Exemple #1
0
int insert_regions(region_t **regions, int num_regions, region_table_t *table) {
    int rc;
    sqlite3_stmt *stmt = table->insert_region_stmt;
    sqlite3* db = table->storage;

    char *sql_begin = "BEGIN TRANSACTION";
    rc = exec_sql(sql_begin, db);
    if (rc != SQLITE_OK) {
        LOG_ERROR_F("Could not insert regions: %s (%d)\n", 
                    sqlite3_errmsg(db), sqlite3_errcode(db));
        return rc;
    }
    
    for (int i = 0; i < num_regions; i++) {
        region_t *region = regions[i];

        sqlite3_bind_text(stmt, 1, region->chromosome, strlen(region->chromosome), SQLITE_STATIC);
        sqlite3_bind_int64(stmt, 2, region->start_position);
        sqlite3_bind_int64(stmt, 3, region->end_position);

        if (region->strand) { 
            sqlite3_bind_text(stmt, 4, region->strand, strlen(region->strand), SQLITE_STATIC); 
        } else {
            sqlite3_bind_null(stmt, 4);
        }
        if (region->type) {
            sqlite3_bind_text(stmt, 5, region->type, strlen(region->type), SQLITE_STATIC);
        } else {
            sqlite3_bind_null(stmt, 5);
        }

        if ((rc = sqlite3_step(stmt) == SQLITE_DONE)) {
            // Update value in chunks hashtable
            update_chunks_hash(region->chromosome, UINT_MAX, REGIONS_CHUNKSIZE, 
                               region->start_position, region->end_position, table->chunks);
        } else {
            LOG_ERROR_F("Could not insert region %s:%ld-%ld: %s (%d)\n", 
                        region->chromosome, region->start_position, region->end_position, 
                        sqlite3_errmsg(db), sqlite3_errcode(db));
        }

        sqlite3_reset(stmt);
    }
    
    char *sql_end = "END TRANSACTION";
    rc = exec_sql(sql_end, db);
    if (rc != SQLITE_OK) {
        LOG_ERROR_F("Could not insert regions: %s (%d)\n", 
                    sqlite3_errmsg(db), sqlite3_errcode(db));
        return rc;
    }

    return rc;
}
Exemple #2
0
int remove_exact_region(region_t *region, region_table_t *table) {
    int rc;
    sqlite3_stmt *stmt1 = table->remove_exact_region_stmt, *stmt2;
    sqlite3* db = table->storage;
    
    char *sql_begin = "BEGIN TRANSACTION";
    rc = exec_sql(sql_begin, db);
    if (rc != SQLITE_OK) {
        LOG_ERROR_F("Could not remove region: %s (%d)\n", 
                    sqlite3_errmsg(db), sqlite3_errcode(db));
        return rc;
    }
    
    sqlite3_bind_text(stmt1, 1, region->chromosome, strlen(region->chromosome), SQLITE_STATIC);
    sqlite3_bind_int64(stmt1, 2, region->start_position);
    sqlite3_bind_int64(stmt1, 3, region->end_position);

    if ((rc = sqlite3_step(stmt1)) == SQLITE_DONE) {
        sqlite3_reset(stmt1);
        
        int chunk_start = region->start_position / REGIONS_CHUNKSIZE;
        int chunk_end = region->end_position / REGIONS_CHUNKSIZE;
        
        // Decrement features_count in chunk table
        char sql_chunks[] = "UPDATE chunk SET features_count = features_count - 1 WHERE chromosome = ?1 AND \
                             (chunk_id >= ?2 AND chunk_id <= ?3)";
        rc = sqlite3_prepare_v2(db, sql_chunks, strlen(sql_chunks), &stmt2, NULL);
        
        if (rc != SQLITE_OK) {
            LOG_ERROR_F("Could not remove region %s:%ld-%ld: %s (%d)\n", 
                        region->chromosome, region->start_position, region->end_position, 
                        sqlite3_errmsg(db), sqlite3_errcode(db));
            return rc;
        }
        
        sqlite3_bind_text(stmt2, 1, region->chromosome, strlen(region->chromosome), SQLITE_STATIC);
        sqlite3_bind_int64(stmt2, 2, chunk_start);
        sqlite3_bind_int64(stmt2, 3, chunk_end);
    
        if ((rc = sqlite3_step(stmt2)) != SQLITE_DONE) {
            LOG_ERROR_F("Could not remove region %s:%ld-%ld: %s (%d)\n", 
                        region->chromosome, region->start_position, region->end_position, 
                        sqlite3_errmsg(db), sqlite3_errcode(db));
            return rc;
        }
        
        sqlite3_finalize(stmt2);
        
    } else {
Exemple #3
0
inline int exec_sql(char *sql, sqlite3* db) {
  int rc;
  char *error_msg;
  if (rc = sqlite3_exec(db, sql, NULL, NULL, &error_msg)) {
    LOG_ERROR_F("Stats database failed (%s): %s\n", sql, error_msg);
  }
  return rc;
}
Exemple #4
0
int create_vcf_index(sqlite3 *db) {
    int rc;
    char sql[128];
    char *error_msg;

    // create chunks index
    sprintf(sql, "CREATE INDEX record_query_fields_chromosome_start_end_idx ON chunk (chromosome, start, end)");
    if (rc = sqlite3_exec(db, sql, NULL, NULL, &error_msg)) {
        LOG_ERROR_F("Stats database failed creating VCF index: %s\n", error_msg);
    }
    return rc;
}
int read_stats_configuration(const char *filename, stats_options_t *options, shared_options_t *shared_options) {
    if (filename == NULL || options == NULL || shared_options == NULL) {
        return -1;
    }
    
    config_t *config = (config_t*) calloc (1, sizeof(config_t));
    int ret_code = config_read_file(config, filename);
    if (ret_code == CONFIG_FALSE) {
        LOG_ERROR_F("config file error: %s\n", config_error_text(config));
        return ret_code;
    }
    
    // Read number of threads that will make request to the web service
    ret_code = config_lookup_int(config, "vcf-tools.stats.num-threads", shared_options->num_threads->ival);
    if (ret_code == CONFIG_FALSE) {
        LOG_WARN("Number of threads not found in config file, must be set via command-line\n");
    } else {
        LOG_DEBUG_F("num-threads = %ld\n", *(shared_options->num_threads->ival));
    }

    // Read maximum number of batches that can be stored at certain moment
    ret_code = config_lookup_int(config, "vcf-tools.stats.max-batches", shared_options->max_batches->ival);
    if (ret_code == CONFIG_FALSE) {
        LOG_WARN("Maximum number of batches not found in configuration file, must be set via command-line\n");
    } else {
        LOG_DEBUG_F("max-batches = %ld\n", *(shared_options->max_batches->ival));
    }
    
    // Read size of every batch read
    ret_code = config_lookup_int(config, "vcf-tools.stats.batch-lines", shared_options->batch_lines->ival);
    ret_code |= config_lookup_int(config, "vcf-tools.stats.batch-bytes", shared_options->batch_bytes->ival);
    if (ret_code == CONFIG_FALSE) {
        LOG_WARN("Neither batch lines nor bytes found in configuration file, must be set via command-line\n");
    } 
    /*else {
        LOG_DEBUG_F("batch-lines = %ld\n", *(shared_options->batch_size->ival));
    }*/
    
    config_destroy(config);
    free(config);

    return 0;
}
int read_tdt_configuration(const char *filename, tdt_options_t *tdt_options, shared_options_t *shared_options) {
    if (filename == NULL || tdt_options == NULL || shared_options == NULL) {
        return -1;
    }

    config_t *config = (config_t*) calloc (1, sizeof(config_t));
    int ret_code = config_read_file(config, filename);
    if (ret_code == CONFIG_FALSE) {
        LOG_ERROR_F("Configuration file error: %s\n", config_error_text(config));
        return CANT_READ_CONFIG_FILE;
    }

    const char *tmp_string;
    
    // Read number of threads that will make request to the web service
    ret_code = config_lookup_int(config, "gwas.tdt.num-threads", shared_options->num_threads->ival);
    if (ret_code == CONFIG_FALSE) {
        LOG_WARN("Number of threads not found in config file, must be set via command-line");
    } else {
        LOG_DEBUG_F("num-threads = %ld\n", *(shared_options->num_threads->ival));
    }

    // Read maximum number of batches that can be stored at certain moment
    ret_code = config_lookup_int(config, "gwas.tdt.max-batches", shared_options->max_batches->ival);
    if (ret_code == CONFIG_FALSE) {
        LOG_WARN("Maximum number of batches not found in configuration file, must be set via command-line");
    } else {
        LOG_DEBUG_F("max-batches = %ld\n", *(shared_options->max_batches->ival));
    }
    
    // Read size of a batch (in lines or bytes)
    ret_code = config_lookup_int(config, "gwas.tdt.batch-lines", shared_options->batch_lines->ival);
    ret_code |= config_lookup_int(config, "gwas.tdt.batch-bytes", shared_options->batch_bytes->ival);
    if (ret_code == CONFIG_FALSE) {
        LOG_WARN("Neither batch lines nor bytes found in configuration file, must be set via command-line");
    }
    
    config_destroy(config);
    free(config);

    return 0;
}
Exemple #7
0
int find_region_by_type(region_t *region, region_table_t *table) {
    assert(region);
    assert(region->type);
    assert(table);
    
    if (!table->is_ready) { // Don't allow queries over an un-indexed DB
        finish_region_table_loading(table);
    }
    
    int count = 0;
    sqlite3* db = table->storage;
    
    sqlite3_stmt *query_stmt = table->find_region_type_stmt;
    sqlite3_bind_text(query_stmt, 1, region->chromosome, strlen(region->chromosome), SQLITE_STATIC);
    sqlite3_bind_int64(query_stmt, 2, region->start_position);
    sqlite3_bind_int64(query_stmt, 3, region->end_position);
    sqlite3_bind_text(query_stmt, 4, region->type, strlen(region->type), SQLITE_STATIC);
    
    if (sqlite3_step(query_stmt) == SQLITE_ROW) {
        count = sqlite3_column_int(query_stmt, 0);
    } else {
        // Retry once
        sqlite3_reset(query_stmt);
        sqlite3_bind_text(query_stmt, 1, region->chromosome, strlen(region->chromosome), SQLITE_STATIC);
        sqlite3_bind_int64(query_stmt, 2, region->start_position);
        sqlite3_bind_int64(query_stmt, 3, region->end_position);
        sqlite3_bind_text(query_stmt, 4, region->type, strlen(region->type), SQLITE_STATIC);
        
        if (sqlite3_step(query_stmt) == SQLITE_ROW) {
            count = sqlite3_column_int(query_stmt, 0);
        } else {
            LOG_ERROR_F("Regions table failed: %s (%d)\n", sqlite3_errmsg(db), sqlite3_errcode(db));
        }
    }
    
    sqlite3_reset(query_stmt);
    
    return count > 0;
}
Exemple #8
0
int ped_ragel_read(list_t *batches_list, size_t batch_size, ped_file_t *file)
{
    int cs;
    char *p = file->data;
    char *pe = p + file->data_len;
    char *eof = pe;
    char *ts;
    int custom_field_count = 0;

    current_batch = ped_batch_new(batch_size);

