int insert_regions(region_t **regions, int num_regions, region_table_t *table) { int rc; sqlite3_stmt *stmt = table->insert_region_stmt; sqlite3* db = table->storage; char *sql_begin = "BEGIN TRANSACTION"; rc = exec_sql(sql_begin, db); if (rc != SQLITE_OK) { LOG_ERROR_F("Could not insert regions: %s (%d)\n", sqlite3_errmsg(db), sqlite3_errcode(db)); return rc; } for (int i = 0; i < num_regions; i++) { region_t *region = regions[i]; sqlite3_bind_text(stmt, 1, region->chromosome, strlen(region->chromosome), SQLITE_STATIC); sqlite3_bind_int64(stmt, 2, region->start_position); sqlite3_bind_int64(stmt, 3, region->end_position); if (region->strand) { sqlite3_bind_text(stmt, 4, region->strand, strlen(region->strand), SQLITE_STATIC); } else { sqlite3_bind_null(stmt, 4); } if (region->type) { sqlite3_bind_text(stmt, 5, region->type, strlen(region->type), SQLITE_STATIC); } else { sqlite3_bind_null(stmt, 5); } if ((rc = sqlite3_step(stmt) == SQLITE_DONE)) { // Update value in chunks hashtable update_chunks_hash(region->chromosome, UINT_MAX, REGIONS_CHUNKSIZE, region->start_position, region->end_position, table->chunks); } else { LOG_ERROR_F("Could not insert region %s:%ld-%ld: %s (%d)\n", region->chromosome, region->start_position, region->end_position, sqlite3_errmsg(db), sqlite3_errcode(db)); } sqlite3_reset(stmt); } char *sql_end = "END TRANSACTION"; rc = exec_sql(sql_end, db); if (rc != SQLITE_OK) { LOG_ERROR_F("Could not insert regions: %s (%d)\n", sqlite3_errmsg(db), sqlite3_errcode(db)); return rc; } return rc; }
int remove_exact_region(region_t *region, region_table_t *table) { int rc; sqlite3_stmt *stmt1 = table->remove_exact_region_stmt, *stmt2; sqlite3* db = table->storage; char *sql_begin = "BEGIN TRANSACTION"; rc = exec_sql(sql_begin, db); if (rc != SQLITE_OK) { LOG_ERROR_F("Could not remove region: %s (%d)\n", sqlite3_errmsg(db), sqlite3_errcode(db)); return rc; } sqlite3_bind_text(stmt1, 1, region->chromosome, strlen(region->chromosome), SQLITE_STATIC); sqlite3_bind_int64(stmt1, 2, region->start_position); sqlite3_bind_int64(stmt1, 3, region->end_position); if ((rc = sqlite3_step(stmt1)) == SQLITE_DONE) { sqlite3_reset(stmt1); int chunk_start = region->start_position / REGIONS_CHUNKSIZE; int chunk_end = region->end_position / REGIONS_CHUNKSIZE; // Decrement features_count in chunk table char sql_chunks[] = "UPDATE chunk SET features_count = features_count - 1 WHERE chromosome = ?1 AND \ (chunk_id >= ?2 AND chunk_id <= ?3)"; rc = sqlite3_prepare_v2(db, sql_chunks, strlen(sql_chunks), &stmt2, NULL); if (rc != SQLITE_OK) { LOG_ERROR_F("Could not remove region %s:%ld-%ld: %s (%d)\n", region->chromosome, region->start_position, region->end_position, sqlite3_errmsg(db), sqlite3_errcode(db)); return rc; } sqlite3_bind_text(stmt2, 1, region->chromosome, strlen(region->chromosome), SQLITE_STATIC); sqlite3_bind_int64(stmt2, 2, chunk_start); sqlite3_bind_int64(stmt2, 3, chunk_end); if ((rc = sqlite3_step(stmt2)) != SQLITE_DONE) { LOG_ERROR_F("Could not remove region %s:%ld-%ld: %s (%d)\n", region->chromosome, region->start_position, region->end_position, sqlite3_errmsg(db), sqlite3_errcode(db)); return rc; } sqlite3_finalize(stmt2); } else {
inline int exec_sql(char *sql, sqlite3* db) { int rc; char *error_msg; if (rc = sqlite3_exec(db, sql, NULL, NULL, &error_msg)) { LOG_ERROR_F("Stats database failed (%s): %s\n", sql, error_msg); } return rc; }
int create_vcf_index(sqlite3 *db) { int rc; char sql[128]; char *error_msg; // create chunks index sprintf(sql, "CREATE INDEX record_query_fields_chromosome_start_end_idx ON chunk (chromosome, start, end)"); if (rc = sqlite3_exec(db, sql, NULL, NULL, &error_msg)) { LOG_ERROR_F("Stats database failed creating VCF index: %s\n", error_msg); } return rc; }
int read_stats_configuration(const char *filename, stats_options_t *options, shared_options_t *shared_options) { if (filename == NULL || options == NULL || shared_options == NULL) { return -1; } config_t *config = (config_t*) calloc (1, sizeof(config_t)); int ret_code = config_read_file(config, filename); if (ret_code == CONFIG_FALSE) { LOG_ERROR_F("config file error: %s\n", config_error_text(config)); return ret_code; } // Read number of threads that will make request to the web service ret_code = config_lookup_int(config, "vcf-tools.stats.num-threads", shared_options->num_threads->ival); if (ret_code == CONFIG_FALSE) { LOG_WARN("Number of threads not found in config file, must be set via command-line\n"); } else { LOG_DEBUG_F("num-threads = %ld\n", *(shared_options->num_threads->ival)); } // Read maximum number of batches that can be stored at certain moment ret_code = config_lookup_int(config, "vcf-tools.stats.max-batches", shared_options->max_batches->ival); if (ret_code == CONFIG_FALSE) { LOG_WARN("Maximum number of batches not found in configuration file, must be set via command-line\n"); } else { LOG_DEBUG_F("max-batches = %ld\n", *(shared_options->max_batches->ival)); } // Read size of every batch read ret_code = config_lookup_int(config, "vcf-tools.stats.batch-lines", shared_options->batch_lines->ival); ret_code |= config_lookup_int(config, "vcf-tools.stats.batch-bytes", shared_options->batch_bytes->ival); if (ret_code == CONFIG_FALSE) { LOG_WARN("Neither batch lines nor bytes found in configuration file, must be set via command-line\n"); } /*else { LOG_DEBUG_F("batch-lines = %ld\n", *(shared_options->batch_size->ival)); }*/ config_destroy(config); free(config); return 0; }
int read_tdt_configuration(const char *filename, tdt_options_t *tdt_options, shared_options_t *shared_options) { if (filename == NULL || tdt_options == NULL || shared_options == NULL) { return -1; } config_t *config = (config_t*) calloc (1, sizeof(config_t)); int ret_code = config_read_file(config, filename); if (ret_code == CONFIG_FALSE) { LOG_ERROR_F("Configuration file error: %s\n", config_error_text(config)); return CANT_READ_CONFIG_FILE; } const char *tmp_string; // Read number of threads that will make request to the web service ret_code = config_lookup_int(config, "gwas.tdt.num-threads", shared_options->num_threads->ival); if (ret_code == CONFIG_FALSE) { LOG_WARN("Number of threads not found in config file, must be set via command-line"); } else { LOG_DEBUG_F("num-threads = %ld\n", *(shared_options->num_threads->ival)); } // Read maximum number of batches that can be stored at certain moment ret_code = config_lookup_int(config, "gwas.tdt.max-batches", shared_options->max_batches->ival); if (ret_code == CONFIG_FALSE) { LOG_WARN("Maximum number of batches not found in configuration file, must be set via command-line"); } else { LOG_DEBUG_F("max-batches = %ld\n", *(shared_options->max_batches->ival)); } // Read size of a batch (in lines or bytes) ret_code = config_lookup_int(config, "gwas.tdt.batch-lines", shared_options->batch_lines->ival); ret_code |= config_lookup_int(config, "gwas.tdt.batch-bytes", shared_options->batch_bytes->ival); if (ret_code == CONFIG_FALSE) { LOG_WARN("Neither batch lines nor bytes found in configuration file, must be set via command-line"); } config_destroy(config); free(config); return 0; }
int find_region_by_type(region_t *region, region_table_t *table) { assert(region); assert(region->type); assert(table); if (!table->is_ready) { // Don't allow queries over an un-indexed DB finish_region_table_loading(table); } int count = 0; sqlite3* db = table->storage; sqlite3_stmt *query_stmt = table->find_region_type_stmt; sqlite3_bind_text(query_stmt, 1, region->chromosome, strlen(region->chromosome), SQLITE_STATIC); sqlite3_bind_int64(query_stmt, 2, region->start_position); sqlite3_bind_int64(query_stmt, 3, region->end_position); sqlite3_bind_text(query_stmt, 4, region->type, strlen(region->type), SQLITE_STATIC); if (sqlite3_step(query_stmt) == SQLITE_ROW) { count = sqlite3_column_int(query_stmt, 0); } else { // Retry once sqlite3_reset(query_stmt); sqlite3_bind_text(query_stmt, 1, region->chromosome, strlen(region->chromosome), SQLITE_STATIC); sqlite3_bind_int64(query_stmt, 2, region->start_position); sqlite3_bind_int64(query_stmt, 3, region->end_position); sqlite3_bind_text(query_stmt, 4, region->type, strlen(region->type), SQLITE_STATIC); if (sqlite3_step(query_stmt) == SQLITE_ROW) { count = sqlite3_column_int(query_stmt, 0); } else { LOG_ERROR_F("Regions table failed: %s (%d)\n", sqlite3_errmsg(db), sqlite3_errcode(db)); } } sqlite3_reset(query_stmt); return count > 0; }
