const EDA_RECT SCH_HIERLABEL::GetBoundingBox() const
{
    int x, y, dx, dy, length, height;

    x  = m_Pos.x;
    y  = m_Pos.y;
    dx = dy = 0;

    int width = (m_Thickness == 0) ? GetDefaultLineThickness() : m_Thickness;
    height = m_Size.y + width + 2 * TXTMARGE;
    length = LenSize( GetShownText() )
             + height                 // add height for triangular shapes
             + 2 * DANGLING_SYMBOL_SIZE;

    switch( m_schematicOrientation )    // respect orientation
    {
    case 0:                             /* Horiz Normal Orientation (left justified) */
        dx = -length;
        dy = height;
        x += DANGLING_SYMBOL_SIZE;
        y -= height / 2;
        break;

    case 1:     /* Vert Orientation UP */
        dx = height;
        dy = -length;
        x -= height / 2;
        y += DANGLING_SYMBOL_SIZE;
        break;

    case 2:     /* Horiz Orientation - Right justified */
        dx = length;
        dy = height;
        x -= DANGLING_SYMBOL_SIZE;
        y -= height / 2;
        break;

    case 3:     /*  Vert Orientation BOTTOM */
        dx = height;
        dy = length;
        x -= height / 2;
        y -= DANGLING_SYMBOL_SIZE;
        break;
    }

    EDA_RECT box( wxPoint( x, y ), wxSize( dx, dy ) );
    box.Normalize();
    return box;
}
Exemple #2
0
EDA_RECT SCH_LABEL::GetBoundingBox() const
{
    int x, y, dx, dy, length, height;

    x = m_Pos.x;
    y = m_Pos.y;
    int width = (m_Thickness == 0) ? GetDefaultLineThickness() : m_Thickness;
    length = LenSize( m_Text );
    height = m_Size.y + width;
    dx     = dy = 0;

    switch( m_schematicOrientation )
    {
    case 0:             /* Horiz Normal Orientation (left justified) */
        dx = 2 * DANGLING_SYMBOL_SIZE + length;
        dy = -2 * DANGLING_SYMBOL_SIZE - height - TXTMARGE;
        x -= DANGLING_SYMBOL_SIZE;
        y += DANGLING_SYMBOL_SIZE;
        break;

    case 1:     /* Vert Orientation UP */
        dx = -2 * DANGLING_SYMBOL_SIZE - height - TXTMARGE;
        dy = -2 * DANGLING_SYMBOL_SIZE - length;
        x += DANGLING_SYMBOL_SIZE;
        y += DANGLING_SYMBOL_SIZE;
        break;

    case 2:     /* Horiz Orientation - Right justified */
        dx = -2 * DANGLING_SYMBOL_SIZE - length;
        dy = -2 * DANGLING_SYMBOL_SIZE - height - TXTMARGE;
        x += DANGLING_SYMBOL_SIZE;
        y += DANGLING_SYMBOL_SIZE;
        break;

    case 3:     /*  Vert Orientation BOTTOM */
        dx = -2 * DANGLING_SYMBOL_SIZE - height - TXTMARGE;
        dy = 2 * DANGLING_SYMBOL_SIZE + length;
        x += DANGLING_SYMBOL_SIZE;
        y -= DANGLING_SYMBOL_SIZE;
        break;
    }

    EDA_RECT box( wxPoint( x, y ), wxSize( dx, dy ) );
    box.Normalize();
    return box;
}
EDA_RECT EDA_TEXT::GetTextBox( int aLine, int aThickness, bool aInvertY ) const
{
    EDA_RECT       rect;
    wxPoint        pos;
    wxArrayString  strings;
    wxString       text = GetShownText();
    int            thickness = ( aThickness < 0 ) ? m_Thickness : aThickness;
    int            linecount = 1;

    if( m_MultilineAllowed )
    {
        wxStringSplit( text, strings, '\n' );

        if ( strings.GetCount() )     // GetCount() == 0 for void strings
        {
            if( aLine >= 0 && (aLine < (int)strings.GetCount()) )
                text = strings.Item( aLine );
            else
                text = strings.Item( 0 );

            linecount = strings.GetCount();
        }
    }

    // calculate the H and V size
    int    dx = LenSize( text );
    int    dy = GetInterline( aThickness );