    
#line 41 "ped_reader.c"
	{
	cs = ped_start;
	}

#line 46 "ped_reader.c"
	{
	if ( p == pe )
		goto _test_eof;
	switch ( cs )
	{
case 21:
	switch( (*p) ) {
		case 10: goto st22;
		case 35: goto st16;
	}
	if ( 33 <= (*p) && (*p) <= 126 )
		goto tr36;
	goto tr0;
tr0:
#line 53 "ped.ragel"
	{
        LOG_ERROR_F("Line %zu (%s): Error in 'family' field\n", lines + 1, file->filename);
    }
	goto st0;
tr3:
#line 65 "ped.ragel"
	{
        LOG_ERROR_F("Line %zu (%s): Error in 'individual' field\n", lines + 1, file->filename);
    }
	goto st0;
tr7:
#line 77 "ped.ragel"
	{
        LOG_ERROR_F("Line %zu (%s): Error in 'father' field\n", lines + 1, file->filename);
    }
	goto st0;
tr11:
#line 89 "ped.ragel"
	{
        LOG_ERROR_F("Line %zu (%s): Error in 'mother' field\n", lines + 1, file->filename);
    }
	goto st0;
tr15:
#line 109 "ped.ragel"
	{
        LOG_ERROR_F("Line %zu (%s): Error in 'sex' field\n", lines + 1, file->filename);
    }
	goto st0;
tr19:
#line 124 "ped.ragel"
	{
        LOG_ERROR_F("Line %zu (%s): Error in 'phenotype' field\n", lines + 1, file->filename);
    }
	goto st0;
tr26:
#line 141 "ped.ragel"
	{
        LOG_ERROR_F("Line %zu (%s): Error in 'header' field\n", lines + 1, file->filename);
    }
	goto st0;
tr44:
#line 161 "ped.ragel"
	{
        LOG_ERROR_F("Line %zu (%s): Error in '%s' field\n", lines + 1, file->filename, current_record->custom_field);
    }
	goto st0;
#line 108 "ped_reader.c"
st0:
cs = 0;
	goto _out;
st22:
	if ( ++p == pe )
		goto _test_eof22;
case 22:
	if ( (*p) == 10 )
		goto st22;
	goto st0;
tr36:
#line 22 "ped.ragel"
	{
        current_record = create_ped_record();
        genotype = 0;
    }
#line 45 "ped.ragel"
	{
        ts = p;
    }
	goto st1;
st1:
	if ( ++p == pe )
		goto _test_eof1;
case 1:
#line 134 "ped_reader.c"
	if ( (*p) == 9 )
		goto tr1;
	if ( 33 <= (*p) && (*p) <= 126 )
		goto st1;
	goto tr0;
tr1:
#line 49 "ped.ragel"
	{
        set_ped_record_family_id(strndup(ts, p-ts), current_record);
    }
	goto st2;
st2:
	if ( ++p == pe )
		goto _test_eof2;
case 2:
#line 150 "ped_reader.c"
	if ( (*p) == 95 )
		goto tr4;
	if ( (*p) < 65 ) {
		if ( 48 <= (*p) && (*p) <= 57 )
			goto tr4;
	} else if ( (*p) > 90 ) {
		if ( 97 <= (*p) && (*p) <= 122 )
			goto tr4;
	} else
		goto tr4;
	goto tr3;
tr4:
#line 57 "ped.ragel"
	{
        ts = p;
    }
	goto st3;
st3:
	if ( ++p == pe )
		goto _test_eof3;
case 3:
#line 172 "ped_reader.c"
	switch( (*p) ) {
		case 9: goto tr5;
		case 95: goto st3;
	}
	if ( (*p) < 65 ) {
		if ( 48 <= (*p) && (*p) <= 57 )
			goto st3;
	} else if ( (*p) > 90 ) {
		if ( 97 <= (*p) && (*p) <= 122 )
			goto st3;
	} else
		goto st3;
	goto tr3;
tr5:
#line 61 "ped.ragel"
	{
        set_ped_record_individual_id(strndup(ts, p-ts), current_record);
    }
	goto st4;
st4:
	if ( ++p == pe )
		goto _test_eof4;
case 4:
#line 196 "ped_reader.c"
	switch( (*p) ) {
		case 46: goto tr8;
		case 95: goto tr9;
	}
	if ( (*p) < 65 ) {
		if ( 48 <= (*p) && (*p) <= 57 )
			goto tr9;
	} else if ( (*p) > 90 ) {
		if ( 97 <= (*p) && (*p) <= 122 )
			goto tr9;
	} else
		goto tr9;
	goto tr7;
tr8:
#line 69 "ped.ragel"
	{
        ts = p;
    }
	goto st5;
st5:
	if ( ++p == pe )
		goto _test_eof5;
case 5:
#line 220 "ped_reader.c"
	if ( (*p) == 9 )
		goto tr10;
	goto tr7;
tr10:
#line 73 "ped.ragel"
	{
        set_ped_record_father_id(strndup(ts, p-ts), current_record);
    }
	goto st6;
st6:
	if ( ++p == pe )
		goto _test_eof6;
case 6:
#line 234 "ped_reader.c"
	switch( (*p) ) {
		case 46: goto tr12;
		case 95: goto tr13;
	}
	if ( (*p) < 65 ) {
		if ( 48 <= (*p) && (*p) <= 57 )
			goto tr13;
	} else if ( (*p) > 90 ) {
		if ( 97 <= (*p) && (*p) <= 122 )
			goto tr13;
	} else
		goto tr13;
	goto tr11;
tr12:
#line 81 "ped.ragel"
	{
        ts = p;
    }
	goto st7;
st7:
	if ( ++p == pe )
		goto _test_eof7;
case 7:
#line 258 "ped_reader.c"
	if ( (*p) == 9 )
		goto tr14;
	goto tr11;
tr14:
#line 85 "ped.ragel"
	{
        set_ped_record_mother_id(strndup(ts, p-ts), current_record);
    }
	goto st8;
st8:
	if ( ++p == pe )
		goto _test_eof8;
case 8:
#line 272 "ped_reader.c"
	if ( (*p) == 46 )
		goto tr16;
	if ( 48 <= (*p) && (*p) <= 57 )
		goto tr17;
	goto tr15;
tr16:
#line 93 "ped.ragel"
	{
        ts = p;
    }
	goto st9;
st9:
	if ( ++p == pe )
		goto _test_eof9;
case 9:
#line 288 "ped_reader.c"
	if ( (*p) == 9 )
		goto tr18;
	goto tr15;
tr18:
#line 97 "ped.ragel"
	{
        char *field = strndup(ts, p-ts);
        enum Sex sex = UNKNOWN_SEX;
        if (atoi(field) == 1) {
            sex = MALE;
        } else if (atoi(field) == 2) {
            sex = FEMALE;
        }
        set_ped_record_sex(sex, current_record);
        free(field);    // Not set as ped_record_t variable -> not freed later
    }
	goto st10;
st10:
	if ( ++p == pe )
		goto _test_eof10;
case 10:
#line 310 "ped_reader.c"
	switch( (*p) ) {
		case 32: goto tr20;
		case 95: goto tr20;
	}
	if ( (*p) < 65 ) {
		if ( 48 <= (*p) && (*p) <= 57 )
			goto tr20;
	} else if ( (*p) > 90 ) {
		if ( 97 <= (*p) && (*p) <= 122 )
			goto tr20;
	} else
		goto tr20;
	goto tr19;
tr20:
#line 113 "ped.ragel"
	{
        ts = p;
    }
	goto st23;
tr42:
#line 117 "ped.ragel"
	{
        if (strncmp(".", ts, 1)) {
            char *field = strndup(ts, p-ts);
            set_ped_record_phenotype(field, current_record, file);
        }
    }
#line 145 "ped.ragel"
	{
        custom_field_count = 6;
    }
	goto st23;
st23:
	if ( ++p == pe )
		goto _test_eof23;
case 23:
#line 347 "ped_reader.c"
	switch( (*p) ) {
		case 9: goto tr39;
		case 10: goto tr40;
		case 32: goto tr42;
		case 95: goto st23;
	}
	if ( (*p) < 48 ) {
		if ( 11 <= (*p) && (*p) <= 13 )
			goto tr41;
	} else if ( (*p) > 57 ) {
		if ( (*p) > 90 ) {
			if ( 97 <= (*p) && (*p) <= 122 )
				goto st23;
		} else if ( (*p) >= 65 )
			goto st23;
	} else
		goto st23;
	goto tr19;
tr39:
#line 117 "ped.ragel"
	{
        if (strncmp(".", ts, 1)) {
            char *field = strndup(ts, p-ts);
            set_ped_record_phenotype(field, current_record, file);
        }
    }
#line 145 "ped.ragel"
	{
        custom_field_count = 6;
    }
	goto st24;
tr49:
#line 153 "ped.ragel"
	{
        char* field_name = strndup(ts, p-ts);
        custom_field_count++;
        if (custom_field_count == file->num_field) {
            set_ped_record_custom_field(field_name, current_record, file);
        }
    }
	goto st24;
st24:
	if ( ++p == pe )
		goto _test_eof24;
case 24:
#line 393 "ped_reader.c"
	switch( (*p) ) {
		case 9: goto st24;
		case 10: goto tr46;
	}
	if ( (*p) > 13 ) {
		if ( 32 <= (*p) && (*p) <= 126 )
			goto tr48;
	} else if ( (*p) >= 11 )
		goto st26;
	goto tr44;
tr40:
#line 117 "ped.ragel"
	{
        if (strncmp(".", ts, 1)) {
            char *field = strndup(ts, p-ts);
            set_ped_record_phenotype(field, current_record, file);
        }
    }
#line 145 "ped.ragel"
	{
        custom_field_count = 6;
    }
#line 27 "ped.ragel"
	{
        // If batch is full, add to the list of batches and create a new, empty one
        if (ped_batch_is_full(current_batch))
        {
            list_item_t *item = list_item_new(num_records, 1, current_batch);
            list_insert_item(item, batches_list);
            LOG_DEBUG_F("Batch added - %zu records\n", current_batch->length);
            current_batch = ped_batch_new(batch_size);
        }

        // Add current record to current batch
        if (current_record) {
            add_record_to_ped_batch(current_record, current_batch);
            num_records++;
        }
        current_record = NULL;
    }
#line 18 "ped.ragel"
	{
        lines++;
    }
	goto st25;
tr46:
#line 27 "ped.ragel"
	{
        // If batch is full, add to the list of batches and create a new, empty one
        if (ped_batch_is_full(current_batch))
        {
            list_item_t *item = list_item_new(num_records, 1, current_batch);
            list_insert_item(item, batches_list);
            LOG_DEBUG_F("Batch added - %zu records\n", current_batch->length);
            current_batch = ped_batch_new(batch_size);
        }

