void moveToConstReferenceNegatives() {
  // No warning when actual move takes place.
  MoveSemantics move_semantics;
  callByValue(std::move(move_semantics));
  callByRValueRef(std::move(move_semantics));
  MoveSemantics other(std::move(move_semantics));
  other = std::move(move_semantics);

  // No warning if std::move() not used.
  NoMoveSemantics no_move_semantics;
  callByConstRef(no_move_semantics);

  // No warning if instantiating a template.
  templateFunction(no_move_semantics);

  // No warning inside of macro expansions.
  M3(NoMoveSemantics, no_move_semantics);

  // No warning inside of macro expansion, even if the macro expansion is inside
  // a lambda that is, in turn, an argument to a macro.
  CALL([no_move_semantics] { M3(NoMoveSemantics, no_move_semantics); });

  auto lambda = [] {};
  auto lambda2 = std::move(lambda);
}
/*  Adds an orientation observation to the "attitude profile matrix" B
 *
 *  This is done with
 *        B += a * W * V'
 *  where
 *      a     is the weight of the current measurment (how good it is, how often...)
 *      W     is the observed vector
 *      V'    is the (transposed) reference direction, that belongs to W.
 *
 *  See Davenport's solution for Wabha's problem for more information
 */
void add_orientation_measurement(struct DoubleMat33 *B, struct Orientation_Measurement a)
{
  M3(*B, 0, 0) += a.weight_of_the_measurement * a.measured_direction.x * a.reference_direction.x;
  M3(*B, 0, 1) += a.weight_of_the_measurement * a.measured_direction.x * a.reference_direction.y;
  M3(*B, 0, 2) += a.weight_of_the_measurement * a.measured_direction.x * a.reference_direction.z;
  M3(*B, 1, 0) += a.weight_of_the_measurement * a.measured_direction.y * a.reference_direction.x;
  M3(*B, 1, 1) += a.weight_of_the_measurement * a.measured_direction.y * a.reference_direction.y;
  M3(*B, 1, 2) += a.weight_of_the_measurement * a.measured_direction.y * a.reference_direction.z;
  M3(*B, 2, 0) += a.weight_of_the_measurement * a.measured_direction.z * a.reference_direction.x;
  M3(*B, 2, 1) += a.weight_of_the_measurement * a.measured_direction.z * a.reference_direction.y;
  M3(*B, 2, 2) += a.weight_of_the_measurement * a.measured_direction.z * a.reference_direction.z;
}
Exemple #3
0
// =================================================
void DenseSubMatrix::left_multiply (const DenseMatrixBase& M2) {
  // (*this) <- M2 * M3 Where: (*this) = (m x n), M2= (m x p), M3= (p x n)
  // M3 is a simply a copy of *this
  DenseSubMatrix M3(*this);
  // Call the multiply function in the base class
  this->multiply(*this, M2, M3);
}
int main()
{
  vpMatrix M ;
  vpMatrix M1(2,3) ;
  vpMatrix M2(3,3) ;
  vpMatrix M3(2,2) ;

  std::cout << "** test matrix exception during multiplication" << std::endl;

  try {
    M = M1*M3 ;
  }
  catch (vpException &e) {
    std::cout << "Catch an exception: " << e << std::endl;
  }

  std::cout << "** test matrix exception during addition" << std::endl;

  try {
    M = M1+M3 ;
  }
  catch (vpException &e)  {
    std::cout << "Catch an exception: " << e << std::endl;
  }
}
Exemple #5
0
static double
strikeyH0 (MagComp component, const fault_params *fault, const magnetic_params *mag, double xi, double et, double qq, double y, double z)
{
	double val;
	double h = mag->dcurier;
	double qd = y * sd + (fault->fdepth - h) * cd;
	double K2_val = K2 (component, 1.0, xi, et, qq);
	double log_re_val = log_re (component, 1.0, xi, et, qq);
	double J2_val = J2 (component, 1.0, xi, et, qq);
//	double L2_val = L2 (component, 1.0, xi, et, qq);
	double L2_val = L2 (component, 1.0, xi, et, qq) * cd;	// todo: check this!
	double M2_val = M2 (component, 1.0, xi, et, qq);
	double M3_val = M3 (component, 1.0, xi, et, qq);
	double M2y_val = M2y (component, 1.0, xi, et, qq);
	double M2z_val = M2z (component, 1.0, xi, et, qq);

	val = - (2.0 - alpha4) * K2_val
		+ alpha4 * log_re_val * sd + alpha3 * J2_val
		- alpha3 * (qd * M2_val + (z - h) * L2_val * sd)
		- 2.0 * alpha4 * h * (M2_val * cd - L2_val * sd)
		- 4.0 * alpha1 * h * L2_val * sd
		+ 2.0 * alpha2 * h * M3_val * sd
		+ 2.0 * alpha2 * h * ((qd + h * cd) * M2z_val - (z - 2.0 * h) * M2y_val * sd);

	return val;
}
Exemple #6
0
int main(int argc, char** argv) {
	Manoscritto M1(0, "aaa", "aaa", 10),
				M2(1, "bbb", "bbb", 10),
				M3(3, "bbb", "bbb", 10);
	Lettera L1(4, "aaa", "aaa", 10, "aaa", "aaa"),
			L2(5, "bbb", "bbb", 10, "bbb", "bbb"),
			L3=L1;
			
			
	cout <<"Stampa normale:\n";		
	cout << M1 <<'\n'<< M2 <<'\n' << M3 <<"\n\n";
	cout << L1 <<'\n'<< L2 <<'\n' << L3 ;
		
		
	cout <<"\n\nStampa polimorfismo:\n";
	Manoscritto * v[2];
	v[0] = &M1;
	v[1] = &L2;
	
	for(int i=0; i<2; i++) {
		v[i] -> visualizzaDati();
		cout<<'\n';
	}
	
	cout <<"\n\nElenco:\n";
	Elenco E1, E2;
	
	E1.push(&M1);
	E1.push(&M2);
	E1.push(&L1);
	E1.push(&L2);
	E1.push(&M3);
	E1.pop(0); 
	E1.stampa();
	
	ofstream file;
	file.open("./test.txt", ios::out);
	if(!file) {
		cout << "Errore file";
	} else {
		E1.memorizzaDati(file);
	}
	file.close();
	
	cout <<"\n\nEccezione:\n";
	try {
		E2.push(&M1);
		E2.push(&M1);
	} catch (Duplicato e) {
		cout << e.what() << endl;
	}
	
	
	
	
}
double TtbarHypothesis::M3() const {
	JetCollection jets;
	jets.clear();
	jets.push_back(jet1FromW);
	jets.push_back(jet2FromW);
	jets.push_back(leptonicBjet);
	jets.push_back(hadronicBJet);

	return M3(jets);
}
Exemple #8
0
///////////////////////////////////////////////////////////////////////////////
// Ditto above, but for doubles
void m3dRotationMatrix33(M3DMatrix33d m, double angle, double x, double y, double z)
	{
	double mag, s, c;
	double xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c;

	s = sin(angle);
	c = cos(angle);

	mag = sqrt( x*x + y*y + z*z );

	// Identity matrix
	if (mag == 0.0) {
		m3dLoadIdentity33(m);
		return;
	}

	// Rotation matrix is normalized
	x /= mag;
	y /= mag;
	z /= mag;

#define M3(row,col)  m[col*3+row]

	xx = x * x;
	yy = y * y;
	zz = z * z;
	xy = x * y;
	yz = y * z;
	zx = z * x;
	xs = x * s;
	ys = y * s;
	zs = z * s;
	one_c = 1.0 - c;

	M3(0,0) = (one_c * xx) + c;
	M3(0,1) = (one_c * xy) - zs;
	M3(0,2) = (one_c * zx) + ys;

	M3(1,0) = (one_c * xy) + zs;
	M3(1,1) = (one_c * yy) + c;
	M3(1,2) = (one_c * yz) - xs;

	M3(2,0) = (one_c * zx) - ys;
	M3(2,1) = (one_c * yz) + xs;
	M3(2,2) = (one_c * zz) + c;

#undef M3
	}
Exemple #9
0
SCMatrix operator-(const SCMatrix& M1,const SCMatrix& M2){
  if (M1.Rows() != M2.Rows() || M1.Columns() != M2.Columns()){
    cerr<<"Incompatible dimensions for matrix addition."<<endl;
    exit(1);
  }
  SCMatrix M3(M1.Rows(),M1.Columns());
  for (int i=0;i<M1.Rows();i++){
    for (int j=0;j<M1.Columns();j++){
      M3.data[i][j]=M1.data[i][j]-M2.data[i][j];
    }
  }
  return M3;
}
static void
ggcm_mhd_diag_item_v_run(struct ggcm_mhd_diag_item *item,
			 struct mrc_io *io, struct mrc_fld *fld,
			 int diag_type, float plane)
{
  struct ggcm_mhd *mhd = item->diag->mhd;

  int bnd = fld->_nr_ghosts;

  struct mrc_fld *fld_r = mrc_domain_fld_create(mhd->domain, bnd, "vx:vy:vz");
  mrc_fld_set_type(fld_r, FLD_TYPE);
  mrc_fld_setup(fld_r);

  struct mrc_fld *r = mrc_fld_get_as(fld_r, FLD_TYPE);
  struct mrc_fld *f = mrc_fld_get_as(fld, FLD_TYPE);

  for (int p = 0; p < mrc_fld_nr_patches(fld); p++) {
    mrc_fld_foreach(f, ix,iy,iz, bnd, bnd) {
      mrc_fld_data_t rri = 1.f / RR_(f, ix,iy,iz, p);
      M3(r, 0, ix,iy,iz, p) = rri * RVX_(f, ix,iy,iz, p);
      M3(r, 1, ix,iy,iz, p) = rri * RVY_(f, ix,iy,iz, p);
      M3(r, 2, ix,iy,iz, p) = rri * RVZ_(f, ix,iy,iz, p);
    } mrc_fld_foreach_end;
  }
Exemple #11
0
int main (int narg, const char** argv) {

	typedef Range<false> R;
	typedef Range<true> CR;

	Matrix<double> M1(10, 1), M2, M3(M1), M4(3, 4), M6(4, 3), M5(3, 4, 2), M7(3, 4, 2), M8, M9, M10, M11;
    M1 = 0.0;
    M2 = M1;

    for (size_t i = 1; i < M1.Size(); ++i)
        M1[i] = i;
    for (size_t i = 1; i < M4.Size(); ++i)
        M4[i] = i;
    for (size_t i = 1; i < M5.Size(); ++i)
        M5[i] = i;

    M3(R(7,-2,2)) = M1(CR(2,4));
    M6(R(3,-2,0),R(0,1)) = M4(CR(0,1),CR(1,2));
    M7(R(2,-2,0),R(0,1),R(0,0)) =  M5(CR(0,1),CR(1,2),CR(0,0));
    M8 = M6(CR(1,-1,0),CR(1,2));
    M6(R(0,1),R(1,2)) = M8;
    M9 = M6(CR("1:-1:0"),CR("1:2"));
    M10 = M6(CR("1:-1:0,1"),CR("1:2"));
    M11 = M6(CR(),CR()) * M6(CR(),CR());
    M11 = M6 * M6(CR(),CR());
    std::cout << M3 << std::endl<< std::endl;
    std::cout << M4 << std::endl<< std::endl;
    std::cout << M6 << std::endl<< std::endl;
    std::cout << M5 << std::endl<< std::endl;
    std::cout << M7 << std::endl<< std::endl;
    std::cout << M8 << std::endl<< std::endl;
    std::cout << M9 << std::endl<< std::endl;
    std::cout << M10 << std::endl<< std::endl;
    std::cout << M11 << std::endl<< std::endl;
    return 0;
}
Exemple #12
0
static double
strikezHIII (MagComp component, const fault_params *fault, const magnetic_params *mag, double xi, double et, double qq, double y, double z)
{
	double val;
	double h = mag->dcurier;
	double qd = y * sd + (fault->fdepth - h) * cd;
	double K3_val = K3 (component, 1.0, xi, et, qq);
	double log_re_val = log_re (component, 1.0, xi, et, qq);
	double M2_val = M2 (component, 1.0, xi, et, qq);
	double M3_val = M3 (component, 1.0, xi, et, qq);

	val = alpha5 * K3_val + fault->alpha * log_re_val * cd
		+ alpha3 * (qd * M3_val - (z - h) * M2_val * sd);

	return val;
}
Exemple #13
0
static void
ggcm_mhd_bnd_open_x_fill_ghosts_fcons_cc(struct ggcm_mhd_bnd *bnd, struct mrc_fld *fld,
					 float bntim)
{
  struct ggcm_mhd *mhd = bnd->mhd;

  struct mrc_fld *f = mrc_fld_get_as(fld, FLD_TYPE);

  int gdims[3];
  mrc_domain_get_global_dims(mhd->domain, gdims);
  int sw_y = gdims[1] > 1 ? SW_2 : 0; 
  int sw_z = gdims[2] > 1 ? SW_2 : 0; 

  assert(mrc_fld_nr_patches(f) == 1);
  int p = 0;
  const int *ldims = mrc_fld_spatial_dims(f);
  int mx = ldims[0];
  struct mrc_patch_info info;
  mrc_domain_get_local_patch_info(mhd->domain, 0, &info);
  int nr_comps = mrc_fld_nr_comps(f);

    if (info.off[0] == 0) { // x lo FIXME, there is (?) a function for this
    for (int k = -sw_z; k < ldims[2] + sw_z; k++) {
      for (int j = -sw_y; j < ldims[1] + sw_y; j++) {	
	for (int m = 0; m < nr_comps; m++) {
	  M3(f, m, -1,j,k, p) = M3(f, m, 0,j,k, p);
	  M3(f, m, -2,j,k, p) = M3(f, m, 1,j,k, p);
	}
      }
    }
  }

  if (info.off[0] + info.ldims[0] == gdims[0]) { // x hi
    for (int k = -sw_z; k < ldims[2] + sw_z; k++) {
      for (int j = -sw_y; j < ldims[1] + sw_y; j++) {	
	for (int m = 0; m < nr_comps; m++) {
	  M3(f, m, mx  ,j,k, p) = M3(f, m, mx-1,j,k, p);
	  M3(f, m, mx+1,j,k, p) = M3(f, m, mx-2,j,k, p);
	}
      }
    }
  }

  mrc_fld_put_as(f, fld);
}
Exemple #14
0
TEST(ResMonoidDense, create)
{
  ResMonoidDense M1(4,
                    std::vector<int>{1, 1, 1, 1},
                    std::vector<int>{},
                    MonomialOrderingType::GRevLex);

  ResMonoidDense M2(4,
                    std::vector<int>{1, 2, 3, 4},
                    std::vector<int>{1, 1, 1, 1, 1, 1, 0, 0},
                    MonomialOrderingType::Weights);

  ResMonoidDense M3(4,
                    std::vector<int>{1, 1, 1, 1},
                    std::vector<int>{},
                    MonomialOrderingType::Lex);

  EXPECT_EQ(4, M1.n_vars());
  std::vector<res_monomial_word> monomspace(100);
  EXPECT_EQ(100, monomspace.size());
}
Exemple #15
0
void DenseMatrix<T>::left_multiply (const DenseMatrixBase<T>& M2)
{
  if (this->use_blas_lapack)
    this->_multiply_blas(M2, LEFT_MULTIPLY);
  else
    {
      // (*this) <- M2 * (*this)
      // Where:
      // (*this) = (m x n),
      // M2      = (m x p),
      // M3      = (p x n)

      // M3 is a copy of *this before it gets resize()d
      DenseMatrix<T> M3(*this);

      // Resize *this so that the result can fit
      this->resize (M2.m(), M3.n());

      // Call the multiply function in the base class
      this->multiply(*this, M2, M3);
    }
}
Exemple #16
0
static double
strikezH0 (MagComp component, const fault_params *fault, const magnetic_params *mag, double xi, double et, double qq, double y, double z)
{
	double val;
	double h = mag->dcurier;
	double qd = y * sd + (fault->fdepth - h) * cd;
	double K3_val = K3 (component, 1.0, xi, et, qq);
	double log_re_val = log_re (component, 1.0, xi, et, qq);
	double M2_val = M2 (component, 1.0, xi, et, qq);
	double M3_val = M3 (component, 1.0, xi, et, qq);
	double M3y_val = M3y (component, 1.0, xi, et, qq);
	double M3z_val = M3z (component, 1.0, xi, et, qq);

	val = - (2.0 + alpha5) * K3_val
		- fault->alpha * log_re_val * cd
		- alpha3 * (qd * M3_val - (z - h) * M2_val * sd)
		+ 2.0 * fault->alpha * h * (M3_val * cd + M2_val * sd)
		- 4.0 * alpha1 * h * M2_val * sd
		- 2.0 * alpha2 * h * M2_val * sd
		- 2.0 * alpha2 * h * ((qd + h * cd) * M3z_val - (z - 2.0 * h) * M3y_val * sd);

	return val;
}
Exemple #17
0
int main()
{
  try {
    vpMatrix M ;
    vpMatrix M1(2,3) ;
    vpMatrix M2(3,3) ;
    vpMatrix M3(2,2) ;

    vpTRACE("test matrix size in multiply") ;

    try
    {
      M = M1*M3 ;
    }
    catch (vpMatrixException me)
    {
      std::cout << me << std::endl ;
    }


    vpTRACE("test matrix size in addition") ;

    try
    {
      M = M1+M3 ;
    }
    catch (vpMatrixException me)
    {
      std::cout << me << std::endl ;
    }
  }
  catch(vpException e) {
    std::cout << "Catch an exception: " << e << std::endl;
    return 1;
  }
}
Exemple #18
0
static void
ggcm_mhd_bnd_open_x_fill_ghosts_scons(struct ggcm_mhd_bnd *bnd, struct mrc_fld *fld,
				      float bntim)
{
  struct ggcm_mhd *mhd = bnd->mhd;

  struct mrc_fld *f3 = mrc_fld_get_as(fld, FLD_TYPE);

  assert(mrc_fld_nr_patches(f3) == 1);
  int p = 0;

  int gdims[3];
  mrc_domain_get_global_dims(mhd->domain, gdims);
  int dy = (gdims[1] > 1), dz = (gdims[2] > 1);
  int sw_y = gdims[1] > 1 ? SW_2 : 0; 
  int sw_z = gdims[2] > 1 ? SW_2 : 0; 

  const int *dims = mrc_fld_dims(f3);
  int nx = dims[0], ny = dims[1], nz = dims[2];
  struct mrc_patch_info info;
  mrc_domain_get_local_patch_info(mhd->domain, 0, &info);

  float *bd2x = ggcm_mhd_crds_get_crd(mhd->crds, 0, BD2);
  float *bd2y = ggcm_mhd_crds_get_crd(mhd->crds, 1, BD2);
  float *bd2z = ggcm_mhd_crds_get_crd(mhd->crds, 2, BD2);

  // fill boundary values with closes non-zero value 
  // FIXME: should this be necessary? 
  
  bd2x[-2] = bd2x[0]; 
  bd2x[-1] = bd2x[0]; 
  bd2x[nx] = bd2x[nx-1];
  bd2x[nx+1] = bd2x[nx-1]; 

  bd2y[-2] = bd2y[0]; 
  bd2y[-1] = bd2y[0]; 
  bd2y[ny] = bd2y[ny-1];
  bd2y[ny+1] = bd2y[ny-1]; 

  bd2z[-2] = bd2z[0]; 
  bd2z[-1] = bd2z[0]; 
  bd2z[nz] = bd2z[nz-1];
  bd2z[nz+1] = bd2z[nz-1]; 
  
