ftype = VM_PROT_READ; #ifdef DIAGNOSTIC if (map == kernel_map && va == 0) { printf("trap: bad kernel access at %lx\n", va); goto we_re_toast; } #endif /* Fault the original page in. */ onfault = pcb->pcb_onfault; pcb->pcb_onfault = NULL; error = uvm_fault(map, va, ftype); pcb->pcb_onfault = onfault; if (error == 0) { if (map != kernel_map && (void *)va >= vm->vm_maxsaddr) uvm_grow(p, va); pfail = false; while (type == T_PAGEFLT) { /* * we need to switch pmap now if we're in * the middle of copyin/out. * * but we don't need to do so for kcopy as * it never touch userspace. */ kpreempt_disable(); if (curcpu()->ci_want_pmapload) { onfault = onfault_handler(pcb, frame); if (onfault != kcopy_fault) { pmap_load(); } } /* * We need to keep the pmap loaded and * so avoid being preempted until back * into the copy functions. Disable * interrupts at the hardware level before * re-enabling preemption. Interrupts * will be re-enabled by 'iret' when * returning back out of the trap stub. * They'll only be re-enabled when the * program counter is once again in * the copy functions, and so visible * to cpu_kpreempt_exit(). */ #ifndef XEN x86_disable_intr(); #endif l->l_nopreempt--; if (l->l_nopreempt > 0 || !l->l_dopreempt || pfail) { return; } #ifndef XEN x86_enable_intr(); #endif /* * If preemption fails for some reason, * don't retry it. The conditions won't * change under our nose. */ pfail = kpreempt(0); } goto out; } if (type == T_PAGEFLT) { onfault = onfault_handler(pcb, frame); if (onfault != NULL) goto copyfault; printf("uvm_fault(%p, %#lx, %d) -> %#x\n", map, va, ftype, error); goto kernelfault; } KSI_INIT_TRAP(&ksi); ksi.ksi_trap = type & ~T_USER; ksi.ksi_addr = (void *)cr2; switch (error) { case EINVAL: ksi.ksi_signo = SIGBUS; ksi.ksi_code = BUS_ADRERR; break; case EACCES: ksi.ksi_signo = SIGSEGV; ksi.ksi_code = SEGV_ACCERR; error = EFAULT; break; case ENOMEM: ksi.ksi_signo = SIGKILL; printf("UVM: pid %d.%d (%s), uid %d killed: " "out of swap\n", p->p_pid, l->l_lid, p->p_comm, l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1); break; default: ksi.ksi_signo = SIGSEGV; ksi.ksi_code = SEGV_MAPERR; break; } #ifdef TRAP_SIGDEBUG printf("pid %d.%d (%s): signal %d at eip %x addr %lx " "error %d\n", p->p_pid, l->l_lid, p->p_comm, ksi.ksi_signo, frame->tf_eip, va, error); #endif (*p->p_emul->e_trapsignal)(l, &ksi); break; } case T_TRCTRAP: /* Check whether they single-stepped into a lcall. */ if (frame->tf_eip == (int)IDTVEC(osyscall)) return; if (frame->tf_eip == (int)IDTVEC(osyscall) + 1) { frame->tf_eflags &= ~PSL_T; return; } goto we_re_toast; case T_BPTFLT|T_USER: /* bpt instruction fault */ case T_TRCTRAP|T_USER: /* trace trap */ /* * Don't go single-stepping into a RAS. */ if (p->p_raslist == NULL || (ras_lookup(p, (void *)frame->tf_eip) == (void *)-1)) { KSI_INIT_TRAP(&ksi); ksi.ksi_signo = SIGTRAP; ksi.ksi_trap = type & ~T_USER; if (type == (T_BPTFLT|T_USER)) ksi.ksi_code = TRAP_BRKPT; else ksi.ksi_code = TRAP_TRACE; ksi.ksi_addr = (void *)frame->tf_eip; (*p->p_emul->e_trapsignal)(l, &ksi); } break; case T_NMI: if (nmi_dispatch(frame)) return; /* NMI can be hooked up to a pushbutton for debugging */ if (kgdb_trap(type, frame)) return; if (kdb_trap(type, 0, frame)) return; /* machine/parity/power fail/"kitchen sink" faults */ #if NMCA > 0 mca_nmi(); #endif x86_nmi(); } if ((type & T_USER) == 0) return; out: userret(l); return; trapsignal: ksi.ksi_trap = type & ~T_USER; (*p->p_emul->e_trapsignal)(l, &ksi); userret(l); }