        // Add current record to current batch
        if (current_record) {
            add_record_to_ped_batch(current_record, current_batch);
            num_records++;
        }
        current_record = NULL;
    }
#line 18 "ped.ragel"
	{
        lines++;
    }
	goto st25;
tr50:
#line 153 "ped.ragel"
	{
        char* field_name = strndup(ts, p-ts);
        custom_field_count++;
        if (custom_field_count == file->num_field) {
            set_ped_record_custom_field(field_name, current_record, file);
        }
    }
#line 27 "ped.ragel"
	{
        // If batch is full, add to the list of batches and create a new, empty one
        if (ped_batch_is_full(current_batch))
        {
            list_item_t *item = list_item_new(num_records, 1, current_batch);
            list_insert_item(item, batches_list);
            LOG_DEBUG_F("Batch added - %zu records\n", current_batch->length);
            current_batch = ped_batch_new(batch_size);
        }

        // Add current record to current batch
        if (current_record) {
            add_record_to_ped_batch(current_record, current_batch);
            num_records++;
        }
        current_record = NULL;
    }
#line 18 "ped.ragel"
	{
        lines++;
    }
	goto st25;
st25:
	if ( ++p == pe )
		goto _test_eof25;
case 25:
#line 499 "ped_reader.c"
	switch( (*p) ) {
		case 10: goto tr46;
		case 32: goto st26;
	}
	if ( (*p) < 33 ) {
		if ( 9 <= (*p) && (*p) <= 13 )
			goto st26;
	} else if ( (*p) > 34 ) {
		if ( 36 <= (*p) && (*p) <= 126 )
			goto tr36;
	} else
		goto tr36;
	goto tr0;
tr41:
#line 117 "ped.ragel"
	{
        if (strncmp(".", ts, 1)) {
            char *field = strndup(ts, p-ts);
            set_ped_record_phenotype(field, current_record, file);
        }
    }
#line 145 "ped.ragel"
	{
        custom_field_count = 6;
    }
	goto st26;
tr51:
#line 153 "ped.ragel"
	{
        char* field_name = strndup(ts, p-ts);
        custom_field_count++;
        if (custom_field_count == file->num_field) {
            set_ped_record_custom_field(field_name, current_record, file);
        }
    }
	goto st26;
st26:
	if ( ++p == pe )
		goto _test_eof26;
case 26:
#line 540 "ped_reader.c"
	switch( (*p) ) {
		case 10: goto tr46;
		case 32: goto st26;
	}
	if ( 9 <= (*p) && (*p) <= 13 )
		goto st26;
	goto st0;
tr48:
#line 149 "ped.ragel"
	{
        ts = p;
    }
	goto st27;
tr52:
#line 153 "ped.ragel"
	{
        char* field_name = strndup(ts, p-ts);
        custom_field_count++;
        if (custom_field_count == file->num_field) {
            set_ped_record_custom_field(field_name, current_record, file);
        }
    }
	goto st27;
st27:
	if ( ++p == pe )
		goto _test_eof27;
case 27:
#line 568 "ped_reader.c"
	switch( (*p) ) {
		case 9: goto tr49;
		case 10: goto tr50;
		case 32: goto tr52;
	}
	if ( (*p) > 13 ) {
		if ( 33 <= (*p) && (*p) <= 126 )
			goto st27;
	} else if ( (*p) >= 11 )
		goto tr51;
	goto tr44;
tr17:
#line 93 "ped.ragel"
	{
        ts = p;
    }
	goto st11;
st11:
	if ( ++p == pe )
		goto _test_eof11;
case 11:
#line 590 "ped_reader.c"
	switch( (*p) ) {
		case 9: goto tr18;
		case 46: goto st12;
	}
	if ( 48 <= (*p) && (*p) <= 57 )
		goto st11;
	goto tr15;
st12:
	if ( ++p == pe )
		goto _test_eof12;
case 12:
	if ( 48 <= (*p) && (*p) <= 57 )
		goto st13;
	goto tr15;
st13:
	if ( ++p == pe )
		goto _test_eof13;
case 13:
	if ( (*p) == 9 )
		goto tr18;
	if ( 48 <= (*p) && (*p) <= 57 )
		goto st13;
	goto tr15;
tr13:
#line 81 "ped.ragel"
	{
        ts = p;
    }
	goto st14;
st14:
	if ( ++p == pe )
		goto _test_eof14;
case 14:
#line 624 "ped_reader.c"
	switch( (*p) ) {
		case 9: goto tr14;
		case 95: goto st14;
	}
	if ( (*p) < 65 ) {
		if ( 48 <= (*p) && (*p) <= 57 )
			goto st14;
	} else if ( (*p) > 90 ) {
		if ( 97 <= (*p) && (*p) <= 122 )
			goto st14;
	} else
		goto st14;
	goto tr11;
tr9:
#line 69 "ped.ragel"
	{
        ts = p;
    }
	goto st15;
st15:
	if ( ++p == pe )
		goto _test_eof15;
case 15:
#line 648 "ped_reader.c"
	switch( (*p) ) {
		case 9: goto tr10;
		case 95: goto st15;
	}
	if ( (*p) < 65 ) {
		if ( 48 <= (*p) && (*p) <= 57 )
			goto st15;
	} else if ( (*p) > 90 ) {
		if ( 97 <= (*p) && (*p) <= 122 )
			goto st15;
	} else
		goto st15;
	goto tr7;
st16:
	if ( ++p == pe )
		goto _test_eof16;
case 16:
	switch( (*p) ) {
		case 9: goto st17;
		case 32: goto tr28;
		case 95: goto tr29;
	}
	if ( (*p) < 65 ) {
		if ( 48 <= (*p) && (*p) <= 57 )
			goto tr29;
	} else if ( (*p) > 90 ) {
		if ( 97 <= (*p) && (*p) <= 122 )
			goto tr29;
	} else
		goto tr29;
	goto tr26;
st17:
	if ( ++p == pe )
		goto _test_eof17;
case 17:
	switch( (*p) ) {
		case 32: goto tr29;
		case 95: goto tr29;
	}
	if ( (*p) < 65 ) {
		if ( 48 <= (*p) && (*p) <= 57 )
			goto tr29;
	} else if ( (*p) > 90 ) {
		if ( 97 <= (*p) && (*p) <= 122 )
			goto tr29;
	} else
		goto tr29;
	goto tr26;
tr29:
#line 128 "ped.ragel"
	{
        ts = p;
    }
	goto st18;
st18:
	if ( ++p == pe )
		goto _test_eof18;
case 18:
#line 707 "ped_reader.c"
	switch( (*p) ) {
		case 9: goto tr30;
		case 10: goto tr31;
		case 32: goto st18;
		case 95: goto st18;
	}
	if ( (*p) < 65 ) {
		if ( 48 <= (*p) && (*p) <= 57 )
			goto st18;
	} else if ( (*p) > 90 ) {
		if ( 97 <= (*p) && (*p) <= 122 )
			goto st18;
	} else
		goto st18;
	goto tr26;
tr30:
#line 132 "ped.ragel"
	{
        char* field_name = strndup(ts, p-ts);
        custom_field_count++;
        if (file->variable_field && !strcmp(field_name, file->variable_field)) {
            file->num_field = custom_field_count;
        }
        free(field_name);
    }
	goto st19;
st19:
	if ( ++p == pe )
		goto _test_eof19;
case 19:
#line 738 "ped_reader.c"
	switch( (*p) ) {
		case 9: goto st19;
		case 10: goto st28;
		case 32: goto tr29;
		case 95: goto tr29;
	}
	if ( (*p) < 65 ) {
		if ( 48 <= (*p) && (*p) <= 57 )
			goto tr29;
	} else if ( (*p) > 90 ) {
		if ( 97 <= (*p) && (*p) <= 122 )
			goto tr29;
	} else
		goto tr29;
	goto tr26;
tr31:
#line 132 "ped.ragel"
	{
        char* field_name = strndup(ts, p-ts);
        custom_field_count++;
        if (file->variable_field && !strcmp(field_name, file->variable_field)) {
            file->num_field = custom_field_count;
        }
        free(field_name);
    }
	goto st28;
st28:
	if ( ++p == pe )
		goto _test_eof28;
case 28:
#line 769 "ped_reader.c"
	if ( (*p) == 10 )
		goto st22;
	if ( (*p) > 34 ) {
		if ( 36 <= (*p) && (*p) <= 126 )
			goto tr36;
	} else if ( (*p) >= 33 )
		goto tr36;
	goto tr0;
tr28:
#line 128 "ped.ragel"
	{
        ts = p;
    }
	goto st20;
st20:
	if ( ++p == pe )
		goto _test_eof20;
case 20:
#line 788 "ped_reader.c"
	switch( (*p) ) {
		case 9: goto tr30;
		case 10: goto tr31;
		case 32: goto tr29;
		case 95: goto tr29;
	}
	if ( (*p) < 65 ) {
		if ( 48 <= (*p) && (*p) <= 57 )
			goto tr29;
	} else if ( (*p) > 90 ) {
		if ( 97 <= (*p) && (*p) <= 122 )
			goto tr29;
	} else
		goto tr29;
	goto tr26;
	}
	_test_eof22: cs = 22; goto _test_eof; 
	_test_eof1: cs = 1; goto _test_eof; 
	_test_eof2: cs = 2; goto _test_eof; 
	_test_eof3: cs = 3; goto _test_eof; 
	_test_eof4: cs = 4; goto _test_eof; 
	_test_eof5: cs = 5; goto _test_eof; 
	_test_eof6: cs = 6; goto _test_eof; 
	_test_eof7: cs = 7; goto _test_eof; 
	_test_eof8: cs = 8; goto _test_eof; 
	_test_eof9: cs = 9; goto _test_eof; 
	_test_eof10: cs = 10; goto _test_eof; 
	_test_eof23: cs = 23; goto _test_eof; 
	_test_eof24: cs = 24; goto _test_eof; 
	_test_eof25: cs = 25; goto _test_eof; 
	_test_eof26: cs = 26; goto _test_eof; 
	_test_eof27: cs = 27; goto _test_eof; 
	_test_eof11: cs = 11; goto _test_eof; 
	_test_eof12: cs = 12; goto _test_eof; 
	_test_eof13: cs = 13; goto _test_eof; 
	_test_eof14: cs = 14; goto _test_eof; 
	_test_eof15: cs = 15; goto _test_eof; 
	_test_eof16: cs = 16; goto _test_eof; 
	_test_eof17: cs = 17; goto _test_eof; 
	_test_eof18: cs = 18; goto _test_eof; 
	_test_eof19: cs = 19; goto _test_eof; 
	_test_eof28: cs = 28; goto _test_eof; 
	_test_eof20: cs = 20; goto _test_eof; 