//-----------------------------------------------------------------------------------//
// lower bound 
//-----------------------------------------------------------------------------------//
  if (info.off[0] == 0) { // x lo    
    // transverse magnetic extrapolated
    for (int iz = -sw_z; iz < nz + sw_z; iz++) {
      for (int iy = -sw_y; iy < ny + sw_y; iy++) {
	// bd1y and bd2y indices offset by one 
	M3(f3,BY, -1,iy,iz, p) = M3(f3,BY, 0,iy,iz, p); 
        M3(f3,BZ, -1,iy,iz, p) = M3(f3,BZ, 0,iy,iz, p);
      }
    }

    // set normal magnetic field component for divB=0
    for (int iz = -sw_z; iz < nz + sw_z; iz++) {
      for (int iy = -sw_y; iy < ny + sw_y; iy++) {
	M3(f3,BX, -1,iy,iz, p) = M3(f3,BX, 0,iy,iz, p) + bd2x[0] *  
	  ((M3(f3,BY, 0,iy,iz, p) - M3(f3,BY, 0,iy-dy,iz, p) ) / bd2y[iy] + 
	   (M3(f3,BZ, 0,iy,iz, p) - M3(f3,BZ, 0,iy,iz-dz, p) ) / bd2z[iz]);
      }
    }	
    // transverse magnetic field extrapolated 
    for (int iz = -sw_z; iz < nz + sw_z; iz++) {
      for (int iy = -sw_y; iy < ny + sw_y; iy++) {       
	// bd1x and bd2y indices offset by one 
	M3(f3,BY, -2,iy,iz, p) = M3(f3,BY, 1,iy,iz, p);
	M3(f3,BZ, -2,iy,iz, p) = M3(f3,BZ, 1,iy,iz, p);
      }
    }
    // set normal magnetic field component for divB=0
    for (int iz = -sw_z; iz < nz + sw_z; iz++) {
      for (int iy = -sw_y; iy < ny + sw_y; iy++) {
	M3(f3,BX, -2,iy,iz, p) = M3(f3,BX, -1,iy,iz, p) + bd2x[-1] * 
	  ((M3(f3,BY, -1,iy,iz, p) - M3(f3,BY, -1,iy-dy,iz, p) ) / bd2y[iy] + 
           (M3(f3,BZ, -1,iy,iz, p) - M3(f3,BZ, -1,iy,iz-dz, p) ) / bd2z[iz]);      
      }
    }	
    for (int iz = -sw_z; iz < nz + sw_z; iz++) {
      for (int iy = -sw_y; iy < ny + sw_y; iy++) {	

	M3(f3,RVX, -1,iy,iz, p) = M3(f3,RVX, 0,iy,iz, p);
	M3(f3,RVX, -2,iy,iz, p) = M3(f3,RVX, 1,iy,iz, p);	

	M3(f3,RR, -1,iy,iz, p) = M3(f3,RR, 0,iy,iz, p);
	M3(f3,RR, -2,iy,iz, p) = M3(f3,RR, 1,iy,iz, p);

	M3(f3,RVY, -1,iy,iz, p) = M3(f3,RVY, 0,iy,iz, p); 
	M3(f3,RVY, -2,iy,iz, p) = M3(f3,RVY, 1,iy,iz, p);
	
	M3(f3,RVZ, -1,iy,iz, p) = M3(f3,RVZ, 0,iy,iz, p);
	M3(f3,RVZ, -2,iy,iz, p) = M3(f3,RVZ, 1,iy,iz, p);
	
	M3(f3,UU, -1,iy,iz, p) = M3(f3,UU, 0,iy,iz, p);
	M3(f3,UU, -2,iy,iz, p) = M3(f3,UU, 1,iy,iz, p);

      }
    }
  }
  //-----------------------------------------------------------------------------------//
  // upper bound 
  //-----------------------------------------------------------------------------------//
  if (info.off[0] + info.ldims[0] == gdims[0]) { // x hi
    //  transverse magnetic field extrapolated
    for (int iz = -sw_z; iz < nz + sw_z; iz++) {
      for (int iy = -sw_y; iy < ny + sw_y; iy++) {
	M3(f3,BY, nx,iy,iz, p) = M3(f3, BY, nx-1,iy,iz, p);
	M3(f3,BZ, nx,iy,iz, p) = M3(f3, BZ, nx-1,iy,iz, p);
      }
    }
    // set normal magnetic field component for divB=0
    for (int iz = -sw_z; iz < nz + sw_z; iz++) {
      for (int iy = -sw_y; iy < ny + sw_y; iy++) {
	M3(f3,BX, nx-1,iy,iz, p) = M3(f3,BX, nx-2,iy,iz, p) - bd2x[nx-1] *
	  ((M3(f3,BY, nx-1,iy,iz, p) - M3(f3,BY, nx-1,iy-dy,iz, p) ) / bd2y[iy] +
	   (M3(f3,BZ, nx-1,iy,iz, p) - M3(f3,BZ, nx-1,iy,iz-dz, p) ) / bd2z[iz]);
      }
    }	
    //  transverse magnetic field extrapolated
    for (int iz = -sw_z; iz < nz + sw_z; iz++) {
      for (int iy = -sw_y; iy < ny + sw_y; iy++) {
	M3(f3,BY, nx+1,iy,iz, p) = M3(f3, BY, nx-2,iy,iz, p);
        M3(f3,BZ, nx+1,iy,iz, p) = M3(f3, BZ, nx-2,iy,iz, p); 
      }
    }
    // set normal magnetic field component for divB=0
    for (int iz = -sw_z; iz < nz + sw_z; iz++) {
      for (int iy = -sw_y; iy < ny + sw_y; iy++) {
	M3(f3,BX, nx,iy,iz, p) = M3(f3,BX, nx-1,iy,iz, p) - bd2x[nx] *  
	  ((M3(f3,BY, nx,iy,iz, p) - M3(f3,BY, nx,iy-dy,iz, p) ) / bd2y[iy] + 
	   (M3(f3,BZ, nx,iy,iz, p) - M3(f3,BZ, nx,iy,iz-dz, p) ) / bd2z[iz]);
      }
    }	
    for (int iz = -sw_z; iz < nz + sw_z; iz++) {
      for (int iy = -sw_y; iy < ny + sw_y; iy++) {

	M3(f3,RVX, nx+1,iy,iz, p) = M3(f3,RVX, nx-2,iy,iz, p);	
	M3(f3,RVX, nx,iy,iz, p) = M3(f3,RVX, nx-1,iy,iz, p);

	M3(f3,RR, nx+1,iy,iz, p) = M3(f3,RR, nx-2,iy,iz, p);	
	M3(f3,RR, nx,iy,iz, p) = M3(f3,RR, nx-1,iy,iz, p);

	M3(f3,RVY, nx+1,iy,iz, p) = M3(f3,RVY, nx-2,iy,iz, p); 
	M3(f3,RVY, nx,iy,iz, p) = M3(f3,RVY, nx-1,iy,iz, p);

	M3(f3,RVZ, nx+1,iy,iz, p) = M3(f3,RVZ, nx-2,iy,iz, p);
	M3(f3,RVZ, nx,iy,iz, p) = M3(f3,RVZ, nx-1,iy,iz, p);

	M3(f3,UU, nx+1,iy,iz, p) = M3(f3,UU, nx-2,iy,iz, p);
	M3(f3,UU, nx,iy,iz, p) = M3(f3,UU, nx-1,iy,iz, p); 

      }
    }
  }

  mrc_fld_put_as(f3, fld);
}
/*    This function generates the "K"-matrix out of an attitude profile matrix
 *
 * I don't know the real name of the "K"-Matrix, but everybody (see References from the other functions)
 * calls it "K", so I do it as well.
 */
struct DoubleMat44 generate_K_matrix(struct DoubleMat33 B)
{
  struct DoubleMat44 K;

  double traceB  = RMAT_TRACE(B);
  double z1      = M3(B, 1, 2) - M3(B, 2, 1);
  double z2      = M3(B, 2, 0) - M3(B, 0, 2);
  double z3      = M3(B, 0, 1) - M3(B, 1, 0);

  /** The "K"-Matrix. See the references for it **/
  /* Fill the upper triangle matrix */
  M4(K, 0, 0) = traceB; M4(K, 0, 1) = z1;                 M4(K, 0, 2) = z2;                   M4(K, 0, 3) = z3;
  M4(K, 1, 1) = 2 * M3(B, 0, 0) - traceB; M4(K, 1, 2) = M3(B, 0, 1) + M3(B, 1, 0);
  M4(K, 1, 3) = M3(B, 0, 2) + M3(B, 2, 0);
  M4(K, 2, 2) = 2 * M3(B, 1, 1) - traceB;   M4(K, 2, 3) = M3(B, 1, 2) + M3(B, 2, 1);
  M4(K, 3, 3) = 2 * M3(B, 2, 2) - traceB;
  /* Copy to  lower triangle matrix */
  M4(K, 1, 0) = M4(K, 0, 1);
  M4(K, 2, 0) = M4(K, 0, 2);  M4(K, 2, 1) = M4(K, 1, 2);
  M4(K, 3, 0) = M4(K, 0, 3);  M4(K, 3, 1) = M4(K, 1, 3);  M4(K, 3, 2) = M4(K, 2, 3);

  return K;
}
Exemple #20
0
//declared the function for rho4 from rho3
double rho4(double r, double m, double p)
{	
	double Fn = rho(r+h,m+h*M3(r,m,p),p+h*rho3(r,m,p));
	
	return Fn;
}
Exemple #21
0
	inline V3 Contact::calculate_friction_impulse(M3* inv_inertia_tensor)
	{

		F inverse_mass = bodies[0]->get_inverse_mass();
		auto o = relative_contact_position[0];

		//Usually you get a torque from an impulse by a cross product with the relative distance.
		//If we build a M3 from the relative distance in this way, we have a matrix
		//that goes from impulse to torque
		M3 impulse_to_torque = -M3(
			0, -o.z, o.y,
			o.z, 0, -o.x,
			-o.y, o.x, 0
			);
		M3 delta_vel_world = impulse_to_torque;
		delta_vel_world *= inv_inertia_tensor[0];	//Rotation generated by unit torque
		delta_vel_world *= impulse_to_torque;		//Same as crossing the relative contact pos. Gives linear vel generated by torque only
		delta_vel_world *= -1;						//M1 x M2 = - M2 x M1, thus the minus


		// Check if we need to the second body's data
		if (bodies[1])
		{
			auto o = relative_contact_position[1];
			impulse_to_torque = -M3(
				0, -o.z, o.y,
				o.z, 0, -o.x,
				-o.y, o.x, 0
				);

			M3 delta_vel_world_2 = impulse_to_torque;
			delta_vel_world_2 *= inv_inertia_tensor[1];	//Rotation generated by unit torque
			delta_vel_world_2 *= impulse_to_torque;		//Same as crossing the relative contact pos. Gives linear vel generated by torque only
			delta_vel_world_2 *= -1;						//M1 x M2 = - M2 x M1, thus the minus

			//combine velocities and masses
			delta_vel_world += delta_vel_world_2;
			inverse_mass += bodies[1]->get_inverse_mass();
		}

		//change base of matrix (B x M x B^-1) to get velocity in contact coords
		M3 delta_velocity = transpose(contact_to_world) * delta_vel_world * contact_to_world;

		//Add the linear velocity. Need to build a matrix like this:
		//m,0,0
		//0,m,0
		//0,0,m
		delta_velocity[0].x += inverse_mass;
		delta_velocity[1].y += inverse_mass;
		delta_velocity[2].z += inverse_mass;


		//From: 
		//unit velocity generated by impulse
		//To:
		//Impulse requires to generate unit velocity
		M3 impulse_matrix = inverse(delta_velocity);

		//Velocities to kill. The x element is the same as the frictionless impulse
		//and must be completely null out
		V3 vel_kill(desired_delta_velocity, -contact_velocity.y, -contact_velocity.z);

		//Get impulse necessary to kill the velocities
		V3 impulse_contact = impulse_matrix * vel_kill;

		//Get only the planar impulse
		F planar_impulse = sqrt(impulse_contact.y*impulse_contact.y + impulse_contact.z * impulse_contact.z);


		//The X of the impulse is the one along the normal.
		//This impulse, multiplied by friction, is the amount to overcome.
		//If the planar is greater, than there is enough force for dynamic friction
		if (planar_impulse > impulse_contact.x * friction) {
			impulse_contact.y /= planar_impulse;
			impulse_contact.z /= planar_impulse;

			//Recalculate delta_velocity (and store it in impulse_contact.X just for caching)
			impulse_contact.x =
				delta_velocity[0].x +
				delta_velocity[1].x * impulse_contact.y * friction +
				delta_velocity[2].x * impulse_contact.z * friction;
			impulse_contact.x = desired_delta_velocity / impulse_contact.x;
			impulse_contact.y *= friction * impulse_contact.x;
			impulse_contact.z *= friction * impulse_contact.x;

		}

		return impulse_contact;

	}
void lidarBoostEngine::build_superresolution(short coeff)
{
    std::cout<< "Num of clouds : " << Y.size() << std::endl;

//    std::cout << Y[0] << std::endl;
    beta = coeff;
    std::vector < MatrixXd > optflow = lk_optical_flow( Y[2], Y[4], 10 );
    MatrixXd D( beta*n, beta*m ); //, X( beta*n, beta*m );
//    SparseMatrix<double> W( beta*n, beta*m ), T( beta*n, beta*m );

    D = apply_optical_flow(Y[2], optflow);
    T = check_unreliable_samples(intensityMap[2], 0.0001);

    MatrixXd up_D = nearest_neigh_upsampling(D);

////    Display and Debug
    cv::Mat M(n, m, CV_32FC1);
//    MatrixXd diff1(n, m);
//    diff1 = MatrixXd::Ones(n, m) - Y[0];
    cv::eigen2cv(Y[2], M);

    cv::Mat M1(n, m, CV_32FC1);
    cv::eigen2cv(Y[4], M1);

//    MatrixXd diff(beta*n, beta*m);
//    diff = MatrixXd::Ones(beta*n, beta*m) - up_D;
    cv::Mat M2(beta*n, beta*m, CV_32FC1);
    cv::eigen2cv(up_D, M2);

    cv::namedWindow("check", cv::WINDOW_AUTOSIZE );
    cv::imshow("check", M);

    cv::namedWindow("check1", cv::WINDOW_AUTOSIZE );
    cv::imshow("check1", M1);

    cv::namedWindow("check2", cv::WINDOW_AUTOSIZE );
    cv::imshow("check2", M2);

////  Solve example equation with eigen
//    Eigen::VectorXd x(2);
//    x(0) = 10.0;
//    x(1) = 25.0;
//    std::cout << "x: " << x << std::endl;

//    my_functor functor;
//    Eigen::NumericalDiff<my_functor> numDiff(functor);
//    Eigen::LevenbergMarquardt<Eigen::NumericalDiff<my_functor>,double> lm(numDiff);
//    lm.parameters.maxfev = 2000;
//    lm.parameters.xtol = 1.0e-10;
//    std::cout << lm.parameters.maxfev << std::endl;

//    int ret = lm.minimize(x);
//    std::cout << lm.iter << std::endl;
//    std::cout << ret << std::endl;

//    std::cout << "x that minimizes the function: " << x << std::endl;

//////    Try to solve lidarboost with Eigen
//      my_functor functor;
//      Eigen::NumericalDiff<my_functor> numDiff(functor);
//      Eigen::LevenbergMarquardt<Eigen::NumericalDiff<my_functor>,double> lm(numDiff);
//      lm.parameters.maxfev = 2000;
//      lm.parameters.xtol = 1.0e-10;
//      std::cout << lm.parameters.maxfev << std::endl;

//    VectorXd val(2);
//    for(int i = 0; i < X.rows(); i++)
//    {
//        for(int j = 0; j < X.cols(); j++)
//        {
//            val = X(i, j);
//            int ret = lm.minimize(val);
//        }
//    }

//    std::cout << lm.iter << std::endl;
//    std::cout << ret << std::endl;

//    std::cout << "x that minimizes the function: " << X << std::endl;

////  Solve example using ceres

//         The variable to solve for with its initial value.
//        double initial_x = 5.0;
//        double x = initial_x;

        MatrixXd X(beta*n, beta*m);// init_X(beta*n, beta*m);
//        X = MatrixXd::Zero(beta*n,beta*m);
        X = up_D;
//        MatrixXd init_X( beta*n, beta*m );
//        init_X = X;
//        int M[2][2], M2[2][2];
//        M[0][0] = 5;
//        M[1][0] = 10;
//        M[0][1] = 20;
//        M[1][1] = 30;

//        M2 = *M;

        // Build the problem.
        Problem problem;

        // Set up the only cost function (also known as residual). This uses
        // auto-differentiation to obtain the derivative (jacobian).

        double val, w, t, d;

        Solver::Options options;
        options.linear_solver_type = ceres::DENSE_QR;
        options.minimizer_progress_to_stdout = false;
        Solver::Summary summary;

        for(int i = 0; i < X.rows(); i++)
        {
            for(int j = 0; j < X.cols(); j++)
            {

                val = X(i, j);
                w = W(i, j);
                t = T(i, j);
                d = up_D(i, j);

                std::cout << "i = " << i << "; j = " << j << std::endl;
                std::cout << "w = " << w << "; t = " << t << "; d = " << d << std::endl;
                CostFunction* cost_function =
                    new AutoDiffCostFunction<CostFunctor, 1, 1>(new CostFunctor(w, t, d));

                problem.AddResidualBlock(cost_function, NULL, &val);
                // Run the solver
                Solve(options, &problem, &summary);
                X(i, j) = val;
            }
        }




        std::cout << summary.BriefReport() << "\n";
//        std::cout << "x : " << init_X
//                  << " -> " << X << "\n";

        cv::Mat M3(beta*n, beta*m, CV_32FC1);
        cv::eigen2cv(X, M3);
        cv::namedWindow("check3", cv::WINDOW_AUTOSIZE );
        cv::imshow("check3", M3);
}
Exemple #23
0
void main()	//main code

{	
	printf("\nRUNGE-KUTTA METHOD\n\nR		M		Rho\n");	//printing titles for values displayed
	
	double c = 10.0;	//the parameter rho(c)
	int n;			//the integer steps, n
	
	//declare arrays
	float x[N];
	float y[N];
	float z[N];
	
	//r,m,p as the radius, mass and density
	double r,m,p;
	
	//declare initial conditons for arrays
	x[0] = h;				//first array is for r=h
	y[0] = (h*h*h/3)*c;			//initial conditon for scaled mass (m)
	z[0] = c*(1-((h*h*c)/(6*gamma(c))));	//initial conditon for rho
	