    // Creates bounding box (rectangle) for an horizontal text
    wxSize textsize = wxSize( dx, dy );

    if( aInvertY )
        rect.SetOrigin( m_Pos.x, -m_Pos.y );
    else
        rect.SetOrigin( m_Pos );

    // extra dy interval for letters like j and y and ]
    int extra_dy = dy - m_Size.y;
    rect.Move( wxPoint( 0, -extra_dy / 2 ) ); // move origin by the half extra interval

    // for multiline texts and aLine < 0, merge all rectangles
    if( m_MultilineAllowed && aLine < 0 )
    {
        for( unsigned ii = 1; ii < strings.GetCount(); ii++ )
        {
            text = strings.Item( ii );
            dx   = LenSize( text );
            textsize.x  = std::max( textsize.x, dx );
            textsize.y += dy;
        }
    }

    rect.SetSize( textsize );

    /* Now, calculate the rect origin, according to text justification
     * At this point the rectangle origin is the text origin (m_Pos).
     * This is true only for left and top text justified texts (using top to bottom Y axis
     * orientation). and must be recalculated for others justifications
     * also, note the V justification is relative to the first line
     */
    switch( m_HJustify )
    {
    case GR_TEXT_HJUSTIFY_LEFT:
        if( m_Mirror )
            rect.SetX( rect.GetX() - rect.GetWidth() );
        break;

    case GR_TEXT_HJUSTIFY_CENTER:
        rect.SetX( rect.GetX() - (rect.GetWidth() / 2) );
        break;

    case GR_TEXT_HJUSTIFY_RIGHT:
        if( !m_Mirror )
            rect.SetX( rect.GetX() - rect.GetWidth() );
        break;
    }

    dy = m_Size.y + thickness;

    switch( m_VJustify )
    {
    case GR_TEXT_VJUSTIFY_TOP:
        break;

    case GR_TEXT_VJUSTIFY_CENTER:
        rect.SetY( rect.GetY() - ( dy / 2) );
        break;

    case GR_TEXT_VJUSTIFY_BOTTOM:
        rect.SetY( rect.GetY() - dy );
        break;
    }

    if( linecount > 1 )
    {
        int yoffset;
        linecount -= 1;

        switch( m_VJustify )
        {
        case GR_TEXT_VJUSTIFY_TOP:
            break;

        case GR_TEXT_VJUSTIFY_CENTER:
            yoffset = linecount * GetInterline() / 2;
            rect.SetY( rect.GetY() - yoffset );
            break;

        case GR_TEXT_VJUSTIFY_BOTTOM:
            yoffset = linecount * GetInterline( aThickness );
            rect.SetY( rect.GetY() - yoffset );
            break;
        }
    }

    rect.Inflate( thickness / 2 );
    rect.Normalize();       // Make h and v sizes always >= 0

    return rect;
}
Exemple #4
0
void SCH_GLOBALLABEL::CreateGraphicShape( std::vector <wxPoint>& aPoints, const wxPoint& Pos )
{
    int halfSize  = GetTextHeight() / 2;
    int linewidth = GetThickness() == 0 ? GetDefaultLineThickness() : GetThickness();

    linewidth = Clamp_Text_PenSize( linewidth, GetTextSize(), IsBold() );

    aPoints.clear();

    int symb_len = LenSize( GetShownText(), linewidth ) + ( TXT_MARGIN * 2 );

    // Create outline shape : 6 points
    int x = symb_len + linewidth + 3;

    // Use negation bar Y position to calculate full vertical size
    // Search for overbar symbol
    bool hasOverBar = false;

    for( unsigned ii = 1; ii < m_Text.size(); ii++ )
    {
        if( m_Text[ii-1] == '~' && m_Text[ii] != '~' )
        {
            hasOverBar = true;
            break;
        }
    }

    #define Y_CORRECTION 1.40
    // Note: this factor is due to the fact the Y size of a few letters like [
    // are bigger than the y size value, and we need a margin for the graphic symbol.
    int y = KiROUND( halfSize * Y_CORRECTION );

    // Note: this factor is due to the fact we need a margin for the graphic symbol.
    #define Y_OVERBAR_CORRECTION 1.2
    if( hasOverBar )
        y = KiROUND( KIGFX::STROKE_FONT::GetInterline( halfSize, linewidth )
                     * Y_OVERBAR_CORRECTION );

    // Gives room for line thickess and margin
    y += linewidth          // for line thickess
         + linewidth/2;     // for margin