	_test_eof: {}
	if ( p == eof )
	{
	switch ( cs ) {
	case 24: 
	case 25: 
	case 26: 
#line 27 "ped.ragel"
	{
        // If batch is full, add to the list of batches and create a new, empty one
        if (ped_batch_is_full(current_batch))
        {
            list_item_t *item = list_item_new(num_records, 1, current_batch);
            list_insert_item(item, batches_list);
            LOG_DEBUG_F("Batch added - %zu records\n", current_batch->length);
            current_batch = ped_batch_new(batch_size);
        }

        // Add current record to current batch
        if (current_record) {
            add_record_to_ped_batch(current_record, current_batch);
            num_records++;
        }
        current_record = NULL;
    }
	break;
	case 1: 
#line 53 "ped.ragel"
	{
        LOG_ERROR_F("Line %zu (%s): Error in 'family' field\n", lines + 1, file->filename);
    }
	break;
	case 2: 
	case 3: 
#line 65 "ped.ragel"
	{
        LOG_ERROR_F("Line %zu (%s): Error in 'individual' field\n", lines + 1, file->filename);
    }
	break;
	case 4: 
	case 5: 
	case 15: 
#line 77 "ped.ragel"
	{
        LOG_ERROR_F("Line %zu (%s): Error in 'father' field\n", lines + 1, file->filename);
    }
	break;
	case 6: 
	case 7: 
	case 14: 
#line 89 "ped.ragel"
	{
        LOG_ERROR_F("Line %zu (%s): Error in 'mother' field\n", lines + 1, file->filename);
    }
	break;
	case 8: 
	case 9: 
	case 11: 
	case 12: 
	case 13: 
#line 109 "ped.ragel"
	{
        LOG_ERROR_F("Line %zu (%s): Error in 'sex' field\n", lines + 1, file->filename);
    }
	break;
	case 10: 
#line 124 "ped.ragel"
	{
        LOG_ERROR_F("Line %zu (%s): Error in 'phenotype' field\n", lines + 1, file->filename);
    }
	break;
	case 16: 
	case 17: 
	case 18: 
	case 19: 
	case 20: 
#line 141 "ped.ragel"
	{
        LOG_ERROR_F("Line %zu (%s): Error in 'header' field\n", lines + 1, file->filename);
    }
	break;
	case 27: 
#line 153 "ped.ragel"
	{
        char* field_name = strndup(ts, p-ts);
        custom_field_count++;
        if (custom_field_count == file->num_field) {
            set_ped_record_custom_field(field_name, current_record, file);
        }
    }
#line 27 "ped.ragel"
	{
        // If batch is full, add to the list of batches and create a new, empty one
        if (ped_batch_is_full(current_batch))
        {
            list_item_t *item = list_item_new(num_records, 1, current_batch);
            list_insert_item(item, batches_list);
            LOG_DEBUG_F("Batch added - %zu records\n", current_batch->length);
            current_batch = ped_batch_new(batch_size);
        }

        // Add current record to current batch
        if (current_record) {
            add_record_to_ped_batch(current_record, current_batch);
            num_records++;
        }
        current_record = NULL;
    }
	break;
	case 23: 
#line 117 "ped.ragel"
	{
        if (strncmp(".", ts, 1)) {
            char *field = strndup(ts, p-ts);
            set_ped_record_phenotype(field, current_record, file);
        }
    }
#line 145 "ped.ragel"
	{
        custom_field_count = 6;
    }
#line 27 "ped.ragel"
	{
        // If batch is full, add to the list of batches and create a new, empty one
        if (ped_batch_is_full(current_batch))
        {
            list_item_t *item = list_item_new(num_records, 1, current_batch);
            list_insert_item(item, batches_list);
            LOG_DEBUG_F("Batch added - %zu records\n", current_batch->length);
            current_batch = ped_batch_new(batch_size);
        }

        // Add current record to current batch
        if (current_record) {
            add_record_to_ped_batch(current_record, current_batch);
            num_records++;
        }
        current_record = NULL;
    }
	break;
#line 973 "ped_reader.c"
	}
	}

	_out: {}
	}

#line 221 "ped.ragel"
 

    // Insert the last batch
    if (!ped_batch_is_empty(current_batch))
    {
        list_item_t *item = list_item_new(num_records, 1, current_batch); 
        list_insert_item(item, batches_list);
        LOG_DEBUG_F("Batch added - %zu records (last)\n", current_batch->length);
    }

    if ( cs < 
#line 992 "ped_reader.c"
21
#line 231 "ped.ragel"
 ) 
    {
        LOG_ERROR("The file was not successfully read\n");
        LOG_INFO_F("Last state is %d, but %d was expected\n", 
                cs, 
#line 1000 "ped_reader.c"
21
#line 235 "ped.ragel"
);
    } 

    LOG_INFO_F("PED records read = %zu\n", num_records);

    return cs < 
#line 1009 "ped_reader.c"
21
#line 240 "ped.ragel"
;
}
Exemple #9
0
int run_effect(char **urls, shared_options_data_t *shared_options_data, effect_options_data_t *options_data) {
    int ret_code = 0;
    double start, stop, total;
    
    vcf_file_t *vcf_file = vcf_open(shared_options_data->vcf_filename, shared_options_data->max_batches);
    if (!vcf_file) {
        LOG_FATAL("VCF file does not exist!\n");
    }
    
    ped_file_t *ped_file = NULL;
    if (shared_options_data->ped_filename) {
        ped_file = ped_open(shared_options_data->ped_filename);
        if (!ped_file) {
            LOG_FATAL("PED file does not exist!\n");
        }
        LOG_INFO("About to read PED file...\n");
        // Read PED file before doing any processing
        ret_code = ped_read(ped_file);
        if (ret_code != 0) {
            LOG_FATAL_F("Can't read PED file: %s\n", ped_file->filename);
        }
    }
    
    char *output_directory = shared_options_data->output_directory;
    size_t output_directory_len = strlen(output_directory);
    
    ret_code = create_directory(output_directory);
    if (ret_code != 0 && errno != EEXIST) {
        LOG_FATAL_F("Can't create output directory: %s\n", output_directory);
    }
    
    // Remove all .txt files in folder
    ret_code = delete_files_by_extension(output_directory, "txt");
    if (ret_code != 0) {
        return ret_code;
    }
    
    // Initialize environment for connecting to the web service
    ret_code = init_http_environment(0);
    if (ret_code != 0) {
        return ret_code;
    }
    
    // Output file descriptors
    static cp_hashtable *output_files = NULL;
    // Lines of the output data in the main .txt files
    static list_t *output_list = NULL;
    // Consequence type counters (for summary, must be kept between web service calls)
    static cp_hashtable *summary_count = NULL;
    // Gene list (for genes-with-variants, must be kept between web service calls)
    static cp_hashtable *gene_list = NULL;

    // Initialize collections of file descriptors and summary counters
    ret_code = initialize_output_files(output_directory, output_directory_len, &output_files);
    if (ret_code != 0) {
        return ret_code;
    }
    initialize_output_data_structures(shared_options_data, &output_list, &summary_count, &gene_list);
    initialize_ws_buffers(shared_options_data->num_threads);
    
    // Create job.status file
    char job_status_filename[output_directory_len + 10];
    sprintf(job_status_filename, "%s/job.status", output_directory);
    FILE *job_status = new_job_status_file(job_status_filename);
    if (!job_status) {
        LOG_FATAL("Can't create job status file\n");
    } else {
        update_job_status_file(0, job_status);
    }
    
 
#pragma omp parallel sections private(start, stop, total)
    {
#pragma omp section
        {
            LOG_DEBUG_F("Thread %d reads the VCF file\n", omp_get_thread_num());
            
            start = omp_get_wtime();
            
            ret_code = vcf_read(vcf_file, 1,
                                (shared_options_data->batch_bytes > 0) ? shared_options_data->batch_bytes : shared_options_data->batch_lines,
                                shared_options_data->batch_bytes <= 0);

            stop = omp_get_wtime();
            total = stop - start;

            if (ret_code) {
                LOG_ERROR_F("Error %d while reading the file %s\n", ret_code, vcf_file->filename);
            }

            LOG_INFO_F("[%dR] Time elapsed = %f s\n", omp_get_thread_num(), total);
            LOG_INFO_F("[%dR] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);

            notify_end_parsing(vcf_file);
        }
        
#pragma omp section
        {
            // Enable nested parallelism and set the number of threads the user has chosen
            omp_set_nested(1);
            
            LOG_DEBUG_F("Thread %d processes data\n", omp_get_thread_num());
            
            // Filters and files for filtering output
            filter_t **filters = NULL;
            int num_filters = 0;
            if (shared_options_data->chain != NULL) {
                filters = sort_filter_chain(shared_options_data->chain, &num_filters);
            }
            FILE *passed_file = NULL, *failed_file = NULL, *non_processed_file = NULL;
            get_filtering_output_files(shared_options_data, &passed_file, &failed_file);
            
            // Pedigree information (used in some filters)
            individual_t **individuals = NULL;
            khash_t(ids) *sample_ids = NULL;
            
            // Filename structure outdir/vcfname.errors
            char *prefix_filename = calloc(strlen(shared_options_data->vcf_filename), sizeof(char));
            get_filename_from_path(shared_options_data->vcf_filename, prefix_filename);
            char *non_processed_filename = malloc((strlen(shared_options_data->output_directory) + strlen(prefix_filename) + 9) * sizeof(char));
            sprintf(non_processed_filename, "%s/%s.errors", shared_options_data->output_directory, prefix_filename);
            non_processed_file = fopen(non_processed_filename, "w");
            free(non_processed_filename);
            
            // Maximum size processed by each thread (never allow more than 1000 variants per query)
            if (shared_options_data->batch_lines > 0) {
                shared_options_data->entries_per_thread = MIN(MAX_VARIANTS_PER_QUERY, 
                            ceil((float) shared_options_data->batch_lines / shared_options_data->num_threads));
            } else {
                shared_options_data->entries_per_thread = MAX_VARIANTS_PER_QUERY;
            }
            LOG_DEBUG_F("entries-per-thread = %d\n", shared_options_data->entries_per_thread);
    
            int i = 0;
            vcf_batch_t *batch = NULL;
            int ret_ws_0 = 0, ret_ws_1 = 0, ret_ws_2 = 0;
            
            start = omp_get_wtime();

            while (batch = fetch_vcf_batch(vcf_file)) {
                if (i == 0) {
                    // Add headers associated to the defined filters
                    vcf_header_entry_t **filter_headers = get_filters_as_vcf_headers(filters, num_filters);
                    for (int j = 0; j < num_filters; j++) {
                        add_vcf_header_entry(filter_headers[j], vcf_file);
                    }
                        
                    // Write file format, header entries and delimiter
                    if (passed_file != NULL) { write_vcf_header(vcf_file, passed_file); }
                    if (failed_file != NULL) { write_vcf_header(vcf_file, failed_file); }
                    if (non_processed_file != NULL) { write_vcf_header(vcf_file, non_processed_file); }
                    
                    LOG_DEBUG("VCF header written\n");
                    
                    if (ped_file) {
                        // Create map to associate the position of individuals in the list of samples defined in the VCF file
                        sample_ids = associate_samples_and_positions(vcf_file);
                        // Sort individuals in PED as defined in the VCF file
                        individuals = sort_individuals(vcf_file, ped_file);
                    }
                }
                
//                     printf("batch loaded = '%.*s'\n", 50, batch->text);
//                     printf("batch text len = %zu\n", strlen(batch->text));

//                 if (i % 10 == 0) {
                    LOG_INFO_F("Batch %d reached by thread %d - %zu/%zu records \n", 
                            i, omp_get_thread_num(),
                            batch->records->size, batch->records->capacity);
//                 }

                int reconnections = 0;
                int max_reconnections = 3; // TODO allow to configure?

