Exemple #1
0
static void
kdebug_lookup(struct vnode *dp, struct componentname *cnp)
{
	unsigned int i;
	int code;
	int dbg_namelen;
	char *dbg_nameptr;
	long dbg_parms[NUMPARMS];

	/* Collect the pathname for tracing */
	dbg_namelen = (cnp->cn_nameptr - cnp->cn_pnbuf) + cnp->cn_namelen;
	dbg_nameptr = cnp->cn_nameptr + cnp->cn_namelen;

	if (dbg_namelen > (int)sizeof(dbg_parms))
		dbg_namelen = sizeof(dbg_parms);
	dbg_nameptr -= dbg_namelen;
	
	/* Copy the (possibly truncated) path itself */
	memcpy(dbg_parms, dbg_nameptr, dbg_namelen);
	
	/* Pad with '\0' or '>' */
	if (dbg_namelen < (int)sizeof(dbg_parms)) {
		memset((char *)dbg_parms + dbg_namelen,
		       *(cnp->cn_nameptr + cnp->cn_namelen) ? '>' : 0,
		       sizeof(dbg_parms) - dbg_namelen);
	}
	
	/*
	 * In the event that we collect multiple, consecutive pathname
	 * entries, we must mark the start of the path's string and the end.
	 */
	code = (FSDBG_CODE(DBG_FSRW,36)) | DBG_FUNC_START;

	if (dbg_namelen <= 12)
		code |= DBG_FUNC_END;

	KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, code, dp, dbg_parms[0], dbg_parms[1], dbg_parms[2], 0);

	code &= ~DBG_FUNC_START;

	for (i=3, dbg_namelen -= 12; dbg_namelen > 0; i+=4, dbg_namelen -= 16) {
		if (dbg_namelen <= 16)
			code |= DBG_FUNC_END;

		KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, code, dbg_parms[i], dbg_parms[i+1], dbg_parms[i+2], dbg_parms[i+3], 0);
	}
}
Exemple #2
0
/*
 * Re-evaluate the outstanding deadlines and select the most proximate.
 *
 * Should be called at splclock.
 */
void
timer_resync_deadlines(void)
{
    uint64_t		deadline = EndOfAllTime;
    uint64_t		pmdeadline;
    rtclock_timer_t		*mytimer;
    spl_t			s = splclock();
    cpu_data_t		*pp;
    uint32_t		decr;

    pp = current_cpu_datap();
    if (!pp->cpu_running)
        /* There's really nothing to do if this processor is down */
        return;

    /*
     * If we have a clock timer set, pick that.
     */
    mytimer = &pp->rtclock_timer;
    if (!mytimer->has_expired &&
            0 < mytimer->deadline && mytimer->deadline < EndOfAllTime)
        deadline = mytimer->deadline;

    /*
     * If we have a power management deadline, see if that's earlier.
     */
    pmdeadline = pmCPUGetDeadline(pp);
    if (0 < pmdeadline && pmdeadline < deadline)
        deadline = pmdeadline;

    /*
     * Go and set the "pop" event.
     */
    decr = (uint32_t) setPop(deadline);

    /* Record non-PM deadline for latency tool */
    if (decr != 0 && deadline != pmdeadline) {
        KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
                                  DECR_SET_DEADLINE | DBG_FUNC_NONE,
                                  decr, 2,
                                  deadline,
                                  mytimer->queue.count, 0);
    }
    splx(s);
}
Exemple #3
0
/*
 * Complete the shutdown and place the processor offline.
 *
 * Called at splsched in the shutdown context.
 * This performs a minimal thread_invoke() to the idle thread,
 * so it needs to be kept in sync with what thread_invoke() does.
 *
 * The onlining half of this is done in load_context().
 */
void
processor_offline(
	processor_t			processor)
{
	assert(processor == current_processor());
	assert(processor->active_thread == current_thread());

	thread_t old_thread = processor->active_thread;
	thread_t new_thread = processor->idle_thread;

	processor->active_thread = new_thread;
	processor->current_pri = IDLEPRI;
	processor->current_thmode = TH_MODE_NONE;
	processor->starting_pri = IDLEPRI;
	processor->current_sfi_class = SFI_CLASS_KERNEL;
	processor->deadline = UINT64_MAX;
	new_thread->last_processor = processor;

	uint64_t ctime = mach_absolute_time();

	processor->last_dispatch = ctime;
	old_thread->last_run_time = ctime;

	/* Update processor->thread_timer and ->kernel_timer to point to the new thread */
	thread_timer_event(ctime, &new_thread->system_timer);
	PROCESSOR_DATA(processor, kernel_timer) = &new_thread->system_timer;

	timer_stop(PROCESSOR_DATA(processor, current_state), ctime);

	KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
	                          MACHDBG_CODE(DBG_MACH_SCHED, MACH_SCHED) | DBG_FUNC_NONE,
	                          old_thread->reason, (uintptr_t)thread_tid(new_thread),
	                          old_thread->sched_pri, new_thread->sched_pri, 0);

	machine_set_current_thread(new_thread);

	thread_dispatch(old_thread, new_thread);