	//for loop for n=0,1,...,200
	for(n=0;n<N;n++)
	{
		//declared how x(n+1) relates to x(n), y(n+1) relates to y(n), z(n+1) relates to z(n)
		x[n+1] = x[n]+h;
		y[n+1] = y[n]+(h/6)*(M(x[n],y[n],z[n])+2*M2(x[n],y[n],z[n])+2*M3(x[n],y[n],z[n])+M4(x[n],y[n],z[n]));
		z[n+1] = z[n]+(h/6)*(rho(x[n],y[n],z[n])+2*rho2(x[n],y[n],z[n])+2*rho3(x[n],y[n],z[n])+rho4(x[n],y[n],z[n]));

		if(isnan(z[n+1]))
		{
			break;
		}
		
		//r,m,p will be declared in pg-plot
		r = x[n+1];
		m = y[n+1];
		p = z[n+1];
		
		printf("%.2e	%.2e	%.2e\n",x[n+1],y[n+1],z[n+1]);	//printed values for x and y respectively
	}
	
	//Use pg-plot to plot mass and density

  // cpgbeg starts a plotting page, in this case with 2x1 panels
  cpgbeg(0,"?",2,1);

  // sets colour: 1-black, 2-red, 3-green, 4-blue
  cpgsci(1);

  // sets line style: 1-solid, 2-dashed, 3-dot-dashed, 4-dotted
  cpgsls(1);

  // sets charachter height, larger number = bigger
  cpgsch(1.);

  // cpgpage() moves to the next panel
  cpgpage();

  // sets the axes limits in the panel
  cpgswin(0,r,0,m);

  // draw the axes
  cpgbox("BCNST", 0.0, 0, "BCNST", 0.0, 0);

  // label the bottom axis
  cpgmtxt("B",2.,.5,.5,"radius");
  // label the left axis
  cpgmtxt("L",2.5,.5,.5,"saclaed mass");

  // connect N points in ax and ay with a line
  cpgline(n,x,y);

  // cpgpage() moves to the next panel
  cpgpage();

  // sets the axes limits in the panel
  cpgswin(0,r,0,c);

  // draw the axes
  cpgbox("BCNST", 0.0, 0, "BCNST", 0.0, 0);

  // label the bottom axis
  cpgmtxt("B",2.,.5,.5,"radius");
  // label the left axis
  cpgmtxt("L",2.5,.5,.5,"density");

  // connect N points in ax and ay with a line
  cpgline(n,x,z);
  
  // close all pgplot applications
  cpgend();

  // end program
  return;
}
Exemple #24
0
void FastMatmulRecursive(LockAndCounter& locker, MemoryManager<Scalar>& mem_mngr, Matrix<Scalar>& A, Matrix<Scalar>& B, Matrix<Scalar>& C, int total_steps, int steps_left, int start_index, double x, int num_threads, Scalar beta) {
    // Update multipliers
    C.UpdateMultiplier(A.multiplier());
    C.UpdateMultiplier(B.multiplier());
    A.set_multiplier(Scalar(1.0));
    B.set_multiplier(Scalar(1.0));
    // Base case for recursion
    if (steps_left == 0) {
        MatMul(A, B, C);
        return;
    }

    Matrix<Scalar> A11 = A.Subblock(2, 2, 1, 1);
    Matrix<Scalar> A12 = A.Subblock(2, 2, 1, 2);
    Matrix<Scalar> A21 = A.Subblock(2, 2, 2, 1);
    Matrix<Scalar> A22 = A.Subblock(2, 2, 2, 2);
    Matrix<Scalar> B11 = B.Subblock(2, 2, 1, 1);
    Matrix<Scalar> B12 = B.Subblock(2, 2, 1, 2);
    Matrix<Scalar> B21 = B.Subblock(2, 2, 2, 1);
    Matrix<Scalar> B22 = B.Subblock(2, 2, 2, 2);
    Matrix<Scalar> C11 = C.Subblock(2, 2, 1, 1);
    Matrix<Scalar> C12 = C.Subblock(2, 2, 1, 2);
    Matrix<Scalar> C21 = C.Subblock(2, 2, 2, 1);
    Matrix<Scalar> C22 = C.Subblock(2, 2, 2, 2);


    // Matrices to store the results of multiplications.
#ifdef _PARALLEL_
    Matrix<Scalar> M1(mem_mngr.GetMem(start_index, 1, total_steps - steps_left, M), C11.m(), C11.m(), C11.n(), C.multiplier());
    Matrix<Scalar> M2(mem_mngr.GetMem(start_index, 2, total_steps - steps_left, M), C11.m(), C11.m(), C11.n(), C.multiplier());
    Matrix<Scalar> M3(mem_mngr.GetMem(start_index, 3, total_steps - steps_left, M), C11.m(), C11.m(), C11.n(), C.multiplier());
    Matrix<Scalar> M4(mem_mngr.GetMem(start_index, 4, total_steps - steps_left, M), C11.m(), C11.m(), C11.n(), C.multiplier());
    Matrix<Scalar> M5(mem_mngr.GetMem(start_index, 5, total_steps - steps_left, M), C11.m(), C11.m(), C11.n(), C.multiplier());
    Matrix<Scalar> M6(mem_mngr.GetMem(start_index, 6, total_steps - steps_left, M), C11.m(), C11.m(), C11.n(), C.multiplier());
    Matrix<Scalar> M7(mem_mngr.GetMem(start_index, 7, total_steps - steps_left, M), C11.m(), C11.m(), C11.n(), C.multiplier());
    Matrix<Scalar> M8(mem_mngr.GetMem(start_index, 8, total_steps - steps_left, M), C11.m(), C11.m(), C11.n(), C.multiplier());
#else
    Matrix<Scalar> M1(C11.m(), C11.n(), C.multiplier());
    Matrix<Scalar> M2(C11.m(), C11.n(), C.multiplier());
    Matrix<Scalar> M3(C11.m(), C11.n(), C.multiplier());
    Matrix<Scalar> M4(C11.m(), C11.n(), C.multiplier());
    Matrix<Scalar> M5(C11.m(), C11.n(), C.multiplier());
    Matrix<Scalar> M6(C11.m(), C11.n(), C.multiplier());
    Matrix<Scalar> M7(C11.m(), C11.n(), C.multiplier());
    Matrix<Scalar> M8(C11.m(), C11.n(), C.multiplier());
#endif
#if defined(_PARALLEL_) && (_PARALLEL_ == _BFS_PAR_ || _PARALLEL_ == _HYBRID_PAR_)
    bool sequential1 = should_launch_task(8, total_steps, steps_left, start_index, 1, num_threads);
    bool sequential2 = should_launch_task(8, total_steps, steps_left, start_index, 2, num_threads);
    bool sequential3 = should_launch_task(8, total_steps, steps_left, start_index, 3, num_threads);
    bool sequential4 = should_launch_task(8, total_steps, steps_left, start_index, 4, num_threads);
    bool sequential5 = should_launch_task(8, total_steps, steps_left, start_index, 5, num_threads);
    bool sequential6 = should_launch_task(8, total_steps, steps_left, start_index, 6, num_threads);
    bool sequential7 = should_launch_task(8, total_steps, steps_left, start_index, 7, num_threads);
    bool sequential8 = should_launch_task(8, total_steps, steps_left, start_index, 8, num_threads);
#else
    bool sequential1 = false;
    bool sequential2 = false;
    bool sequential3 = false;
    bool sequential4 = false;
    bool sequential5 = false;
    bool sequential6 = false;
    bool sequential7 = false;
    bool sequential8 = false;
#endif



    // M1 = (1 * A11) * (1 * B11)
#if defined(_PARALLEL_) && (_PARALLEL_ == _BFS_PAR_ || _PARALLEL_ == _HYBRID_PAR_)
    # pragma omp task if(sequential1) shared(mem_mngr, locker) untied
    {
#endif
        M1.UpdateMultiplier(Scalar(1));
        M1.UpdateMultiplier(Scalar(1));
        FastMatmulRecursive(locker, mem_mngr, A11, B11, M1, total_steps, steps_left - 1, (start_index + 1 - 1) * 8, x, num_threads, Scalar(0.0));
#ifndef _PARALLEL_
#endif
#if defined(_PARALLEL_) && (_PARALLEL_ == _BFS_PAR_ || _PARALLEL_ == _HYBRID_PAR_)
        locker.Decrement();
    }
    if (should_task_wait(8, total_steps, steps_left, start_index, 1, num_threads)) {
        # pragma omp taskwait
# if defined(_PARALLEL_) && (_PARALLEL_ == _HYBRID_PAR_)
        SwitchToDFS(locker, num_threads);
# endif
    }
#endif

    // M2 = (1 * A12) * (1 * B21)
#if defined(_PARALLEL_) && (_PARALLEL_ == _BFS_PAR_ || _PARALLEL_ == _HYBRID_PAR_)
    # pragma omp task if(sequential2) shared(mem_mngr, locker) untied
    {
#endif
        M2.UpdateMultiplier(Scalar(1));
        M2.UpdateMultiplier(Scalar(1));
        FastMatmulRecursive(locker, mem_mngr, A12, B21, M2, total_steps, steps_left - 1, (start_index + 2 - 1) * 8, x, num_threads, Scalar(0.0));
#ifndef _PARALLEL_
#endif
#if defined(_PARALLEL_) && (_PARALLEL_ == _BFS_PAR_ || _PARALLEL_ == _HYBRID_PAR_)
        locker.Decrement();
    }
    if (should_task_wait(8, total_steps, steps_left, start_index, 2, num_threads)) {
        # pragma omp taskwait
# if defined(_PARALLEL_) && (_PARALLEL_ == _HYBRID_PAR_)
        SwitchToDFS(locker, num_threads);
# endif
    }
#endif

    // M3 = (1 * A11) * (1 * B12)
#if defined(_PARALLEL_) && (_PARALLEL_ == _BFS_PAR_ || _PARALLEL_ == _HYBRID_PAR_)
    # pragma omp task if(sequential3) shared(mem_mngr, locker) untied
    {
#endif
        M3.UpdateMultiplier(Scalar(1));
        M3.UpdateMultiplier(Scalar(1));
        FastMatmulRecursive(locker, mem_mngr, A11, B12, M3, total_steps, steps_left - 1, (start_index + 3 - 1) * 8, x, num_threads, Scalar(0.0));
#ifndef _PARALLEL_
#endif
#if defined(_PARALLEL_) && (_PARALLEL_ == _BFS_PAR_ || _PARALLEL_ == _HYBRID_PAR_)
        locker.Decrement();
    }
    if (should_task_wait(8, total_steps, steps_left, start_index, 3, num_threads)) {
        # pragma omp taskwait
# if defined(_PARALLEL_) && (_PARALLEL_ == _HYBRID_PAR_)
        SwitchToDFS(locker, num_threads);
# endif
    }
#endif

    // M4 = (1 * A12) * (1 * B22)
#if defined(_PARALLEL_) && (_PARALLEL_ == _BFS_PAR_ || _PARALLEL_ == _HYBRID_PAR_)
    # pragma omp task if(sequential4) shared(mem_mngr, locker) untied
    {
#endif
        M4.UpdateMultiplier(Scalar(1));
        M4.UpdateMultiplier(Scalar(1));
        FastMatmulRecursive(locker, mem_mngr, A12, B22, M4, total_steps, steps_left - 1, (start_index + 4 - 1) * 8, x, num_threads, Scalar(0.0));
#ifndef _PARALLEL_
#endif
#if defined(_PARALLEL_) && (_PARALLEL_ == _BFS_PAR_ || _PARALLEL_ == _HYBRID_PAR_)
        locker.Decrement();
    }
    if (should_task_wait(8, total_steps, steps_left, start_index, 4, num_threads)) {
        # pragma omp taskwait
# if defined(_PARALLEL_) && (_PARALLEL_ == _HYBRID_PAR_)
        SwitchToDFS(locker, num_threads);
# endif
    }
#endif

    // M5 = (1 * A21) * (1 * B11)
#if defined(_PARALLEL_) && (_PARALLEL_ == _BFS_PAR_ || _PARALLEL_ == _HYBRID_PAR_)
    # pragma omp task if(sequential5) shared(mem_mngr, locker) untied
    {
#endif
        M5.UpdateMultiplier(Scalar(1));
        M5.UpdateMultiplier(Scalar(1));
        FastMatmulRecursive(locker, mem_mngr, A21, B11, M5, total_steps, steps_left - 1, (start_index + 5 - 1) * 8, x, num_threads, Scalar(0.0));
#ifndef _PARALLEL_
#endif
#if defined(_PARALLEL_) && (_PARALLEL_ == _BFS_PAR_ || _PARALLEL_ == _HYBRID_PAR_)
        locker.Decrement();
    }
    if (should_task_wait(8, total_steps, steps_left, start_index, 5, num_threads)) {
        # pragma omp taskwait
# if defined(_PARALLEL_) && (_PARALLEL_ == _HYBRID_PAR_)
        SwitchToDFS(locker, num_threads);
# endif
    }
#endif

    // M6 = (1 * A22) * (1 * B21)
#if defined(_PARALLEL_) && (_PARALLEL_ == _BFS_PAR_ || _PARALLEL_ == _HYBRID_PAR_)
    # pragma omp task if(sequential6) shared(mem_mngr, locker) untied
    {
#endif
        M6.UpdateMultiplier(Scalar(1));
        M6.UpdateMultiplier(Scalar(1));
        FastMatmulRecursive(locker, mem_mngr, A22, B21, M6, total_steps, steps_left - 1, (start_index + 6 - 1) * 8, x, num_threads, Scalar(0.0));
#ifndef _PARALLEL_
#endif
#if defined(_PARALLEL_) && (_PARALLEL_ == _BFS_PAR_ || _PARALLEL_ == _HYBRID_PAR_)
        locker.Decrement();
    }
    if (should_task_wait(8, total_steps, steps_left, start_index, 6, num_threads)) {
        # pragma omp taskwait
# if defined(_PARALLEL_) && (_PARALLEL_ == _HYBRID_PAR_)
        SwitchToDFS(locker, num_threads);
# endif
    }
#endif

    // M7 = (1 * A21) * (1 * B12)
#if defined(_PARALLEL_) && (_PARALLEL_ == _BFS_PAR_ || _PARALLEL_ == _HYBRID_PAR_)
    # pragma omp task if(sequential7) shared(mem_mngr, locker) untied
    {
#endif
        M7.UpdateMultiplier(Scalar(1));
        M7.UpdateMultiplier(Scalar(1));
        FastMatmulRecursive(locker, mem_mngr, A21, B12, M7, total_steps, steps_left - 1, (start_index + 7 - 1) * 8, x, num_threads, Scalar(0.0));
#ifndef _PARALLEL_
#endif
#if defined(_PARALLEL_) && (_PARALLEL_ == _BFS_PAR_ || _PARALLEL_ == _HYBRID_PAR_)
        locker.Decrement();
    }
    if (should_task_wait(8, total_steps, steps_left, start_index, 7, num_threads)) {
        # pragma omp taskwait
# if defined(_PARALLEL_) && (_PARALLEL_ == _HYBRID_PAR_)
        SwitchToDFS(locker, num_threads);
# endif
    }
#endif

    // M8 = (1 * A22) * (1 * B22)
#if defined(_PARALLEL_) && (_PARALLEL_ == _BFS_PAR_ || _PARALLEL_ == _HYBRID_PAR_)
    # pragma omp task if(sequential8) shared(mem_mngr, locker) untied
    {
#endif
        M8.UpdateMultiplier(Scalar(1));
        M8.UpdateMultiplier(Scalar(1));
        FastMatmulRecursive(locker, mem_mngr, A22, B22, M8, total_steps, steps_left - 1, (start_index + 8 - 1) * 8, x, num_threads, Scalar(0.0));
#ifndef _PARALLEL_
#endif
#if defined(_PARALLEL_) && (_PARALLEL_ == _BFS_PAR_ || _PARALLEL_ == _HYBRID_PAR_)
        locker.Decrement();
    }
    if (should_task_wait(8, total_steps, steps_left, start_index, 8, num_threads)) {
        # pragma omp taskwait
    }
#endif

    M_Add1(M1, M2, C11, x, false, beta);
    M_Add2(M3, M4, C12, x, false, beta);
    M_Add3(M5, M6, C21, x, false, beta);
    M_Add4(M7, M8, C22, x, false, beta);

    // Handle edge cases with dynamic peeling
#if defined(_PARALLEL_) && (_PARALLEL_ == _BFS_PAR_ || _PARALLEL_ == _HYBRID_PAR_)
    if (total_steps == steps_left) {
        mkl_set_num_threads_local(num_threads);
        mkl_set_dynamic(0);
    }
#endif
    DynamicPeeling(A, B, C, 2, 2, 2, beta);
}
Exemple #25
0
int multiple_detector_fit()
{

  std::cout << "Beginning : ... " << std::endl;

  Int_t npoints = 1000;
  Double_t emin = 0.2; 
  Double_t emax = 3.0;

  bool use100m = true;
  bool use470m = true;
  bool use600m = true;


  std::vector<int> baselines;
  std::vector<double> scales;
  std::vector<std::string> names;
  std::vector<double> volume;

  if (use100m) baselines.push_back(100);
  if (use470m) baselines.push_back(470);
  if (use600m) baselines.push_back(600);


  double NULLVec[2][20];
  double OscVec[2][1001][7][20];

  for(int i = 0; i < 20; i++){
    NULLVec[0][i] = 0;
    NULLVec[1][i] = 0;

  }

  for(int u = 0; u < 1000; u++){
    for(int s = 0; s < 7; s++){
      for(int i = 0; i < 20; i++){

	OscVec[0][u][s][i] = 0;
        OscVec[1][u][s][i] = 0;

      }
    }
  }


  int nbinsE = 0;


  if (use100m){

    std::string temp_name = /*"../MatrixFiles/combined_ntuple_100m_nu_processed_numu.root";*/"../MatrixFiles/combined_ntuple_100m_nu_processed_CoreyBins_numu.root";

    TFile temp_file(temp_name.c_str());
    TH1D *NULL_100;
    NULL_100 = (TH1D*)(temp_file.Get("NumuCC"));
    nbinsE = NULL_100->GetNbinsX();
    std::cout << nbinsE << std::endl;
      for(int i = 1; i <= nbinsE; i++){
	  NULLVec[0][i-1] = (NULL_100->GetBinContent(i));
      }

    for(int u = 0; u < npoints; u++){
      for(int s = 0; s < 7; s++){
	TH1D *OSC_100;
	TString upoint = Form("%d",u);
	TString name = "Universe_";
	TString name2 = "_MultiSim_";
	TString mul = Form("%d",s);
	
	name += upoint;
	name += name2;
	name += mul;	
       
	OSC_100 = (TH1D*)(temp_file.Get(name));
          for(int i = 1; i <= nbinsE; i++){
              OscVec[0][u][s][i-1] = (OSC_100->GetBinContent(i));
	      //	      if(OscVec[0][u][s][i-1] != OscVec[0][u][s][i-1]) std::cout << "erm" <<std::endl;

	  }

	delete OSC_100;
      }
    }
    
    delete NULL_100;
    temp_file.Close();
  }

  if (use470m){
    std::string temp_name = /*"../MatrixFiles/combined_ntuple_600m_onaxis_nu_processed_numu.root";*/"../MatrixFiles/combined_ntuple_600m_onaxis_nu_processed_CoreyBins_numu.root";