                // Write records that passed to a separate file, and query the WS with them as args
                array_list_t *failed_records = NULL;
                int num_variables = ped_file? get_num_variables(ped_file): 0;
                array_list_t *passed_records = filter_records(filters, num_filters, individuals, sample_ids, num_variables, batch->records, &failed_records);
                if (passed_records->size > 0) {
                    // Divide the list of passed records in ranges of size defined in config file
                    int num_chunks;
                    int *chunk_sizes;
                    int *chunk_starts = create_chunks(passed_records->size, shared_options_data->entries_per_thread, &num_chunks, &chunk_sizes);
                    
                    do {
                        // OpenMP: Launch a thread for each range
                        #pragma omp parallel for num_threads(shared_options_data->num_threads)
                        for (int j = 0; j < num_chunks; j++) {
                            int tid = omp_get_thread_num();
                            LOG_DEBUG_F("[%d] WS invocation\n", tid);
                            LOG_DEBUG_F("[%d] -- effect WS\n", tid);
                            if (!reconnections || ret_ws_0) {
                                ret_ws_0 = invoke_effect_ws(urls[0], (vcf_record_t**) (passed_records->items + chunk_starts[j]), 
                                                            chunk_sizes[j], options_data->excludes);
                                parse_effect_response(tid, output_directory, output_directory_len, output_files, output_list, summary_count, gene_list);
                                free(effect_line[tid]);
                                effect_line[tid] = (char*) calloc (max_line_size[tid], sizeof(char));
                            }
                            
                            if (!options_data->no_phenotypes) {
                                if (!reconnections || ret_ws_1) {
                                    LOG_DEBUG_F("[%d] -- snp WS\n", omp_get_thread_num());
                                    ret_ws_1 = invoke_snp_phenotype_ws(urls[1], (vcf_record_t**) (passed_records->items + chunk_starts[j]), chunk_sizes[j]);
                                    parse_snp_phenotype_response(tid, output_list);
                                    free(snp_line[tid]);
                                    snp_line[tid] = (char*) calloc (snp_max_line_size[tid], sizeof(char));
                                }
                                 
                                if (!reconnections || ret_ws_2) {
                                    LOG_DEBUG_F("[%d] -- mutation WS\n", omp_get_thread_num());
                                    ret_ws_2 = invoke_mutation_phenotype_ws(urls[2], (vcf_record_t**) (passed_records->items + chunk_starts[j]), chunk_sizes[j]);
                                    parse_mutation_phenotype_response(tid, output_list);
                                    free(mutation_line[tid]);
                                    mutation_line[tid] = (char*) calloc (mutation_max_line_size[tid], sizeof(char));
                                }
                            }
                        }
                        
                        LOG_DEBUG_F("*** %dth web services invocation finished\n", i);
                        
                        if (ret_ws_0 || ret_ws_1 || ret_ws_2) {
                            if (ret_ws_0) {
                                LOG_ERROR_F("Effect web service error: %s\n", get_last_http_error(ret_ws_0));
                            }
                            if (ret_ws_1) {
                                LOG_ERROR_F("SNP phenotype web service error: %s\n", get_last_http_error(ret_ws_1));
                            }
                            if (ret_ws_2) {
                                LOG_ERROR_F("Mutations phenotype web service error: %s\n", get_last_http_error(ret_ws_2));
                            }
                            
                            // In presence of errors, wait 4 seconds before retrying
                            reconnections++;
                            LOG_ERROR_F("Some errors ocurred, reconnection #%d\n", reconnections);
                            sleep(4);
                        } else {
                            free(chunk_starts);
                            free(chunk_sizes);
                        }
                    } while (reconnections < max_reconnections && (ret_ws_0 || ret_ws_1 || ret_ws_2));
                }
                
                // If the maximum number of reconnections was reached still with errors, 
                // write the non-processed batch to the corresponding file
                if (reconnections == max_reconnections && (ret_ws_0 || ret_ws_1 || ret_ws_2)) {
                #pragma omp critical
                    {
                        write_vcf_batch(batch, non_processed_file);
                    }
                }
                
                // Write records that passed and failed filters to separate files, and free them
                write_filtering_output_files(passed_records, failed_records, passed_file, failed_file);
                free_filtered_records(passed_records, failed_records, batch->records);
                
                // Free batch and its contents
                vcf_batch_free(batch);
                
                i++;
            }

            stop = omp_get_wtime();

            total = stop - start;

            LOG_INFO_F("[%d] Time elapsed = %f s\n", omp_get_thread_num(), total);
            LOG_INFO_F("[%d] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);

            // Free resources
            if (passed_file) { fclose(passed_file); }
            if (failed_file) { fclose(failed_file); }
            if (non_processed_file) { fclose(non_processed_file); }
            
            // Free filters
            for (i = 0; i < num_filters; i++) {
                filter_t *filter = filters[i];
                filter->free_func(filter);
            }
            free(filters);
            
            // Decrease list writers count
            for (i = 0; i < shared_options_data->num_threads; i++) {
                list_decr_writers(output_list);
            }
        }
        
#pragma omp section
        {
            // Thread which writes the results to all_variants, summary and one file per consequence type
            int ret = 0;
            char *line;
            list_item_t* item = NULL;
            FILE *fd = NULL;
            
            FILE *all_variants_file = cp_hashtable_get(output_files, "all_variants");
            FILE *snp_phenotype_file = cp_hashtable_get(output_files, "snp_phenotypes");
            FILE *mutation_phenotype_file = cp_hashtable_get(output_files, "mutation_phenotypes");
            
            while ((item = list_remove_item(output_list)) != NULL) {
                line = item->data_p;
                
                // Type greater than 0: consequence type identified by its SO code
                // Type equals to -1: SNP phenotype
                // Type equals to -2: mutation phenotype
                if (item->type > 0) {
                    // Write entry in the consequence type file
                    fd = cp_hashtable_get(output_files, &(item->type));
                    int ret = fprintf(fd, "%s\n", line);
                    if (ret < 0) {
                        LOG_ERROR_F("Error writing to file: '%s'\n", line);
                    }
                    
                    // Write in all_variants
                    ret = fprintf(all_variants_file, "%s\n", line);
                    if (ret < 0) {
                        LOG_ERROR_F("Error writing to all_variants: '%s'\n", line);
                    }
                    
                } else if (item->type == SNP_PHENOTYPE) {
                    ret = fprintf(snp_phenotype_file, "%s\n", line);
                    if (ret < 0) {
                        LOG_ERROR_F("Error writing to snp_phenotypes: '%s'\n", line);
                    }
                    
                } else if (item->type == MUTATION_PHENOTYPE) {
                    ret = fprintf(mutation_phenotype_file, "%s\n", line);
                    if (ret < 0) {
                        LOG_ERROR_F("Error writing to mutation_phenotypes: '%s'\n", line);
                    }
                }
                
                free(line);
                list_item_free(item);
            }
            
        }
    }

    write_summary_file(summary_count, cp_hashtable_get(output_files, "summary"));
    write_genes_with_variants_file(gene_list, output_directory);
    write_result_file(shared_options_data, options_data, summary_count, output_directory);

    free_output_data_structures(output_files, summary_count, gene_list);
    free_ws_buffers(shared_options_data->num_threads);
    free(output_list);
    vcf_close(vcf_file);
    
    update_job_status_file(100, job_status);
    close_job_status_file(job_status);
    
    return ret_code;
}
Exemple #10
0
int main (int argc, char *argv[])
{
    size_t max_batches = 20;
    size_t batch_size = 2000;
    list_t *read_list = (list_t*) malloc (sizeof(list_t));
    list_init("batches", 1, max_batches, read_list);

    int ret_code;
    double start, stop, total;
    char *filename = (char*) malloc ((strlen(argv[1])+1) * sizeof(char));
    strncat(filename, argv[1], strlen(argv[1]));
    gff_file_t* file;

    init_log_custom(LOG_LEVEL_DEBUG, 1, NULL, "w");

    #pragma omp parallel sections private(start, stop, total) lastprivate(file)
    {
        #pragma omp section
        {
            LOG_DEBUG_F("Thread %d reads the GFF file\n", omp_get_thread_num());
            // Reading
            start = omp_get_wtime();

            file = gff_open(filename);
            ret_code = gff_read_batches(read_list, batch_size, file);

            stop = omp_get_wtime();
            total = (stop - start);

            if (ret_code) {
                LOG_FATAL_F("[%dR] Error code = %d\n", omp_get_thread_num(), ret_code);
            }
            LOG_INFO_F("[%dR] Time elapsed = %f s\n", omp_get_thread_num(), total);
            LOG_INFO_F("[%dR] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);

            // Writing to a new file
            if (argc == 3)
            {
                start = omp_get_wtime();

                ret_code = gff_write(file, argv[2]);

                stop = omp_get_wtime();
                total = (stop - start);

                if (ret_code) {
                    LOG_ERROR_F("[%dW] Error code = %d\n", omp_get_thread_num(), ret_code);
                }
                LOG_INFO_F("[%dW] Time elapsed = %f s\n", omp_get_thread_num(), total);
                LOG_INFO_F("[%dW] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);
            }

            list_decr_writers(read_list);

            gff_close(file, 0);
        }
        #pragma omp section
        {
            printf("1st log debug\n");
            LOG_DEBUG_F("OMP num threads = %d\n", omp_get_num_threads());
            LOG_DEBUG_F("Thread %d prints info\n", omp_get_thread_num());
            printf("after 1st log debug\n");

            start = omp_get_wtime();

            int i = 0;
            list_item_t* item = NULL;
            FILE *out = fopen("result.gff", "w");
            while ( (item = list_remove_item(read_list)) != NULL ) {
                if (i % 200 == 0)
                {
                    int debug = 1;
                    LOG_DEBUG_F("Batch %d reached by thread %d - %zu/%zu records \n", i, omp_get_thread_num(),
                    ((gff_batch_t*) item->data_p)->length, ((gff_batch_t*) item->data_p)->max_length);
                }

