Exemple #1
0
/* llmoduleprovider -> ExecutionEngine.t */
CAMLprim LLVMExecutionEngineRef
llvm_ee_create_fast_jit(LLVMModuleProviderRef MP) {
  LLVMExecutionEngineRef JIT;
  char *Error;
  if (LLVMCreateJITCompiler(&JIT, MP, 1, &Error))
    llvm_raise(llvm_ee_error_exn, Error);
  return JIT;
}
SWIGEXPORT jint JNICALL Java_org_jllvm_bindings_ExecutionEngineJNI_LLVMCreateJITCompiler(JNIEnv *jenv, jclass jcls, jlong jarg1, jlong jarg2, jlong jarg3, jlong jarg4) {
  jint jresult = 0 ;
  LLVMExecutionEngineRef *arg1 = (LLVMExecutionEngineRef *) 0 ;
  LLVMModuleProviderRef arg2 = (LLVMModuleProviderRef) 0 ;
  unsigned int arg3 ;
  char **arg4 = (char **) 0 ;
  LLVMBool result;
  
  (void)jenv;
  (void)jcls;
  arg1 = *(LLVMExecutionEngineRef **)&jarg1; 
  arg2 = *(LLVMModuleProviderRef *)&jarg2; 
  arg3 = (unsigned int)jarg3; 
  arg4 = *(char ***)&jarg4; 
  result = (LLVMBool)LLVMCreateJITCompiler(arg1,arg2,arg3,arg4);
  jresult = (jint)result; 
  return jresult;
}
Exemple #3
0
int LLVM_execute(LLVMCompiledProgram program)
{
  LLVMModuleRef module = program.module;
  LLVMValueRef function = program.function;

  char *error = NULL; // Used to retrieve messages from functions

  LLVMExecutionEngineRef engine;
  LLVMModuleProviderRef provider = LLVMCreateModuleProviderForExistingModule(module);
  error = NULL;
  if(LLVMCreateJITCompiler(&engine, provider, 2, &error) != 0) {
    fprintf(stderr, "%s\n", error);
    LLVMDisposeMessage(error);
    abort();
  }

  LLVMPassManagerRef pass = LLVMCreatePassManager();
  LLVMAddTargetData(LLVMGetExecutionEngineTargetData(engine), pass);
  LLVMAddConstantPropagationPass(pass);
  LLVMAddInstructionCombiningPass(pass);
  LLVMAddPromoteMemoryToRegisterPass(pass);
  LLVMAddGVNPass(pass);
  LLVMAddCFGSimplificationPass(pass);
  LLVMRunPassManager(pass, module);
#ifdef NDEBUG
#else
  LLVMDumpModule(module);
#endif

  LLVMGenericValueRef exec_args[] = {};
  LLVMGenericValueRef exec_res = LLVMRunFunction(engine, function, 0, exec_args);

  int result = LLVMGenericValueToInt(exec_res, 0);

  LLVMDisposePassManager(pass);
  LLVMDisposeExecutionEngine(engine);

  return result;
}
Exemple #4
0
/**
 * Allocate gallivm LLVM objects.
 * \return  TRUE for success, FALSE for failure
 */
static boolean
init_gallivm_state(struct gallivm_state *gallivm)
{
   assert(!gallivm->context);
   assert(!gallivm->module);
   assert(!gallivm->provider);

   lp_build_init();

   gallivm->context = LLVMContextCreate();
   if (!gallivm->context)
      goto fail;

   gallivm->module = LLVMModuleCreateWithNameInContext("gallivm",
                                                       gallivm->context);
   if (!gallivm->module)
      goto fail;

   gallivm->provider =
      LLVMCreateModuleProviderForExistingModule(gallivm->module);
   if (!gallivm->provider)
      goto fail;

   if (!GlobalEngine) {
      /* We can only create one LLVMExecutionEngine (w/ LLVM 2.6 anyway) */
      enum LLVM_CodeGenOpt_Level optlevel;
      char *error = NULL;

      if (gallivm_debug & GALLIVM_DEBUG_NO_OPT) {
         optlevel = None;
      }
      else {
         optlevel = Default;
      }

      if (LLVMCreateJITCompiler(&GlobalEngine, gallivm->provider,
                                (unsigned) optlevel, &error)) {
         _debug_printf("%s\n", error);
         LLVMDisposeMessage(error);
         goto fail;
      }