    TFile temp_file(temp_name.c_str());
    TH1D *NULL_470;
    NULL_470 = (TH1D*)(temp_file.Get("NumuCC"));
    nbinsE = NULL_470->GetNbinsX();
    std::cout << nbinsE<< std::endl;
      for(int i = 1; i <= nbinsE; i++){
	  NULLVec[1][i-1] = (NULL_470->GetBinContent(i));
      }

    for(int u = 0; u < npoints; u++){
      for(int s = 0; s < 7; s++){
	TH1D *OSC_470;
	TString upoint = Form("%d",u);//std::to_string(u);
	TString name = "Universe_";
	TString name2 = "_MultiSim_";
	TString mul = Form("%d",s);// = std::to_string(s);
	
	name += upoint;
	name += name2;
	name += mul;	
       
	OSC_470 = (TH1D*)(temp_file.Get(name));
          for(int i = 1; i <= nbinsE; i++){
	    OscVec[1][u][s][i-1] = (OSC_470->GetBinContent(i));
	    if(OscVec[1][u][s][i-1] != OscVec[1][u][s][i-1])  OscVec[1][u][s][i-1] = NULLVec[1][i-1];//std::cout << "erm, u :" << u << " s : " << s << " E : " << i  <<std::endl;

	  }

	delete OSC_470;
      }
    }
    
    delete NULL_470;
    temp_file.Close();
  }

  int nL = 2;
  int mbins = (nbinsE*nL);
 
  TMatrix M6 (mbins,mbins);
  TMatrix M5 (mbins,mbins);
  TMatrix M4 (mbins,mbins);
  TMatrix M3 (mbins,mbins);
  TMatrix M2 (mbins,mbins);
  TMatrix M1 (mbins,mbins);
  TMatrix M0 (mbins,mbins);
  
  TMatrix C6 (mbins,mbins);
  TMatrix C5 (mbins,mbins);
  TMatrix C4 (mbins,mbins);
  TMatrix C3 (mbins,mbins);
  TMatrix C2 (mbins,mbins);
  TMatrix C1 (mbins,mbins);
  TMatrix C0 (mbins,mbins);

  int N = 0;

  TH1D *Fig6 = new TH1D("Fig6",";;",mbins,0,mbins);
  TH1D *Fig5 = new TH1D("Fig5",";;",mbins,0,mbins);
  TH1D *Fig4 = new TH1D("Fig4",";;",mbins,0,mbins);
  TH1D *Fig3 = new TH1D("Fig3",";;",mbins,0,mbins);
  TH1D *Fig2 = new TH1D("Fig2",";;",mbins,0,mbins);
  TH1D *Fig1 = new TH1D("Fig1",";;",mbins,0,mbins);
  TH1D *Fig0 = new TH1D("Fig0",";;",mbins,0,mbins);

  int Erri = 0, Errj = 0;

  std::cout << "Filling Error Matrix..." << std::endl;

  for(int Lrow = 0; Lrow < 2; Lrow++){
    for(int Erow = 0; Erow < nbinsE; Erow++){

      Errj = 0;

      for(int Lcol = 0; Lcol < 2; Lcol++){
        for(int Ecol = 0; Ecol < nbinsE; Ecol++){

          M6 (Erri,Errj) = 0;
          M5 (Erri,Errj) = 0;
          M4 (Erri,Errj) = 0;
          M3 (Erri,Errj) = 0;
          M2 (Erri,Errj) = 0;
          M1 (Erri,Errj) = 0;
          M0 (Erri,Errj) = 0;

	  N = 0;

	  for(int u = 0; u < npoints; u++){

	    M6 (Erri,Errj) += (NULLVec[Lrow][Erow]-OscVec[Lrow][u][6][Erow])*(NULLVec[Lcol][Ecol]-OscVec[Lcol][u][6][Ecol]);
            M5 (Erri,Errj) += (NULLVec[Lrow][Erow]-OscVec[Lrow][u][5][Erow])*(NULLVec[Lcol][Ecol]-OscVec[Lcol][u][5][Ecol]);
            M4 (Erri,Errj) += (NULLVec[Lrow][Erow]-OscVec[Lrow][u][4][Erow])*(NULLVec[Lcol][Ecol]-OscVec[Lcol][u][4][Ecol]);
            M3 (Erri,Errj) += (NULLVec[Lrow][Erow]-OscVec[Lrow][u][3][Erow])*(NULLVec[Lcol][Ecol]-OscVec[Lcol][u][3][Ecol]);
            M2 (Erri,Errj) += (NULLVec[Lrow][Erow]-OscVec[Lrow][u][2][Erow])*(NULLVec[Lcol][Ecol]-OscVec[Lcol][u][2][Ecol]);
            M1 (Erri,Errj) += (NULLVec[Lrow][Erow]-OscVec[Lrow][u][1][Erow])*(NULLVec[Lcol][Ecol]-OscVec[Lcol][u][1][Ecol]);
            M0 (Erri,Errj) += (NULLVec[Lrow][Erow]-OscVec[Lrow][u][0][Erow])*(NULLVec[Lcol][Ecol]-OscVec[Lcol][u][0][Ecol]);

	    N++;
	    
	  }

	  M6 (Erri,Errj) /= N;
          M5 (Erri,Errj) /= N;
          M4 (Erri,Errj) /= N;
          M3 (Erri,Errj) /= N;
          M2 (Erri,Errj) /= N;
          M1 (Erri,Errj) /= N;
	  M0 (Erri,Errj) /= N;


	  
	  M6 (Erri,Errj) /= NULLVec[Lrow][Erow]*NULLVec[Lcol][Ecol];
          M5 (Erri,Errj) /= NULLVec[Lrow][Erow]*NULLVec[Lcol][Ecol];
          M4 (Erri,Errj) /= NULLVec[Lrow][Erow]*NULLVec[Lcol][Ecol];
          M3 (Erri,Errj) /= NULLVec[Lrow][Erow]*NULLVec[Lcol][Ecol];
          M2 (Erri,Errj) /= NULLVec[Lrow][Erow]*NULLVec[Lcol][Ecol];
          M1 (Erri,Errj) /= NULLVec[Lrow][Erow]*NULLVec[Lcol][Ecol];
          M0 (Erri,Errj) /= NULLVec[Lrow][Erow]*NULLVec[Lcol][Ecol];
	  
	  if(Erri == Errj) Fig6->SetBinContent(Erri+1, sqrt(M6 (Erri,Errj)));
      if(Erri == Errj) Fig5->SetBinContent(Erri+1, sqrt(M5 (Erri,Errj)));
      if(Erri == Errj) Fig4->SetBinContent(Erri+1, sqrt(M4 (Erri,Errj)));
      if(Erri == Errj) Fig3->SetBinContent(Erri+1, sqrt(M3 (Erri,Errj)));
      if(Erri == Errj) Fig2->SetBinContent(Erri+1, sqrt(M2 (Erri,Errj)));
      if(Erri == Errj) Fig1->SetBinContent(Erri+1, sqrt(M1 (Erri,Errj)));
      if(Erri == Errj) Fig0->SetBinContent(Erri+1, sqrt(M0 (Erri,Errj)));

      std::cout << M6 (Erri,Errj) << "\t";

          Errj++;

	}}

      Erri++;

    }}

  for(int i = 0; i < Erri; i++){
    for(int j = 0; j < Errj; j++){

      C6 (i,j) = M6(i,j) / sqrt(M6 (i,i) * M6 (j,j));
      C5 (i,j) = M5(i,j) / sqrt(M5 (i,i) * M5 (j,j));
      C4 (i,j) = M4(i,j) / sqrt(M4 (i,i) * M4 (j,j));
      C3 (i,j) = M3(i,j) / sqrt(M3 (i,i) * M3 (j,j));
      C2 (i,j) = M2(i,j) / sqrt(M2 (i,i) * M2 (j,j));
      C1 (i,j) = M1(i,j) / sqrt(M1 (i,i) * M1 (j,j));
      C0 (i,j) = M0(i,j) / sqrt(M0 (i,i) * M0 (j,j));

    }
  }
  
  std::cout << "...Error Matrix Filled" << std::endl;


  TCanvas* c6 = new TCanvas("c6","",700,700);
  c6->SetLeftMargin(.1);
  c6->SetBottomMargin(.1);
  c6->SetTopMargin(.075);
  c6->SetRightMargin(.15);
  c6->cd();

  M6.Draw("COLZ");
  gStyle->SetPalette(56,0);
  TMatrixFBase->SetContour(999);
  //  TMatrixFBase->GetZaxis()->SetRangeUser(-0.05,0.4);
  TMatrixFBase->GetZaxis()->SetTitleFont(62);
  TMatrixFBase->GetZaxis()->SetLabelFont(62);
  TMatrixFBase->GetZaxis()->SetTitleSize(0.045);
  //  TMatrixFBase->GetZaxis()->SetTitle("Fractional Error Matrix");
  TMatrixFBase->GetZaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetXaxis()->SetTitle("");
  TMatrixFBase->GetXaxis()->SetLabelSize(0);
  TMatrixFBase->GetXaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetTitle("");
  TMatrixFBase->GetYaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetLabelSize(0);
  TMatrixFBase->SetStats(0);

  TLine *split = new TLine();
  split->SetLineStyle(2);
  split->SetLineWidth(5);
  split->SetLineColor(kBlue);
  split->DrawLineNDC(.1,.51,.849,.51);
  split->DrawLineNDC(.475,.101,.475,.930);
  add_plot_label("|            0.2 #minus 3.0 GeV            |            0.2 #minus 3.0 GeV            | ", 0.48,0.08,0.03);



  TLatex *ND = new TLatex(.15,.01,"LAr1-ND (100m) ");
  ND->SetNDC();
  ND->SetTextFont(62);
  ND->SetTextSize(0.04);
  ND->Draw();

  TLatex *MD = new TLatex(.5,.01,"T600 (600m, on axis)");
  MD->SetNDC();
  MD->SetTextFont(62);
  MD->SetTextSize(0.04);
  MD->Draw();

  TLatex *ND45 = new TLatex(.05,.15,"LAr1-ND (100m) ");
  ND45->SetNDC();
  ND45->SetTextAngle(90);
  ND45->SetTextFont(62);
  ND45->SetTextSize(0.04);
  ND45->Draw();

  TLatex *MD45 = new TLatex(.05,.54,"T600 (600m, on axis)");
  MD45->SetNDC();
  MD45->SetTextAngle(90);
  MD45->SetTextFont(62);
  MD45->SetTextSize(0.04);
  MD45->Draw();

  TLatex *Total = new TLatex(.2,.96,"#nu#lower[0.3]{#mu} Flux Fractional Error Matrix");
  Total->SetNDC();
  Total->SetTextFont(62);
  Total->SetTextSize(0.045);
  Total->Draw();

  //  c6->Print("total_matrix.pdf");



  TCanvas* c61 = new TCanvas("c61","",700,700);
  c61->SetLeftMargin(.1);
  c61->SetBottomMargin(.1);
  c61->SetTopMargin(.075);
  c61->SetRightMargin(.15);
  c61->cd();

  C6.Draw("COLZ");
  gStyle->SetPalette(56,0);
  TMatrixFBase->SetContour(999);
  TMatrixFBase->GetZaxis()->SetTitleFont(62);
  TMatrixFBase->GetZaxis()->SetLabelFont(62);
  TMatrixFBase->GetZaxis()->SetTitleSize(0.045);
  TMatrixFBase->GetZaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetXaxis()->SetTitle("");
  TMatrixFBase->GetXaxis()->SetLabelSize(0);
  TMatrixFBase->GetXaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetTitle("");
  TMatrixFBase->GetYaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetLabelSize(0);
  TMatrixFBase->SetStats(0);
  TLine *split = new TLine();
  split->SetLineStyle(2);
  split->SetLineWidth(5);
  split->SetLineColor(kYellow);
  split->DrawLineNDC(.1,.51,.849,.51);
  split->DrawLineNDC(.475,.101,.475,.930);
  add_plot_label("|            0.2 #minus 3.0 GeV            |            0.2 #minus 3.0 GeV            | ", 0.48,0.08,0.03);


  ND->Draw();
  MD->Draw();
  ND45->Draw();
  MD45->Draw();

  TLatex *Total = new TLatex(.2,.96,"#nu#lower[0.3]{#mu} Flux Correlation Matrix");
  Total->SetNDC();
  Total->SetTextFont(62);
  Total->SetTextSize(0.045);
  Total->Draw();

  //  c61->Print("total_correlation_matrix.pdf");

 

  TCanvas* c5 = new TCanvas("c5","",700,700);
  c5->SetLeftMargin(.1);
  c5->SetBottomMargin(.1);
  c5->SetTopMargin(.075);
  c5->SetRightMargin(.15);
  c5->cd();

  M5.Draw("COLZ");
  gStyle->SetPalette(56,0);
  TMatrixFBase->SetContour(999);
  //TMatrixFBase->GetZaxis()->SetRangeUser(-0.005,0.045);
  
TMatrixFBase->GetZaxis()->SetTitleFont(62);
  TMatrixFBase->GetZaxis()->SetLabelFont(62);
  TMatrixFBase->GetZaxis()->SetTitleSize(0.045);
  //  TMatrixFBase->GetZaxis()->SetTitle("K^{+} Covariance Matrix");
  TMatrixFBase->GetZaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetXaxis()->SetTitle("");
  TMatrixFBase->GetXaxis()->SetLabelSize(0);
  TMatrixFBase->GetXaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetTitle("");
  TMatrixFBase->GetYaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetLabelSize(0);
  TMatrixFBase->SetStats(0);

  TLine *split = new TLine();
  split->SetLineStyle(2);
  split->SetLineWidth(5);
  split->SetLineColor(kBlue);
  split->DrawLineNDC(.1,.51,.849,.51);
  split->DrawLineNDC(.475,.101,.475,.930);
  add_plot_label("|            0.2 #minus 3.0 GeV            |            0.2 #minus 3.0 GeV            | ", 0.48,0.08,0.03);

  TLatex *Total = new TLatex(.2,.96,"#nu#lower[0.3]{#mu} K#lower[-0.15]{+} Fractional Error Matrix");
  Total->SetNDC();
  Total->SetTextFont(62);
  Total->SetTextSize(0.045);
  Total->Draw();




  ND->Draw();
  MD->Draw();
  ND45->Draw();
  MD45->Draw();

  //  c5->Print("mult5_matrix.pdf");

  TCanvas* c51 = new TCanvas("c51","",700,700);
  c51->SetLeftMargin(.1);
  c51->SetBottomMargin(.1);
  c51->SetTopMargin(.075);
  c51->SetRightMargin(.15);
  c51->cd();

  C5.Draw("COLZ");
  gStyle->SetPalette(56,0);
  TMatrixFBase->SetContour(999);
  //TMatrixFBase->GetZaxis()->SetRangeUser(-1,1);
  TMatrixFBase->GetZaxis()->SetTitleFont(62);
  TMatrixFBase->GetZaxis()->SetLabelFont(62);
  TMatrixFBase->GetZaxis()->SetTitleSize(0.045);
  //  TMatrixFBase->GetZaxis()->SetTitle("K#lower[-0.15]{+} Correlation Matrix");
  TMatrixFBase->GetZaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetXaxis()->SetTitle("");
  TMatrixFBase->GetXaxis()->SetLabelSize(0);
  TMatrixFBase->GetXaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetTitle("");
  TMatrixFBase->GetYaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetLabelSize(0);
  TMatrixFBase->SetStats(0);

  TLine *split = new TLine();
  split->SetLineStyle(2);
  split->SetLineWidth(5);
  split->SetLineColor(kYellow);
  split->DrawLineNDC(.1,.51,.849,.51);
  split->DrawLineNDC(.475,.101,.475,.930);
  add_plot_label("|            0.2 #minus 3.0 GeV            |            0.2 #minus 3.0 GeV            | ", 0.48,0.08,0.03);

  TLatex *Total = new TLatex(.2,.96,"#nu#lower[0.3]{#mu} K#lower[-0.15]{+} Correlation Matrix");
  Total->SetNDC();
  Total->SetTextFont(62);
  Total->SetTextSize(0.045);
  Total->Draw();



  ND->Draw();
  MD->Draw();
  ND45->Draw();
  MD45->Draw();

  //  c51->Print("mult5_correlation_matrix.pdf");

  TCanvas* c4 = new TCanvas("c4","",700,700);
  c4->SetLeftMargin(.1);
  c4->SetBottomMargin(.1);
  c4->SetTopMargin(.075);
  c4->SetRightMargin(.15);
  c4->cd();

  M4.Draw("COLZ");
  gStyle->SetPalette(56,0);
  TMatrixFBase->SetContour(999);
  //TMatrixFBase->GetZaxis()->SetRangeUser(-0.005,0.045);
  TMatrixFBase->GetZaxis()->SetTitleFont(62);
  TMatrixFBase->GetZaxis()->SetLabelFont(62);
  TMatrixFBase->GetZaxis()->SetTitleSize(0.045);
  //TMatrixFBase->GetZaxis()->SetTitle("K#lower[-0.15]{-} Covariance Matrix");
  TMatrixFBase->GetZaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetXaxis()->SetTitle("");
  TMatrixFBase->GetXaxis()->SetLabelSize(0);
  TMatrixFBase->GetXaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetTitle("");
  TMatrixFBase->GetYaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetLabelSize(0);
  TMatrixFBase->SetStats(0);

  TLine *split = new TLine();
  split->SetLineStyle(2);
  split->SetLineWidth(5);
  split->SetLineColor(kBlue);
  split->DrawLineNDC(.1,.51,.849,.51);
  split->DrawLineNDC(.475,.101,.475,.930);
  add_plot_label("|            0.2 #minus 3.0 GeV            |            0.2 #minus 3.0 GeV            | ", 0.48,0.08,0.03);

  TLatex *Total = new TLatex(.2,.96,"#nu#lower[0.3]{#mu} K#lower[-0.15]{-} Fractional Error Matrix");
  Total->SetNDC();
  Total->SetTextFont(62);
  Total->SetTextSize(0.045);
  Total->Draw();



  ND->Draw();
  MD->Draw();
  ND45->Draw();
  MD45->Draw();


  //  c4->Print("mult4_matrix.pdf");

  TCanvas* c41 = new TCanvas("c41","",700,700);
  c41->SetLeftMargin(.1);
  c41->SetBottomMargin(.1);
  c41->SetTopMargin(.075);
  c41->SetRightMargin(.15);
  c41->cd();

  C4.Draw("COLZ");
  gStyle->SetPalette(56,0);
  TMatrixFBase->SetContour(999);
  //TMatrixFBase->GetZaxis()->SetRangeUser(-1,1);

  TMatrixFBase->GetZaxis()->SetTitleFont(62);
  TMatrixFBase->GetZaxis()->SetLabelFont(62);
  TMatrixFBase->GetZaxis()->SetTitleSize(0.045);
  //  TMatrixFBase->GetZaxis()->SetTitle("K#lower[-0.15]{-} Correlation Matrix");
  TMatrixFBase->GetZaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetXaxis()->SetTitle("");
  TMatrixFBase->GetXaxis()->SetLabelSize(0);
  TMatrixFBase->GetXaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetTitle("");
  TMatrixFBase->GetYaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetLabelSize(0);
  TMatrixFBase->SetStats(0);

  TLine *split = new TLine();
  split->SetLineStyle(2);
  split->SetLineWidth(5);
  split->SetLineColor(kYellow);
  split->DrawLineNDC(.1,.51,.849,.51);
  split->DrawLineNDC(.475,.101,.475,.930);
  add_plot_label("|            0.2 #minus 3.0 GeV            |            0.2 #minus 3.0 GeV            | ", 0.48,0.08,0.03);