	PMAP_DEACTIVATE_KERNEL(processor->cpu_id);

	cpu_sleep();
	panic("zombie processor");
	/*NOTREACHED*/
}
Exemple #4
0
/*
 * timer_queue_migrate_cpu() is called from the Power-Management kext
 * when a logical processor goes idle (in a deep C-state) with a distant
 * deadline so that it's timer queue can be moved to another processor.
 * This target processor should be the least idle (most busy) --
 * currently this is the primary processor for the calling thread's package.
 * Locking restrictions demand that the target cpu must be the boot cpu.
 */
uint32_t
timer_queue_migrate_cpu(int target_cpu)
{
    cpu_data_t	*target_cdp = cpu_datap(target_cpu);
    cpu_data_t	*cdp = current_cpu_datap();
    int		ntimers_moved;

    assert(!ml_get_interrupts_enabled());
    assert(target_cpu != cdp->cpu_number);
    assert(target_cpu == master_cpu);

    KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
                              DECR_TIMER_MIGRATE | DBG_FUNC_START,
                              target_cpu,
                              cdp->rtclock_timer.deadline, (cdp->rtclock_timer.deadline >>32),
                              0, 0);

    /*
     * Move timer requests from the local queue to the target processor's.
     * The return value is the number of requests moved. If this is 0,
     * it indicates that the first (i.e. earliest) timer is earlier than
     * the earliest for the target processor. Since this would force a
     * resync, the move of this and all later requests is aborted.
     */
    ntimers_moved = timer_queue_migrate(&cdp->rtclock_timer.queue,
                                        &target_cdp->rtclock_timer.queue);

    /*
     * Assuming we moved stuff, clear local deadline.
     */
    if (ntimers_moved > 0) {
        cdp->rtclock_timer.deadline = EndOfAllTime;
        setPop(EndOfAllTime);
    }

    KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
                              DECR_TIMER_MIGRATE | DBG_FUNC_END,
                              target_cpu, ntimers_moved, 0, 0, 0);

    return ntimers_moved;
}
Exemple #5
0
/*
 * Create a new thread.
 * Doesn't start the thread running.
 */
static kern_return_t
thread_create_internal(
	task_t					parent_task,
	integer_t				priority,
	thread_continue_t		continuation,
	int						options,
#define TH_OPTION_NONE		0x00
#define TH_OPTION_NOCRED	0x01
#define TH_OPTION_NOSUSP	0x02
	thread_t				*out_thread)
{
	thread_t				new_thread;
	static thread_t			first_thread = THREAD_NULL;

	/*
	 *	Allocate a thread and initialize static fields
	 */
	if (first_thread == THREAD_NULL)
		new_thread = first_thread = current_thread();
	new_thread = (thread_t)zalloc(thread_zone);
	if (new_thread == THREAD_NULL)
		return (KERN_RESOURCE_SHORTAGE);

	if (new_thread != first_thread)
		*new_thread = thread_template;

#ifdef MACH_BSD
	new_thread->uthread = uthread_alloc(parent_task, new_thread, (options & TH_OPTION_NOCRED) != 0);
	if (new_thread->uthread == NULL) {
		zfree(thread_zone, new_thread);
		return (KERN_RESOURCE_SHORTAGE);
	}
#endif  /* MACH_BSD */

	if (machine_thread_create(new_thread, parent_task) != KERN_SUCCESS) {
#ifdef MACH_BSD
		void *ut = new_thread->uthread;

		new_thread->uthread = NULL;
		/* cred free may not be necessary */
		uthread_cleanup(parent_task, ut, parent_task->bsd_info);
		uthread_cred_free(ut);
		uthread_zone_free(ut);
#endif  /* MACH_BSD */

		zfree(thread_zone, new_thread);
		return (KERN_FAILURE);
	}

	new_thread->task = parent_task;

	thread_lock_init(new_thread);
	wake_lock_init(new_thread);

	lck_mtx_init(&new_thread->mutex, &thread_lck_grp, &thread_lck_attr);

	ipc_thread_init(new_thread);
	queue_init(&new_thread->held_ulocks);

	new_thread->continuation = continuation;

	lck_mtx_lock(&tasks_threads_lock);
	task_lock(parent_task);

	if (	!parent_task->active || parent_task->halting ||
			((options & TH_OPTION_NOSUSP) != 0 &&
			 	parent_task->suspend_count > 0)	||
			(parent_task->thread_count >= task_threadmax &&
				parent_task != kernel_task)		) {
		task_unlock(parent_task);
		lck_mtx_unlock(&tasks_threads_lock);

#ifdef MACH_BSD
		{
			void *ut = new_thread->uthread;

			new_thread->uthread = NULL;
			uthread_cleanup(parent_task, ut, parent_task->bsd_info);
			/* cred free may not be necessary */
			uthread_cred_free(ut);
			uthread_zone_free(ut);
		}
#endif  /* MACH_BSD */
		ipc_thread_disable(new_thread);
		ipc_thread_terminate(new_thread);
		lck_mtx_destroy(&new_thread->mutex, &thread_lck_grp);
		machine_thread_destroy(new_thread);
		zfree(thread_zone, new_thread);
		return (KERN_FAILURE);
	}

	/* New threads inherit any default state on the task */
	machine_thread_inherit_taskwide(new_thread, parent_task);

	task_reference_internal(parent_task);

	if (new_thread->task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) {
		/*
		 * This task has a per-thread CPU limit; make sure this new thread
		 * gets its limit set too, before it gets out of the kernel.
		 */
		set_astledger(new_thread);
	}
	new_thread->t_threadledger = LEDGER_NULL;	/* per thread ledger is not inherited */
	new_thread->t_ledger = new_thread->task->ledger;
	if (new_thread->t_ledger)
		ledger_reference(new_thread->t_ledger);