#if defined(DEBUG) || defined(PROFILE)
      lp_register_oprofile_jit_event_listener(GlobalEngine);
#endif
   }

   gallivm->engine = GlobalEngine;

   LLVMAddModuleProvider(gallivm->engine, gallivm->provider);//new

   gallivm->target = LLVMGetExecutionEngineTargetData(gallivm->engine);
   if (!gallivm->target)
      goto fail;

   if (!create_pass_manager(gallivm))
      goto fail;

   gallivm->builder = LLVMCreateBuilderInContext(gallivm->context);
   if (!gallivm->builder)
      goto fail;

   return TRUE;

fail:
   free_gallivm_state(gallivm);
   return FALSE;
}
Exemple #5
0
ALIGN_STACK
static boolean
test_one(unsigned verbose,
         FILE *fp,
         const struct pipe_blend_state *blend,
         enum vector_mode mode,
         struct lp_type type)
{
   LLVMModuleRef module = NULL;
   LLVMValueRef func = NULL;
   LLVMExecutionEngineRef engine = NULL;
   LLVMModuleProviderRef provider = NULL;
   LLVMPassManagerRef pass = NULL;
   char *error = NULL;
   blend_test_ptr_t blend_test_ptr;
   boolean success;
   const unsigned n = LP_TEST_NUM_SAMPLES;
   int64_t cycles[LP_TEST_NUM_SAMPLES];
   double cycles_avg = 0.0;
   unsigned i, j;

   if(verbose >= 1)
      dump_blend_type(stdout, blend, mode, type);

   module = LLVMModuleCreateWithName("test");

   func = add_blend_test(module, blend, mode, type);

   if(LLVMVerifyModule(module, LLVMPrintMessageAction, &error)) {
      LLVMDumpModule(module);
      abort();
   }
   LLVMDisposeMessage(error);

   provider = LLVMCreateModuleProviderForExistingModule(module);
   if (LLVMCreateJITCompiler(&engine, provider, 1, &error)) {
      if(verbose < 1)
         dump_blend_type(stderr, blend, mode, type);
      fprintf(stderr, "%s\n", error);
      LLVMDisposeMessage(error);
      abort();
   }

#if 0
   pass = LLVMCreatePassManager();
   LLVMAddTargetData(LLVMGetExecutionEngineTargetData(engine), pass);
   /* These are the passes currently listed in llvm-c/Transforms/Scalar.h,
    * but there are more on SVN. */
   LLVMAddConstantPropagationPass(pass);
   LLVMAddInstructionCombiningPass(pass);
   LLVMAddPromoteMemoryToRegisterPass(pass);
   LLVMAddGVNPass(pass);
   LLVMAddCFGSimplificationPass(pass);
   LLVMRunPassManager(pass, module);
#else
   (void)pass;
#endif

   if(verbose >= 2)
      LLVMDumpModule(module);

   blend_test_ptr = (blend_test_ptr_t)LLVMGetPointerToGlobal(engine, func);

   if(verbose >= 2)
      lp_disassemble(blend_test_ptr);

   success = TRUE;
   for(i = 0; i < n && success; ++i) {
      if(mode == AoS) {
         ALIGN16_ATTRIB uint8_t src[LP_NATIVE_VECTOR_WIDTH/8];
         ALIGN16_ATTRIB uint8_t dst[LP_NATIVE_VECTOR_WIDTH/8];
         ALIGN16_ATTRIB uint8_t con[LP_NATIVE_VECTOR_WIDTH/8];
         ALIGN16_ATTRIB uint8_t res[LP_NATIVE_VECTOR_WIDTH/8];
         ALIGN16_ATTRIB uint8_t ref[LP_NATIVE_VECTOR_WIDTH/8];
         int64_t start_counter = 0;
         int64_t end_counter = 0;

         random_vec(type, src);
         random_vec(type, dst);
         random_vec(type, con);