  TLatex *Total = new TLatex(.2,.96,"#nu#lower[0.3]{#mu} K#lower[-0.15]{-} Correlation Matrix");
  Total->SetNDC();
  Total->SetTextFont(62);
  Total->SetTextSize(0.045);
  Total->Draw();

  ND->Draw();
  MD->Draw();
  ND45->Draw();
  MD45->Draw();


  //  c41->Print("mult4_correlation_matrix.pdf");



  TCanvas* c3 = new TCanvas("c3","",700,700);
  c3->SetLeftMargin(.1);
  c3->SetBottomMargin(.1);
  c3->SetTopMargin(.075);
  c3->SetRightMargin(.15);
  c3->cd();

  M3.Draw("COLZ");
  gStyle->SetPalette(56,0);
  TMatrixFBase->SetContour(999);
  //TMatrixFBase->GetZaxis()->SetRangeUser(-0.005,0.045);

  TMatrixFBase->GetZaxis()->SetTitleFont(62);
  TMatrixFBase->GetZaxis()->SetLabelFont(62);
  TMatrixFBase->GetZaxis()->SetTitleSize(0.045);
  //TMatrixFBase->GetZaxis()->SetTitle("K#lower[-0.15]{0} Covariance Matrix");
  TMatrixFBase->GetZaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetXaxis()->SetTitle("");
  TMatrixFBase->GetXaxis()->SetLabelSize(0);
  TMatrixFBase->GetXaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetTitle("");
  TMatrixFBase->GetYaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetLabelSize(0);
  TMatrixFBase->SetStats(0);

  TLine *split = new TLine();
  split->SetLineStyle(2);
  split->SetLineWidth(5);
  split->SetLineColor(kBlue);
  split->DrawLineNDC(.1,.51,.849,.51);
  split->DrawLineNDC(.475,.101,.475,.930);
  add_plot_label("|            0.2 #minus 3.0 GeV            |            0.2 #minus 3.0 GeV            | ", 0.48,0.08,0.03);

  TLatex *Total = new TLatex(.2,.96,"#nu#lower[0.3]{#mu} K#lower[-0.15]{0} Fractional Error Matrix");
  Total->SetNDC();
  Total->SetTextFont(62);
  Total->SetTextSize(0.045);
  Total->Draw();


  ND->Draw();
  MD->Draw();
  ND45->Draw();
  MD45->Draw();


  //  c3->Print("mult3_matrix.pdf");

  TCanvas* c31 = new TCanvas("c31","",700,700);
  c31->SetLeftMargin(.1);
  c31->SetBottomMargin(.1);
  c31->SetTopMargin(.075);
  c31->SetRightMargin(.15);
  c31->cd();

  C3.Draw("COLZ");
  gStyle->SetPalette(56,0);
  TMatrixFBase->SetContour(999);
  //TMatrixFBase->GetZaxis()->SetRangeUser(-1,1);

  TMatrixFBase->GetZaxis()->SetTitleFont(62);
  TMatrixFBase->GetZaxis()->SetLabelFont(62);
  TMatrixFBase->GetZaxis()->SetTitleSize(0.045);
  //TMatrixFBase->GetZaxis()->SetTitle("K#lower[-0.15]{0} Correlation Matrix");
  TMatrixFBase->GetZaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetXaxis()->SetTitle("");
  TMatrixFBase->GetXaxis()->SetLabelSize(0);
  TMatrixFBase->GetXaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetTitle("");
  TMatrixFBase->GetYaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetLabelSize(0);
  TMatrixFBase->SetStats(0);

  TLine *split = new TLine();
  split->SetLineStyle(2);
  split->SetLineWidth(5);
  split->SetLineColor(kYellow);
  split->DrawLineNDC(.1,.51,.849,.51);
  split->DrawLineNDC(.475,.101,.475,.930);
  add_plot_label("|            0.2 #minus 3.0 GeV            |            0.2 #minus 3.0 GeV            | ", 0.48,0.08,0.03);

  TLatex *Total = new TLatex(.2,.96,"#nu#lower[0.3]{#mu} K#lower[-0.15]{0} Correlation Matrix");
  Total->SetNDC();
  Total->SetTextFont(62);
  Total->SetTextSize(0.045);
  Total->Draw();



  ND->Draw();
  MD->Draw();
  ND45->Draw();
  MD45->Draw();


  //  c31->Print("mult3_correlation_matrix.pdf");


  TCanvas* c2 = new TCanvas("c2","",700,700);
  c2->SetLeftMargin(.1);
  c2->SetBottomMargin(.1);
  c2->SetTopMargin(.075);
  c2->SetRightMargin(.15);
  c2->cd();

  M2.Draw("COLZ");
  gStyle->SetPalette(56,0);
  //TMatrixFBase->GetZaxis()->SetRangeUser(-0.005,0.045);
  TMatrixFBase->SetContour(999);
  TMatrixFBase->GetZaxis()->SetTitleFont(62);
  TMatrixFBase->GetZaxis()->SetLabelFont(62);
  TMatrixFBase->GetZaxis()->SetTitleSize(0.045);
  //TMatrixFBase->GetZaxis()->SetTitle("#pi#lower[-0.15]{+} Covariance Matrix");
  TMatrixFBase->GetZaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetXaxis()->SetTitle("");
  TMatrixFBase->GetXaxis()->SetLabelSize(0);
  TMatrixFBase->GetXaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetTitle("");
  TMatrixFBase->GetYaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetLabelSize(0);
  TMatrixFBase->SetStats(0);

  TLine *split = new TLine();
  split->SetLineStyle(2);
  split->SetLineWidth(5);
  split->SetLineColor(kBlue);
  split->DrawLineNDC(.1,.51,.849,.51);
  split->DrawLineNDC(.475,.101,.475,.930);
  add_plot_label("|            0.2 #minus 3.0 GeV            |            0.2 #minus 3.0 GeV            | ", 0.48,0.08,0.03);

  TLatex *Total = new TLatex(.2,.96,"#nu#lower[0.3]{#mu} #pi#lower[-0.15]{+} Fractional Error Matrix");
  Total->SetNDC();
  Total->SetTextFont(62);
  Total->SetTextSize(0.045);
  Total->Draw();



  ND->Draw();
  MD->Draw();
  ND45->Draw();
  MD45->Draw();


  //  c2->Print("mult2_matrix.pdf");

  TCanvas* c21 = new TCanvas("c21","",700,700);
  c21->SetLeftMargin(.1);
  c21->SetBottomMargin(.1);
  c21->SetTopMargin(.075);
  c21->SetRightMargin(.15);
  c21->cd();

  C2.Draw("COLZ");
  gStyle->SetPalette(56,0);
  TMatrixFBase->SetContour(999);
  //TMatrixFBase->GetZaxis()->SetRangeUser(-1,1);

  TMatrixFBase->GetZaxis()->SetTitleFont(62);
  TMatrixFBase->GetZaxis()->SetLabelFont(62);
  TMatrixFBase->GetZaxis()->SetTitleSize(0.045);
  //TMatrixFBase->GetZaxis()->SetTitle("#pi#lower[-0.15]{+} Correlation Matrix");
  TMatrixFBase->GetZaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetXaxis()->SetTitle("");
  TMatrixFBase->GetXaxis()->SetLabelSize(0);
  TMatrixFBase->GetXaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetTitle("");
  TMatrixFBase->GetYaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetLabelSize(0);
  TMatrixFBase->SetStats(0);

  TLine *split = new TLine();
  split->SetLineStyle(2);
  split->SetLineWidth(5);
  split->SetLineColor(kYellow);
  split->DrawLineNDC(.1,.51,.849,.51);
  split->DrawLineNDC(.475,.101,.475,.930);
  add_plot_label("|            0.2 #minus 3.0 GeV            |            0.2 #minus 3.0 GeV            | ", 0.48,0.08,0.03);

  TLatex *Total = new TLatex(.2,.96,"#nu#lower[0.3]{#mu} #pi#lower[-0.15]{+} Correlation Matrix");
  Total->SetNDC();
  Total->SetTextFont(62);
  Total->SetTextSize(0.045);
  Total->Draw();

  ND->Draw();
  MD->Draw();
  ND45->Draw();
  MD45->Draw();


  //  c21->Print("mult2_correlation_matrix.pdf");


  TCanvas* c1 = new TCanvas("c1","",700,700);
  c1->SetLeftMargin(.1);
  c1->SetBottomMargin(.1);
  c1->SetTopMargin(.075);
  c1->SetRightMargin(.15);
  c1->cd();

  M1.Draw("COLZ");
  gStyle->SetPalette(56,0);
  TMatrixFBase->SetContour(999);
  //TMatrixFBase->GetZaxis()->SetRangeUser(-0.005,0.045);

  TMatrixFBase->GetZaxis()->SetTitleFont(62);
  TMatrixFBase->GetZaxis()->SetLabelFont(62);
  TMatrixFBase->GetZaxis()->SetTitleSize(0.045);
  //TMatrixFBase->GetZaxis()->SetTitle("#pi#lower[-0.15]{-} Covariance Matrix");
  TMatrixFBase->GetZaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetXaxis()->SetTitle("");
  TMatrixFBase->GetXaxis()->SetLabelSize(0);
  TMatrixFBase->GetXaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetTitle("");
  TMatrixFBase->GetYaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetLabelSize(0);
  TMatrixFBase->SetStats(0);

  TLine *split = new TLine();
  split->SetLineStyle(2);
  split->SetLineWidth(5);
  split->SetLineColor(kBlue);
  split->DrawLineNDC(.1,.51,.849,.51);
  split->DrawLineNDC(.475,.101,.475,.930);
  add_plot_label("|            0.2 #minus 3.0 GeV            |            0.2 #minus 3.0 GeV            | ", 0.48,0.08,0.03);

  TLatex *Total = new TLatex(.2,.96,"#nu#lower[0.3]{#mu} #pi#lower[-0.15]{-} Fractional Error Matrix");
  Total->SetNDC();
  Total->SetTextFont(62);
  Total->SetTextSize(0.045);
  Total->Draw();

  ND->Draw();
  MD->Draw();
  ND45->Draw();
  MD45->Draw();


  //  c1->Print("mult1_matrix.pdf");

  TCanvas* c11 = new TCanvas("c11","",700,700);
  c11->SetLeftMargin(.1);
  c11->SetBottomMargin(.1);
  c11->SetTopMargin(.075);
  c11->SetRightMargin(.15);
  c11->cd();

  C1.Draw("COLZ");
  gStyle->SetPalette(56,0);
  TMatrixFBase->SetContour(999);
  //TMatrixFBase->GetZaxis()->SetRangeUser(-1,1);

  TMatrixFBase->GetZaxis()->SetTitleFont(62);
  TMatrixFBase->GetZaxis()->SetLabelFont(62);
  TMatrixFBase->GetZaxis()->SetTitleSize(0.045);
  //  TMatrixFBase->GetZaxis()->SetTitle("#pi#lower[-0.15]{-} Correlation Matrix");
  TMatrixFBase->GetZaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetXaxis()->SetTitle("");
  TMatrixFBase->GetXaxis()->SetLabelSize(0);
  TMatrixFBase->GetXaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetTitle("");
  TMatrixFBase->GetYaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetLabelSize(0);
  TMatrixFBase->SetStats(0);

  TLine *split = new TLine();
  split->SetLineStyle(2);
  split->SetLineWidth(5);
  split->SetLineColor(kYellow);
  split->DrawLineNDC(.1,.51,.849,.51);
  split->DrawLineNDC(.475,.101,.475,.930);
  add_plot_label("|            0.2 #minus 3.0 GeV            |            0.2 #minus 3.0 GeV            | ", 0.48,0.08,0.03);

  TLatex *Total = new TLatex(.2,.96,"#nu#lower[0.3]{#mu} #pi#lower[-0.15]{-} Correlation Matrix");
  Total->SetNDC();
  Total->SetTextFont(62);
  Total->SetTextSize(0.045);
  Total->Draw();

  ND->Draw();
  MD->Draw();
  ND45->Draw();
  MD45->Draw();


  //  c11->Print("mult1_correlation_matrix.pdf");


  TCanvas* c0 = new TCanvas("c0","",700,700);
  c0->SetLeftMargin(.1);
  c0->SetBottomMargin(.1);
  c0->SetTopMargin(.075);
  c0->SetRightMargin(.15);
  c0->cd();

  M0.Draw("COLZ");
  gStyle->SetPalette(56,0);
  TMatrixFBase->SetContour(999);
  //TMatrixFBase->GetZaxis()->SetRangeUser(-0.005,0.045);

  TMatrixFBase->GetZaxis()->SetTitleFont(62);
  TMatrixFBase->GetZaxis()->SetLabelFont(62);
  TMatrixFBase->GetZaxis()->SetTitleSize(0.045);
  //  TMatrixFBase->GetZaxis()->SetTitle("Beam UniSim Covariance Matrix");
  TMatrixFBase->GetZaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetXaxis()->SetTitle("");
  TMatrixFBase->GetXaxis()->SetLabelSize(0);
  TMatrixFBase->GetXaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetTitle("");
  TMatrixFBase->GetYaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetLabelSize(0);
  TMatrixFBase->SetStats(0);

  TLine *split = new TLine();
  split->SetLineStyle(2);
  split->SetLineWidth(5);
  split->SetLineColor(kBlue);
  split->DrawLineNDC(.1,.51,.849,.51);
  split->DrawLineNDC(.475,.101,.475,.930);
  add_plot_label("|            0.2 #minus 3.0 GeV            |            0.2 #minus 3.0 GeV            | ", 0.48,0.08,0.03);

  TLatex *Total = new TLatex(.2,.96,"#nu#lower[0.3]{#mu} Beam Fractional Error Matrix");
  Total->SetNDC();
  Total->SetTextFont(62);
  Total->SetTextSize(0.045);
  Total->Draw();

  ND->Draw();
  MD->Draw();
  ND45->Draw();
  MD45->Draw();


  //  c0->Print("mult0_matrix.pdf");

  TCanvas* c01 = new TCanvas("c01","",700,700);
  c01->SetLeftMargin(.1);
  c01->SetBottomMargin(.1);
  c01->SetTopMargin(.075);
  c01->SetRightMargin(.15);
  c01->cd();

  C0.Draw("COLZ");
  gStyle->SetPalette(56,0);
  TMatrixFBase->SetContour(999);
  //TMatrixFBase->GetZaxis()->SetRangeUser(-1,1);

  TMatrixFBase->GetZaxis()->SetTitleFont(62);
  TMatrixFBase->GetZaxis()->SetLabelFont(62);
  TMatrixFBase->GetZaxis()->SetTitleSize(0.045);
  //  TMatrixFBase->GetZaxis()->SetTitle("Beam UniSim Correlation Matrix");
  TMatrixFBase->GetZaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetXaxis()->SetTitle("");
  TMatrixFBase->GetXaxis()->SetLabelSize(0);
  TMatrixFBase->GetXaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetTitle("");
  TMatrixFBase->GetYaxis()->SetTitleOffset(1.5);
  TMatrixFBase->GetYaxis()->SetLabelSize(0);
  TMatrixFBase->SetStats(0);

  TLine *split = new TLine();
  split->SetLineStyle(2);
  split->SetLineWidth(5);
  split->SetLineColor(kYellow);
  split->DrawLineNDC(.1,.51,.849,.51);
  split->DrawLineNDC(.475,.101,.475,.930);
  add_plot_label("|            0.2 #minus 3.0 GeV            |            0.2 #minus 3.0 GeV            | ", 0.48,0.08,0.03);

  TLatex *Total = new TLatex(.2,.96,"#nu#lower[0.3]{#mu} Beam Correlation Matrix");
  Total->SetNDC();
  Total->SetTextFont(62);
  Total->SetTextSize(0.045);
  Total->Draw();

  ND->Draw();
  MD->Draw();
  ND45->Draw();
  MD45->Draw();

  //  c01->Print("mult0_correlation_matrix.pdf");
 
  TCanvas* c86 = new TCanvas("c86","",800,400);
  c86->SetLeftMargin(.1);
  c86->SetBottomMargin(.1);
  c86->SetTopMargin(.05);
  c86->SetRightMargin(.05);
  c86->cd();

  Fig6->GetYaxis()->SetTitle("Fractional Error");
  Fig6->GetYaxis()->SetTitleFont(62);
  Fig6->GetXaxis()->SetTitleFont(62);
  Fig6->GetYaxis()->SetLabelFont(62);
  Fig6->GetXaxis()->SetLabelFont(62);
  Fig6->GetYaxis()->CenterTitle();
  Fig6->GetYaxis()->SetTitleSize(0.06);
  Fig6->GetYaxis()->SetTitleOffset(0.8);
  Fig6->GetXaxis()->SetLabelSize(0.06);
  Fig6->GetYaxis()->SetLabelSize(0.06);
  Fig6->GetXaxis()->SetTitleOffset(1.5);
  Fig6->SetStats(0);
  Fig6->SetMinimum(-0.01);
  Fig6->SetMaximum(0.21);
  Fig6->SetMarkerStyle(8);
  Fig6->GetYaxis()->SetNdivisions(509);
  Fig6->GetXaxis()->SetNdivisions(509);
  Fig6->Draw("P");
  split->SetLineColor(1);
  split->SetLineWidth(2);
  split->DrawLine(19,-0.01,19,0.21);

  TLatex *ND = new TLatex(.23,.85,"LAr1-ND (100m) ");
  ND->SetNDC();
  ND->SetTextFont(62);
  ND->SetTextSize(0.05);
  ND->Draw();

  TLatex *MD = new TLatex(.65,.85,"T600 (600m, on axis)");
  MD->SetNDC();
  MD->SetTextFont(62);
  MD->SetTextSize(0.05);
  MD->Draw();

  //  c86->Print("FractionalErrors_Total.pdf");

  TCanvas* c85 = new TCanvas("c85","",800,400);
  c85->SetLeftMargin(.1);
  c85->SetBottomMargin(.1);
  c85->SetTopMargin(.05);
  c85->SetRightMargin(.05);
  c85->cd();

  Fig5->GetYaxis()->SetTitle("K#lower[-0.2]{+} Fractional Error");
  Fig5->GetYaxis()->SetTitleFont(62);
  Fig5->GetXaxis()->SetTitleFont(62);
  Fig5->GetYaxis()->SetLabelFont(62);
  Fig5->GetXaxis()->SetLabelFont(62);
  Fig5->GetYaxis()->CenterTitle();
  Fig5->GetYaxis()->SetTitleSize(0.06);
  Fig5->GetYaxis()->SetTitleOffset(0.8);
  Fig5->GetXaxis()->SetLabelSize(0.06);
  Fig5->GetYaxis()->SetLabelSize(0.06);
  Fig5->GetXaxis()->SetTitleOffset(1.5);
  Fig5->SetStats(0);
  Fig5->SetMinimum(-0.01);
  Fig5->SetMaximum(0.21);
  Fig5->SetMarkerStyle(8);
  Fig5->GetYaxis()->SetNdivisions(509);
  Fig5->GetXaxis()->SetNdivisions(509);
  Fig5->Draw("P");
  split->SetLineColor(1);
  split->SetLineWidth(2);
  split->DrawLine(19,-0.01,19,0.21);
  ND->Draw();
  MD->Draw();

  //  c85->Print("FractionalErrors_Kplus.pdf");