//             gff_write_to_file(file, out);
//             gff_batch_print(stdout, item->data_p);
                write_gff_batch(item->data_p, out);
                gff_batch_free(item->data_p);
                list_item_free(item);
                i++;
            }
            fclose(out);

            stop = omp_get_wtime();
            total = (stop - start);

            LOG_INFO_F("[%d] Time elapsed = %f s\n", omp_get_thread_num(), total);
            LOG_INFO_F("[%d] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);
        }
    }

    free(read_list);

    return 0;
}
Exemple #11
0
/**
 * Initialize and activate timing of a context.
 */
int
bfwork_context_init_timing(bfwork_context_t *context, const char *tag, const char *path_folder)
{
	int err;
	char *sched;
	char filename[100];
	char intaux[20];


	assert(context);

	//Set tag
	context->tag = (char *) tag;

	//Create timing
	if(time_new_stats(20, &context->time_stats))
	{
		LOG_ERROR("Failed to initialize time stats\n");
	}

	//Get OMP schedule
	sched = getenv("OMP_SCHEDULE");

	//Target folder for stats?
	if(path_folder != NULL)
	{
		strcpy(filename, path_folder);

		//Create stats directory
		err = mkdir(filename, S_IRWXU);
		if(err)
		{
			err = errno;
			LOG_WARN_F("Failed to create stats directory \"%s\", error code: %s\n", filename, strerror(err));
		}

		strcat(filename, "/");
		if(tag)
		{
			strcat(filename,tag);
		}
		if(sched)
		{
			strcat(filename,"_");
			strcat(filename,sched);
		}
		else
		{
			printf("ERROR: Obtaining OMP_SCHEDULE environment value\n");
		}

		//strcat(filename,"_");
		//sprintf(intaux, "%d", MAX_BATCH_SIZE);
		//strcat(filename, intaux);
		strcat(filename, "_");
		sprintf(intaux, "%d", omp_get_max_threads());
		strcat(filename, intaux);
		strcat(filename, ".stats");

		//Set output file
		if(time_set_output_file(filename, context->time_stats))
		{
			LOG_ERROR_F("Failed to set timing file output to \"%s\"\n", filename);
		}
		else
		{
			printf("STATISTICS ACTIVATED, output file: %s\n\n", filename);
		}

	}

	return NO_ERROR;
}
Exemple #12
0
/**
 * PRIVATE. Wander for a region.
 */
static inline int
bfwork_obtain_region(bam_fwork_t *fwork, bam_region_t *region)
{
	int err, bytes;
	bam1_t *read;
	double times;

	//Get first read
	if(last_read != NULL)
	{
		read = last_read;
		bytes = last_read_bytes;
		last_read = NULL;
	}
	else
	{
		//Get first read from file
		read = bam_init1();
		assert(read);
		bytes = bam_read1(fwork->input_file->bam_fd, read);
	}

	//Iterate reads
	while(bytes > 0)
	{
		//Wander this read
		omp_set_lock(&region->lock);
#ifdef D_TIME_DEBUG
			times = omp_get_wtime();
#endif
		err = fwork->context->wander_f(fwork, region, read);
#ifdef D_TIME_DEBUG
			times = omp_get_wtime() - times;
			if(fwork->context->time_stats)
				time_add_time_slot(D_FWORK_WANDER_FUNC, fwork->context->time_stats, times);
#endif
		omp_unset_lock(&region->lock);
		switch(err)
		{
		case WANDER_READ_FILTERED:
			//This read dont pass the filters
		case NO_ERROR:
			//Add read to region
			omp_set_lock(&region->lock);
			region->reads[region->size]  = read;
			region->size++;

			//Region is full?
			if(region->size >= region->max_size)
			{
				omp_unset_lock(&region->lock);
				return WANDER_REGION_CHANGED;
			}
			omp_unset_lock(&region->lock);

			//Get next read from file
			read = bam_init1();
			assert(read);
			bytes = bam_read1(fwork->input_file->bam_fd, read);
			break;

		case WANDER_REGION_CHANGED:
			//The region have changed
			last_read = read;
			last_read_bytes = bytes;
			return err;

		default:
			//Unknown error
			LOG_ERROR_F("Framework fails with error code: %d\n", err);
			return err;
		}
	}

	//Check read error
	if(bytes <= 0)
	{
		//Destroy bam
		bam_destroy1(read);

		//End of file
		if(bytes == -1)
		{
			return WANDER_READ_EOF;
		}
		else
		{
			return WANDER_READ_TRUNCATED;
		}
	}

	return NO_ERROR;
}
Exemple #13
0
int run_stats(shared_options_data_t *shared_options_data, stats_options_data_t *options_data) {
    file_stats_t *file_stats = file_stats_new();
    sample_stats_t **sample_stats;
    
    // List that stores the batches of records filtered by each thread
    list_t *output_list[shared_options_data->num_threads];
    // List that stores which thread filtered the next batch to save
    list_t *next_token_list = malloc(sizeof(list_t));

    int ret_code;
    double start, stop, total;
    
    vcf_file_t *vcf_file = vcf_open(shared_options_data->vcf_filename, shared_options_data->max_batches);
    if (!vcf_file) {
        LOG_FATAL("VCF file does not exist!\n");
    }
    
    ped_file_t *ped_file = NULL;
    if (shared_options_data->ped_filename) {
        ped_file = ped_open(shared_options_data->ped_filename);
        if (!ped_file) {
            LOG_FATAL("PED file does not exist!\n");
        }
        if(options_data->variable) {
            set_variable_field(options_data->variable, 0, ped_file);
        } else {
            set_variable_field("PHENO", 6, ped_file);
        }
        
        if(options_data->variable_groups) {
            int n, m;
            char *variable_groups = strdup(options_data->variable_groups);
            char **groups;
            char **phenos_in_group;
            groups = split(variable_groups, ":", &n);
            for(int i = 0; i < n; i++){
                phenos_in_group = split(groups[i], ",", &m);
                if(set_phenotype_group(phenos_in_group, m, ped_file) < 0) {
                    LOG_ERROR("Variable can't appear in two groups\n");
                    return DUPLICATED_VARIABLE;
                }
                free(phenos_in_group);
            }
            ped_file->accept_new_values = 0;
            
            free(variable_groups);
            free(groups);
        } else {
            ped_file->accept_new_values = 1;
        }
        if(options_data->phenotype) {
            int n;
            char* phenotypes = strdup(options_data->phenotype);
            char** pheno_values = split(phenotypes, ",", &n);
            if(n != 2) {
                LOG_ERROR("To handle case-control test, only two phenotypes are supported\n");
                return MORE_THAN_TWO_PHENOTYPES;
            } else {
                set_unaffected_phenotype(pheno_values[0],ped_file);
                set_affected_phenotype(pheno_values[1],ped_file);
            }
        } else {
            set_unaffected_phenotype("1", ped_file);
            set_affected_phenotype("2", ped_file);
        }
        
        LOG_INFO("About to read PED file...\n");
        // Read PED file before doing any processing
        ret_code = ped_read(ped_file);
        if (ret_code != 0) {
            LOG_FATAL_F("Can't read PED file: %s\n", ped_file->filename);
        }
        if(!ped_file->num_field) {
            LOG_ERROR_F("Can't find the specified field \"%s\" in file: %s \n", options_data->variable, ped_file->filename);
            return VARIABLE_FIELD_NOT_FOUND;
        }
    }
    
    ret_code = create_directory(shared_options_data->output_directory);
    if (ret_code != 0 && errno != EEXIST) {
        LOG_FATAL_F("Can't create output directory: %s\n", shared_options_data->output_directory);
    }
    
    // Initialize variables related to the different threads
    for (int i = 0; i < shared_options_data->num_threads; i++) {
        output_list[i] = (list_t*) malloc(sizeof(list_t));
        list_init("input", 1, shared_options_data->num_threads * shared_options_data->batch_lines, output_list[i]);
    }
    list_init("next_token", shared_options_data->num_threads, INT_MAX, next_token_list);
    
    LOG_INFO("About to retrieve statistics from VCF file...\n");

#pragma omp parallel sections private(start, stop, total)
    {
#pragma omp section
        {
            LOG_DEBUG_F("Thread %d reads the VCF file\n", omp_get_thread_num());
            // Reading
            start = omp_get_wtime();

            if (shared_options_data->batch_bytes > 0) {
                ret_code = vcf_parse_batches_in_bytes(shared_options_data->batch_bytes, vcf_file);
            } else if (shared_options_data->batch_lines > 0) {
                ret_code = vcf_parse_batches(shared_options_data->batch_lines, vcf_file);
            }

            stop = omp_get_wtime();
            total = stop - start;

            if (ret_code) { LOG_FATAL_F("[%dR] Error code = %d\n", omp_get_thread_num(), ret_code); }

            LOG_INFO_F("[%dR] Time elapsed = %f s\n", omp_get_thread_num(), total);
            LOG_INFO_F("[%dR] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);

            notify_end_parsing(vcf_file);
        }
        
#pragma omp section
        {
            // Enable nested parallelism and set the number of threads the user has chosen
            omp_set_nested(1);
            LOG_DEBUG_F("Thread %d processes data\n", omp_get_thread_num());
            
            individual_t **individuals = NULL;
            khash_t(ids) *sample_ids = NULL;
            khash_t(str) *phenotype_ids = NULL;
            int num_phenotypes;
            
            start = omp_get_wtime();
            
            int i = 0;
            vcf_batch_t *batch = NULL;
            while ((batch = fetch_vcf_batch(vcf_file)) != NULL) {
                if (i == 0) {
                    sample_stats = malloc (get_num_vcf_samples(vcf_file) * sizeof(sample_stats_t*));
                    for (int j = 0; j < get_num_vcf_samples(vcf_file); j++) {
                        sample_stats[j] = sample_stats_new(array_list_get(j, vcf_file->samples_names));
                    }
                    
                    if (ped_file) {
                        // Create map to associate the position of individuals in the list of samples defined in the VCF file
                        sample_ids = associate_samples_and_positions(vcf_file);
                        // Sort individuals in PED as defined in the VCF file
                        individuals = sort_individuals(vcf_file, ped_file);
                        // Get the khash of the phenotypes in PED file
                        phenotype_ids = get_phenotypes(ped_file);
                        num_phenotypes = get_num_variables(ped_file);
                    }
                }
                
                if (i % 50 == 0) {
                    LOG_INFO_F("Batch %d reached by thread %d - %zu/%zu records \n", 
                                i, omp_get_thread_num(),
                                batch->records->size, batch->records->capacity);
                }