         {
            double fsrc[LP_MAX_VECTOR_LENGTH];
            double fdst[LP_MAX_VECTOR_LENGTH];
            double fcon[LP_MAX_VECTOR_LENGTH];
            double fref[LP_MAX_VECTOR_LENGTH];

            read_vec(type, src, fsrc);
            read_vec(type, dst, fdst);
            read_vec(type, con, fcon);

            for(j = 0; j < type.length; j += 4)
               compute_blend_ref(blend, fsrc + j, fdst + j, fcon + j, fref + j);

            write_vec(type, ref, fref);
         }

         start_counter = rdtsc();
         blend_test_ptr(src, dst, con, res);
         end_counter = rdtsc();

         cycles[i] = end_counter - start_counter;

         if(!compare_vec(type, res, ref)) {
            success = FALSE;

            if(verbose < 1)
               dump_blend_type(stderr, blend, mode, type);
            fprintf(stderr, "MISMATCH\n");

            fprintf(stderr, "  Src: ");
            dump_vec(stderr, type, src);
            fprintf(stderr, "\n");

            fprintf(stderr, "  Dst: ");
            dump_vec(stderr, type, dst);
            fprintf(stderr, "\n");

            fprintf(stderr, "  Con: ");
            dump_vec(stderr, type, con);
            fprintf(stderr, "\n");

            fprintf(stderr, "  Res: ");
            dump_vec(stderr, type, res);
            fprintf(stderr, "\n");

            fprintf(stderr, "  Ref: ");
            dump_vec(stderr, type, ref);
            fprintf(stderr, "\n");
         }
      }

      if(mode == SoA) {
         const unsigned stride = type.length*type.width/8;
         ALIGN16_ATTRIB uint8_t src[4*LP_NATIVE_VECTOR_WIDTH/8];
         ALIGN16_ATTRIB uint8_t dst[4*LP_NATIVE_VECTOR_WIDTH/8];
         ALIGN16_ATTRIB uint8_t con[4*LP_NATIVE_VECTOR_WIDTH/8];
         ALIGN16_ATTRIB uint8_t res[4*LP_NATIVE_VECTOR_WIDTH/8];
         ALIGN16_ATTRIB uint8_t ref[4*LP_NATIVE_VECTOR_WIDTH/8];
         int64_t start_counter = 0;
         int64_t end_counter = 0;
         boolean mismatch;

         for(j = 0; j < 4; ++j) {
            random_vec(type, src + j*stride);
            random_vec(type, dst + j*stride);
            random_vec(type, con + j*stride);
         }

         {
            double fsrc[4];
            double fdst[4];
            double fcon[4];
            double fref[4];
            unsigned k;

            for(k = 0; k < type.length; ++k) {
               for(j = 0; j < 4; ++j) {
                  fsrc[j] = read_elem(type, src + j*stride, k);
                  fdst[j] = read_elem(type, dst + j*stride, k);
                  fcon[j] = read_elem(type, con + j*stride, k);
               }

               compute_blend_ref(blend, fsrc, fdst, fcon, fref);

               for(j = 0; j < 4; ++j)
                  write_elem(type, ref + j*stride, k, fref[j]);
            }
         }

         start_counter = rdtsc();
         blend_test_ptr(src, dst, con, res);
         end_counter = rdtsc();

         cycles[i] = end_counter - start_counter;

         mismatch = FALSE;
         for (j = 0; j < 4; ++j)
            if(!compare_vec(type, res + j*stride, ref + j*stride))
               mismatch = TRUE;

         if (mismatch) {
            success = FALSE;

            if(verbose < 1)
               dump_blend_type(stderr, blend, mode, type);
            fprintf(stderr, "MISMATCH\n");
            for(j = 0; j < 4; ++j) {
               char channel = "RGBA"[j];
               fprintf(stderr, "  Src%c: ", channel);
               dump_vec(stderr, type, src + j*stride);
               fprintf(stderr, "\n");

               fprintf(stderr, "  Dst%c: ", channel);
               dump_vec(stderr, type, dst + j*stride);
               fprintf(stderr, "\n");

               fprintf(stderr, "  Con%c: ", channel);
               dump_vec(stderr, type, con + j*stride);
               fprintf(stderr, "\n");

               fprintf(stderr, "  Res%c: ", channel);
               dump_vec(stderr, type, res + j*stride);
               fprintf(stderr, "\n");

               fprintf(stderr, "  Ref%c: ", channel);
               dump_vec(stderr, type, ref + j*stride);
               fprintf(stderr, "\n");
            }
         }
      }
   }