  
  TCanvas* c84 = new TCanvas("c84","",800,400);
  c84->SetLeftMargin(.1);
  c84->SetBottomMargin(.1);
  c84->SetTopMargin(.05);
  c84->SetRightMargin(.05);
  c84->cd();

  Fig4->GetYaxis()->SetTitle("K#lower[-0.2]{-} Fractional Error");
  Fig4->GetYaxis()->SetTitleFont(62);
  Fig4->GetXaxis()->SetTitleFont(62);
  Fig4->GetYaxis()->SetLabelFont(62);
  Fig4->GetXaxis()->SetLabelFont(62);
  Fig4->GetYaxis()->CenterTitle();
  Fig4->GetYaxis()->SetTitleSize(0.06);
  Fig4->GetYaxis()->SetTitleOffset(0.8);
  Fig4->GetXaxis()->SetLabelSize(0.06);
  Fig4->GetYaxis()->SetLabelSize(0.06);
  Fig4->GetXaxis()->SetTitleOffset(1.5);
  Fig4->SetStats(0);
  Fig4->SetMinimum(-0.01);
  Fig4->SetMaximum(0.21);
  Fig4->SetMarkerStyle(8);
  Fig4->GetYaxis()->SetNdivisions(509);
  Fig4->GetXaxis()->SetNdivisions(509);
  Fig4->Draw("P");
  split->SetLineColor(1);
  split->SetLineWidth(2);
  split->DrawLine(19,-0.01,19,0.21);
  ND->Draw();
  MD->Draw();

  //  c84->Print("FractionalErrors_Kmin.pdf");


  TCanvas* c83 = new TCanvas("c83","",800,400);
  c83->SetLeftMargin(.1);
  c83->SetBottomMargin(.1);
  c83->SetTopMargin(.05);
  c83->SetRightMargin(.05);
  c83->cd();

  Fig3->GetYaxis()->SetTitle("K#lower[-0.2]{0} Fractional Error");
  Fig3->GetYaxis()->SetTitleFont(62);
  Fig3->GetXaxis()->SetTitleFont(62);
  Fig3->GetYaxis()->SetLabelFont(62);
  Fig3->GetXaxis()->SetLabelFont(62);
  Fig3->GetYaxis()->CenterTitle();
  Fig3->GetYaxis()->SetTitleSize(0.06);
  Fig3->GetYaxis()->SetTitleOffset(0.8);
  Fig3->GetXaxis()->SetLabelSize(0.06);
  Fig3->GetYaxis()->SetLabelSize(0.06);
  Fig3->GetXaxis()->SetTitleOffset(1.5);
  Fig3->SetStats(0);
  Fig3->SetMinimum(-0.01);
  Fig3->SetMaximum(0.21);
  Fig3->SetMarkerStyle(8);
  Fig3->GetYaxis()->SetNdivisions(509);
  Fig3->GetXaxis()->SetNdivisions(509);
  Fig3->Draw("P");
  split->SetLineColor(1);
  split->SetLineWidth(2);
  split->DrawLine(19,-0.01,19,0.21);
  ND->Draw();
  MD->Draw();

  //  c83->Print("FractionalErrors_K0.pdf");


  TCanvas* c82 = new TCanvas("c82","",800,400);
  c82->SetLeftMargin(.1);
  c82->SetBottomMargin(.1);
  c82->SetTopMargin(.05);
  c82->SetRightMargin(.05);
  c82->cd();

  Fig2->GetYaxis()->SetTitle("#pi#lower[-0.2]{+} Fractional Error");
  Fig2->GetYaxis()->SetTitleFont(62);
  Fig2->GetXaxis()->SetTitleFont(62);
  Fig2->GetYaxis()->SetLabelFont(62);
  Fig2->GetXaxis()->SetLabelFont(62);
  Fig2->GetYaxis()->CenterTitle();
  Fig2->GetYaxis()->SetTitleSize(0.06);
  Fig2->GetYaxis()->SetTitleOffset(0.8);
  Fig2->GetXaxis()->SetLabelSize(0.06);
  Fig2->GetYaxis()->SetLabelSize(0.06);
  Fig2->GetXaxis()->SetTitleOffset(1.5);
  Fig2->SetStats(0);
  Fig2->SetMinimum(-0.01);
  Fig2->SetMaximum(0.21);
  Fig2->SetMarkerStyle(8);
  Fig2->GetYaxis()->SetNdivisions(509);
  Fig2->GetXaxis()->SetNdivisions(509);
  Fig2->Draw("P");
  split->SetLineColor(1);
  split->SetLineWidth(2);
  split->DrawLine(19,-0.01,19,0.21);
  ND->Draw();
  MD->Draw();

  //  c82->Print("FractionalErrors_piplus.pdf");


  TCanvas* c81 = new TCanvas("c81","",800,400);
  c81->SetLeftMargin(.1);
  c81->SetBottomMargin(.1);
  c81->SetTopMargin(.05);
  c81->SetRightMargin(.05);
  c81->cd();

  Fig1->GetYaxis()->SetTitle("#pi#lower[-0.2]{-} Fractional Error");
  Fig1->GetYaxis()->SetTitleFont(62);
  Fig1->GetXaxis()->SetTitleFont(62);
  Fig1->GetYaxis()->SetLabelFont(62);
  Fig1->GetXaxis()->SetLabelFont(62);
  Fig1->GetYaxis()->CenterTitle();
  Fig1->GetYaxis()->SetTitleSize(0.06);
  Fig1->GetYaxis()->SetTitleOffset(0.8);
  Fig1->GetXaxis()->SetLabelSize(0.06);
  Fig1->GetYaxis()->SetLabelSize(0.06);
  Fig1->GetXaxis()->SetTitleOffset(1.5);
  Fig1->SetStats(0);
  Fig1->SetMinimum(-0.01);
  Fig1->SetMaximum(0.21);
  Fig1->SetMarkerStyle(8);
  Fig1->GetYaxis()->SetNdivisions(509);
  Fig1->GetXaxis()->SetNdivisions(509);
  Fig1->Draw("P");
  split->SetLineColor(1);
  split->SetLineWidth(2);
  split->DrawLine(19,-0.01,19,0.21);
  ND->Draw();
  MD->Draw();

  //  c81->Print("FractionalErrors_pimin.pdf");


  TCanvas* c80 = new TCanvas("c80","",800,400);
  c80->SetLeftMargin(.1);
  c80->SetBottomMargin(.1);
  c80->SetTopMargin(.05);
  c80->SetRightMargin(.05);
  c80->cd();

  Fig0->GetYaxis()->SetTitle("Beam Fractional Error");
  Fig0->GetYaxis()->SetTitleFont(62);
  Fig0->GetXaxis()->SetTitleFont(62);
  Fig0->GetYaxis()->SetLabelFont(62);
  Fig0->GetXaxis()->SetLabelFont(62);
  Fig0->GetYaxis()->CenterTitle();
  Fig0->GetYaxis()->SetTitleSize(0.06);
  Fig0->GetYaxis()->SetTitleOffset(0.8);
  Fig0->GetXaxis()->SetLabelSize(0.06);
  Fig0->GetYaxis()->SetLabelSize(0.06);
  Fig0->GetXaxis()->SetTitleOffset(1.5);
  Fig0->SetStats(0);
  Fig0->SetMinimum(-0.01);
  Fig0->SetMaximum(0.21);
  Fig0->SetMarkerStyle(8);
  Fig0->GetYaxis()->SetNdivisions(509);
  Fig0->GetXaxis()->SetNdivisions(509);
  Fig0->Draw("P");
  split->SetLineColor(1);
  split->SetLineWidth(2);
  split->DrawLine(19,-0.01,19,0.21);
  ND->Draw();
  MD->Draw();

  //  c80->Print("FractionalErrors_beam.pdf");

 
  cout<<"\nEnd of routine.\n";

  return 0;

}
Exemple #26
0
void main()	//main code

{	//printing titles for values displayed
	printf("\nRUNGE-KUTTA METHOD\nstep size	R		M		Last Rho	iterations\n");
	
	double i;	//power order for rho(c)
	double c = 10;	//the parameter rho(c)
	int n;		//the integer steps, n
	
	//declare arrays
	float x[N];
	float y[N];
	float z[N];
	float x2[N];
	float y2[N];
	float z2[N];
	
	//r,m,p as the radius, mass and density
	double r,m,p,r2,m2,p2;
	
	for(i=-5;i<2;i++)
	{
		h = pow(10,i);		//how h is varied by i
		c = 10;			//the parameter rho(c)
		
		//declare initial conditons for arrays
		x[0] = h;				//first array is for r=h
		y[0] = (h*h*h/3)*c;			//initial conditon for scaled mass (m)
		z[0] = c*(1-((h*h*c)/(6*gamma(c))));	//initial conditon for rho
	
		//for loop for n=0,1,...,when z[n]>1
		for(n=0;z[n]>1;n++)
		{
			//declared how x(n+1) relates to x(n), y(n+1) relates to y(n), z(n+1) relates to z(n)
			x[n+1] = x[n]+h;
			y[n+1] = y[n]+(h/6)*(M(x[n],y[n],z[n])+2*M2(x[n],y[n],z[n])+2*M3(x[n],y[n],z[n])+M4(x[n],y[n],z[n]));
			z[n+1] = z[n]+(h/6)*(rho(x[n],y[n],z[n])+2*rho2(x[n],y[n],z[n])+2*rho3(x[n],y[n],z[n])+rho4(x[n],y[n],z[n]));

			//r,m,p will be declared for printf statement
			r = x[n];
			m = y[n];
			p = z[n];
		}
	
		//printed values for x and y respectively
		printf("%.2e	%.2e	%.2e	%.2e	%i\n",h,r,m,p,n);
	}
	
	//printing titles for values displayed
	printf("\nEULER METHOD\nstep size	R		M		Last Rho	iterations\n");
	
	for(i=-5;i<2;i++)
	{
		h = pow(10,i);		//how h is varied by i
		c = 10;			//the parameter rho(c)
		
		//declare initial conditons for arrays
		x2[0] = h;				//first array is for r=h
		y2[0] = (h*h*h/3)*c;			//initial conditon for scaled mass (m)
		z2[0] = fabs(c*(1-((h*h*c)/(6*gamma(c)))));	//initial conditon for rho
	
		//for loop for n=0,1,..., when z2[n]>1
		for(n=0;z2[n]>1;n++)
		{
			//declared how x2(n+1) relates to x2(n), y2(n+1) relates to y2(n), z2(n+1) relates to z2(n)
			x2[n+1] = x2[n]+h;
			y2[n+1] = y2[n]+h*(M(x2[n],y2[n],z2[n]));
			z2[n+1] = z2[n]+h*(rho(x2[n],y2[n],z2[n]));

			//r2,m2,p2 will be declared in pg-plot
			r2 = x2[n];
			m2 = y2[n];
			p2 = z2[n];
		}
	
	//printed values for x and y respectively
	printf("%.2e	%.2e	%.2e	%.2e	%i\n",h,r2,m2,p2,n);
	}
}
void InitSLState( 
    const dTensorBC4& q, const dTensorBC4& aux, SL_state& sl_state )
{

    void ComputeElecField(double t, const dTensor2& node1d,
            const dTensorBC4& qvals, dTensorBC3& Evals);
    void ConvertQ2dToQ1d(const int &mopt, int istart, int iend, 
                     const dTensorBC4& qin, dTensorBC3& qout);
    void IntegrateQ1dMoment1(const dTensorBC4& q2d, dTensorBC3& q1d);

    const int space_order = dogParams.get_space_order();

    const int mx   = q.getsize(1);
    const int my   = q.getsize(2);
    const int meqn = q.getsize(3);
    const int maux = aux.getsize(2);
    const int kmax = q.getsize(4);
    const int mbc  = q.getmbc();
    const int mpoints = space_order*space_order;
    const int kmax1d  = space_order;

    const double tn     = sl_state.tn;

    //////////////////////// Compute Electric Field E(t) ////////////////////
    // save 1d grid points ( this is used for poisson solve )
    dTensorBC3 Enow(mx, meqn, kmax1d, mbc, 1);
    ComputeElecField( tn, *sl_state.node1d, *sl_state.qnew, Enow);

    //////////// Necessary terms for Et = -M1 + g(x,t) /////////////////////
    dTensorBC3 M1(mx, meqn, kmax1d,mbc,1); 
    IntegrateQ1dMoment1(q, M1);  // first moment

    //////////// Necessary terms for Ett = 2*KE_x - rho*E + g_t - psi_u ///////
    dTensorBC3 KE(mx, meqn, kmax1d,mbc,1); 
    void IntegrateQ1dMoment2(const dTensorBC4& q2d, dTensorBC3& q1d);
    IntegrateQ1dMoment2(q, KE);  // 1/2 * \int v^2 * f dv //

    SetBndValues1D( KE );
    SetBndValues1D( Enow );
    SetBndValues1D( M1 );

    // do something to compute KE_x ... //
    dTensorBC3 gradKE(mx,2,kmax1d,mbc,1);
    FiniteDiff( 1, 2, KE, gradKE ); // compute KE_x and KE_xx //

    dTensorBC3 rho(mx,meqn,kmax1d,mbc,1);
    dTensorBC3 prod(mx,meqn,kmax1d,mbc,1);
    void IntegrateQ1d(const int mopt, const dTensorBC4& q2d, dTensorBC3& q1d);
    void MultiplyFunctions(const dTensorBC3& Q1, const dTensorBC3& Q2,
        dTensorBC3& qnew);
    IntegrateQ1d( 1, q, rho );
    MultiplyFunctions( rho, Enow, prod );

    /////////////////////// Save E, Et, Ett, //////////////////////////////////
    for( int i = 1; i <= mx; i++ )
    for( int k = 1; k <= kmax1d; k ++ )
    {
        double E     =  Enow.get  ( i, 1, k );
        double Et    = -M1.get ( i, 1, k );  // + g(x,t)
        double Ett   = -prod.get(i,1,k) + 2.0*gradKE.get(i,1,k); // + others //

        sl_state.aux1d->set(i,2,1, k, E     );
        sl_state.aux1d->set(i,2,2, k, Et    );
        sl_state.aux1d->set(i,2,3, k, Ett   );

    }
    ///////////////////////////////////////////////////////////////////////////

    // terms used for 4th order stuff ... //
    // Ettt = -M3_xx + (2*E_x+rho)*M1 + 3*E*(M1)_x
    dTensorBC3 tmp0(mx,2*meqn,kmax1d,mbc,1);
    dTensorBC3 tmp1(mx,meqn,kmax1d,mbc,1);

    // compute the third moment and its 2nd derivative 
    dTensorBC3 M3    (mx,meqn,kmax1d,mbc,1);
    dTensorBC3 M3_x  (mx,2*meqn,kmax1d,mbc,1);
    void IntegrateQ1dMoment3(const dTensorBC4& q2d, dTensorBC3& q1d);
    IntegrateQ1dMoment3(q, M3 );
    SetBndValues1D( M3 );
    FiniteDiff( 1, 2, M3, M3_x );

    // Compute 2*Ex+rho //
    FiniteDiff(1, 2*meqn, Enow, tmp0);
    for( int i=1; i <= mx; i++ )
    for( int k=1; k <= kmax1d; k++ )
    { tmp1.set(i,1,k, 2.0*tmp0.get(i,1,k) + rho.get(i,1,k) ); }

    // compute (2Ex+rho) * M1
    dTensorBC3 prod1(mx,meqn,kmax1d,mbc,1);
    MultiplyFunctions( tmp1, M1, prod1 );

    // compute M1_x and M1_xx
    dTensorBC3 M1_x  (mx,2*meqn,kmax1d,mbc,1);
    FiniteDiff( 1, 2, M1, M1_x );

    //compute 3*M1_x and E * (3*M1)_x
    dTensorBC3 prod2(mx,meqn,kmax1d,mbc,1);
    for( int i=1; i <= mx; i++ )
    for( int k=1; k <= kmax1d; k++ )
    { tmp1.set(i, 1, k, 3.0*M1_x.get(i, 1, k) ); }
    MultiplyFunctions( Enow, tmp1, prod2 );

    /////////////////////// Save Ettt /////////////////////////////////////////
    for( int i = 1; i <= mx; i++ )
    for( int k = 1; k <= kmax1d; k ++ )
    {
        double Ettt  = -M3_x.get(i,2,k) + prod1.get(i,1,k) + prod2.get(i,1,k);
        sl_state.aux1d->set(i,2,4, k, Ettt );
    }
    ///////////////////////////////////////////////////////////////////////////

    if ( dogParams.get_source_term()>0 )
    {


        double* t_ptr = new double;
        *t_ptr = tn;

        // 2D Electric field, and 1D Electric Field
        dTensorBC4* ExactE;
        ExactE     = new dTensorBC4(mx,1,4,kmax,mbc);

        dTensorBC3* ExactE1d;
        ExactE1d   = new dTensorBC3(mx,4,kmax1d,mbc,1);

        // Extra Source terms needed for the electric field
        dTensorBC4* ExtraE;
        ExtraE     = new dTensorBC4(mx,1,4,kmax,mbc);

        dTensorBC3* ExtraE1d;
        ExtraE1d   = new dTensorBC3(mx,4,kmax1d,mbc,1);


        // Exact, electric field: (TODO - REMOVE THIS!)
//      void ElectricField(const dTensor2& xpts, dTensor2& e, void* data);
//      L2Project_extra(1-mbc, mx+mbc, 1, 1, space_order, -1, ExactE, 
//                      &ElectricField, (void*)t_ptr );
//      ConvertQ2dToQ1d(1, 1, mx, *ExactE, *ExactE1d);

        // Extra Source terms:
        void ExtraSourceWrap(const dTensor2& xpts, 
			     const dTensor2& NOT_USED_1, 
			     const dTensor2& NOT_USED_2,
			     dTensor2& e, 
			     void* data);
        L2Project_extra(1, mx, 1, 1, 20, space_order,
			space_order, space_order,
			&q, &aux, ExtraE, &ExtraSourceWrap, (void*)t_ptr );
        ConvertQ2dToQ1d(1, 1, mx, *ExtraE, *ExtraE1d);
  
        for( int i=1; i <= mx; i++ )
        for( int k=1; k <= kmax1d; k++ )
        {

            // electric fields w/o source term parts added in //
            double Et    = sl_state.aux1d->get(i,2,2,k);
            double Ett   = sl_state.aux1d->get(i,2,3,k);
            double Ettt  = sl_state.aux1d->get(i,2,4,k); 

            // add in missing terms from previously set values //
            sl_state.aux1d->set(i,2,2, k, Et    + ExtraE1d->get(i,2,k) );
            sl_state.aux1d->set(i,2,3, k, Ett   + ExtraE1d->get(i,3,k) );
            sl_state.aux1d->set(i,2,4, k, Ettt  + ExtraE1d->get(i,4,k) );

//          sl_state.aux1d->set(i,2,1, k, 0. );
//          sl_state.aux1d->set(i,2,2, k, 0. );
//          sl_state.aux1d->set(i,2,3, k, 0. );
//          sl_state.aux1d->set(i,2,4, k, 0. );


            // ADD IN EXACT ELECTRIC FIELD HERE:
//          sl_state.aux1d->set(i,2,1, k, ExactE1d->get(i,1,k) );
//          sl_state.aux1d->set(i,2,2, k, ExactE1d->get(i,2,k) );
//          sl_state.aux1d->set(i,2,3, k, ExactE1d->get(i,3,k) );
//          sl_state.aux1d->set(i,2,4, k, ExactE1d->get(i,4,k) );