                // Divide the list of passed records in ranges of size defined in config file
                int num_chunks;
                int *chunk_sizes = NULL;
                array_list_t *input_records = batch->records;
                int *chunk_starts = create_chunks(input_records->size, 
                                                  ceil((float) shared_options_data->batch_lines / shared_options_data->num_threads), 
                                                  &num_chunks, &chunk_sizes);
                
                // OpenMP: Launch a thread for each range
                #pragma omp parallel for num_threads(shared_options_data->num_threads)
                for (int j = 0; j < num_chunks; j++) {
                    LOG_DEBUG_F("[%d] Stats invocation\n", omp_get_thread_num());
                    // Invoke variant stats and/or sample stats when applies
                    if (options_data->variant_stats) {
                        int index = omp_get_thread_num() % shared_options_data->num_threads;
                        ret_code = get_variants_stats((vcf_record_t**) (input_records->items + chunk_starts[j]),
                                                      chunk_sizes[j], individuals, sample_ids,num_phenotypes, output_list[index], file_stats); 
                    }
                    
                    if (options_data->sample_stats) {
                        ret_code |= get_sample_stats((vcf_record_t**) (input_records->items + chunk_starts[j]), 
                                                      chunk_sizes[j], individuals, sample_ids, sample_stats, file_stats);
                    }
                }
                
                if (options_data->variant_stats) {
                    // Insert as many tokens as elements correspond to each thread
                    for (int t = 0; t < num_chunks; t++) {
                        for (int s = 0; s < chunk_sizes[t]; s++) {
                            list_item_t *token_item = list_item_new(t, 0, NULL);
                            list_insert_item(token_item, next_token_list);
                        }
                    }
                }
                
                free(chunk_starts);
                free(chunk_sizes);
                vcf_batch_free(batch);
                
                i++;
            }
            
            stop = omp_get_wtime();
            total = stop - start;

            LOG_INFO_F("[%d] Time elapsed = %f s\n", omp_get_thread_num(), total);
            LOG_INFO_F("[%d] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);
            
            // Decrease list writers count
            for (i = 0; i < shared_options_data->num_threads; i++) {
                list_decr_writers(next_token_list);
                list_decr_writers(output_list[i]);
            }
            
            if (sample_ids) { kh_destroy(ids, sample_ids); }
            if (individuals) { free(individuals); }
        }
        
#pragma omp section
        {
            LOG_DEBUG_F("Thread %d writes the output\n", omp_get_thread_num());
            
            char *stats_prefix = get_vcf_stats_filename_prefix(shared_options_data->vcf_filename, 
                                                               shared_options_data->output_filename, 
                                                               shared_options_data->output_directory);
            
            // File names and descriptors for output to plain text files
            char *stats_filename, *summary_filename, *phenotype_filename;
            FILE *stats_fd, *summary_fd, **phenotype_fd;
            
            char *stats_db_name;
            sqlite3 *db = NULL;
            khash_t(stats_chunks) *hash;
            
            khash_t(str) *phenotype_ids;
            int num_phenotypes;
            if(ped_file){
                phenotype_ids = get_phenotypes(ped_file);
                num_phenotypes = get_num_variables(ped_file);
            }
            
            if (options_data->save_db) {
                delete_files_by_extension(shared_options_data->output_directory, "db");
                stats_db_name = calloc(strlen(stats_prefix) + strlen(".db") + 2, sizeof(char));
                sprintf(stats_db_name, "%s.db", stats_prefix);
                create_stats_db(stats_db_name, VCF_CHUNKSIZE, create_vcf_query_fields, &db);
                hash = kh_init(stats_chunks);
            }
            
            // Write variant (and global) statistics
            if (options_data->variant_stats) {
                stats_filename = get_variant_stats_output_filename(stats_prefix);
                if (!(stats_fd = fopen(stats_filename, "w"))) {
                    LOG_FATAL_F("Can't open file for writing statistics of variants: %s\n", stats_filename);
                }
                
                //Open one file for each phenotype
                if(ped_file){
                    phenotype_fd = malloc(sizeof(FILE*)*num_phenotypes);
                    if(options_data->variable_groups){
                        int n;
                        char *variable_groups = strdup(options_data->variable_groups);
                        char ** names = split(variable_groups, ":", &n);
                        for(int i = 0; i < n; i++) {
                            phenotype_filename = get_variant_phenotype_stats_output_filename(stats_prefix, names[i]);
                            if(!(phenotype_fd[i] = fopen(phenotype_filename, "w"))) {
                                LOG_FATAL_F("Can't open file for writing statistics of variants per phenotype: %s\n", stats_filename);
                            }
                            free(phenotype_filename);
                        }
                        free(names);
                        free(variable_groups);
                    } else {
                 
                        for (khint_t i = kh_begin(phenotype_ids); i != kh_end(phenotype_ids); ++i) {
                            if (!kh_exist(phenotype_ids,i)) continue;
                            
                            phenotype_filename = get_variant_phenotype_stats_output_filename(stats_prefix, kh_key(phenotype_ids,i));
                            if(!(phenotype_fd[kh_val(phenotype_ids,i)] = fopen(phenotype_filename, "w"))) {
                                LOG_FATAL_F("Can't open file for writing statistics of variants per phenotype: %s\n", stats_filename);
                            }
                            free(phenotype_filename);
                        }
                    }
                }
                // Write header
                report_vcf_variant_stats_header(stats_fd);
                if(ped_file){
                    for(int i = 0; i < num_phenotypes; i++)
                        report_vcf_variant_phenotype_stats_header(phenotype_fd[i]);
                }
                
                // For each variant, generate a new line
                int avail_stats = 0;
                variant_stats_t *var_stats_batch[VCF_CHUNKSIZE];
                list_item_t *token_item = NULL, *output_item = NULL;
                while ( token_item = list_remove_item(next_token_list) ) {
                    output_item = list_remove_item(output_list[token_item->id]);
                    assert(output_item);
                    var_stats_batch[avail_stats] = output_item->data_p;
                    avail_stats++;
                    
                    // Run only when certain amount of stats is available
                    if (avail_stats >= VCF_CHUNKSIZE) {
                        report_vcf_variant_stats(stats_fd, db, hash, avail_stats, var_stats_batch);
                        
                        if(ped_file)
                            for(int i = 0; i < num_phenotypes; i++)
                                report_vcf_variant_phenotype_stats(phenotype_fd[i], avail_stats, var_stats_batch, i);

                        // Free all stats from the "batch"
                        for (int i = 0; i < avail_stats; i++) {
                            variant_stats_free(var_stats_batch[i]);
                        }
                        avail_stats = 0;
                    }
                    
                    // Free resources
                    list_item_free(output_item);
                    list_item_free(token_item);
                }
                
                if (avail_stats > 0) {
                    report_vcf_variant_stats(stats_fd, db, hash, avail_stats, var_stats_batch);
                    
                    if(ped_file)
                        for(int i = 0; i < num_phenotypes; i++)
                            report_vcf_variant_phenotype_stats(phenotype_fd[i], avail_stats, var_stats_batch, i);

                    // Free all stats from the "batch"
                    for (int i = 0; i < avail_stats; i++) {
                        variant_stats_free(var_stats_batch[i]);
                    }
                    avail_stats = 0;
                }
                
                // Write whole file stats (data only got when launching variant stats)
                summary_filename = get_vcf_file_stats_output_filename(stats_prefix);
                if (!(summary_fd = fopen(summary_filename, "w"))) {
                    LOG_FATAL_F("Can't open file for writing statistics summary: %s\n", summary_filename);
                }
                report_vcf_summary_stats(summary_fd, db, file_stats);
                
                free(stats_filename);
                free(summary_filename);
                
                // Close variant stats file
                if (stats_fd) { fclose(stats_fd); }
                if (summary_fd) { fclose(summary_fd); }
				if(ped_file){
		            for(int i = 0; i < num_phenotypes; i++)
		                if(phenotype_fd[i]) fclose(phenotype_fd[i]);
					free(phenotype_fd);
				}
            }
            
            // Write sample statistics
            if (options_data->sample_stats) {
                stats_filename = get_sample_stats_output_filename(stats_prefix);
                if (!(stats_fd = fopen(stats_filename, "w"))) {
                    LOG_FATAL_F("Can't open file for writing statistics of samples: %s\n", stats_filename);
                }
                
                report_vcf_sample_stats_header(stats_fd);
                report_vcf_sample_stats(stats_fd, NULL, vcf_file->samples_names->size, sample_stats);
                
                // Close sample stats file
                free(stats_filename);
                if (stats_fd) { fclose(stats_fd); }
            }
            
            free(stats_prefix);
            
            if (db) {
                insert_chunk_hash(VCF_CHUNKSIZE, hash, db);
                create_stats_index(create_vcf_index, db);
                close_stats_db(db, hash);
            }
            
        }
    }
    
    for (int i = 0; i < get_num_vcf_samples(vcf_file); i++) {
        sample_stats_free(sample_stats[i]);
    }
    free(sample_stats);
    free(file_stats);
    
    free(next_token_list);
    for (int i = 0; i < shared_options_data->num_threads; i++) {
        free(output_list[i]);
    }
    
    vcf_close(vcf_file);
    if (ped_file) { ped_close(ped_file, 1,1); }
    
    return 0;
}
Exemple #14
0
int run_merge(shared_options_data_t *shared_options_data, merge_options_data_t *options_data) {
    if (options_data->num_files == 1) {
        LOG_INFO("Just one VCF file specified, no need to merge");
        return 0;
    }
    
    list_t *read_list[options_data->num_files];
    memset(read_list, 0, options_data->num_files * sizeof(list_t*));
    list_t *output_header_list = (list_t*) malloc (sizeof(list_t));
    list_init("headers", shared_options_data->num_threads, INT_MAX, output_header_list);
    list_t *output_list = (list_t*) malloc (sizeof(list_t));
    list_init("output", shared_options_data->num_threads, shared_options_data->max_batches * shared_options_data->batch_lines, output_list);
    list_t *merge_tokens = (list_t*) malloc (sizeof(list_t));
    list_init("tokens", 1, INT_MAX, merge_tokens);
    
    int ret_code = 0;
    double start, stop, total;
    vcf_file_t *files[options_data->num_files];
    memset(files, 0, options_data->num_files * sizeof(vcf_file_t*));
    
    // Initialize variables related to the different files
    for (int i = 0; i < options_data->num_files; i++) {
        files[i] = vcf_open(options_data->input_files[i], shared_options_data->max_batches);
        if (!files[i]) {
            LOG_FATAL_F("VCF file %s does not exist!\n", options_data->input_files[i]);
        }
        
        read_list[i] = (list_t*) malloc(sizeof(list_t));
        list_init("text", 1, shared_options_data->max_batches, read_list[i]);
    }
    
    ret_code = create_directory(shared_options_data->output_directory);
    if (ret_code != 0 && errno != EEXIST) {
        LOG_FATAL_F("Can't create output directory: %s\n", shared_options_data->output_directory);
    }

    chromosome_order = get_chromosome_order(shared_options_data->host_url, shared_options_data->species,
                                            shared_options_data->version, &num_chromosomes);
    
    printf("Number of threads = %d\n", shared_options_data->num_threads);
    