   /*
    * Unfortunately the output of cycle counter is not very reliable as it comes
    * -- sometimes we get outliers (due IRQs perhaps?) which are
    * better removed to avoid random or biased data.
    */
   {
      double sum = 0.0, sum2 = 0.0;
      double avg, std;
      unsigned m;

      for(i = 0; i < n; ++i) {
         sum += cycles[i];
         sum2 += cycles[i]*cycles[i];
      }

      avg = sum/n;
      std = sqrtf((sum2 - n*avg*avg)/n);

      m = 0;
      sum = 0.0;
      for(i = 0; i < n; ++i) {
         if(fabs(cycles[i] - avg) <= 4.0*std) {
            sum += cycles[i];
            ++m;
         }
      }

      cycles_avg = sum/m;

   }

   if(fp)
      write_tsv_row(fp, blend, mode, type, cycles_avg, success);

   if (!success) {
      if(verbose < 2)
         LLVMDumpModule(module);
      LLVMWriteBitcodeToFile(module, "blend.bc");
      fprintf(stderr, "blend.bc written\n");
      fprintf(stderr, "Invoke as \"llc -o - blend.bc\"\n");
      abort();
   }

   LLVMFreeMachineCodeForFunction(engine, func);

   LLVMDisposeExecutionEngine(engine);
   if(pass)
      LLVMDisposePassManager(pass);

   return success;
}
static boolean
init_gallivm_engine(struct gallivm_state *gallivm)
{
   if (1) {
      /* We can only create one LLVMExecutionEngine (w/ LLVM 2.6 anyway) */
      enum LLVM_CodeGenOpt_Level optlevel;
      char *error = NULL;
      int ret;

      if (gallivm_debug & GALLIVM_DEBUG_NO_OPT) {
         optlevel = None;
      }
      else {
         optlevel = Default;
      }

#if USE_MCJIT
      ret = lp_build_create_mcjit_compiler_for_module(&gallivm->engine,
                                                      gallivm->module,
                                                      (unsigned) optlevel,
                                                      &error);
#else
      ret = LLVMCreateJITCompiler(&gallivm->engine, gallivm->provider,
                                  (unsigned) optlevel, &error);
#endif
      if (ret) {
         _debug_printf("%s\n", error);
         LLVMDisposeMessage(error);
         goto fail;
      }

#if defined(DEBUG) || defined(PROFILE)
      lp_register_oprofile_jit_event_listener(gallivm->engine);
#endif
   }

   LLVMAddModuleProvider(gallivm->engine, gallivm->provider);//new

#if !USE_MCJIT
   gallivm->target = LLVMGetExecutionEngineTargetData(gallivm->engine);
   if (!gallivm->target)
      goto fail;
#else
   if (0) {
       /*
        * Dump the data layout strings.
        */

       LLVMTargetDataRef target = LLVMGetExecutionEngineTargetData(gallivm->engine);
       char *data_layout;
       char *engine_data_layout;

       data_layout = LLVMCopyStringRepOfTargetData(gallivm->target);
       engine_data_layout = LLVMCopyStringRepOfTargetData(target);

       if (1) {
          debug_printf("module target data = %s\n", data_layout);
          debug_printf("engine target data = %s\n", engine_data_layout);
       }

       free(data_layout);
       free(engine_data_layout);
   }
#endif

   return TRUE;

fail:
   return FALSE;
}
void
lp_build_init(void)
{
#ifdef DEBUG
   gallivm_debug = debug_get_option_gallivm_debug();
#endif

   lp_set_target_options();

   LLVMInitializeNativeTarget();

   LLVMLinkInJIT();

   if (!lp_build_module)
      lp_build_module = LLVMModuleCreateWithName("gallivm");

   if (!lp_build_provider)
      lp_build_provider = LLVMCreateModuleProviderForExistingModule(lp_build_module);

   if (!lp_build_engine) {
      enum LLVM_CodeGenOpt_Level optlevel;
      char *error = NULL;

      if (gallivm_debug & GALLIVM_DEBUG_NO_OPT) {
         optlevel = None;
      }
      else {
         optlevel = Default;
      }

      if (LLVMCreateJITCompiler(&lp_build_engine, lp_build_provider,
                                (unsigned)optlevel, &error)) {
         _debug_printf("%s\n", error);
         LLVMDisposeMessage(error);
         assert(0);
      }