        }

        delete ExactE;
        delete ExactE1d;
        delete t_ptr;
        delete ExtraE;
        delete ExtraE1d;

    }

    
}
Func ColorMgather(Func stBasis, float angle, uint8_t * orders, Expr filterthreshold, Expr divisionthreshold, Expr divisionthreshold2) {
    uint8_t x_order = orders[0];
    uint8_t y_order = orders[1];
    uint8_t t_order = orders[2];
    uint8_t c_order = orders[3];

    Func X("X"),Y("Y"),T("T"),Xrg("Xrg"),Yrg("Yrg"),Trg("Trg");
    uint8_t max_order = x_order;
    // std::vector<Expr>Xk_expr (max_order,cast<float>(0.0f));
    // std::vector<Expr>Yk_expr (max_order,cast<float>(0.0f));
    // std::vector<Expr>Tk_expr (max_order,cast<float>(0.0f));

    uint8_t Xk_uI[max_order];
    uint8_t Yk_uI[max_order];
    uint8_t Tk_uI[max_order];
    Func Xk[max_order]; Func Yk[max_order]; Func Tk[max_order];

    // Expr Xk[max_order],Yk[max_order],Tk[max_order];

    for (int iO=0; iO < x_order; iO++) {
        Xk[iO](x,y,t) = Expr(0.0f);
        Yk[iO](x,y,t) = Expr(0.0f);
        Tk[iO](x,y,t) = Expr(0.0f);
        Xk_uI[iO] = 0;
        Yk_uI[iO] = 0;
        Tk_uI[iO] = 0;
    }

    int k = 0;
    for (int iXo = 0; iXo < x_order; iXo++) // x_order
        for (int iYo = 0; iYo < y_order; iYo++) // y_oder
            for (int iTo = 0; iTo < t_order; iTo++) // t_order
                for (int iCo = 0; iCo < c_order; iCo ++ ) // c_order: index of color channel
                {
                    if ((iYo+iTo+iCo == 0 || iYo+iTo+iCo == 1)
                        && ((iXo+iYo+iTo+iCo+1) < (x_order + 1))) {
                        X = ColorMgetfilter(stBasis, angle, iXo+1, iYo, iTo, iCo);
                        Y = ColorMgetfilter(stBasis, angle, iXo, iYo+1, iTo, iCo);
                        T = ColorMgetfilter(stBasis, angle, iXo, iYo, iTo+1, iCo);

                        Xrg = ColorMgetfilter(stBasis, angle, iXo+1, iYo, iTo, iCo+1);
                        Yrg = ColorMgetfilter(stBasis, angle, iXo, iYo+1, iTo, iCo+1);
                        Trg = ColorMgetfilter(stBasis, angle, iXo, iYo, iTo+1, iCo+1);

                        k = iXo + iYo + iTo + iCo;
                        Xk[k](x,y,t) += X(x,y,t) + Xrg(x,y,t);
                        Yk[k](x,y,t) += Y(x,y,t) + Yrg(x,y,t);
                        Tk[k](x,y,t) += T(x,y,t) + Trg(x,y,t);

                        Xk[k].update(Xk_uI[k]); Xk_uI[k]++;
                        Yk[k].update(Yk_uI[k]); Yk_uI[k]++;
                        Tk[k].update(Tk_uI[k]); Tk_uI[k]++;
                    }
                }

    // Scheduling
    for (int iO = 0; iO <= k; iO++) {
        Xk[iO].compute_root();
        Yk[iO].compute_root();
        Tk[iO].compute_root();
    }

    std::vector<Expr> st_expr(6,cast<float>(0.0f));
    for (int iK=0; iK <= k; iK++) {
        st_expr[0] += Xk[iK](x,y,t)*Tk[iK](x,y,t);
        st_expr[1] += Tk[iK](x,y,t)*Tk[iK](x,y,t);
        st_expr[2] += Xk[iK](x,y,t)*Xk[iK](x,y,t);
        st_expr[3] += Yk[iK](x,y,t)*Tk[iK](x,y,t);
        st_expr[4] += Yk[iK](x,y,t)*Yk[iK](x,y,t);
        st_expr[5] += Xk[iK](x,y,t)*Yk[iK](x,y,t);
    }

    Func st("st"); st(x,y,t) = Tuple(st_expr);
    st.compute_root();

    Expr x_clamped = clamp(x,0,width-1);
    Expr y_clamped = clamp(y,0,height-1);
    Func st_clamped("st_clamped"); st_clamped(x,y,t) = st(x_clamped,y_clamped,t);

    // float win = 7.0;
    // Image<float> meanfilter(7,7,"meanfilter_data");
    // meanfilter(x,y) = Expr(1.0f/(win*win));

    // RDom rMF(meanfilter);
    uint8_t win = 7;
    RDom rMF(0,win,0,win);

    Func st_filtered[6];
    for (uint8_t iPc=0; iPc<6; iPc++) {
    // iPc: index of product component
        // Apply average filter
        st_filtered[iPc](x,y,t) = sum(rMF,st_clamped(x + rMF.x,y + rMF.y,t)[iPc]/Expr(float(win*win)),"mean_filter");
        st_filtered[iPc].compute_root();
    }
    // Tuple st_tuple = Tuple(st_expr);

    // 4 debug
    // Func tmpOut("tmpOut"); tmpOut(x,y,t) = Tuple(st_filtered[0](x,y,t),st_filtered[1](x,y,t),st_filtered[2](x,y,t),st_filtered[3](x,y,t),st_filtered[4](x,y,t),st_filtered[5](x,y,t));
    // return tmpOut;

    Tuple pbx = Tuple(st_filtered[2](x,y,t),st_filtered[5](x,y,t),st_filtered[0](x,y,t));
    Tuple pby = Tuple(st_filtered[5](x,y,t),st_filtered[4](x,y,t),st_filtered[3](x,y,t));
    Tuple pbt = Tuple(st_filtered[0](x,y,t),st_filtered[3](x,y,t),st_filtered[1](x,y,t));

    Func pbxy("pbxy"); pbxy = cross(pby,pbx); pbxy.compute_root();
    Func pbxt("pbxt"); pbxt = cross(pbx,pbt); pbxt.compute_root();
    Func pbyt("pbyt"); pbyt = cross(pby,pbt); pbyt.compute_root();

    Func pbxyd("pbxyd"); pbxyd = dot(pby,pbx); pbxyd.compute_root();
    Func pbxtd("pbxtd"); pbxtd = dot(pbx,pbt); pbxtd.compute_root();
    Func pbytd("pbytd"); pbytd = dot(pby,pbt); pbytd.compute_root();

    // 4 debug
    // Func tmpOut("tmpOut"); tmpOut(x,y,t) = Tuple(pbxy(x,y,t)[0],pbxt(x,y,t)[0],pbyt(x,y,t)[0],pbxyd(x,y,t),pbxtd(x,y,t),pbytd(x,y,t));
    // return tmpOut;

    Func yt_xy("yt_xy"); yt_xy = dot(pbyt(x,y,t),pbxy(x,y,t)); yt_xy.compute_root();
    Func xt_yt("xt_yt"); xt_yt = dot(pbxt(x,y,t),pbyt(x,y,t)); xt_yt.compute_root();
    Func xt_xy("xt_xy"); xt_xy = dot(pbxt(x,y,t),pbxy(x,y,t)); xt_xy.compute_root();
    Func yt_yt("yt_yt"); yt_yt = dot(pbyt(x,y,t),pbyt(x,y,t)); yt_yt.compute_root();
    Func xt_xt("xt_xt"); xt_xt = dot(pbxt(x,y,t),pbxt(x,y,t)); xt_xt.compute_root();
    Func xy_xy("xy_xy"); xy_xy = dot(pbxy(x,y,t),pbxy(x,y,t)); xy_xy.compute_root();

    Tuple Tk_tuple = Tuple(Tk[0](x,y,t),Tk[1](x,y,t),Tk[2](x,y,t),
                           Tk[3](x,y,t),Tk[4](x,y,t));
    Func Tkd("Tkd"); Tkd = dot(Tk_tuple,Tk_tuple); Tkd.compute_root();

    // Expr Dimen = pbxyd/xy_xy;
    Expr kill(1.0f);

    Func Oxy; Oxy(x,y,t) = Mdefdiv(st_filtered[5](x,y,t) - Mdefdivang(yt_xy(x,y,t),yt_yt(x,y,t),pbxyd(x,y,t),divisionthreshold2)*st_filtered[3](x,y,t)*kill,st_filtered[4](x,y,t),divisionthreshold);
    Oxy.compute_root();

    Func Oyx; Oyx(x,y,t) = Mdefdiv(st_filtered[5](x,y,t) + Mdefdivang(xt_xy(x,y,t),xt_xt(x,y,t),pbxyd(x,y,t),divisionthreshold2)*st_filtered[0](x,y,t)*kill,st_filtered[2](x,y,t),divisionthreshold);
    Oyx.compute_root();

    Func C0; C0(x,y,t) = st_filtered[3](x,y,t) * Mdefdivang(Expr(-1.0f)*xt_yt(x,y,t),yt_yt(x,y,t),pbxyd(x,y,t),divisionthreshold2)*kill;
    C0.compute_root();

    Func M0; M0(x,y,t) = Mdefdiv(st_filtered[0](x,y,t) + C0(x,y,t), st_filtered[1](x,y,t)*pow(Mdefdivang(xt_yt(x,y,t),yt_yt(x,y,t),pbxyd(x,y,t),divisionthreshold2),Expr(2.0f)),divisionthreshold);
    M0.compute_root();

    Func C1; C1(x,y,t) = st_filtered[5](x,y,t) * Mdefdivang(Expr(-1.0f)*xt_xy(x,y,t),xy_xy(x,y,t),pbxyd(x,y,t),divisionthreshold2)*kill;
    C1.compute_root();

    Func P1; P1(x,y,t) = pow(Mdefdivang(xt_yt(x,y,t),xt_xt(x,y,t),pbxyd(x,y,t),divisionthreshold2),Expr(2.0f))*kill + 1.0f;
    P1.compute_root();

    // 4 debug
    // Func tmpOut("tmpOut"); tmpOut(x,y,t) = Tuple(Oxy(x,y,t),Oyx(x,y,t),C0(x,y,t),M0(x,y,t),C1(x,y,t),P1(x,y,t));
    // return tmpOut;


    Func Q1; Q1(x,y,t) = st_filtered[2](x,y,t) * (pow(Oyx(x,y,t),Expr(2.0f))+Expr(1.0f));
    Q1.compute_root();

    Func M1; M1(x,y,t) = Mdefdiv(((st_filtered[0](x,y,t)-C1(x,y,t))*P1(x,y,t)),Q1(x,y,t),divisionthreshold);
    M1.compute_root();

    Func C2; C2(x,y,t) = st_filtered[0](x,y,t) * Mdefdivang(Expr(-1.0f)*xt_yt(x,y,t),xt_xt(x,y,t),pbxyd(x,y,t),divisionthreshold2)*kill;
    C2.compute_root();

    Func M2; M2(x,y,t) = Mdefdiv(st_filtered[3](x,y,t)+C2(x,y,t),st_filtered[1](x,y,t)*(pow(Mdefdivang(xt_yt(x,y,t),xt_xt(x,y,t),pbxyd(x,y,t),divisionthreshold2),Expr(2.0f))*kill+Expr(1.0f)),divisionthreshold);
    M2.compute_root();

    Func C3; C3(x,y,t) = st_filtered[5](x,y,t) * Mdefdivang(yt_xy(x,y,t),xy_xy(x,y,t),pbxyd(x,y,t),divisionthreshold2)*kill;
    C3.compute_root();

    Func P3; P3(x,y,t) = pow(Mdefdivang(xt_yt(x,y,t),yt_yt(x,y,t),pbxyd(x,y,t),divisionthreshold2),Expr(2.0f))*kill + Expr(1.0f);
    P3.compute_root();

    Func Q3; Q3(x,y,t) = st_filtered[4](x,y,t) * (pow(Oxy(x,y,t),Expr(2.0f))+Expr(1.0f));
    Q3.compute_root();

    Func M3; M3(x,y,t) = Mdefdiv(((st_filtered[3](x,y,t)-C3(x,y,t))*P3(x,y,t)),Q3(x,y,t),divisionthreshold);
    M3.compute_root();

    Func basisAtAngle;
    basisAtAngle(x,y,t) = Tuple(M0(x,y,t),M1(x,y,t),M2(x,y,t),M3(x,y,t),Tkd(x,y,t));

    return basisAtAngle;

// Func hsv2rgb(Func colorImage) { // Took this function
//     Var x, y, c, t;
//     Func output;
//     output(x,y,c,t) = cast <float> (0.0f);
//     Expr fR, fG, fB; // R,G & B values
//     Expr fH = (colorImage(x,y,0,t)); //H value [0-360)
//     Expr fS = (colorImage(x,y,1,t)); //S value
//     Expr fV = (colorImage(x,y,2,t)); //V value

// //Conversion (I took the one on Wikipedia)
//     // https://fr.wikipedia.org/wiki/Teinte_Saturation_Valeur#Conversion_de_TSV_vers_RVB
//     Expr fHi = floor(fH / Expr(60.0f));
//     Expr fF = fH / 60.0f - fHi;
//     Expr fL = fV * (1 - fS);
//     Expr fM = fV * (1 - fF * fS) ;
//     Expr fN = fV * (1 - (1 - fF) * fS);

//     fR = select((0 == fHi),fV,
//                 (1 == fHi),fM,
//                 (2 == fHi),fL,
//                 (3 == fHi),fL,
//                 (4 == fHi),fN,
//                 (5 == fHi),fV,
//                 0.0f);

//     fG = select((0 == fHi),fN,
//                 (1 == fHi),fV,
//                 (2 == fHi),fV,
//                 (3 == fHi),fM,
//                 (4 == fHi),fL,
//                 (5 == fHi),fL,
//                 0.0f);

//     fB = select((0 == fHi),fL,
//                 (1 == fHi),fL,
//                 (2 == fHi),fN,
//                 (3 == fHi),fV,
//                 (4 == fHi),fV,
//                 (5 == fHi),fM,
//                 0.0f);

//     output(x,y,0,t) = fR;
//     output(x,y,1,t) = fG;
//     output(x,y,2,t) = fB;
//     return output;

// }

// Func angle2rgb (Func v) {
//     Var x, y, c, t;
//     Func ov, a;
//     ov(x,y,c,t) = cast <float> (0.0f);
//     Expr pi2(2*M_PI);
//     a(x,y,c,t) = v(x,y,c,t) / pi2;
//     ov(x,y,0,t) = a(x,y,c,t);
//     ov(x,y,1,t) = 1;
//     ov(x,y,2,t) = 1;
//     return ov;
// }

// Func outputvelocity(Func Blur, Func Speed, Func Angle, int border, Expr speedthreshold, Expr filterthreshold) {
//     extern Expr width;
//     extern Expr height;

//     Func Blur3, Speed3;
//     Blur3(x,y,c,t) = cast <float> (0.0f);
//     Speed3(x,y,c,t) = cast <float> (0.0f);

// //Scale the grey level images
//     Blur(x,y,0,t) = (Blur(x,y,0,t) - minimum(Blur(x,y,0,t))) / (maximum(Blur(x,y,0,t)) - minimum(Blur(x,y,0,t)));
//     //Concatenation along the third dimension
//     Blur3(x,y,0,t) = Blur(x,y,0,t);
//     Blur3(x,y,1,t) = Blur(x,y,0,t);
//     Blur3(x,y,2,t) = Blur(x,y,0,t);

// //Speed scaled to 1
//     //Concatenation along the third dimension
//     Speed3(x,y,1,t) = Speed(x,y,0,t);
//     Speed3(x,y,2,t) = Speed(x,y,0,t);

// //Use the log speed to visualise speed
//     Func LogSpeed;
//     LogSpeed(x,y,c,t) = fast_log(Speed3(x,y,c,t) + Expr(0.0000001f))/fast_log(Expr(10.0f));
//     LogSpeed(x,y,c,t) = (LogSpeed(x,y,c,t) - minimum(LogSpeed(x,y,c,t))) / (maximum(LogSpeed(x,y,c,t)) - minimum(LogSpeed(x,y,c,t)));

// //Make a colour image
//     // uint16_t rows = height;
//     // uint16_t cols = width;
//     // int depth = Angle.channels();

// //Do it the HSV way
//     Func colorImage;
//     colorImage(x,y,0,t) = Angle(x,y,0,t);

// //Do hsv to rgb
//     Func colorImage1;
//     colorImage1 = hsv2rgb(colorImage);

// // Assume the border equals to the size of spatial filter
// //Make the border
//     // int bir = rows + 2 * border;
//     // int bic = cols + 2 * border;
//     Expr orows = height / Expr(2);
//     Expr ocols = width / Expr(2);

// //Rotation matrix
//     int ph = 0;
//     Func mb, sb;
//    // if (rx < border - 1 || rx >= rows+border -1 || ry < border - 1 || ry >= cols+border - 1) {
//     Expr co1 = x - orows;
//     Expr co2 = - (y - ocols);
//     Expr cosPh(cos(ph));
//     Expr sinPh(sin(ph));
//     Expr rco1 = cosPh * co1 - sinPh * co2; //Using rotation matrix
//     Expr rco2 = sinPh * co1 + cosPh * co2;
//     // Expr justPi (M_PI);
//     mb(x,y,c,t) =
//         select (((x < (border - 1)) ||
//                   (x >= (height+border -1)) ||
//                   (y < (border - 1)) ||
//                   (y >= (width+border - 1))),
//                 atan2(rco1,rco2) + Expr(M_PI),mb(x,y,c,t));
//     sb(x,y,c,t) =
//          select (((x < (border - 1)) ||
//                   (x >= (height+border -1)) ||
//                   (y < (border - 1) ) ||
//                   (y >= (width+border - 1))),
//                   1, sb (x,y,c,t));

//     Func cb;
//     cb = angle2rgb(mb);

// //Get the old data
//     // Expr pi2(2*M_PI);
//     colorImage1(x,y,0,t)=colorImage(x,y,0,t) * Expr(2*M_PI);
//     colorImage1=angle2rgb(colorImage1);
//     colorImage1(x,y,c,t)=select(abs(Speed3(x,y,c,t))<speedthreshold,Expr(0.0f),colorImage1(x,y,c,t));
//     Func colorImage2;
//     colorImage2(x,y,c,t) = colorImage1(x,y,c,t) * Speed(x,y,c,t);

// //Put the data in the border
//     RDom bordx (border,rows + border);
//     RDom bordy (border,cols + border);
//     Func ang1, ang2;
//     ang1 (x,y,c,t) = cast <float> (0.0f);
//     ang2 (x,y,c,t) = cast <float> (0.0f);

//     cb(bordx, bordy,c,t) = colorImage1(x,y,c,t);
//     ang1 = cb;
//     cb(bordx, bordy,c,t) = colorImage2(x,y,c,t);
//     ang2 = cb;
//     sb(bordx, bordy,c,t) = Speed3(x,y,c,t);
//     Speed3 = sb;
//     sb(bordx, bordy,c,t) = Blur3(x,y,c,t);
//     Blur3 = sb;