	/* Cache the task's map */
	new_thread->map = parent_task->map;

	/* Chain the thread onto the task's list */
	queue_enter(&parent_task->threads, new_thread, thread_t, task_threads);
	parent_task->thread_count++;
	
	/* So terminating threads don't need to take the task lock to decrement */
	hw_atomic_add(&parent_task->active_thread_count, 1);

	/* Protected by the tasks_threads_lock */
	new_thread->thread_id = ++thread_unique_id;

	queue_enter(&threads, new_thread, thread_t, threads);
	threads_count++;

	timer_call_setup(&new_thread->wait_timer, thread_timer_expire, new_thread);
	timer_call_setup(&new_thread->depress_timer, thread_depress_expire, new_thread);

#if CONFIG_COUNTERS
	/*
	 * If parent task has any reservations, they need to be propagated to this
	 * thread.
	 */
	new_thread->t_chud = (TASK_PMC_FLAG == (parent_task->t_chud & TASK_PMC_FLAG)) ? 
		THREAD_PMC_FLAG : 0U;
#endif

	/* Set the thread's scheduling parameters */
	new_thread->sched_mode = SCHED(initial_thread_sched_mode)(parent_task);
	new_thread->sched_flags = 0;
	new_thread->max_priority = parent_task->max_priority;
	new_thread->task_priority = parent_task->priority;
	new_thread->priority = (priority < 0)? parent_task->priority: priority;
	if (new_thread->priority > new_thread->max_priority)
		new_thread->priority = new_thread->max_priority;
#if CONFIG_EMBEDDED 
	if (new_thread->priority < MAXPRI_THROTTLE) {
		new_thread->priority = MAXPRI_THROTTLE;
	}
#endif /* CONFIG_EMBEDDED */
	new_thread->importance =
					new_thread->priority - new_thread->task_priority;
#if CONFIG_EMBEDDED
	new_thread->saved_importance = new_thread->importance;
	/* apple ios daemon starts all threads in darwin background */
	if (parent_task->ext_appliedstate.apptype == PROC_POLICY_IOS_APPLE_DAEMON) {
		/* Cannot use generic routines here so apply darwin bacground directly */
		new_thread->policystate.hw_bg = TASK_POLICY_BACKGROUND_ATTRIBUTE_ALL;
		/* set thread self backgrounding */
		new_thread->appliedstate.hw_bg = new_thread->policystate.hw_bg;
		/* priority will get recomputed suitably bit later */
		new_thread->importance = INT_MIN;
		/* to avoid changes to many pri compute routines, set the effect of those here */
		new_thread->priority = MAXPRI_THROTTLE;
	}
#endif /* CONFIG_EMBEDDED */

#if defined(CONFIG_SCHED_TRADITIONAL)
	new_thread->sched_stamp = sched_tick;
	new_thread->pri_shift = sched_pri_shift;
#endif
	SCHED(compute_priority)(new_thread, FALSE);

	new_thread->active = TRUE;

	*out_thread = new_thread;

	{
		long	dbg_arg1, dbg_arg2, dbg_arg3, dbg_arg4;

		kdbg_trace_data(parent_task->bsd_info, &dbg_arg2);

		KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, 
			TRACEDBG_CODE(DBG_TRACE_DATA, 1) | DBG_FUNC_NONE,
			(vm_address_t)(uintptr_t)thread_tid(new_thread), dbg_arg2, 0, 0, 0);

		kdbg_trace_string(parent_task->bsd_info,
							&dbg_arg1, &dbg_arg2, &dbg_arg3, &dbg_arg4);

		KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, 
			TRACEDBG_CODE(DBG_TRACE_STRING, 1) | DBG_FUNC_NONE,
			dbg_arg1, dbg_arg2, dbg_arg3, dbg_arg4, 0);
	}

	DTRACE_PROC1(lwp__create, thread_t, *out_thread);

	return (KERN_SUCCESS);
}
Exemple #6
0
/*
 * 	Event timer interrupt.
 *
 * XXX a drawback of this implementation is that events serviced earlier must not set deadlines
 *     that occur before the entire chain completes.
 *
 * XXX a better implementation would use a set of generic callouts and iterate over them
 */
void
timer_intr(int		user_mode,
           uint64_t	rip)
{
    uint64_t		abstime;
    rtclock_timer_t		*mytimer;
    cpu_data_t		*pp;
    int64_t			latency;
    uint64_t		pmdeadline;
    boolean_t		timer_processed = FALSE;

    pp = current_cpu_datap();

    SCHED_STATS_TIMER_POP(current_processor());

    abstime = mach_absolute_time();		/* Get the time now */

    /* has a pending clock timer expired? */
    mytimer = &pp->rtclock_timer;		/* Point to the event timer */

    if ((timer_processed = ((mytimer->deadline <= abstime) ||
                            (abstime >= (mytimer->queue.earliest_soft_deadline))))) {
        /*
         * Log interrupt service latency (-ve value expected by tool)
         * a non-PM event is expected next.
         * The requested deadline may be earlier than when it was set
         * - use MAX to avoid reporting bogus latencies.
         */
        latency = (int64_t) (abstime - MAX(mytimer->deadline,
                                           mytimer->when_set));
        /* Log zero timer latencies when opportunistically processing
         * coalesced timers.
         */
        if (latency < 0) {
            TCOAL_DEBUG(0xEEEE0000, abstime, mytimer->queue.earliest_soft_deadline, abstime - mytimer->queue.earliest_soft_deadline, 0, 0);
            latency = 0;
        }

        KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
                                  DECR_TRAP_LATENCY | DBG_FUNC_NONE,
                                  -latency,
                                  ((user_mode != 0) ? rip : VM_KERNEL_UNSLIDE(rip)),
                                  user_mode, 0, 0);

        mytimer->has_expired = TRUE;	/* Remember that we popped */
        mytimer->deadline = timer_queue_expire(&mytimer->queue, abstime);
        mytimer->has_expired = FALSE;

        /* Get the time again since we ran a bit */
        abstime = mach_absolute_time();
        mytimer->when_set = abstime;
    }

    /* is it time for power management state change? */
    if ((pmdeadline = pmCPUGetDeadline(pp)) && (pmdeadline <= abstime)) {
        KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
                                  DECR_PM_DEADLINE | DBG_FUNC_START,
                                  0, 0, 0, 0, 0);
        pmCPUDeadline(pp);
        KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
                                  DECR_PM_DEADLINE | DBG_FUNC_END,
                                  0, 0, 0, 0, 0);
        timer_processed = TRUE;
    }

    /* schedule our next deadline */
    x86_lcpu()->rtcDeadline = EndOfAllTime;
    timer_resync_deadlines();

    if (__improbable(timer_processed == FALSE))
        spurious_timers++;
}
Exemple #7
0
/*
 * Function:	unix_syscall
 *
 * Inputs:	regs	- pointer to i386 save area
 *
 * Outputs:	none
 */
void
unix_syscall(x86_saved_state_t *state)
{
	thread_t		thread;
	void			*vt;
	unsigned int		code;
	struct sysent		*callp;

	int			error;
	vm_offset_t		params;
	struct proc		*p;
	struct uthread		*uthread;
	x86_saved_state32_t	*regs;
	boolean_t		is_vfork;

	assert(is_saved_state32(state));
	regs = saved_state32(state);
#if DEBUG
	if (regs->eax == 0x800)
		thread_exception_return();
#endif
	thread = current_thread();
	uthread = get_bsdthread_info(thread);

	/* Get the approriate proc; may be different from task's for vfork() */
	is_vfork = uthread->uu_flag & UT_VFORK;
	if (__improbable(is_vfork != 0))
		p = current_proc();
	else 
		p = (struct proc *)get_bsdtask_info(current_task());

	/* Verify that we are not being called from a task without a proc */
	if (__improbable(p == NULL)) {
		regs->eax = EPERM;
		regs->efl |= EFL_CF;
		task_terminate_internal(current_task());
		thread_exception_return();
		/* NOTREACHED */
	}

	code = regs->eax & I386_SYSCALL_NUMBER_MASK;
	DEBUG_KPRINT_SYSCALL_UNIX("unix_syscall: code=%d(%s) eip=%u\n",
							  code, syscallnames[code >= NUM_SYSENT ? 63 : code], (uint32_t)regs->eip);
	params = (vm_offset_t) (regs->uesp + sizeof (int));

	regs->efl &= ~(EFL_CF);

	callp = (code >= NUM_SYSENT) ? &sysent[63] : &sysent[code];

	if (__improbable(callp == sysent)) {
		code = fuword(params);
		params += sizeof(int);
		callp = (code >= NUM_SYSENT) ? &sysent[63] : &sysent[code];
	}

	vt = (void *)uthread->uu_arg;

	if (callp->sy_arg_bytes != 0) {
#if CONFIG_REQUIRES_U32_MUNGING
		sy_munge_t	*mungerp;
#else
#error U32 syscalls on x86_64 kernel requires munging
#endif
		uint32_t	 nargs;

		assert((unsigned) callp->sy_arg_bytes <= sizeof (uthread->uu_arg));
		nargs = callp->sy_arg_bytes;
		error = copyin((user_addr_t) params, (char *) vt, nargs);
		if (error) {
			regs->eax = error;
			regs->efl |= EFL_CF;
			thread_exception_return();
			/* NOTREACHED */
		}

		if (__probable(code != 180)) {
	        	int *ip = (int *)vt;

			KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
				BSDDBG_CODE(DBG_BSD_EXCP_SC, code) | DBG_FUNC_START,
				*ip, *(ip+1), *(ip+2), *(ip+3), 0);
		}

#if CONFIG_REQUIRES_U32_MUNGING
		mungerp = callp->sy_arg_munge32;

		if (mungerp != NULL)
			(*mungerp)(vt);
#endif
	} else
		KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, 
			BSDDBG_CODE(DBG_BSD_EXCP_SC, code) | DBG_FUNC_START,
			0, 0, 0, 0, 0);

	/*
	 * Delayed binding of thread credential to process credential, if we
	 * are not running with an explicitly set thread credential.
	 */
	kauth_cred_uthread_update(uthread, p);

	uthread->uu_rval[0] = 0;
	uthread->uu_rval[1] = 0;
	uthread->uu_flag |= UT_NOTCANCELPT;
	uthread->syscall_code = code;