#if defined(DEBUG) || defined(PROFILE)
      lp_register_oprofile_jit_event_listener(lp_build_engine);
#endif
   }

   if (!lp_build_target)
      lp_build_target = LLVMGetExecutionEngineTargetData(lp_build_engine);

   if (!lp_build_pass) {
      lp_build_pass = LLVMCreateFunctionPassManager(lp_build_provider);
      LLVMAddTargetData(lp_build_target, lp_build_pass);

      if ((gallivm_debug & GALLIVM_DEBUG_NO_OPT) == 0) {
         /* These are the passes currently listed in llvm-c/Transforms/Scalar.h,
          * but there are more on SVN. */
         /* TODO: Add more passes */
         LLVMAddCFGSimplificationPass(lp_build_pass);
         LLVMAddPromoteMemoryToRegisterPass(lp_build_pass);
         LLVMAddConstantPropagationPass(lp_build_pass);
         if(util_cpu_caps.has_sse4_1) {
            /* FIXME: There is a bug in this pass, whereby the combination of fptosi
             * and sitofp (necessary for trunc/floor/ceil/round implementation)
             * somehow becomes invalid code.
             */
            LLVMAddInstructionCombiningPass(lp_build_pass);
         }
         LLVMAddGVNPass(lp_build_pass);
      } else {
         /* We need at least this pass to prevent the backends to fail in
          * unexpected ways.
          */
         LLVMAddPromoteMemoryToRegisterPass(lp_build_pass);
      }
   }

   util_cpu_detect();

#if 0
   /* For simulating less capable machines */
   util_cpu_caps.has_sse3 = 0;
   util_cpu_caps.has_ssse3 = 0;
   util_cpu_caps.has_sse4_1 = 0;
#endif
}
Exemple #8
0
PIPE_ALIGN_STACK
static boolean
test_one(unsigned verbose,
         FILE *fp,
         struct lp_type src_type,
         struct lp_type dst_type)
{
   LLVMModuleRef module = NULL;
   LLVMValueRef func = NULL;
   LLVMExecutionEngineRef engine = NULL;
   LLVMModuleProviderRef provider = NULL;
   LLVMPassManagerRef pass = NULL;
   char *error = NULL;
   conv_test_ptr_t conv_test_ptr;
   boolean success;
   const unsigned n = LP_TEST_NUM_SAMPLES;
   int64_t cycles[LP_TEST_NUM_SAMPLES];
   double cycles_avg = 0.0;
   unsigned num_srcs;
   unsigned num_dsts;
   double eps;
   unsigned i, j;

   if(verbose >= 1)
      dump_conv_types(stdout, src_type, dst_type);

   if(src_type.length > dst_type.length) {
      num_srcs = 1;
      num_dsts = src_type.length/dst_type.length;
   }
   else  {
      num_dsts = 1;
      num_srcs = dst_type.length/src_type.length;
   }

   assert(src_type.width * src_type.length == dst_type.width * dst_type.length);

   /* We must not loose or gain channels. Only precision */
   assert(src_type.length * num_srcs == dst_type.length * num_dsts);

   eps = MAX2(lp_const_eps(src_type), lp_const_eps(dst_type));

   module = LLVMModuleCreateWithName("test");

   func = add_conv_test(module, src_type, num_srcs, dst_type, num_dsts);

   if(LLVMVerifyModule(module, LLVMPrintMessageAction, &error)) {
      LLVMDumpModule(module);
      abort();
   }
   LLVMDisposeMessage(error);

   provider = LLVMCreateModuleProviderForExistingModule(module);
   if (LLVMCreateJITCompiler(&engine, provider, 1, &error)) {
      if(verbose < 1)
         dump_conv_types(stderr, src_type, dst_type);
      fprintf(stderr, "%s\n", error);
      LLVMDisposeMessage(error);
      abort();
   }