int ped_ragel_read(list_t *batches_list, size_t batch_size, ped_file_t *file) { int cs; char *p = file->data; char *pe = p + file->data_len; char *eof = pe; char *ts; int custom_field_count = 0; current_batch = ped_batch_new(batch_size); #line 41 "ped_reader.c" { cs = ped_start; } #line 46 "ped_reader.c" { if ( p == pe ) goto _test_eof; switch ( cs ) { case 21: switch( (*p) ) { case 10: goto st22; case 35: goto st16; } if ( 33 <= (*p) && (*p) <= 126 ) goto tr36; goto tr0; tr0: #line 53 "ped.ragel" { LOG_ERROR_F("Line %zu (%s): Error in 'family' field\n", lines + 1, file->filename); } goto st0; tr3: #line 65 "ped.ragel" { LOG_ERROR_F("Line %zu (%s): Error in 'individual' field\n", lines + 1, file->filename); } goto st0; tr7: #line 77 "ped.ragel" { LOG_ERROR_F("Line %zu (%s): Error in 'father' field\n", lines + 1, file->filename); } goto st0; tr11: #line 89 "ped.ragel" { LOG_ERROR_F("Line %zu (%s): Error in 'mother' field\n", lines + 1, file->filename); } goto st0; tr15: #line 109 "ped.ragel" { LOG_ERROR_F("Line %zu (%s): Error in 'sex' field\n", lines + 1, file->filename); } goto st0; tr19: #line 124 "ped.ragel" { LOG_ERROR_F("Line %zu (%s): Error in 'phenotype' field\n", lines + 1, file->filename); } goto st0; tr26: #line 141 "ped.ragel" { LOG_ERROR_F("Line %zu (%s): Error in 'header' field\n", lines + 1, file->filename); } goto st0; tr44: #line 161 "ped.ragel" { LOG_ERROR_F("Line %zu (%s): Error in '%s' field\n", lines + 1, file->filename, current_record->custom_field); } goto st0; #line 108 "ped_reader.c" st0: cs = 0; goto _out; st22: if ( ++p == pe ) goto _test_eof22; case 22: if ( (*p) == 10 ) goto st22; goto st0; tr36: #line 22 "ped.ragel" { current_record = create_ped_record(); genotype = 0; } #line 45 "ped.ragel" { ts = p; } goto st1; st1: if ( ++p == pe ) goto _test_eof1; case 1: #line 134 "ped_reader.c" if ( (*p) == 9 ) goto tr1; if ( 33 <= (*p) && (*p) <= 126 ) goto st1; goto tr0; tr1: #line 49 "ped.ragel" { set_ped_record_family_id(strndup(ts, p-ts), current_record); } goto st2; st2: if ( ++p == pe ) goto _test_eof2; case 2: #line 150 "ped_reader.c" if ( (*p) == 95 ) goto tr4; if ( (*p) < 65 ) { if ( 48 <= (*p) && (*p) <= 57 ) goto tr4; } else if ( (*p) > 90 ) { if ( 97 <= (*p) && (*p) <= 122 ) goto tr4; } else goto tr4; goto tr3; tr4: #line 57 "ped.ragel" { ts = p; } goto st3; st3: if ( ++p == pe ) goto _test_eof3; case 3: #line 172 "ped_reader.c" switch( (*p) ) { case 9: goto tr5; case 95: goto st3; } if ( (*p) < 65 ) { if ( 48 <= (*p) && (*p) <= 57 ) goto st3; } else if ( (*p) > 90 ) { if ( 97 <= (*p) && (*p) <= 122 ) goto st3; } else goto st3; goto tr3; tr5: #line 61 "ped.ragel" { set_ped_record_individual_id(strndup(ts, p-ts), current_record); } goto st4; st4: if ( ++p == pe ) goto _test_eof4; case 4: #line 196 "ped_reader.c" switch( (*p) ) { case 46: goto tr8; case 95: goto tr9; } if ( (*p) < 65 ) { if ( 48 <= (*p) && (*p) <= 57 ) goto tr9; } else if ( (*p) > 90 ) { if ( 97 <= (*p) && (*p) <= 122 ) goto tr9; } else goto tr9; goto tr7; tr8: #line 69 "ped.ragel" { ts = p; } goto st5; st5: if ( ++p == pe ) goto _test_eof5; case 5: #line 220 "ped_reader.c" if ( (*p) == 9 ) goto tr10; goto tr7; tr10: #line 73 "ped.ragel" { set_ped_record_father_id(strndup(ts, p-ts), current_record); } goto st6; st6: if ( ++p == pe ) goto _test_eof6; case 6: #line 234 "ped_reader.c" switch( (*p) ) { case 46: goto tr12; case 95: goto tr13; } if ( (*p) < 65 ) { if ( 48 <= (*p) && (*p) <= 57 ) goto tr13; } else if ( (*p) > 90 ) { if ( 97 <= (*p) && (*p) <= 122 ) goto tr13; } else goto tr13; goto tr11; tr12: #line 81 "ped.ragel" { ts = p; } goto st7; st7: if ( ++p == pe ) goto _test_eof7; case 7: #line 258 "ped_reader.c" if ( (*p) == 9 ) goto tr14; goto tr11; tr14: #line 85 "ped.ragel" { set_ped_record_mother_id(strndup(ts, p-ts), current_record); } goto st8; st8: if ( ++p == pe ) goto _test_eof8; case 8: #line 272 "ped_reader.c" if ( (*p) == 46 ) goto tr16; if ( 48 <= (*p) && (*p) <= 57 ) goto tr17; goto tr15; tr16: #line 93 "ped.ragel" { ts = p; } goto st9; st9: if ( ++p == pe ) goto _test_eof9; case 9: #line 288 "ped_reader.c" if ( (*p) == 9 ) goto tr18; goto tr15; tr18: #line 97 "ped.ragel" { char *field = strndup(ts, p-ts); enum Sex sex = UNKNOWN_SEX; if (atoi(field) == 1) { sex = MALE; } else if (atoi(field) == 2) { sex = FEMALE; } set_ped_record_sex(sex, current_record); free(field); // Not set as ped_record_t variable -> not freed later } goto st10; st10: if ( ++p == pe ) goto _test_eof10; case 10: #line 310 "ped_reader.c" switch( (*p) ) { case 32: goto tr20; case 95: goto tr20; } if ( (*p) < 65 ) { if ( 48 <= (*p) && (*p) <= 57 ) goto tr20; } else if ( (*p) > 90 ) { if ( 97 <= (*p) && (*p) <= 122 ) goto tr20; } else goto tr20; goto tr19; tr20: #line 113 "ped.ragel" { ts = p; } goto st23; tr42: #line 117 "ped.ragel" { if (strncmp(".", ts, 1)) { char *field = strndup(ts, p-ts); set_ped_record_phenotype(field, current_record, file); } } #line 145 "ped.ragel" { custom_field_count = 6; } goto st23; st23: if ( ++p == pe ) goto _test_eof23; case 23: #line 347 "ped_reader.c" switch( (*p) ) { case 9: goto tr39; case 10: goto tr40; case 32: goto tr42; case 95: goto st23; } if ( (*p) < 48 ) { if ( 11 <= (*p) && (*p) <= 13 ) goto tr41; } else if ( (*p) > 57 ) { if ( (*p) > 90 ) { if ( 97 <= (*p) && (*p) <= 122 ) goto st23; } else if ( (*p) >= 65 ) goto st23; } else goto st23; goto tr19; tr39: #line 117 "ped.ragel" { if (strncmp(".", ts, 1)) { char *field = strndup(ts, p-ts); set_ped_record_phenotype(field, current_record, file); } } #line 145 "ped.ragel" { custom_field_count = 6; } goto st24; tr49: #line 153 "ped.ragel" { char* field_name = strndup(ts, p-ts); custom_field_count++; if (custom_field_count == file->num_field) { set_ped_record_custom_field(field_name, current_record, file); } } goto st24; st24: if ( ++p == pe ) goto _test_eof24; case 24: #line 393 "ped_reader.c" switch( (*p) ) { case 9: goto st24; case 10: goto tr46; } if ( (*p) > 13 ) { if ( 32 <= (*p) && (*p) <= 126 ) goto tr48; } else if ( (*p) >= 11 ) goto st26; goto tr44; tr40: #line 117 "ped.ragel" { if (strncmp(".", ts, 1)) { char *field = strndup(ts, p-ts); set_ped_record_phenotype(field, current_record, file); } } #line 145 "ped.ragel" { custom_field_count = 6; } #line 27 "ped.ragel" { // If batch is full, add to the list of batches and create a new, empty one if (ped_batch_is_full(current_batch)) { list_item_t *item = list_item_new(num_records, 1, current_batch); list_insert_item(item, batches_list); LOG_DEBUG_F("Batch added - %zu records\n", current_batch->length); current_batch = ped_batch_new(batch_size); } // Add current record to current batch if (current_record) { add_record_to_ped_batch(current_record, current_batch); num_records++; } current_record = NULL; } #line 18 "ped.ragel" { lines++; } goto st25; tr46: #line 27 "ped.ragel" { // If batch is full, add to the list of batches and create a new, empty one if (ped_batch_is_full(current_batch)) { list_item_t *item = list_item_new(num_records, 1, current_batch); list_insert_item(item, batches_list); LOG_DEBUG_F("Batch added - %zu records\n", current_batch->length); current_batch = ped_batch_new(batch_size); } // Add current record to current batch if (current_record) { add_record_to_ped_batch(current_record, current_batch); num_records++; } current_record = NULL; } #line 18 "ped.ragel" { lines++; } goto st25; tr50: #line 153 "ped.ragel" { char* field_name = strndup(ts, p-ts); custom_field_count++; if (custom_field_count == file->num_field) { set_ped_record_custom_field(field_name, current_record, file); } } #line 27 "ped.ragel" { // If batch is full, add to the list of batches and create a new, empty one if (ped_batch_is_full(current_batch)) { list_item_t *item = list_item_new(num_records, 1, current_batch); list_insert_item(item, batches_list); LOG_DEBUG_F("Batch added - %zu records\n", current_batch->length); current_batch = ped_batch_new(batch_size); } // Add current record to current batch if (current_record) { add_record_to_ped_batch(current_record, current_batch); num_records++; } current_record = NULL; } #line 18 "ped.ragel" { lines++; } goto st25; st25: if ( ++p == pe ) goto _test_eof25; case 25: #line 499 "ped_reader.c" switch( (*p) ) { case 10: goto tr46; case 32: goto st26; } if ( (*p) < 33 ) { if ( 9 <= (*p) && (*p) <= 13 ) goto st26; } else if ( (*p) > 34 ) { if ( 36 <= (*p) && (*p) <= 126 ) goto tr36; } else goto tr36; goto tr0; tr41: #line 117 "ped.ragel" { if (strncmp(".", ts, 1)) { char *field = strndup(ts, p-ts); set_ped_record_phenotype(field, current_record, file); } } #line 145 "ped.ragel" { custom_field_count = 6; } goto st26; tr51: #line 153 "ped.ragel" { char* field_name = strndup(ts, p-ts); custom_field_count++; if (custom_field_count == file->num_field) { set_ped_record_custom_field(field_name, current_record, file); } } goto st26; st26: if ( ++p == pe ) goto _test_eof26; case 26: #line 540 "ped_reader.c" switch( (*p) ) { case 10: goto tr46; case 32: goto st26; } if ( 9 <= (*p) && (*p) <= 13 ) goto st26; goto st0; tr48: #line 149 "ped.ragel" { ts = p; } goto st27; tr52: #line 153 "ped.ragel" { char* field_name = strndup(ts, p-ts); custom_field_count++; if (custom_field_count == file->num_field) { set_ped_record_custom_field(field_name, current_record, file); } } goto st27; st27: if ( ++p == pe ) goto _test_eof27; case 27: #line 568 "ped_reader.c" switch( (*p) ) { case 9: goto tr49; case 10: goto tr50; case 32: goto tr52; } if ( (*p) > 13 ) { if ( 33 <= (*p) && (*p) <= 126 ) goto st27; } else if ( (*p) >= 11 ) goto tr51; goto tr44; tr17: #line 93 "ped.ragel" { ts = p; } goto st11; st11: if ( ++p == pe ) goto _test_eof11; case 11: #line 590 "ped_reader.c" switch( (*p) ) { case 9: goto tr18; case 46: goto st12; } if ( 48 <= (*p) && (*p) <= 57 ) goto st11; goto tr15; st12: if ( ++p == pe ) goto _test_eof12; case 12: if ( 48 <= (*p) && (*p) <= 57 ) goto st13; goto tr15; st13: if ( ++p == pe ) goto _test_eof13; case 13: if ( (*p) == 9 ) goto tr18; if ( 48 <= (*p) && (*p) <= 57 ) goto st13; goto tr15; tr13: #line 81 "ped.ragel" { ts = p; } goto st14; st14: if ( ++p == pe ) goto _test_eof14; case 14: #line 624 "ped_reader.c" switch( (*p) ) { case 9: goto tr14; case 95: goto st14; } if ( (*p) < 65 ) { if ( 48 <= (*p) && (*p) <= 57 ) goto st14; } else if ( (*p) > 90 ) { if ( 97 <= (*p) && (*p) <= 122 ) goto st14; } else goto st14; goto tr11; tr9: #line 69 "ped.ragel" { ts = p; } goto st15; st15: if ( ++p == pe ) goto _test_eof15; case 15: #line 648 "ped_reader.c" switch( (*p) ) { case 9: goto tr10; case 95: goto st15; } if ( (*p) < 65 ) { if ( 48 <= (*p) && (*p) <= 57 ) goto st15; } else if ( (*p) > 90 ) { if ( 97 <= (*p) && (*p) <= 122 ) goto st15; } else goto st15; goto tr7; st16: if ( ++p == pe ) goto _test_eof16; case 16: switch( (*p) ) { case 9: goto st17; case 32: goto tr28; case 95: goto tr29; } if ( (*p) < 65 ) { if ( 48 <= (*p) && (*p) <= 57 ) goto tr29; } else if ( (*p) > 90 ) { if ( 97 <= (*p) && (*p) <= 122 ) goto tr29; } else goto tr29; goto tr26; st17: if ( ++p == pe ) goto _test_eof17; case 17: switch( (*p) ) { case 32: goto tr29; case 95: goto tr29; } if ( (*p) < 65 ) { if ( 48 <= (*p) && (*p) <= 57 ) goto tr29; } else if ( (*p) > 90 ) { if ( 97 <= (*p) && (*p) <= 122 ) goto tr29; } else goto tr29; goto tr26; tr29: #line 128 "ped.ragel" { ts = p; } goto st18; st18: if ( ++p == pe ) goto _test_eof18; case 18: #line 707 "ped_reader.c" switch( (*p) ) { case 9: goto tr30; case 10: goto tr31; case 32: goto st18; case 95: goto st18; } if ( (*p) < 65 ) { if ( 48 <= (*p) && (*p) <= 57 ) goto st18; } else if ( (*p) > 90 ) { if ( 97 <= (*p) && (*p) <= 122 ) goto st18; } else goto st18; goto tr26; tr30: #line 132 "ped.ragel" { char* field_name = strndup(ts, p-ts); custom_field_count++; if (file->variable_field && !strcmp(field_name, file->variable_field)) { file->num_field = custom_field_count; } free(field_name); } goto st19; st19: if ( ++p == pe ) goto _test_eof19; case 19: #line 738 "ped_reader.c" switch( (*p) ) { case 9: goto st19; case 10: goto st28; case 32: goto tr29; case 95: goto tr29; } if ( (*p) < 65 ) { if ( 48 <= (*p) && (*p) <= 57 ) goto tr29; } else if ( (*p) > 90 ) { if ( 97 <= (*p) && (*p) <= 122 ) goto tr29; } else goto tr29; goto tr26; tr31: #line 132 "ped.ragel" { char* field_name = strndup(ts, p-ts); custom_field_count++; if (file->variable_field && !strcmp(field_name, file->variable_field)) { file->num_field = custom_field_count; } free(field_name); } goto st28; st28: if ( ++p == pe ) goto _test_eof28; case 28: #line 769 "ped_reader.c" if ( (*p) == 10 ) goto st22; if ( (*p) > 34 ) { if ( 36 <= (*p) && (*p) <= 126 ) goto tr36; } else if ( (*p) >= 33 ) goto tr36; goto tr0; tr28: #line 128 "ped.ragel" { ts = p; } goto st20; st20: if ( ++p == pe ) goto _test_eof20; case 20: #line 788 "ped_reader.c" switch( (*p) ) { case 9: goto tr30; case 10: goto tr31; case 32: goto tr29; case 95: goto tr29; } if ( (*p) < 65 ) { if ( 48 <= (*p) && (*p) <= 57 ) goto tr29; } else if ( (*p) > 90 ) { if ( 97 <= (*p) && (*p) <= 122 ) goto tr29; } else goto tr29; goto tr26; } _test_eof22: cs = 22; goto _test_eof; _test_eof1: cs = 1; goto _test_eof; _test_eof2: cs = 2; goto _test_eof; _test_eof3: cs = 3; goto _test_eof; _test_eof4: cs = 4; goto _test_eof; _test_eof5: cs = 5; goto _test_eof; _test_eof6: cs = 6; goto _test_eof; _test_eof7: cs = 7; goto _test_eof; _test_eof8: cs = 8; goto _test_eof; _test_eof9: cs = 9; goto _test_eof; _test_eof10: cs = 10; goto _test_eof; _test_eof23: cs = 23; goto _test_eof; _test_eof24: cs = 24; goto _test_eof; _test_eof25: cs = 25; goto _test_eof; _test_eof26: cs = 26; goto _test_eof; _test_eof27: cs = 27; goto _test_eof; _test_eof11: cs = 11; goto _test_eof; _test_eof12: cs = 12; goto _test_eof; _test_eof13: cs = 13; goto _test_eof; _test_eof14: cs = 14; goto _test_eof; _test_eof15: cs = 15; goto _test_eof; _test_eof16: cs = 16; goto _test_eof; _test_eof17: cs = 17; goto _test_eof; _test_eof18: cs = 18; goto _test_eof; _test_eof19: cs = 19; goto _test_eof; _test_eof28: cs = 28; goto _test_eof; _test_eof20: cs = 20; goto _test_eof; _test_eof: {} if ( p == eof ) { switch ( cs ) { case 24: case 25: case 26: #line 27 "ped.ragel" { // If batch is full, add to the list of batches and create a new, empty one if (ped_batch_is_full(current_batch)) { list_item_t *item = list_item_new(num_records, 1, current_batch); list_insert_item(item, batches_list); LOG_DEBUG_F("Batch added - %zu records\n", current_batch->length); current_batch = ped_batch_new(batch_size); } // Add current record to current batch if (current_record) { add_record_to_ped_batch(current_record, current_batch); num_records++; } current_record = NULL; } break; case 1: #line 53 "ped.ragel" { LOG_ERROR_F("Line %zu (%s): Error in 'family' field\n", lines + 1, file->filename); } break; case 2: case 3: #line 65 "ped.ragel" { LOG_ERROR_F("Line %zu (%s): Error in 'individual' field\n", lines + 1, file->filename); } break; case 4: case 5: case 15: #line 77 "ped.ragel" { LOG_ERROR_F("Line %zu (%s): Error in 'father' field\n", lines + 1, file->filename); } break; case 6: case 7: case 14: #line 89 "ped.ragel" { LOG_ERROR_F("Line %zu (%s): Error in 'mother' field\n", lines + 1, file->filename); } break; case 8: case 9: case 11: case 12: case 13: #line 109 "ped.ragel" { LOG_ERROR_F("Line %zu (%s): Error in 'sex' field\n", lines + 1, file->filename); } break; case 10: #line 124 "ped.ragel" { LOG_ERROR_F("Line %zu (%s): Error in 'phenotype' field\n", lines + 1, file->filename); } break; case 16: case 17: case 18: case 19: case 20: #line 141 "ped.ragel" { LOG_ERROR_F("Line %zu (%s): Error in 'header' field\n", lines + 1, file->filename); } break; case 27: #line 153 "ped.ragel" { char* field_name = strndup(ts, p-ts); custom_field_count++; if (custom_field_count == file->num_field) { set_ped_record_custom_field(field_name, current_record, file); } } #line 27 "ped.ragel" { // If batch is full, add to the list of batches and create a new, empty one if (ped_batch_is_full(current_batch)) { list_item_t *item = list_item_new(num_records, 1, current_batch); list_insert_item(item, batches_list); LOG_DEBUG_F("Batch added - %zu records\n", current_batch->length); current_batch = ped_batch_new(batch_size); } // Add current record to current batch if (current_record) { add_record_to_ped_batch(current_record, current_batch); num_records++; } current_record = NULL; } break; case 23: #line 117 "ped.ragel" { if (strncmp(".", ts, 1)) { char *field = strndup(ts, p-ts); set_ped_record_phenotype(field, current_record, file); } } #line 145 "ped.ragel" { custom_field_count = 6; } #line 27 "ped.ragel" { // If batch is full, add to the list of batches and create a new, empty one if (ped_batch_is_full(current_batch)) { list_item_t *item = list_item_new(num_records, 1, current_batch); list_insert_item(item, batches_list); LOG_DEBUG_F("Batch added - %zu records\n", current_batch->length); current_batch = ped_batch_new(batch_size); } // Add current record to current batch if (current_record) { add_record_to_ped_batch(current_record, current_batch); num_records++; } current_record = NULL; } break; #line 973 "ped_reader.c" } } _out: {} } #line 221 "ped.ragel" // Insert the last batch if (!ped_batch_is_empty(current_batch)) { list_item_t *item = list_item_new(num_records, 1, current_batch); list_insert_item(item, batches_list); LOG_DEBUG_F("Batch added - %zu records (last)\n", current_batch->length); } if ( cs < #line 992 "ped_reader.c" 21 #line 231 "ped.ragel" ) { LOG_ERROR("The file was not successfully read\n"); LOG_INFO_F("Last state is %d, but %d was expected\n", cs, #line 1000 "ped_reader.c" 21 #line 235 "ped.ragel" ); } LOG_INFO_F("PED records read = %zu\n", num_records); return cs < #line 1009 "ped_reader.c" 21 #line 240 "ped.ragel" ; }
int run_effect(char **urls, shared_options_data_t *shared_options_data, effect_options_data_t *options_data) { int ret_code = 0; double start, stop, total; vcf_file_t *vcf_file = vcf_open(shared_options_data->vcf_filename, shared_options_data->max_batches); if (!vcf_file) { LOG_FATAL("VCF file does not exist!\n"); } ped_file_t *ped_file = NULL; if (shared_options_data->ped_filename) { ped_file = ped_open(shared_options_data->ped_filename); if (!ped_file) { LOG_FATAL("PED file does not exist!\n"); } LOG_INFO("About to read PED file...\n"); // Read PED file before doing any processing ret_code = ped_read(ped_file); if (ret_code != 0) { LOG_FATAL_F("Can't read PED file: %s\n", ped_file->filename); } } char *output_directory = shared_options_data->output_directory; size_t output_directory_len = strlen(output_directory); ret_code = create_directory(output_directory); if (ret_code != 0 && errno != EEXIST) { LOG_FATAL_F("Can't create output directory: %s\n", output_directory); } // Remove all .txt files in folder ret_code = delete_files_by_extension(output_directory, "txt"); if (ret_code != 0) { return ret_code; } // Initialize environment for connecting to the web service ret_code = init_http_environment(0); if (ret_code != 0) { return ret_code; } // Output file descriptors static cp_hashtable *output_files = NULL; // Lines of the output data in the main .txt files static list_t *output_list = NULL; // Consequence type counters (for summary, must be kept between web service calls) static cp_hashtable *summary_count = NULL; // Gene list (for genes-with-variants, must be kept between web service calls) static cp_hashtable *gene_list = NULL; // Initialize collections of file descriptors and summary counters ret_code = initialize_output_files(output_directory, output_directory_len, &output_files); if (ret_code != 0) { return ret_code; } initialize_output_data_structures(shared_options_data, &output_list, &summary_count, &gene_list); initialize_ws_buffers(shared_options_data->num_threads); // Create job.status file char job_status_filename[output_directory_len + 10]; sprintf(job_status_filename, "%s/job.status", output_directory); FILE *job_status = new_job_status_file(job_status_filename); if (!job_status) { LOG_FATAL("Can't create job status file\n"); } else { update_job_status_file(0, job_status); } #pragma omp parallel sections private(start, stop, total) { #pragma omp section { LOG_DEBUG_F("Thread %d reads the VCF file\n", omp_get_thread_num()); start = omp_get_wtime(); ret_code = vcf_read(vcf_file, 1, (shared_options_data->batch_bytes > 0) ? shared_options_data->batch_bytes : shared_options_data->batch_lines, shared_options_data->batch_bytes <= 0); stop = omp_get_wtime(); total = stop - start; if (ret_code) { LOG_ERROR_F("Error %d while reading the file %s\n", ret_code, vcf_file->filename); } LOG_INFO_F("[%dR] Time elapsed = %f s\n", omp_get_thread_num(), total); LOG_INFO_F("[%dR] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000); notify_end_parsing(vcf_file); } #pragma omp section { // Enable nested parallelism and set the number of threads the user has chosen omp_set_nested(1); LOG_DEBUG_F("Thread %d processes data\n", omp_get_thread_num()); // Filters and files for filtering output filter_t **filters = NULL; int num_filters = 0; if (shared_options_data->chain != NULL) { filters = sort_filter_chain(shared_options_data->chain, &num_filters); } FILE *passed_file = NULL, *failed_file = NULL, *non_processed_file = NULL; get_filtering_output_files(shared_options_data, &passed_file, &failed_file); // Pedigree information (used in some filters) individual_t **individuals = NULL; khash_t(ids) *sample_ids = NULL; // Filename structure outdir/vcfname.errors char *prefix_filename = calloc(strlen(shared_options_data->vcf_filename), sizeof(char)); get_filename_from_path(shared_options_data->vcf_filename, prefix_filename); char *non_processed_filename = malloc((strlen(shared_options_data->output_directory) + strlen(prefix_filename) + 9) * sizeof(char)); sprintf(non_processed_filename, "%s/%s.errors", shared_options_data->output_directory, prefix_filename); non_processed_file = fopen(non_processed_filename, "w"); free(non_processed_filename); // Maximum size processed by each thread (never allow more than 1000 variants per query) if (shared_options_data->batch_lines > 0) { shared_options_data->entries_per_thread = MIN(MAX_VARIANTS_PER_QUERY, ceil((float) shared_options_data->batch_lines / shared_options_data->num_threads)); } else { shared_options_data->entries_per_thread = MAX_VARIANTS_PER_QUERY; } LOG_DEBUG_F("entries-per-thread = %d\n", shared_options_data->entries_per_thread); int i = 0; vcf_batch_t *batch = NULL; int ret_ws_0 = 0, ret_ws_1 = 0, ret_ws_2 = 0; start = omp_get_wtime(); while (batch = fetch_vcf_batch(vcf_file)) { if (i == 0) { // Add headers associated to the defined filters vcf_header_entry_t **filter_headers = get_filters_as_vcf_headers(filters, num_filters); for (int j = 0; j < num_filters; j++) { add_vcf_header_entry(filter_headers[j], vcf_file); } // Write file format, header entries and delimiter if (passed_file != NULL) { write_vcf_header(vcf_file, passed_file); } if (failed_file != NULL) { write_vcf_header(vcf_file, failed_file); } if (non_processed_file != NULL) { write_vcf_header(vcf_file, non_processed_file); } LOG_DEBUG("VCF header written\n"); if (ped_file) { // Create map to associate the position of individuals in the list of samples defined in the VCF file sample_ids = associate_samples_and_positions(vcf_file); // Sort individuals in PED as defined in the VCF file individuals = sort_individuals(vcf_file, ped_file); } } // printf("batch loaded = '%.