    // Starting point(anchor)
    aPoints.push_back( wxPoint( 0, 0 ) );
    aPoints.push_back( wxPoint( 0, -y ) );     // Up
    aPoints.push_back( wxPoint( -x, -y ) );    // left
    aPoints.push_back( wxPoint( -x, 0 ) );     // Up left
    aPoints.push_back( wxPoint( -x, y ) );     // left down
    aPoints.push_back( wxPoint( 0, y ) );      // down

    int x_offset = 0;

    switch( m_shape )
    {
    case NET_INPUT:
        x_offset = -halfSize;
        aPoints[0].x += halfSize;
        break;

    case NET_OUTPUT:
        aPoints[3].x -= halfSize;
        break;

    case NET_BIDI:
    case NET_TRISTATE:
        x_offset = -halfSize;
        aPoints[0].x += halfSize;
        aPoints[3].x -= halfSize;
        break;

    case NET_UNSPECIFIED:
    default:
        break;
    }

    int angle = 0;

    switch( GetLabelSpinStyle() )
    {
    default:
    case 0:               break;   // Orientation horiz normal
    case 1: angle = -900; break;   // Orientation vert UP
    case 2: angle = 1800; break;   // Orientation horiz inverse
    case 3: angle = 900;  break;   // Orientation vert BOTTOM
    }

    // Rotate outlines and move corners in real position
    for( wxPoint& aPoint : aPoints )
    {
        aPoint.x += x_offset;

        if( angle )
            RotatePoint( &aPoint, angle );

        aPoint += Pos;
    }

    aPoints.push_back( aPoints[0] ); // closing
}
Exemple #5
0
void SCH_GLOBALLABEL::CreateGraphicShape( std::vector <wxPoint>& aPoints, const wxPoint& Pos )
{
    int HalfSize  = m_Size.y / 2;
    int linewidth = (m_Thickness == 0) ? GetDefaultLineThickness() : m_Thickness;

    linewidth = Clamp_Text_PenSize( linewidth, m_Size, m_Bold );

    aPoints.clear();

    int symb_len = LenSize( m_Text ) + ( TXTMARGE * 2 );

    // Create outline shape : 6 points
    int x = symb_len + linewidth + 3;

    // Use negation bar Y position to calculate full vertical size
    #define Y_CORRECTION 1.22
    // Note: this factor is due to the fact the negation bar Y position
    // does not give exactly the full Y size of text
    // and is experimentally set  to this value
    int y = KiROUND( OverbarPositionY( HalfSize, linewidth ) * Y_CORRECTION );
    // add room for line thickness and space between top of text and graphic shape
    y += linewidth;

    // Starting point(anchor)
    aPoints.push_back( wxPoint( 0, 0 ) );
    aPoints.push_back( wxPoint( 0, -y ) );     // Up
    aPoints.push_back( wxPoint( -x, -y ) );    // left
    aPoints.push_back( wxPoint( -x, 0 ) );     // Up left
    aPoints.push_back( wxPoint( -x, y ) );     // left down
    aPoints.push_back( wxPoint( 0, y ) );      // down

    int x_offset = 0;

    switch( m_shape )
    {
    case NET_INPUT:
        x_offset = -HalfSize;
        aPoints[0].x += HalfSize;
        break;

    case NET_OUTPUT:
        aPoints[3].x -= HalfSize;
        break;

    case NET_BIDI:
    case NET_TRISTATE:
        x_offset = -HalfSize;
        aPoints[0].x += HalfSize;
        aPoints[3].x -= HalfSize;
        break;

    case NET_UNSPECIFIED:
    default:
        break;
    }

    int angle = 0;

    switch( m_schematicOrientation )
    {
    case 0:             /* Orientation horiz normal */
        break;

    case 1:             /* Orientation vert UP */
        angle = -900;
        break;

    case 2:             /* Orientation horiz inverse */
        angle = 1800;
        break;

    case 3:             /* Orientation vert BOTTOM */
        angle = 900;
        break;
    }

    // Rotate outlines and move corners in real position
    for( unsigned ii = 0; ii < aPoints.size(); ii++ )
    {
        aPoints[ii].x += x_offset;

        if( angle )
            RotatePoint( &aPoints[ii], angle );

        aPoints[ii] += Pos;
    }

    aPoints.push_back( aPoints[0] ); // closing
}