#if 0
   pass = LLVMCreatePassManager();
   LLVMAddTargetData(LLVMGetExecutionEngineTargetData(engine), pass);
   /* These are the passes currently listed in llvm-c/Transforms/Scalar.h,
    * but there are more on SVN. */
   LLVMAddConstantPropagationPass(pass);
   LLVMAddInstructionCombiningPass(pass);
   LLVMAddPromoteMemoryToRegisterPass(pass);
   LLVMAddGVNPass(pass);
   LLVMAddCFGSimplificationPass(pass);
   LLVMRunPassManager(pass, module);
#else
   (void)pass;
#endif

   if(verbose >= 2)
      LLVMDumpModule(module);

   conv_test_ptr = (conv_test_ptr_t)LLVMGetPointerToGlobal(engine, func);

   if(verbose >= 2)
      lp_disassemble(conv_test_ptr);

   success = TRUE;
   for(i = 0; i < n && success; ++i) {
      unsigned src_stride = src_type.length*src_type.width/8;
      unsigned dst_stride = dst_type.length*dst_type.width/8;
      PIPE_ALIGN_VAR(16) uint8_t src[LP_MAX_VECTOR_LENGTH*LP_MAX_VECTOR_LENGTH];
      PIPE_ALIGN_VAR(16) uint8_t dst[LP_MAX_VECTOR_LENGTH*LP_MAX_VECTOR_LENGTH];
      double fref[LP_MAX_VECTOR_LENGTH*LP_MAX_VECTOR_LENGTH];
      uint8_t ref[LP_MAX_VECTOR_LENGTH*LP_MAX_VECTOR_LENGTH];
      int64_t start_counter = 0;
      int64_t end_counter = 0;

      for(j = 0; j < num_srcs; ++j) {
         random_vec(src_type, src + j*src_stride);
         read_vec(src_type, src + j*src_stride, fref + j*src_type.length);
      }

      for(j = 0; j < num_dsts; ++j) {
         write_vec(dst_type, ref + j*dst_stride, fref + j*dst_type.length);
      }

      start_counter = rdtsc();
      conv_test_ptr(src, dst);
      end_counter = rdtsc();

      cycles[i] = end_counter - start_counter;

      for(j = 0; j < num_dsts; ++j) {
         if(!compare_vec_with_eps(dst_type, dst + j*dst_stride, ref + j*dst_stride, eps))
            success = FALSE;
      }

      if (!success) {
         if(verbose < 1)
            dump_conv_types(stderr, src_type, dst_type);
         fprintf(stderr, "MISMATCH\n");

         for(j = 0; j < num_srcs; ++j) {
            fprintf(stderr, "  Src%u: ", j);
            dump_vec(stderr, src_type, src + j*src_stride);
            fprintf(stderr, "\n");
         }

#if 1
         fprintf(stderr, "  Ref: ");
         for(j = 0; j < src_type.length*num_srcs; ++j)
            fprintf(stderr, " %f", fref[j]);
         fprintf(stderr, "\n");
#endif

         for(j = 0; j < num_dsts; ++j) {
            fprintf(stderr, "  Dst%u: ", j);
            dump_vec(stderr, dst_type, dst + j*dst_stride);
            fprintf(stderr, "\n");

            fprintf(stderr, "  Ref%u: ", j);
            dump_vec(stderr, dst_type, ref + j*dst_stride);
            fprintf(stderr, "\n");
         }
      }
   }

   /*
    * Unfortunately the output of cycle counter is not very reliable as it comes
    * -- sometimes we get outliers (due IRQs perhaps?) which are
    * better removed to avoid random or biased data.
    */
   {
      double sum = 0.0, sum2 = 0.0;
      double avg, std;
      unsigned m;

      for(i = 0; i < n; ++i) {
         sum += cycles[i];
         sum2 += cycles[i]*cycles[i];
      }

      avg = sum/n;
      std = sqrtf((sum2 - n*avg*avg)/n);

      m = 0;
      sum = 0.0;
      for(i = 0; i < n; ++i) {
         if(fabs(cycles[i] - avg) <= 4.0*std) {
            sum += cycles[i];
            ++m;
         }
      }

      cycles_avg = sum/m;

   }

   if(fp)
      write_tsv_row(fp, src_type, dst_type, cycles_avg, success);

   if (!success) {
      static boolean firsttime = TRUE;
      if(firsttime) {
         if(verbose < 2)
            LLVMDumpModule(module);
         LLVMWriteBitcodeToFile(module, "conv.bc");
         fprintf(stderr, "conv.bc written\n");
         fprintf(stderr, "Invoke as \"llc -o - conv.bc\"\n");
         firsttime = FALSE;
         /* abort(); */
      }
   }

   LLVMFreeMachineCodeForFunction(engine, func);

   LLVMDisposeExecutionEngine(engine);
   if(pass)
      LLVMDisposePassManager(pass);

   return success;
}