*s'\n", 50, batch->text); // printf("batch text len = %zu\n", strlen(batch->text)); // if (i % 10 == 0) { LOG_INFO_F("Batch %d reached by thread %d - %zu/%zu records \n", i, omp_get_thread_num(), batch->records->size, batch->records->capacity); // } int reconnections = 0; int max_reconnections = 3; // TODO allow to configure? // Write records that passed to a separate file, and query the WS with them as args array_list_t *failed_records = NULL; int num_variables = ped_file? get_num_variables(ped_file): 0; array_list_t *passed_records = filter_records(filters, num_filters, individuals, sample_ids, num_variables, batch->records, &failed_records); if (passed_records->size > 0) { // Divide the list of passed records in ranges of size defined in config file int num_chunks; int *chunk_sizes; int *chunk_starts = create_chunks(passed_records->size, shared_options_data->entries_per_thread, &num_chunks, &chunk_sizes); do { // OpenMP: Launch a thread for each range #pragma omp parallel for num_threads(shared_options_data->num_threads) for (int j = 0; j < num_chunks; j++) { int tid = omp_get_thread_num(); LOG_DEBUG_F("[%d] WS invocation\n", tid); LOG_DEBUG_F("[%d] -- effect WS\n", tid); if (!reconnections || ret_ws_0) { ret_ws_0 = invoke_effect_ws(urls[0], (vcf_record_t**) (passed_records->items + chunk_starts[j]), chunk_sizes[j], options_data->excludes); parse_effect_response(tid, output_directory, output_directory_len, output_files, output_list, summary_count, gene_list); free(effect_line[tid]); effect_line[tid] = (char*) calloc (max_line_size[tid], sizeof(char)); } if (!options_data->no_phenotypes) { if (!reconnections || ret_ws_1) { LOG_DEBUG_F("[%d] -- snp WS\n", omp_get_thread_num()); ret_ws_1 = invoke_snp_phenotype_ws(urls[1], (vcf_record_t**) (passed_records->items + chunk_starts[j]), chunk_sizes[j]); parse_snp_phenotype_response(tid, output_list); free(snp_line[tid]); snp_line[tid] = (char*) calloc (snp_max_line_size[tid], sizeof(char)); } if (!reconnections || ret_ws_2) { LOG_DEBUG_F("[%d] -- mutation WS\n", omp_get_thread_num()); ret_ws_2 = invoke_mutation_phenotype_ws(urls[2], (vcf_record_t**) (passed_records->items + chunk_starts[j]), chunk_sizes[j]); parse_mutation_phenotype_response(tid, output_list); free(mutation_line[tid]); mutation_line[tid] = (char*) calloc (mutation_max_line_size[tid], sizeof(char)); } } } LOG_DEBUG_F("*** %dth web services invocation finished\n", i); if (ret_ws_0 || ret_ws_1 || ret_ws_2) { if (ret_ws_0) { LOG_ERROR_F("Effect web service error: %s\n", get_last_http_error(ret_ws_0)); } if (ret_ws_1) { LOG_ERROR_F("SNP phenotype web service error: %s\n", get_last_http_error(ret_ws_1)); } if (ret_ws_2) { LOG_ERROR_F("Mutations phenotype web service error: %s\n", get_last_http_error(ret_ws_2)); } // In presence of errors, wait 4 seconds before retrying reconnections++; LOG_ERROR_F("Some errors ocurred, reconnection #%d\n", reconnections); sleep(4); } else { free(chunk_starts); free(chunk_sizes); } } while (reconnections < max_reconnections && (ret_ws_0 || ret_ws_1 || ret_ws_2)); } // If the maximum number of reconnections was reached still with errors, // write the non-processed batch to the corresponding file if (reconnections == max_reconnections && (ret_ws_0 || ret_ws_1 || ret_ws_2)) { #pragma omp critical { write_vcf_batch(batch, non_processed_file); } } // Write records that passed and failed filters to separate files, and free them write_filtering_output_files(passed_records, failed_records, passed_file, failed_file); free_filtered_records(passed_records, failed_records, batch->records); // Free batch and its contents vcf_batch_free(batch); i++; } stop = omp_get_wtime(); total = stop - start; LOG_INFO_F("[%d] Time elapsed = %f s\n", omp_get_thread_num(), total); LOG_INFO_F("[%d] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000); // Free resources if (passed_file) { fclose(passed_file); } if (failed_file) { fclose(failed_file); } if (non_processed_file) { fclose(non_processed_file); } // Free filters for (i = 0; i < num_filters; i++) { filter_t *filter = filters[i]; filter->free_func(filter); } free(filters); // Decrease list writers count for (i = 0; i < shared_options_data->num_threads; i++) { list_decr_writers(output_list); } } #pragma omp section { // Thread which writes the results to all_variants, summary and one file per consequence type int ret = 0; char *line; list_item_t* item = NULL; FILE *fd = NULL; FILE *all_variants_file = cp_hashtable_get(output_files, "all_variants"); FILE *snp_phenotype_file = cp_hashtable_get(output_files, "snp_phenotypes"); FILE *mutation_phenotype_file = cp_hashtable_get(output_files, "mutation_phenotypes"); while ((item = list_remove_item(output_list)) != NULL) { line = item->data_p; // Type greater than 0: consequence type identified by its SO code // Type equals to -1: SNP phenotype // Type equals to -2: mutation phenotype if (item->type > 0) { // Write entry in the consequence type file fd = cp_hashtable_get(output_files, &(item->type)); int ret = fprintf(fd, "%s\n", line); if (ret < 0) { LOG_ERROR_F("Error writing to file: '%s'\n", line); } // Write in all_variants ret = fprintf(all_variants_file, "%s\n", line); if (ret < 0) { LOG_ERROR_F("Error writing to all_variants: '%s'\n", line); } } else if (item->type == SNP_PHENOTYPE) { ret = fprintf(snp_phenotype_file, "%s\n", line); if (ret < 0) { LOG_ERROR_F("Error writing to snp_phenotypes: '%s'\n", line); } } else if (item->type == MUTATION_PHENOTYPE) { ret = fprintf(mutation_phenotype_file, "%s\n", line); if (ret < 0) { LOG_ERROR_F("Error writing to mutation_phenotypes: '%s'\n", line); } } free(line); list_item_free(item); } } } write_summary_file(summary_count, cp_hashtable_get(output_files, "summary")); write_genes_with_variants_file(gene_list, output_directory); write_result_file(shared_options_data, options_data, summary_count, output_directory); free_output_data_structures(output_files, summary_count, gene_list); free_ws_buffers(shared_options_data->num_threads); free(output_list); vcf_close(vcf_file); update_job_status_file(100, job_status); close_job_status_file(job_status); return ret_code; }
int main (int argc, char *argv[]) { size_t max_batches = 20; size_t batch_size = 2000; list_t *read_list = (list_t*) malloc (sizeof(list_t)); list_init("batches", 1, max_batches, read_list); int ret_code; double start, stop, total; char *filename = (char*) malloc ((strlen(argv[1])+1) * sizeof(char)); strncat(filename, argv[1], strlen(argv[1])); gff_file_t* file; init_log_custom(LOG_LEVEL_DEBUG, 1, NULL, "w"); #pragma omp parallel sections private(start, stop, total) lastprivate(file) { #pragma omp section { LOG_DEBUG_F("Thread %d reads the GFF file\n", omp_get_thread_num()); // Reading start = omp_get_wtime(); file = gff_open(filename); ret_code = gff_read_batches(read_list, batch_size, file); stop = omp_get_wtime(); total = (stop - start); if (ret_code) { LOG_FATAL_F("[%dR] Error code = %d\n", omp_get_thread_num(), ret_code); } LOG_INFO_F("[%dR] Time elapsed = %f s\n", omp_get_thread_num(), total); LOG_INFO_F("[%dR] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000); // Writing to a new file if (argc == 3) { start = omp_get_wtime(); ret_code = gff_write(file, argv[2]); stop = omp_get_wtime(); total = (stop - start); if (ret_code) { LOG_ERROR_F("[%dW] Error code = %d\n", omp_get_thread_num(), ret_code); } LOG_INFO_F("[%dW] Time elapsed = %f s\n", omp_get_thread_num(), total); LOG_INFO_F("[%dW] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000); } list_decr_writers(read_list); gff_close(file, 0); } #pragma omp section { printf("1st log debug\n"); LOG_DEBUG_F("OMP num threads = %d\n", omp_get_num_threads()); LOG_DEBUG_F("Thread %d prints info\n", omp_get_thread_num()); printf("after 1st log debug\n"); start = omp_get_wtime(); int i = 0; list_item_t* item = NULL; FILE *out = fopen("result.gff", "w"); while ( (item = list_remove_item(read_list)) != NULL ) { if (i % 200 == 0) { int debug = 1; LOG_DEBUG_F("Batch %d reached by thread %d - %zu/%zu records \n", i, omp_get_thread_num(), ((gff_batch_t*) item->data_p)->length, ((gff_batch_t*) item->data_p)->max_length); } // gff_write_to_file(file, out); // gff_batch_print(stdout, item->data_p); write_gff_batch(item->data_p, out); gff_batch_free(item->data_p); list_item_free(item); i++; } fclose(out); stop = omp_get_wtime(); total = (stop - start); LOG_INFO_F("[%d] Time elapsed = %f s\n", omp_get_thread_num(), total); LOG_INFO_F("[%d] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000); } } free(read_list); return 0; }
/** * Initialize and activate timing of a context. */ int bfwork_context_init_timing(bfwork_context_t *context, const char *tag, const char *path_folder) { int err; char *sched; char filename[100]; char intaux[20]; assert(context); //Set tag context->tag = (char *) tag; //Create timing if(time_new_stats(20, &context->time_stats)) { LOG_ERROR("Failed to initialize time stats\n"); } //Get OMP schedule sched = getenv("OMP_SCHEDULE"); //Target folder for stats? if(path_folder != NULL) { strcpy(filename, path_folder); //Create stats directory err = mkdir(filename, S_IRWXU); if(err) { err = errno; LOG_WARN_F("Failed to create stats directory \"%s\", error code: %s\n", filename, strerror(err)); } strcat(filename, "/"); if(tag) { strcat(filename,tag); } if(sched) { strcat(filename,"_"); strcat(filename,sched); } else { printf("ERROR: Obtaining OMP_SCHEDULE environment value\n"); } //strcat(filename,"_"); //sprintf(intaux, "%d", MAX_BATCH_SIZE); //strcat(filename, intaux); strcat(filename, "_"); sprintf(intaux, "%d", omp_get_max_threads()); strcat(filename, intaux); strcat(filename, ".stats"); //Set output file if(time_set_output_file(filename, context->time_stats)) { LOG_ERROR_F("Failed to set timing file output to \"%s\"\n", filename); } else { printf("STATISTICS ACTIVATED, output file: %s\n\n", filename); } } return NO_ERROR; }