#ifdef JOE_DEBUG
        uthread->uu_iocount = 0;
        uthread->uu_vpindex = 0;
#endif

	AUDIT_SYSCALL_ENTER(code, p, uthread);
	error = (*(callp->sy_call))((void *) p, (void *) vt, &(uthread->uu_rval[0]));
	AUDIT_SYSCALL_EXIT(code, p, uthread, error);

#ifdef JOE_DEBUG
        if (uthread->uu_iocount)
                printf("system call returned with uu_iocount != 0\n");
#endif
#if CONFIG_DTRACE
	uthread->t_dtrace_errno = error;
#endif /* CONFIG_DTRACE */

	if (__improbable(error == ERESTART)) {
		/*
		 * Move the user's pc back to repeat the syscall:
		 * 5 bytes for a sysenter, or 2 for an int 8x.
		 * The SYSENTER_TF_CS covers single-stepping over a sysenter
		 * - see debug trap handler in idt.s/idt64.s
		 */

		pal_syscall_restart(thread, state);
	}
	else if (error != EJUSTRETURN) {
		if (__improbable(error)) {
		    regs->eax = error;
		    regs->efl |= EFL_CF;	/* carry bit */
		} else { /* (not error) */
			/*
			 * We split retval across two registers, in case the
			 * syscall had a 64-bit return value, in which case
			 * eax/edx matches the function call ABI.
			 */
		    regs->eax = uthread->uu_rval[0];
		    regs->edx = uthread->uu_rval[1];
		} 
	}

	DEBUG_KPRINT_SYSCALL_UNIX(
		"unix_syscall: error=%d retval=(%u,%u)\n",
		error, regs->eax, regs->edx);

	uthread->uu_flag &= ~UT_NOTCANCELPT;

	if (__improbable(uthread->uu_lowpri_window)) {
	        /*
		 * task is marked as a low priority I/O type
		 * and the I/O we issued while in this system call
		 * collided with normal I/O operations... we'll
		 * delay in order to mitigate the impact of this
		 * task on the normal operation of the system
		 */
		throttle_lowpri_io(1);
	}
	if (__probable(code != 180))
		KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, 
			BSDDBG_CODE(DBG_BSD_EXCP_SC, code) | DBG_FUNC_END,
			error, uthread->uu_rval[0], uthread->uu_rval[1], p->p_pid, 0);

	if (__improbable(!is_vfork && callp->sy_call == (sy_call_t *)execve && !error)) {
		pal_execve_return(thread);
	}

	thread_exception_return();
	/* NOTREACHED */
}
Exemple #8
0
void
unix_syscall_return(int error)
{
	thread_t		thread;
	struct uthread		*uthread;
	struct proc *p;
	unsigned int code;
	struct sysent *callp;

	thread = current_thread();
	uthread = get_bsdthread_info(thread);

	pal_register_cache_state(thread, DIRTY);

	p = current_proc();

	if (proc_is64bit(p)) {
		x86_saved_state64_t *regs;

		regs = saved_state64(find_user_regs(thread));

		code = uthread->syscall_code;
		callp = (code >= NUM_SYSENT) ? &sysent[63] : &sysent[code];

#if CONFIG_DTRACE
		if (callp->sy_call == dtrace_systrace_syscall)
			dtrace_systrace_syscall_return( code, error, uthread->uu_rval );
#endif /* CONFIG_DTRACE */
		AUDIT_SYSCALL_EXIT(code, p, uthread, error);

		if (error == ERESTART) {
			/*
			 * repeat the syscall
			 */
			pal_syscall_restart( thread, find_user_regs(thread) );
		}
		else if (error != EJUSTRETURN) {
			if (error) {
				regs->rax = error;
				regs->isf.rflags |= EFL_CF;	/* carry bit */
			} else { /* (not error) */

				switch (callp->sy_return_type) {
				case _SYSCALL_RET_INT_T:
					regs->rax = uthread->uu_rval[0];
					regs->rdx = uthread->uu_rval[1];
					break;
				case _SYSCALL_RET_UINT_T:
					regs->rax = ((u_int)uthread->uu_rval[0]);
					regs->rdx = ((u_int)uthread->uu_rval[1]);
					break;
				case _SYSCALL_RET_OFF_T:
				case _SYSCALL_RET_ADDR_T:
				case _SYSCALL_RET_SIZE_T:
				case _SYSCALL_RET_SSIZE_T:
				case _SYSCALL_RET_UINT64_T:
					regs->rax = *((uint64_t *)(&uthread->uu_rval[0]));
					regs->rdx = 0;
					break;
				case _SYSCALL_RET_NONE:
					break;
				default:
					panic("unix_syscall: unknown return type");
					break;
				}
				regs->isf.rflags &= ~EFL_CF;
			} 
		}
		DEBUG_KPRINT_SYSCALL_UNIX(
			"unix_syscall_return: error=%d retval=(%llu,%llu)\n",
			error, regs->rax, regs->rdx);
	} else {
		x86_saved_state32_t	*regs;

		regs = saved_state32(find_user_regs(thread));

		regs->efl &= ~(EFL_CF);

		code = uthread->syscall_code;
		callp = (code >= NUM_SYSENT) ? &sysent[63] : &sysent[code];