#pragma omp parallel sections private(start, stop, total)
    {
#pragma omp section
        {
            LOG_DEBUG_F("Thread %d reads the VCF file\n", omp_get_thread_num());
            // Reading
            start = omp_get_wtime();

            ret_code = vcf_multiread_batches(read_list, shared_options_data->batch_lines, files, options_data->num_files);

            stop = omp_get_wtime();
            total = stop - start;

            if (ret_code) {
                LOG_ERROR_F("Error %d while reading VCF files\n", ret_code);
            }

            LOG_INFO_F("[%dR] Time elapsed = %f s\n", omp_get_thread_num(), total);
            LOG_INFO_F("[%dR] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);
        }
        
#pragma omp section
        {
            // Enable nested parallelism
            omp_set_nested(1);
            
            LOG_DEBUG_F("Thread %d processes data\n", omp_get_thread_num());
            
            int num_eof_found = 0;
            int eof_found[options_data->num_files];
            memset(eof_found, 0, options_data->num_files * sizeof(int));
            
            list_item_t *items[options_data->num_files];
            memset(items, 0, options_data->num_files * sizeof(list_item_t*));
            char *texts[options_data->num_files];
            memset(texts, 0, options_data->num_files * sizeof(char*));
            
            khash_t(pos) *positions_read = kh_init(pos);
            
            long max_position_merged = LONG_MAX;
            char *max_chromosome_merged = NULL;
            int header_merged = 0;
            int token = 0;
            
            double start_parsing, start_insertion, total_parsing = 0, total_insertion = 0;
            
            start = omp_get_wtime();

            while (num_eof_found < options_data->num_files) {
                /* Process:
                 * - N threads getting batches of VCF records and inserting them in a data structure. The common minimum 
                 * position of each group of batches will also be stored.
                 * - If the data structure reaches certain size or the end of a chromosome, merge positions prior to the 
                 * last minimum registered.
                 */
                
                // Getting text elements in a critical region guarantees that each thread gets variants in positions in the same range
                for (int i = 0; i < options_data->num_files; i++) {
                    if (eof_found[i]) {
                        continue;
                    }
                    
                    items[i] = list_remove_item(read_list[i]);
                    if (items[i] == NULL || !strcmp(items[i]->data_p, "")) {
                        LOG_INFO_F("[%d] EOF found in file %s\n", omp_get_thread_num(), options_data->input_files[i]);
                        eof_found[i] = 1;
                        num_eof_found++;
                        
                        if(items[i] != NULL && !strcmp(items[i]->data_p, "")) {
                            free(items[i]->data_p);
                            list_item_free(items[i]);
                            LOG_DEBUG_F("[%d] Text batch freed\n", omp_get_thread_num());
                        } else {
                            LOG_DEBUG_F("[%d] No need to free text batch\n", omp_get_thread_num());
                        }
                        
                        continue;
                    }
                    
                    assert(items[i]->data_p != NULL);
                    texts[i] = items[i]->data_p;
                    
//                     printf("[%d] text batch from file %d\tcontents = '%s'\n", omp_get_thread_num(), i, texts[i]);
                }
                
                for (int i = 0; i < options_data->num_files; i++) {
                    if (eof_found[i]) {
                        continue;
                    }
                    
                    start_parsing = omp_get_wtime();
                    
                    char *text_begin = texts[i];
                    char *text_end = text_begin + strlen(text_begin);
                    assert(text_end != NULL);
                    
//                     printf("batch = '%.*s'\n", text_end - text_begin, text_begin);
                    
                    // Get VCF batches from text batches
                    vcf_reader_status *status = vcf_reader_status_new(shared_options_data->batch_lines, 0);
                    ret_code = run_vcf_parser(text_begin, text_end, shared_options_data->batch_lines, files[i], status);
                    
                    if (ret_code) {
                        // TODO stop?
                        LOG_ERROR_F("Error %d while reading the file %s\n", ret_code, files[i]->filename);
                        continue;
                    }

//                     printf("batches = %d\n", files[i]->record_batches->length);
                    vcf_batch_t *batch = fetch_vcf_batch_non_blocking(files[i]);
                    if (!batch) {
                        continue;
                    }
                    
                    total_parsing += omp_get_wtime() - start_parsing;
                    start_insertion = omp_get_wtime();
                    
                    // Insert records into hashtable
                    for (int j = 0; j < batch->records->size; j++) {
                        vcf_record_t *record = vcf_record_copy(array_list_get(j, batch->records));
                        vcf_record_file_link *link = vcf_record_file_link_new(record, files[i]);
                        char key[64];
                        compose_key_value(record->chromosome, record->position, key);
                        int ret = insert_position_read(key, link, positions_read);
                        assert(ret);
                    }
                    
                    total_insertion += omp_get_wtime() - start_insertion;
                    
                    // Update minimum position being a maximum of these batches
                    vcf_record_t *current_record = (vcf_record_t*) array_list_get(batch->records->size - 1, batch->records);
                    calculate_merge_interval(current_record, &max_chromosome_merged, &max_position_merged, chromosome_order, num_chromosomes);
                    
                    // Free batch and its contents
                    vcf_reader_status_free(status);
                    vcf_batch_free(batch);
                    list_item_free(items[i]);
                }
                
                if (num_eof_found == options_data->num_files) {
                    max_chromosome_merged = chromosome_order[num_chromosomes-1];
                    max_position_merged = LONG_MAX;
                }
                
                // Merge headers, if not previously done
                if (!header_merged) {
                    merge_vcf_headers(files, options_data->num_files, options_data, output_header_list);
                    header_merged = 1;
                    
                    // Decrease list writers count
                    for (int i = 0; i < shared_options_data->num_threads; i++) {
                        list_decr_writers(output_header_list);
                    }
                }
                
                // If the data structure reaches certain size or the end of a chromosome, 
                // merge positions prior to the last minimum registered
                if (num_eof_found < options_data->num_files && kh_size(positions_read) > TREE_LIMIT) {
                    LOG_INFO_F("Merging until position %s:%ld\n", max_chromosome_merged, max_position_merged);
                    token = merge_interval(positions_read, max_chromosome_merged, max_position_merged, chromosome_order, num_chromosomes,
                                   	   	   files, shared_options_data, options_data, output_list);
                }
                // When reaching EOF for all files, merge the remaining entries
                else if (num_eof_found == options_data->num_files && kh_size(positions_read) > 0) {
                    LOG_INFO_F("Merging remaining positions (last = %s:%ld)\n", chromosome_order[num_chromosomes - 1], LONG_MAX);
                    token = merge_remaining_interval(positions_read, files, shared_options_data, options_data, output_list);
                }
                
                if (token) {
                	int *token_ptr = malloc (sizeof(int)); *token_ptr = token;
                    list_item_t *item = list_item_new(1, 0, token_ptr);
                    list_insert_item(item, merge_tokens);
                }

                // Set variables ready for next iteration of the algorithm
                if (max_chromosome_merged) {
                    free(max_chromosome_merged);
                }
            	token = 0;
                max_chromosome_merged = NULL;
                max_position_merged = LONG_MAX;
            }
            
            kh_destroy(pos, positions_read);
            
            stop = omp_get_wtime();

            total = stop - start;

            LOG_INFO_F("[%d] Time elapsed = %f s\n", omp_get_thread_num(), total);
            LOG_INFO_F("[%d] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);

            LOG_DEBUG_F("** Time in parsing = %f s\n", total_parsing);
            LOG_DEBUG_F("** Time in insertion = %f s\n", total_insertion);
//             for (int i = 0; i < shared_options_data->num_threads; i++) {
//                 printf("[%d] Time in searching = %f s\n", i, total_search[i]);
//                 printf("[%d] Time in merging = %f s\n", i, total_merge[i]);
//             }
            
            // Decrease list writers count
            for (int i = 0; i < shared_options_data->num_threads; i++) {
                list_decr_writers(output_list);
            }
            list_decr_writers(merge_tokens);
        }
        
#pragma omp section
        {
            LOG_DEBUG_F("Thread %d writes the output\n", omp_get_thread_num());
    
            start = omp_get_wtime();

            // Create file streams for results
            char aux_filename[32]; memset(aux_filename, 0, 32 * sizeof(char));
            sprintf(aux_filename, "merge_from_%d_files.vcf", options_data->num_files);
            
            char *merge_filename;
            FILE *merge_fd = get_output_file(shared_options_data, aux_filename, &merge_filename);
            LOG_INFO_F("Output filename = %s\n", merge_filename);
            free(merge_filename);
            
            list_item_t *item1 = NULL, *item2 = NULL;
            vcf_header_entry_t *entry;
            vcf_record_t *record;
            int *num_records;
            
            // Write headers
            while ((item1 = list_remove_item(output_header_list)) != NULL) {
                entry = item1->data_p;
                write_vcf_header_entry(entry, merge_fd);
            }
            
            // Write delimiter
            array_list_t *sample_names = merge_vcf_sample_names(files, options_data->num_files);
            write_vcf_delimiter_from_samples((char**) sample_names->items, sample_names->size, merge_fd);
            
            // Write records
            // When a token is present, it means a set of batches has been merged. The token contains the number of records merged.
            // In this case, the records must be sorted by chromosome and position, and written afterwards.
            while ((item1 = list_remove_item(merge_tokens)) != NULL) {
                num_records = item1->data_p;
                vcf_record_t *records[*num_records];
                for (int i = 0; i < *num_records; i++) {
                    item2 = list_remove_item(output_list);
                    if (!item2) {
                        break;
                    }

                    records[i] = item2->data_p;
                    list_item_free(item2);
                }

                // Sort records
                qsort(records, *num_records, sizeof(vcf_record_t*), record_cmp);

                // Write and free sorted records
                for (int i = 0; i < *num_records; i++) {
                    record = records[i];
                    write_vcf_record(record, merge_fd);
                    vcf_record_free_deep(record);
                }

                free(num_records);
                list_item_free(item1);
            }
            
            // Close file
            if (merge_fd != NULL) { fclose(merge_fd); }
            
            stop = omp_get_wtime();

            total = stop - start;

            LOG_INFO_F("[%dW] Time elapsed = %f s\n", omp_get_thread_num(), total);
            LOG_INFO_F("[%dW] Time elapsed = %e ms\n", omp_get_thread_num(), total*1000);
        }
    }

    // Free variables related to the different files
    for (int i = 0; i < options_data->num_files; i++) {
        if(files[i]) { vcf_close(files[i]); }
        if(read_list[i]) { free(read_list[i]); }
    }
    free(output_list);
    
    return ret_code;
}