/** * PRIVATE. Wander for a region. */ static inline int bfwork_obtain_region(bam_fwork_t *fwork, bam_region_t *region) { int err, bytes; bam1_t *read; double times; //Get first read if(last_read != NULL) { read = last_read; bytes = last_read_bytes; last_read = NULL; } else { //Get first read from file read = bam_init1(); assert(read); bytes = bam_read1(fwork->input_file->bam_fd, read); } //Iterate reads while(bytes > 0) { //Wander this read omp_set_lock(®ion->lock); #ifdef D_TIME_DEBUG times = omp_get_wtime(); #endif err = fwork->context->wander_f(fwork, region, read); #ifdef D_TIME_DEBUG times = omp_get_wtime() - times; if(fwork->context->time_stats) time_add_time_slot(D_FWORK_WANDER_FUNC, fwork->context->time_stats, times); #endif omp_unset_lock(®ion->lock); switch(err) { case WANDER_READ_FILTERED: //This read dont pass the filters case NO_ERROR: //Add read to region omp_set_lock(®ion->lock); region->reads[region->size] = read; region->size++; //Region is full? if(region->size >= region->max_size) { omp_unset_lock(®ion->lock); return WANDER_REGION_CHANGED; } omp_unset_lock(®ion->lock); //Get next read from file read = bam_init1(); assert(read); bytes = bam_read1(fwork->input_file->bam_fd, read); break; case WANDER_REGION_CHANGED: //The region have changed last_read = read; last_read_bytes = bytes; return err; default: //Unknown error LOG_ERROR_F("Framework fails with error code: %d\n", err); return err; } } //Check read error if(bytes <= 0) { //Destroy bam bam_destroy1(read); //End of file if(bytes == -1) { return WANDER_READ_EOF; } else { return WANDER_READ_TRUNCATED; } } return NO_ERROR; }
int run_stats(shared_options_data_t *shared_options_data, stats_options_data_t *options_data) { file_stats_t *file_stats = file_stats_new(); sample_stats_t **sample_stats; // List that stores the batches of records filtered by each thread list_t *output_list[shared_options_data->num_threads]; // List that stores which thread filtered the next batch to save list_t *next_token_list = malloc(sizeof(list_t)); int ret_code; double start, stop, total; vcf_file_t *vcf_file = vcf_open(shared_options_data->vcf_filename, shared_options_data->max_batches); if (!vcf_file) { LOG_FATAL("VCF file does not exist!\n"); } ped_file_t *ped_file = NULL; if (shared_options_data->ped_filename) { ped_file = ped_open(shared_options_data->ped_filename); if (!ped_file) { LOG_FATAL("PED file does not exist!\n"); } if(options_data->variable) { set_variable_field(options_data->variable, 0, ped_file); } else { set_variable_field("PHENO", 6, ped_file); } if(options_data->variable_groups) { int n, m; char *variable_groups = strdup(options_data->variable_groups); char **groups; char **phenos_in_group; groups = split(variable_groups, ":", &n); for(int i = 0; i < n; i++){ phenos_in_group = split(groups[i], ",", &m); if(set_phenotype_group(phenos_in_group, m, ped_file) < 0) { LOG_ERROR("Variable can't appear in two groups\n"); return DUPLICATED_VARIABLE; } free(phenos_in_group); } ped_file->accept_new_values = 0; free(variable_groups); free(groups); } else { ped_file->accept_new_values = 1; } if(options_data->phenotype) { int n; char* phenotypes = strdup(options_data->phenotype); char** pheno_values = split(phenotypes, ",", &n); if(n != 2) { LOG_ERROR("To handle case-control test, only two phenotypes are supported\n"); return MORE_THAN_TWO_PHENOTYPES; } else { set_unaffected_phenotype(pheno_values[0],ped_file); set_affected_phenotype(pheno_values[1],ped_file); } } else { set_unaffected_phenotype("1", ped_file); set_affected_phenotype("2", ped_file); } LOG_INFO("About to read PED file...\n"); // Read PED file before doing any processing ret_code = ped_read(ped_file); if (ret_code != 0) { LOG_FATAL_F("Can't read PED file: %s\n", ped_file->filename); } if(!ped_file->num_field) { LOG_ERROR_F("Can't find the specified field \"%s\" in file: %s \n", options_data->variable, ped_file->filename); return VARIABLE_FIELD_NOT_FOUND; } } ret_code = create_directory(shared_options_data->output_directory); if (ret_code != 0 && errno != EEXIST) { LOG_FATAL_F("Can't create output directory: %s\n", shared_options_data->output_directory); } // Initialize variables related to the different threads for (int i = 0; i < shared_options_data->num_threads; i++) { output_list[i] = (list_t*) malloc(sizeof(list_t)); list_init("input", 1, shared_options_data->num_threads * shared_options_data->batch_lines, output_list[i]); } list_init("next_token", shared_options_data->num_threads, INT_MAX, next_token_list); LOG_INFO("About to retrieve statistics from VCF file...\n"); #pragma omp parallel sections private(start, stop, total) { #pragma omp section { LOG_DEBUG_F("Thread %d reads the VCF file\n", omp_get_thread_num()); // Reading start = omp_get_wtime(); if (shared_options_data->batch_bytes > 0) { ret_code = vcf_parse_batches_in_bytes(shared_options_data->batch_bytes, vcf_file); } else if (shared_options_data->batch_lines > 0) { ret_code = vcf_parse_batches(shared_options_data->batch_lines, vcf_file); } stop = omp_get_wtime(); total = stop - start; if (ret_code) { LOG_FATAL_F("[%dR] Error code = %d\n", omp_get_thread_num(), ret_code); } LOG_INFO_F("[%dR] Time elapsed = %f s\n", omp_get_thread_num(), total); LOG_INFO_F("[%dR] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000); notify_end_parsing(vcf_file); } #pragma omp section { // Enable nested parallelism and set the number of threads the user has chosen omp_set_nested(1); LOG_DEBUG_F("Thread %d processes data\n", omp_get_thread_num()); individual_t **individuals = NULL; khash_t(ids) *sample_ids = NULL; khash_t(str) *phenotype_ids = NULL; int num_phenotypes; start = omp_get_wtime(); int i = 0; vcf_batch_t *batch = NULL; while ((batch = fetch_vcf_batch(vcf_file)) != NULL) { if (i == 0) { sample_stats = malloc (get_num_vcf_samples(vcf_file) * sizeof(sample_stats_t*)); for (int j = 0; j < get_num_vcf_samples(vcf_file); j++) { sample_stats[j] = sample_stats_new(array_list_get(j, vcf_file->samples_names)); } if (ped_file) { // Create map to associate the position of individuals in the list of samples defined in the VCF file sample_ids = associate_samples_and_positions(vcf_file); // Sort individuals in PED as defined in the VCF file individuals = sort_individuals(vcf_file, ped_file); // Get the khash of the phenotypes in PED file phenotype_ids = get_phenotypes(ped_file); num_phenotypes = get_num_variables(ped_file); } } if (i % 50 == 0) { LOG_INFO_F("Batch %d reached by thread %d - %zu/%zu records \n", i, omp_get_thread_num(), batch->records->size, batch->records->capacity); } // Divide the list of passed records in ranges of size defined in config file int num_chunks; int *chunk_sizes = NULL; array_list_t *input_records = batch->records; int *chunk_starts = create_chunks(input_records->size, ceil((float) shared_options_data->batch_lines / shared_options_data->num_threads), &num_chunks, &chunk_sizes); // OpenMP: Launch a thread for each range #pragma omp parallel for num_threads(shared_options_data->num_threads) for (int j = 0; j < num_chunks; j++) { LOG_DEBUG_F("[%d] Stats invocation\n", omp_get_thread_num()); // Invoke variant stats and/or sample stats when applies if (options_data->variant_stats) { int index = omp_get_thread_num() % shared_options_data->num_threads; ret_code = get_variants_stats((vcf_record_t**) (input_records->items + chunk_starts[j]), chunk_sizes[j], individuals, sample_ids,num_phenotypes, output_list[index], file_stats); } if (options_data->sample_stats) { ret_code |= get_sample_stats((vcf_record_t**) (input_records->items + chunk_starts[j]), chunk_sizes[j], individuals, sample_ids, sample_stats, file_stats); } } if (options_data->variant_stats) { // Insert as many tokens as elements correspond to each thread for (int t = 0; t < num_chunks; t++) { for (int s = 0; s < chunk_sizes[t]; s++) { list_item_t *token_item = list_item_new(t, 0, NULL); list_insert_item(token_item, next_token_list); } } } free(chunk_starts); free(chunk_sizes); vcf_batch_free(batch); i++; } stop = omp_get_wtime(); total = stop - start; LOG_INFO_F("[%d] Time elapsed = %f s\n", omp_get_thread_num(), total); LOG_INFO_F("[%d] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000); // Decrease list writers count for (i = 0; i < shared_options_data->num_threads; i++) { list_decr_writers(next_token_list); list_decr_writers(output_list[i]); } if (sample_ids) { kh_destroy(ids, sample_ids); } if (individuals) { free(individuals); } } #pragma omp section { LOG_DEBUG_F("Thread %d writes the output\n", omp_get_thread_num()); char *stats_prefix = get_vcf_stats_filename_prefix(shared_options_data->vcf_filename, shared_options_data->output_filename, shared_options_data->output_directory); // File names and descriptors for output to plain text files char *stats_filename, *summary_filename, *phenotype_filename; FILE *stats_fd, *summary_fd, **phenotype_fd; char *stats_db_name; sqlite3 *db = NULL; khash_t(stats_chunks) *hash; khash_t(str) *phenotype_ids; int num_phenotypes; if(ped_file){ phenotype_ids = get_phenotypes(ped_file); num_phenotypes = get_num_variables(ped_file); } if (options_data->save_db) { delete_files_by_extension(shared_options_data->output_directory, "db"); stats_db_name = calloc(strlen(stats_prefix) + strlen(".db") + 2, sizeof(char)); sprintf(stats_db_name, "%s.db", stats_prefix); create_stats_db(stats_db_name, VCF_CHUNKSIZE, create_vcf_query_fields, &db); hash = kh_init(stats_chunks); } // Write variant (and global) statistics if (options_data->variant_stats) { stats_filename = get_variant_stats_output_filename(stats_prefix); if (!(stats_fd = fopen(stats_filename, "w"))) { LOG_FATAL_F("Can't open file for writing statistics of variants: %s\n", stats_filename); } //Open one file for each phenotype if(ped_file){ phenotype_fd = malloc(sizeof(FILE*)*num_phenotypes); if(options_data->variable_groups){ int n; char *variable_groups = strdup(options_data->variable_groups); char ** names = split(variable_groups, ":", &n); for(int i = 0; i < n; i++) { phenotype_filename = get_variant_phenotype_stats_output_filename(stats_prefix, names[i]); if(!(phenotype_fd[i] = fopen(phenotype_filename, "w"))) { LOG_FATAL_F("Can't open file for writing statistics of variants per phenotype: %s\n", stats_filename); } free(phenotype_filename); } free(names); free(variable_groups); } else { for (khint_t i = kh_begin(phenotype_ids); i != kh_end(phenotype_ids); ++i) { if (!kh_exist(phenotype_ids,i)) continue; phenotype_filename = get_variant_phenotype_stats_output_filename(stats_prefix, kh_key(phenotype_ids,i)); if(!(phenotype_fd[kh_val(phenotype_ids,i)] = fopen(phenotype_filename, "w"))) { LOG_FATAL_F("Can't open file for writing statistics of variants per phenotype: %s\n", stats_filename); } free(phenotype_filename); } } } // Write header report_vcf_variant_stats_header(stats_fd); if(ped_file){ for(int i = 0; i < num_phenotypes; i++) report_vcf_variant_phenotype_stats_header(phenotype_fd[i]); } // For each variant, generate a new line int avail_stats = 0; variant_stats_t *var_stats_batch[VCF_CHUNKSIZE]; list_item_t *token_item = NULL, *output_item = NULL; while ( token_item = list_remove_item(next_token_list) ) { output_item = list_remove_item(output_list[token_item->id]); assert(output_item); var_stats_batch[avail_stats] = output_item->data_p; avail_stats++; // Run only when certain amount of stats is available if (avail_stats >= VCF_CHUNKSIZE) { report_vcf_variant_stats(stats_fd, db, hash, avail_stats, var_stats_batch); if(ped_file) for(int i = 0; i < num_phenotypes; i++) report_vcf_variant_phenotype_stats(phenotype_fd[i], avail_stats, var_stats_batch, i); // Free all stats from the "batch" for (int i = 0; i < avail_stats; i++) { variant_stats_free(var_stats_batch[i]); } avail_stats = 0; } // Free resources list_item_free(output_item); list_item_free(token_item); } if (avail_stats > 0) { report_vcf_variant_stats(stats_fd, db, hash, avail_stats, var_stats_batch); if(ped_file) for(int i = 0; i < num_phenotypes; i++) report_vcf_variant_phenotype_stats(phenotype_fd[i], avail_stats, var_stats_batch, i); // Free all stats from the "batch" for (int i = 0; i < avail_stats; i++) { variant_stats_free(var_stats_batch[i]); } avail_stats = 0; } // Write whole file stats (data only got when launching variant stats) summary_filename = get_vcf_file_stats_output_filename(stats_prefix); if (!(summary_fd = fopen(summary_filename, "w"))) { LOG_FATAL_F("Can't open file for writing statistics summary: %s\n", summary_filename); } report_vcf_summary_stats(summary_fd, db, file_stats); free(stats_filename); free(summary_filename); // Close variant stats file if (stats_fd) { fclose(stats_fd); } if (summary_fd) { fclose(summary_fd); } if(ped_file){ for(int i = 0; i < num_phenotypes; i++) if(phenotype_fd[i]) fclose(phenotype_fd[i]); free(phenotype_fd); } } // Write sample statistics if (options_data->sample_stats) { stats_filename = get_sample_stats_output_filename(stats_prefix); if (!(stats_fd = fopen(stats_filename, "w"))) { LOG_FATAL_F("Can't open file for writing statistics of samples: %s\n", stats_filename); } report_vcf_sample_stats_header(stats_fd); report_vcf_sample_stats(stats_fd, NULL, vcf_file->samples_names->size, sample_stats); // Close sample stats file free(stats_filename); if (stats_fd) { fclose(stats_fd); } } free(stats_prefix); if (db) { insert_chunk_hash(VCF_CHUNKSIZE, hash, db); create_stats_index(create_vcf_index, db); close_stats_db(db, hash); } } } for (int i = 0; i < get_num_vcf_samples(vcf_file); i++) { sample_stats_free(sample_stats[i]); } free(sample_stats); free(file_stats); free(next_token_list); for (int i = 0; i < shared_options_data->num_threads; i++) { free(output_list[i]); } vcf_close(vcf_file); if (ped_file) { ped_close(ped_file, 1,1); } return 0; }
int run_merge(shared_options_data_t *shared_options_data, merge_options_data_t *options_data) { if (options_data->num_files == 1) { LOG_INFO("Just one VCF file specified, no need to merge"); return 0; } list_t *read_list[options_data->num_files]; memset(read_list, 0, options_data->num_files * sizeof(list_t*)); list_t *output_header_list = (list_t*) malloc (sizeof(list_t)); list_init("headers", shared_options_data->num_threads, INT_MAX, output_header_list); list_t *output_list = (list_t*) malloc (sizeof(list_t)); list_init("output", shared_options_data->num_threads, shared_options_data->max_batches * shared_options_data->batch_lines, output_list); list_t *merge_tokens = (list_t*) malloc (sizeof(list_t)); list_init("tokens", 1, INT_MAX, merge_tokens); int ret_code = 0; double start, stop, total; vcf_file_t *files[options_data->num_files]; memset(files, 0, options_data->num_files * sizeof(vcf_file_t*)); // Initialize variables related to the different files for (int i = 0; i < options_data->num_files; i++) { files[i] = vcf_open(options_data->input_files[i], shared_options_data->max_batches); if (!files[i]) { LOG_FATAL_F("VCF file %s does not exist!