#if CONFIG_DTRACE
		if (callp->sy_call == dtrace_systrace_syscall)
			dtrace_systrace_syscall_return( code, error, uthread->uu_rval );
#endif /* CONFIG_DTRACE */
		AUDIT_SYSCALL_EXIT(code, p, uthread, error);

		if (error == ERESTART) {
			pal_syscall_restart( thread, find_user_regs(thread) );
		}
		else if (error != EJUSTRETURN) {
			if (error) {
				regs->eax = error;
				regs->efl |= EFL_CF;	/* carry bit */
			} else { /* (not error) */
				regs->eax = uthread->uu_rval[0];
				regs->edx = uthread->uu_rval[1];
			} 
		}
		DEBUG_KPRINT_SYSCALL_UNIX(
			"unix_syscall_return: error=%d retval=(%u,%u)\n",
			error, regs->eax, regs->edx);
	}


	uthread->uu_flag &= ~UT_NOTCANCELPT;

	if (uthread->uu_lowpri_window) {
	        /*
		 * task is marked as a low priority I/O type
		 * and the I/O we issued while in this system call
		 * collided with normal I/O operations... we'll
		 * delay in order to mitigate the impact of this
		 * task on the normal operation of the system
		 */
		throttle_lowpri_io(1);
	}
	if (code != 180)
		KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, 
			BSDDBG_CODE(DBG_BSD_EXCP_SC, code) | DBG_FUNC_END,
			error, uthread->uu_rval[0], uthread->uu_rval[1], p->p_pid, 0);

	thread_exception_return();
	/* NOTREACHED */
}
Exemple #9
0
void
unix_syscall64(x86_saved_state_t *state)
{
	thread_t	thread;
	void			*vt;
	unsigned int	code;
	struct sysent	*callp;
	int		args_in_regs;
	boolean_t	args_start_at_rdi;
	int		error;
	struct proc	*p;
	struct uthread	*uthread;
	x86_saved_state64_t *regs;

	assert(is_saved_state64(state));
	regs = saved_state64(state);
#if	DEBUG
	if (regs->rax == 0x2000800)
		thread_exception_return();
#endif
	thread = current_thread();
	uthread = get_bsdthread_info(thread);

	/* Get the approriate proc; may be different from task's for vfork() */
	if (__probable(!(uthread->uu_flag & UT_VFORK)))
		p = (struct proc *)get_bsdtask_info(current_task());
	else 
		p = current_proc();

	/* Verify that we are not being called from a task without a proc */
	if (__improbable(p == NULL)) {
		regs->rax = EPERM;
		regs->isf.rflags |= EFL_CF;
		task_terminate_internal(current_task());
		thread_exception_return();
		/* NOTREACHED */
	}

	code = regs->rax & SYSCALL_NUMBER_MASK;
	DEBUG_KPRINT_SYSCALL_UNIX(
		"unix_syscall64: code=%d(%s) rip=%llx\n",
		code, syscallnames[code >= NUM_SYSENT ? 63 : code], regs->isf.rip);
	callp = (code >= NUM_SYSENT) ? &sysent[63] : &sysent[code];

	vt = (void *)uthread->uu_arg;

	if (__improbable(callp == sysent)) {
	        /*
		 * indirect system call... system call number
		 * passed as 'arg0'
		 */
		code = regs->rdi;
		callp = (code >= NUM_SYSENT) ? &sysent[63] : &sysent[code];
		args_start_at_rdi = FALSE;
		args_in_regs = 5;
	} else {
		args_start_at_rdi = TRUE;
		args_in_regs = 6;
	}

	if (callp->sy_narg != 0) {
		assert(callp->sy_narg <= 8); /* size of uu_arg */

		args_in_regs = MIN(args_in_regs, callp->sy_narg);
		memcpy(vt, args_start_at_rdi ? &regs->rdi : &regs->rsi, args_in_regs * sizeof(syscall_arg_t));


		if (code != 180) {
			uint64_t *ip = (uint64_t *)vt;

			KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, 
				BSDDBG_CODE(DBG_BSD_EXCP_SC, code) | DBG_FUNC_START,
				(int)(*ip), (int)(*(ip+1)), (int)(*(ip+2)), (int)(*(ip+3)), 0);
		}

		if (__improbable(callp->sy_narg > args_in_regs)) {
			int copyin_count;

			copyin_count = (callp->sy_narg - args_in_regs) * sizeof(syscall_arg_t);

			error = copyin((user_addr_t)(regs->isf.rsp + sizeof(user_addr_t)), (char *)&uthread->uu_arg[args_in_regs], copyin_count);
			if (error) {
				regs->rax = error;
				regs->isf.rflags |= EFL_CF;
				thread_exception_return();
				/* NOTREACHED */
			}
		}
	} else
		KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
			BSDDBG_CODE(DBG_BSD_EXCP_SC, code) | DBG_FUNC_START,
			0, 0, 0, 0, 0);

	/*
	 * Delayed binding of thread credential to process credential, if we
	 * are not running with an explicitly set thread credential.
	 */
	kauth_cred_uthread_update(uthread, p);

	uthread->uu_rval[0] = 0;
	uthread->uu_rval[1] = 0;
	uthread->uu_flag |= UT_NOTCANCELPT;
	uthread->syscall_code = code;

#ifdef JOE_DEBUG
        uthread->uu_iocount = 0;
        uthread->uu_vpindex = 0;
#endif

	AUDIT_SYSCALL_ENTER(code, p, uthread);
	error = (*(callp->sy_call))((void *) p, vt, &(uthread->uu_rval[0]));
	AUDIT_SYSCALL_EXIT(code, p, uthread, error);

#ifdef JOE_DEBUG
        if (uthread->uu_iocount)
               printf("system call returned with uu_iocount != 0\n");
#endif

#if CONFIG_DTRACE
	uthread->t_dtrace_errno = error;
#endif /* CONFIG_DTRACE */
	
	if (__improbable(error == ERESTART)) {
		/*
		 * all system calls come through via the syscall instruction
		 * in 64 bit mode... its 2 bytes in length
		 * move the user's pc back to repeat the syscall:
		 */
		pal_syscall_restart( thread, state );
	}
	else if (error != EJUSTRETURN) {
		if (__improbable(error)) {
			regs->rax = error;
			regs->isf.rflags |= EFL_CF;	/* carry bit */
		} else { /* (not error) */

			switch (callp->sy_return_type) {
			case _SYSCALL_RET_INT_T:
				regs->rax = uthread->uu_rval[0];
				regs->rdx = uthread->uu_rval[1];
				break;
			case _SYSCALL_RET_UINT_T:
				regs->rax = ((u_int)uthread->uu_rval[0]);
				regs->rdx = ((u_int)uthread->uu_rval[1]);
				break;
			case _SYSCALL_RET_OFF_T:
			case _SYSCALL_RET_ADDR_T:
			case _SYSCALL_RET_SIZE_T:
			case _SYSCALL_RET_SSIZE_T:
			case _SYSCALL_RET_UINT64_T:
			        regs->rax = *((uint64_t *)(&uthread->uu_rval[0]));
				regs->rdx = 0;
				break;
			case _SYSCALL_RET_NONE:
				break;
			default:
				panic("unix_syscall: unknown return type");
				break;
			}
			regs->isf.rflags &= ~EFL_CF;
		} 
	}

	DEBUG_KPRINT_SYSCALL_UNIX(
		"unix_syscall64: error=%d retval=(%llu,%llu)\n",
		error, regs->rax, regs->rdx);
	
	uthread->uu_flag &= ~UT_NOTCANCELPT;

	if (__improbable(uthread->uu_lowpri_window)) {
	        /*
		 * task is marked as a low priority I/O type
		 * and the I/O we issued while in this system call
		 * collided with normal I/O operations... we'll
		 * delay in order to mitigate the impact of this
		 * task on the normal operation of the system
		 */
		throttle_lowpri_io(1);
	}
	if (__probable(code != 180))
		KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, 
			BSDDBG_CODE(DBG_BSD_EXCP_SC, code) | DBG_FUNC_END,
			error, uthread->uu_rval[0], uthread->uu_rval[1], p->p_pid, 0);

	thread_exception_return();
	/* NOTREACHED */
}
Exemple #10
0
void
mach_call_munger64(x86_saved_state_t *state)
{
	int call_number;
	int argc;
	mach_call_t mach_call;
	struct mach_call_args args = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
	x86_saved_state64_t	*regs;

#if PROC_REF_DEBUG
	struct uthread *ut = get_bsdthread_info(current_thread());

	uthread_reset_proc_refcount(ut);
#endif

	assert(is_saved_state64(state));
	regs = saved_state64(state);

	call_number = (int)(regs->rax & SYSCALL_NUMBER_MASK);

	DEBUG_KPRINT_SYSCALL_MACH(
		"mach_call_munger64: code=%d(%s)\n",
		call_number, mach_syscall_name_table[call_number]);

	KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, 
		MACHDBG_CODE(DBG_MACH_EXCP_SC,(call_number)) | DBG_FUNC_START,
		regs->rdi, regs->rsi, regs->rdx, regs->r10, 0);
	
	if (call_number < 0 || call_number >= mach_trap_count) {
	        i386_exception(EXC_SYSCALL, regs->rax, 1);
		/* NOTREACHED */
	}
	mach_call = (mach_call_t)mach_trap_table[call_number].mach_trap_function;

	if (mach_call == (mach_call_t)kern_invalid) {
	        i386_exception(EXC_SYSCALL, regs->rax, 1);
		/* NOTREACHED */
	}
	argc = mach_trap_table[call_number].mach_trap_arg_count;
	if (argc) {
		int args_in_regs = MIN(6, argc);

		memcpy(&args.arg1, &regs->rdi, args_in_regs * sizeof(syscall_arg_t));

		if (argc > 6) {
	        int copyin_count;

			assert(argc <= 9);
			copyin_count = (argc - 6) * (int)sizeof(syscall_arg_t);

	        if (copyin((user_addr_t)(regs->isf.rsp + sizeof(user_addr_t)), (char *)&args.arg7, copyin_count)) {
		        regs->rax = KERN_INVALID_ARGUMENT;
			
				thread_exception_return();
				/* NOTREACHED */
			}
		}
	}

#ifdef MACH_BSD
	mach_kauth_cred_uthread_update();
#endif

	regs->rax = (uint64_t)mach_call((void *)&args);
	
	DEBUG_KPRINT_SYSCALL_MACH( "mach_call_munger64: retval=0x%llx\n", regs->rax);

	KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, 
		MACHDBG_CODE(DBG_MACH_EXCP_SC,(call_number)) | DBG_FUNC_END, 
		regs->rax, 0, 0, 0, 0);

	throttle_lowpri_io(1);

#if PROC_REF_DEBUG
	if (__improbable(uthread_get_proc_refcount(ut) != 0)) {
		panic("system call returned with uu_proc_refcount != 0");
	}
#endif

	thread_exception_return();
	/* NOTREACHED */
}
Exemple #11
0
void
mach_call_munger(x86_saved_state_t *state)
{
	int argc;
	int call_number;
	mach_call_t mach_call;
	kern_return_t retval;
	struct mach_call_args args = { 0, 0, 0, 0, 0, 0, 0, 0, 0 };
	x86_saved_state32_t	*regs;

#if PROC_REF_DEBUG
	struct uthread *ut = get_bsdthread_info(current_thread());

	uthread_reset_proc_refcount(ut);
#endif

	assert(is_saved_state32(state));
	regs = saved_state32(state);

	call_number = -(regs->eax);

	DEBUG_KPRINT_SYSCALL_MACH(
		"mach_call_munger: code=%d(%s)\n",
		call_number, mach_syscall_name_table[call_number]);
#if DEBUG_TRACE
	kprintf("mach_call_munger(0x%08x) code=%d\n", regs, call_number);
#endif

	if (call_number < 0 || call_number >= mach_trap_count) {
		i386_exception(EXC_SYSCALL, call_number, 1);
		/* NOTREACHED */
	}
	mach_call = (mach_call_t)mach_trap_table[call_number].mach_trap_function;

	if (mach_call == (mach_call_t)kern_invalid) {
		DEBUG_KPRINT_SYSCALL_MACH(
			"mach_call_munger: kern_invalid 0x%x\n", regs->eax);
		i386_exception(EXC_SYSCALL, call_number, 1);
		/* NOTREACHED */
	}

	argc = mach_trap_table[call_number].mach_trap_arg_count;
	if (argc) {
		retval = mach_call_arg_munger32(regs->uesp, &args,  &mach_trap_table[call_number]);
		if (retval != KERN_SUCCESS) {
			regs->eax = retval;

			DEBUG_KPRINT_SYSCALL_MACH(
				"mach_call_munger: retval=0x%x\n", retval);

			thread_exception_return();
			/* NOTREACHED */
		}
	}

#ifdef MACH_BSD
	mach_kauth_cred_uthread_update();
#endif

	KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
		MACHDBG_CODE(DBG_MACH_EXCP_SC, (call_number)) | DBG_FUNC_START,
		args.arg1, args.arg2, args.arg3, args.arg4, 0);

	retval = mach_call(&args);

	DEBUG_KPRINT_SYSCALL_MACH("mach_call_munger: retval=0x%x\n", retval);

	KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
		MACHDBG_CODE(DBG_MACH_EXCP_SC,(call_number)) | DBG_FUNC_END,
		retval, 0, 0, 0, 0);

	regs->eax = retval;

	throttle_lowpri_io(1);

#if PROC_REF_DEBUG
	if (__improbable(uthread_get_proc_refcount(ut) != 0)) {
		panic("system call returned with uu_proc_refcount != 0");
	}
#endif

	thread_exception_return();
	/* NOTREACHED */
}
Exemple #12
0
uint64_t
timer_queue_expire(
	mpqueue_head_t		*queue,
	uint64_t		deadline)
{
	timer_call_t	call;

	DBG("timer_queue_expire(%p,)\n", queue);

	timer_call_lock_spin(queue);

	while (!queue_empty(&queue->head)) {
		call = TIMER_CALL(queue_first(&queue->head));

		if (call->soft_deadline <= deadline) {
			timer_call_func_t		func;
			timer_call_param_t		param0, param1;

			if (!simple_lock_try(&call->lock)) {
				/* case (2b) lock inversion, dequeue and skip */
				timer_queue_expire_lock_skips++;
				(void) remque(qe(call));
				call->async_dequeue = TRUE;
				continue;
			}

			timer_call_entry_dequeue(call);

			func = CE(call)->func;
			param0 = CE(call)->param0;
			param1 = CE(call)->param1;

			simple_unlock(&call->lock);
			timer_call_unlock(queue);

			KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, 
				DECR_TIMER_CALLOUT | DBG_FUNC_START,
				VM_KERNEL_UNSLIDE(func), param0, param1, 0, 0);

#if CONFIG_DTRACE && (DEVELOPMENT || DEBUG )
			DTRACE_TMR3(callout__start, timer_call_func_t, func, 
										timer_call_param_t, param0, 
										timer_call_param_t, param1);
#endif

			(*func)(param0, param1);

#if CONFIG_DTRACE && (DEVELOPMENT || DEBUG )
			DTRACE_TMR3(callout__end, timer_call_func_t, func, 
										timer_call_param_t, param0, 
										timer_call_param_t, param1);
#endif

			KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, 
				DECR_TIMER_CALLOUT | DBG_FUNC_END,
				VM_KERNEL_UNSLIDE(func), param0, param1, 0, 0);

			timer_call_lock_spin(queue);
		}
		else
			break;
	}

	if (!queue_empty(&queue->head))
		deadline = CE(call)->deadline;
	else
		deadline = UINT64_MAX;

	timer_call_unlock(queue);

	return (deadline);
}