\n", options_data->input_files[i]); } read_list[i] = (list_t*) malloc(sizeof(list_t)); list_init("text", 1, shared_options_data->max_batches, read_list[i]); } ret_code = create_directory(shared_options_data->output_directory); if (ret_code != 0 && errno != EEXIST) { LOG_FATAL_F("Can't create output directory: %s\n", shared_options_data->output_directory); } chromosome_order = get_chromosome_order(shared_options_data->host_url, shared_options_data->species, shared_options_data->version, &num_chromosomes); printf("Number of threads = %d\n", shared_options_data->num_threads); #pragma omp parallel sections private(start, stop, total) { #pragma omp section { LOG_DEBUG_F("Thread %d reads the VCF file\n", omp_get_thread_num()); // Reading start = omp_get_wtime(); ret_code = vcf_multiread_batches(read_list, shared_options_data->batch_lines, files, options_data->num_files); stop = omp_get_wtime(); total = stop - start; if (ret_code) { LOG_ERROR_F("Error %d while reading VCF files\n", ret_code); } LOG_INFO_F("[%dR] Time elapsed = %f s\n", omp_get_thread_num(), total); LOG_INFO_F("[%dR] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000); } #pragma omp section { // Enable nested parallelism omp_set_nested(1); LOG_DEBUG_F("Thread %d processes data\n", omp_get_thread_num()); int num_eof_found = 0; int eof_found[options_data->num_files]; memset(eof_found, 0, options_data->num_files * sizeof(int)); list_item_t *items[options_data->num_files]; memset(items, 0, options_data->num_files * sizeof(list_item_t*)); char *texts[options_data->num_files]; memset(texts, 0, options_data->num_files * sizeof(char*)); khash_t(pos) *positions_read = kh_init(pos); long max_position_merged = LONG_MAX; char *max_chromosome_merged = NULL; int header_merged = 0; int token = 0; double start_parsing, start_insertion, total_parsing = 0, total_insertion = 0; start = omp_get_wtime(); while (num_eof_found < options_data->num_files) { /* Process: * - N threads getting batches of VCF records and inserting them in a data structure. The common minimum * position of each group of batches will also be stored. * - If the data structure reaches certain size or the end of a chromosome, merge positions prior to the * last minimum registered. */ // Getting text elements in a critical region guarantees that each thread gets variants in positions in the same range for (int i = 0; i < options_data->num_files; i++) { if (eof_found[i]) { continue; } items[i] = list_remove_item(read_list[i]); if (items[i] == NULL || !strcmp(items[i]->data_p, "")) { LOG_INFO_F("[%d] EOF found in file %s\n", omp_get_thread_num(), options_data->input_files[i]); eof_found[i] = 1; num_eof_found++; if(items[i] != NULL && !strcmp(items[i]->data_p, "")) { free(items[i]->data_p); list_item_free(items[i]); LOG_DEBUG_F("[%d] Text batch freed\n", omp_get_thread_num()); } else { LOG_DEBUG_F("[%d] No need to free text batch\n", omp_get_thread_num()); } continue; } assert(items[i]->data_p != NULL); texts[i] = items[i]->data_p; // printf("[%d] text batch from file %d\tcontents = '%s'\n", omp_get_thread_num(), i, texts[i]); } for (int i = 0; i < options_data->num_files; i++) { if (eof_found[i]) { continue; } start_parsing = omp_get_wtime(); char *text_begin = texts[i]; char *text_end = text_begin + strlen(text_begin); assert(text_end != NULL); // printf("batch = '%.*s'\n", text_end - text_begin, text_begin); // Get VCF batches from text batches vcf_reader_status *status = vcf_reader_status_new(shared_options_data->batch_lines, 0); ret_code = run_vcf_parser(text_begin, text_end, shared_options_data->batch_lines, files[i], status); if (ret_code) { // TODO stop? LOG_ERROR_F("Error %d while reading the file %s\n", ret_code, files[i]->filename); continue; } // printf("batches = %d\n", files[i]->record_batches->length); vcf_batch_t *batch = fetch_vcf_batch_non_blocking(files[i]); if (!batch) { continue; } total_parsing += omp_get_wtime() - start_parsing; start_insertion = omp_get_wtime(); // Insert records into hashtable for (int j = 0; j < batch->records->size; j++) { vcf_record_t *record = vcf_record_copy(array_list_get(j, batch->records)); vcf_record_file_link *link = vcf_record_file_link_new(record, files[i]); char key[64]; compose_key_value(record->chromosome, record->position, key); int ret = insert_position_read(key, link, positions_read); assert(ret); } total_insertion += omp_get_wtime() - start_insertion; // Update minimum position being a maximum of these batches vcf_record_t *current_record = (vcf_record_t*) array_list_get(batch->records->size - 1, batch->records); calculate_merge_interval(current_record, &max_chromosome_merged, &max_position_merged, chromosome_order, num_chromosomes); // Free batch and its contents vcf_reader_status_free(status); vcf_batch_free(batch); list_item_free(items[i]); } if (num_eof_found == options_data->num_files) { max_chromosome_merged = chromosome_order[num_chromosomes-1]; max_position_merged = LONG_MAX; } // Merge headers, if not previously done if (!header_merged) { merge_vcf_headers(files, options_data->num_files, options_data, output_header_list); header_merged = 1; // Decrease list writers count for (int i = 0; i < shared_options_data->num_threads; i++) { list_decr_writers(output_header_list); } } // If the data structure reaches certain size or the end of a chromosome, // merge positions prior to the last minimum registered if (num_eof_found < options_data->num_files && kh_size(positions_read) > TREE_LIMIT) { LOG_INFO_F("Merging until position %s:%ld\n", max_chromosome_merged, max_position_merged); token = merge_interval(positions_read, max_chromosome_merged, max_position_merged, chromosome_order, num_chromosomes, files, shared_options_data, options_data, output_list); } // When reaching EOF for all files, merge the remaining entries else if (num_eof_found == options_data->num_files && kh_size(positions_read) > 0) { LOG_INFO_F("Merging remaining positions (last = %s:%ld)\n", chromosome_order[num_chromosomes - 1], LONG_MAX); token = merge_remaining_interval(positions_read, files, shared_options_data, options_data, output_list); } if (token) { int *token_ptr = malloc (sizeof(int)); *token_ptr = token; list_item_t *item = list_item_new(1, 0, token_ptr); list_insert_item(item, merge_tokens); } // Set variables ready for next iteration of the algorithm if (max_chromosome_merged) { free(max_chromosome_merged); } token = 0; max_chromosome_merged = NULL; max_position_merged = LONG_MAX; } kh_destroy(pos, positions_read); stop = omp_get_wtime(); total = stop - start; LOG_INFO_F("[%d] Time elapsed = %f s\n", omp_get_thread_num(), total); LOG_INFO_F("[%d] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000); LOG_DEBUG_F("** Time in parsing = %f s\n", total_parsing); LOG_DEBUG_F("** Time in insertion = %f s\n", total_insertion); // for (int i = 0; i < shared_options_data->num_threads; i++) { // printf("[%d] Time in searching = %f s\n", i, total_search[i]); // printf("[%d] Time in merging = %f s\n", i, total_merge[i]); // } // Decrease list writers count for (int i = 0; i < shared_options_data->num_threads; i++) { list_decr_writers(output_list); } list_decr_writers(merge_tokens); } #pragma omp section { LOG_DEBUG_F("Thread %d writes the output\n", omp_get_thread_num()); start = omp_get_wtime(); // Create file streams for results char aux_filename[32]; memset(aux_filename, 0, 32 * sizeof(char)); sprintf(aux_filename, "merge_from_%d_files.vcf", options_data->num_files); char *merge_filename; FILE *merge_fd = get_output_file(shared_options_data, aux_filename, &merge_filename); LOG_INFO_F("Output filename = %s\n", merge_filename); free(merge_filename); list_item_t *item1 = NULL, *item2 = NULL; vcf_header_entry_t *entry; vcf_record_t *record; int *num_records; // Write headers while ((item1 = list_remove_item(output_header_list)) != NULL) { entry = item1->data_p; write_vcf_header_entry(entry, merge_fd); } // Write delimiter array_list_t *sample_names = merge_vcf_sample_names(files, options_data->num_files); write_vcf_delimiter_from_samples((char**) sample_names->items, sample_names->size, merge_fd); // Write records // When a token is present, it means a set of batches has been merged. The token contains the number of records merged. // In this case, the records must be sorted by chromosome and position, and written afterwards. while ((item1 = list_remove_item(merge_tokens)) != NULL) { num_records = item1->data_p; vcf_record_t *records[*num_records]; for (int i = 0; i < *num_records; i++) { item2 = list_remove_item(output_list); if (!item2) { break; } records[i] = item2->data_p; list_item_free(item2); } // Sort records qsort(records, *num_records, sizeof(vcf_record_t*), record_cmp); // Write and free sorted records for (int i = 0; i < *num_records; i++) { record = records[i]; write_vcf_record(record, merge_fd); vcf_record_free_deep(record); } free(num_records); list_item_free(item1); } // Close file if (merge_fd != NULL) { fclose(merge_fd); } stop = omp_get_wtime(); total = stop - start; LOG_INFO_F("[%dW] Time elapsed = %f s\n", omp_get_thread_num(), total); LOG_INFO_F("[%dW] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000); } } // Free variables related to the different files for (int i = 0; i < options_data->num_files; i++) { if(files[i]) { vcf_close(files[i]); } if(read_list[i]) { free(read_list[i]); } } free(output_list); return ret_code; }