//     // Func I;
//     // I (x,y,c,t) = Blur3(x,y,c,t) + Speed3(x,y - height,c,t) + ang1(x - width,y,c,t) + ang2(x - width,y - height,c,t);
//     //I = cat(2,cat(1,Blur,Speed),cat(1,ang1,ang2));
//     return I;
// }
}
Exemple #29
0
void main()	//main code

{	
	double Rs = Y*((7.72*pow(10,8))/(6.95*pow(10,10)));
	double Ms = Y*Y*((5.67*pow(10,33))/(1.98*pow(10,33)));
	
	double c = 82;	//the parameter rho(c)
	
	printf("\nSIRIUS B\n");
	printf("\nRunge-Kutta Method\nMs (solar masses)	Rs (solar radii)	Rho(c) (solar densities)	Y(e)\n");	//printing titles for values displayed
	
	int n;		//the integer steps, n
	
	//declare arrays
	float x[N];
	float y[N];
	float z[N];
	float x2[N];
	float y2[N];
	float z2[N];
	
	//r,m,p as the radius, mass and density
	double r,m,p,r2,m2,p2;
		
		//declare initial conditons for arrays
		x[0] = h;				//first array is for r=h
		y[0] = (h*h*h/3)*c;			//initial conditon for scaled mass (m)
		z[0] = c*(1-((h*h*c)/(6*gamma(c))));	//initial conditon for rho
	
		//for loop for n=0,1,...,N
		for(n=0;n<N;n++)
		{
			//declared how x(n+1) relates to x(n), y(n+1) relates to y(n), z(n+1) relates to z(n)
			x[n+1] = x[n]+h;
			y[n+1] = y[n]+(h/6)*(M(x[n],y[n],z[n])+2*M2(x[n],y[n],z[n])+2*M3(x[n],y[n],z[n])+M4(x[n],y[n],z[n]));
			z[n+1] = z[n]+(h/6)*(rho(x[n],y[n],z[n])+2*rho2(x[n],y[n],z[n])+2*rho3(x[n],y[n],z[n])+rho4(x[n],y[n],z[n]));

			if(isnan(z[n+1]))
			{
				break;
			}
		
			//r,m,p will be declared in pg-plot
			r = x[n+1];
			m = y[n+1];
			p = z[n+1];
				
		}
	
		printf("%.3e		%.3e		%.2f				%.3f\n",y[n]*Ms,x[n]*Rs,c,Y);	//printed values for x and y respectively
	
	printf("\nEuler Method\nMs (solar masses)	Rs (solar radii)	Rho(c) (solar densities)	Y(e)\n");	//printing titles for values displayed
		
		//declare initial conditons for arrays
		x2[0] = h;				//first array is for r=h
		y2[0] = (h*h*h/3)*c;			//initial conditon for scaled mass (m)
		z2[0] = c*(1-((h*h*c)/(6*gamma(c))));	//initial conditon for rho
	
		//for loop for n=0,1,...,200
		for(n=0;n<N;n++)
		{
			//declared how x2(n+1) relates to x2(n), y2(n+1) relates to y2(n), z2(n+1) relates to z2(n)
			x2[n+1] = x2[n]+h;
			y2[n+1] = y2[n]+h*(M(x2[n],y2[n],z2[n]));
			z2[n+1] = z2[n]+h*(rho(x2[n],y2[n],z2[n]));
		
			if(z2[n+1]<0)
			{
				break;
			}
		
			//r2,m2,p2 will be declared in pg-plot
			r2 = x2[n+1];
			m2 = y2[n+1];
			p2 = z2[n+1];
		
		}
	
	//printed values for x and y respectively
	printf("%.3e		%.3e		%.2f				%.3f\n",y2[n]*Ms,x2[n]*Rs,c,Y);
}
Exemple #30
0
void TestMatrix(ostream& os)
{
    // display a headline
    os << "Matrix test\r\n===========\r\n";

    Matrix<int> A(3,3), B(3,3), C(3,3), D(3,3);

    A(0,0) =   1;
    A(0,1) =   3;
    A(0,2) =  -4;
    A(1,0) =   1;
    A(1,1) =   1;
    A(1,2) =  -2;
    A(2,0) =  -1;
    A(2,1) =  -2;
    A(2,2) =   5;

    B(0,0) =   8;
    B(0,1) =   3;
    B(0,2) =   0;
    B(1,0) =   3;
    B(1,1) =  10;
    B(1,2) =   2;
    B(2,0) =   0;
    B(2,1) =   2;
    B(2,2) =   6;

    D(0,0) =   1;
    D(0,1) =   2;
    D(0,2) =  -1;
    D(1,0) =   2;
    D(1,1) =  -1;
    D(1,2) =  -3;
    D(2,0) =   0;
    D(2,1) =  -2;
    D(2,2) =   4;

    os << "\r\nMatrix A = \r\n";
    ShowMatrix(os,A);

    os << "\r\nMatrix B = \r\n";
    ShowMatrix(os,B);

    C = A % B;
    os << "\r\nMatrix C (A % B) = \r\n";
    ShowMatrix(os,C);

    C = A + B;
    os << "\r\nMatrix C (A + B) = \r\n";
    ShowMatrix(os,C);

    C = A;
    C += B;
    os << "\r\nMatrix C (= A, += B) =\r\n";
    ShowMatrix(os,C);

    C = A + 1;
    os << "\r\nMatrix C (= A + 1) =\r\n";
    ShowMatrix(os,C);

    C += 1;
    os << "\r\nMatrix C (+= 1) =\r\n";
    ShowMatrix(os,C);

    C = A - B;
    os << "\r\nMatrix C (A - B) = \r\n";
    ShowMatrix(os,C);

    C = A;
    C -= B;
    os << "\r\nMatrix C (= A, -= B) =\r\n";
    ShowMatrix(os,C);

    C = A - 1;
    os << "\r\nMatrix C (= A - 1) =\r\n";
    ShowMatrix(os,C);

    C -= 1;
    os << "\r\nMatrix C (-= 1) =\r\n";
    ShowMatrix(os,C);

    C = A * B;
    os << "\r\nMatrix C (A * B) = \r\n";
    ShowMatrix(os,C);

    C = A;
    C *= B;
    os << "\r\nMatrix C (= A, *= B) =\r\n";
    ShowMatrix(os,C);

    C = A * 2;
    os << "\r\nMatrix C (= A * 2) =\r\n";
    ShowMatrix(os,C);

    C *= 2;
    os << "\r\nMatrix C (*= 2) =\r\n";
    ShowMatrix(os,C);

    C = B / A;
    os << "\r\nMatrix C (B / A) = \r\n";
    ShowMatrix(os,C);

    C = B;
    C /= A;
    os << "\r\nMatrix C (= B, /= A) =\r\n";
    ShowMatrix(os,C);

    C = A / 2;
    os << "\r\nMatrix C (= A / 2) =\r\n";
    ShowMatrix(os,C);

    C /= 2;
    os << "\r\nMatrix C (/= 2) =\r\n";
    ShowMatrix(os,C);

    C = -A;
    os << "\r\nMatrix C (-A) = \r\n";
    ShowMatrix(os,C);

    // test comparisons
    os << "\r\nMatrix A = \r\n";
    ShowMatrix(os,A);

    os << "\r\nMatrix D = \r\n";
    ShowMatrix(os,D);

    if (A.Equals(D))
        os << "\r\nERROR: A should not equal D";
    else
        os << "\r\nOKAY: A not equal D";

    C = A;
    if (A.Equals(C))
        os << "\r\nOKAY: A equals C\r\n";
    else
        os << "\r\nERROR: A should equal C\r\n";

    Matrix<bool> I(3,3);

    I = (A == D);
    os << "\r\nMatrix I = (A == D)\r\n";
    ShowMatrix(os,I);

    I = (A != D);
    os << "\r\nMatrix I = (A != D)\r\n";
    ShowMatrix(os,I);

    I = (A < D);
    os << "\r\nMatrix I = (A < D)\r\n";
    ShowMatrix(os,I);

    I = (A <= D);
    os << "\r\nMatrix I = (A <= D)\r\n";
    ShowMatrix(os,I);

    I = (A > D);
    os << "\r\nMatrix I = (A > D)\r\n";
    ShowMatrix(os,I);

    I = (A >= D);
    os << "\r\nMatrix I = (A >= D)\r\n";
    ShowMatrix(os,I);

    // check fill function
    C.Fill(9);
    os << "\r\nC filled with 9 =\r\n";
    ShowMatrix(os,C);

    // check Apply functions
    C = Apply(A, Times2);
    os << "\r\nC = A.Apply(Times2)\r\n";
    ShowMatrix(os,C);

    C.Apply(Times2);
    os << "\r\nApply(C,Times2)\r\n";
    ShowMatrix(os,C);

    // check row and column vector functions
    Matrix<int>   S(1,1);
    Matrix<int> r1A(3,1);
    Matrix<int> c0B(1,3);

    r1A = A.VectorRow(1);
    c0B = B.VectorCol(0);

    os << "\r\nMatrix S = \r\n";
    ShowMatrix(os,S);

    os << "\r\nMatrix R1A = \r\n";
    ShowMatrix(os,r1A);

    os << "\r\nMatrix C0B = \r\n";
    ShowMatrix(os,c0B);

    if (r1A.IsRowVector())
        os << "\r\nOKAY: R1A is row vector";
    else
        os << "\r\nERROR: R1A should be a row vector";

    if (!r1A.IsColVector())
        os << "\r\nOKAY: R1A is not a column vector";
    else
        os << "\r\nERROR: R1A should not be a column vector";

    if (!c0B.IsRowVector())
        os << "\r\nOKAY: C0B is not a row vector";
    else
        os << "\r\nERROR: C0B should not be a row vector";

    if (c0B.IsColVector())
        os << "\r\nOKAY: C0B is column vector";
    else
        os << "\r\nERROR: C0B should be a column vector";

    if (c0B.IsVector())
        os << "\r\nOKAY: C0B is a vector";
    else
        os << "\r\nERROR: C0B should be a vector";

    if (!A.IsVector())
        os << "\r\nOKAY: A is not a vector";
    else
        os << "\r\nERROR: A should not be a vector";

    if (!c0B.IsSquare())
        os << "\r\nOKAY: C0B is not square";
    else
        os << "\r\nERROR: C0B should not be square";

    if (A.IsSquare())
        os << "\r\nOKAY: A is square";
    else
        os << "\r\nERROR: A should be square";

    B.Fill(0);

    if (B.IsZero())
        os << "\r\nOKAY: B is zero";
    else
        os << "\r\nERROR: B should be zero";

    if (!A.IsZero())
        os << "\r\nOKAY: A is not zero";
    else
        os << "\r\nERROR: A should not be zero";

    // test inner product
    int ip = r1A.InnerProduct(c0B);
    os << "\r\n\r\ninner product of R1A and C0B = " << ip << "\r\n";

    // make some bigger matrices
    Matrix<int> M1(5,5), M2(5,5,3), M3(5,5), M4(5,5);

    const int junk[]  = { 1, 5, 3, 0, 1,
                          0, 2, 0, 4, 5,
                          1, 0, 0, 2, 3,
                          7, 1, 3, 0, 0,
                          2, 1, 0, 4, 6 };

    const int ident[] = { 1, 0, 0, 0, 0,
                          0, 1, 0, 0, 0,
                          0, 0, 1, 0, 0,
                          0, 0, 0, 1, 0,
                          0, 0, 0, 0, 1 };

    const int tridi[] = { 1, 1, 0, 0, 0,
                          1, 1, 1, 0, 0,
                          0, 1, 1, 1, 0,
                          0, 0, 1, 1, 1,
                          0, 0, 0, 1, 1 };

    const int utri[]  = { 1, 1, 1, 1, 1,
                          0, 1, 1, 1, 1,
                          0, 0, 1, 1, 1,
                          0, 0, 0, 1, 1,
                          0, 0, 0, 0, 1 };

    const int ltri[]  = { 1, 0, 0, 0, 0,
                          1, 1, 0, 0, 0,
                          1, 1, 1, 0, 0,
                          1, 1, 1, 1, 0,
                          1, 1, 1, 1, 1 };

    const int perm[]  = { 0, 1, 0, 0, 0,
                          1, 0, 0, 0, 0,
                          0, 0, 0, 1, 0,
                          0, 0, 0, 0, 1,
                          0, 0, 1, 0, 0 };

    const int det[]  = { 3, 5, 3, 8, 1,
                         2, 6, 3, 4, 5,
                         1, 4, 5, 2, 3,
                         7, 1, 3, 6, 8,
                         2, 4, 1, 4, 9 };
    M1 = ident;
    M3 = M1 * 2;
    M4 = junk;

    os << "\r\nmatrix M1 = \r\n";
    ShowMatrix(os,M1);

    os << "\r\nmatrix M2 = \r\n";
    ShowMatrix(os,M2);

    os << "\r\nmatrix M3 = \r\n";
    ShowMatrix(os,M3);

    os << "\r\nmatrix M4 = \r\n";
    ShowMatrix(os,M4);

    if (M1.IsDiagonal())
        os << "\r\nOKAY: M1 is diagonal";
    else
        os << "\r\nERROR: M1 should be diagonal";

    if (M1.IsIdentity())
        os << "\r\nOKAY: M1 is an identity matrix";
    else
        os << "\r\nERROR: M1 should be an identity matrix";

    if (!M2.IsDiagonal())
        os << "\r\nOKAY: M2 is not diagonal";
    else
        os << "\r\nERROR: M2 should not be diagonal";

    if (!M2.IsIdentity())
        os << "\r\nOKAY: M2 is not an identity matrix";
    else
        os << "\r\nERROR: M2 should not be an identity matrix";

    if (M3.IsDiagonal())
        os << "\r\nOKAY: M3 is diagonal";
    else
        os << "\r\nERROR: M3 should be diagonal";

    if (!M3.IsIdentity())
        os << "\r\nOKAY: M3 is not an identity matrix";
    else
        os << "\r\nERROR: M3 should not be an identity matrix";

    if (!M4.IsDiagonal())
        os << "\r\nOKAY: M4 is not diagonal";
    else
        os << "\r\nERROR: M4 should not be diagonal";

    if (!M4.IsIdentity())
        os << "\r\nOKAY: M4 is not an identity matrix";
    else
        os << "\r\nERROR: M4 should not be an identity matrix";

    // tridiagonal tests
    M1 = tridi;
    os << "\r\n\r\nmatrix M1 = \r\n";
    ShowMatrix(os,M1);

    if (M1.IsTridiagonal())
        os << "\r\nOKAY: M1 is tridiagonal";
    else
        os << "\r\nERROR: M1 should be tridiagonal";

    if (!M4.IsTridiagonal())
        os << "\r\nOKAY: M4 is not tridiagonal";
    else
        os << "\r\nERROR: M1 should not be tridiagonal";

    // upper triangular tests
    M1 = utri;
    os << "\r\n\r\nmatrix M1 = \r\n";
    ShowMatrix(os,M1);

    if (M1.IsUpperTriangular())
        os << "\r\nOKAY: M1 is upper-triangular";
    else
        os << "\r\nERROR: M1 should be upper-triangular";

    if (!M4.IsUpperTriangular())
        os << "\r\nOKAY: M4 is not upper-triangular";
    else
        os << "\r\nERROR: M4 should not be upper-triangular";

    // lower triangular tests
    M1 = ltri;
    os << "\r\n\r\nmatrix M1 = \r\n";
    ShowMatrix(os,M1);

    if (M1.IsLowerTriangular())
        os << "\r\nOKAY: M1 is lower-triangular";
    else
        os << "\r\nERROR: M1 should be lower-triangular";

    if (!M4.IsLowerTriangular())
        os << "\r\nOKAY: M4 is not lower-triangular";
    else
        os << "\r\nERROR: M4 should not be lower-triangular";

    // permutation tests
    M1 = perm;
    os << "\r\n\r\nmatrix M1 = \r\n";
    ShowMatrix(os,M1);

    M2 = ident;
    os << "\r\n\r\nmatrix M2 = \r\n";
    ShowMatrix(os,M2);

    if (M1.IsPermutation())
        os << "\r\nOKAY: M1 is permutation matrix";
    else
        os << "\r\nERROR: M1 should be permutation";

    if (M2.IsPermutation())
        os << "\r\nOKAY: M2 is permutation matrix";
    else
        os << "\r\nERROR: M2 should be permutation";

    if (!M4.IsPermutation())
        os << "\r\nOKAY: M4 is not permutation";
    else
        os << "\r\nERROR: M4 should not be permutation";

    // check singularity function
    M1(0,1) = 0;
    os << "\r\n\r\nmatrix M1 = \r\n";
    ShowMatrix(os,M1);

    if (M1.IsSingular())
        os << "\r\nOKAY: M1 is singular";
    else
        os << "\r\nERROR: M1 should be singular";

    if (!M2.IsSingular())
        os << "\r\nOKAY: M2 is not singular";
    else
        os << "\r\nERROR: M2 should not be singular";

    if (!M4.IsSingular())
        os << "\r\nOKAY: M4 is not singular";
    else
        os << "\r\nERROR: M4 should not be singular";

    // change main window heading
    os <<endl
       <<"Matrix Tests (manipulations)" <<endl
       <<"============================" <<endl;
    
    // test minors and determinants
    os << "\r\n\r\nmatrix M4 = \r\n";
    ShowMatrix(os,M4);

    os << "\r\nminor M4(1,1) = \r\n";
    ShowMatrix(os,M4.Minor(1,1));

    os << "\r\nminor M4(0,4) = \r\n";
    ShowMatrix(os,M4.Minor(0,4));

    Matrix<int> M5(2,2), M6(3,3);

    M5(0,0) = 1;
    M5(0,1) = 2;
    M5(1,0) = 3;
    M5(1,1) = 4;

    M6(0,0) = 1;
    M6(0,1) = 3;
    M6(0,2) = 2;
    M6(1,0) = 5;
    M6(1,1) = 4;
    M6(1,2) = 7;
    M6(2,0) = 6;
    M6(2,1) = 9;
    M6(2,2) = 8;

    M4 = det;
    Matrix<int> T4(5,5), T5(2,2), T6(3,3);

    T4 = M4.Transpose();
    T5 = M5.Transpose();
    T6 = M6.Transpose();

    os << "\r\nmatrix M5 = \r\n";
    ShowMatrix(os,M5);

    os << "\r\ndeterminant of M5 = "
           << M5.Determinant() << "\r\n";

    os << "\r\nmatrix T5 = \r\n";
    ShowMatrix(os,T5);

    os << "\r\ndeterminant of T5 = "
           << T5.Determinant() << "\r\n";

    os << "\r\nmatrix M6 = \r\n";
    ShowMatrix(os,M6);

    os << "\r\ndeterminant of M6 = "
           << M6.Determinant() << "\r\n";

    os << "\r\nmatrix T6 = \r\n";
    ShowMatrix(os,T6);

    os << "\r\ndeterminant of T6 = "
           << T6.Determinant() << "\r\n";

    os << "\r\nmatrix M4 = \r\n";
    ShowMatrix(os,M4);

    os << "\r\ndeterminant of M4 = "
           << M4.Determinant() << "\r\n";

    os << "\r\nmatrix T4 = \r\n";
    ShowMatrix(os,T4);

    os << "\r\ndeterminant of T4 = "
           << T4.Determinant() << "\r\n";

    Matrix<int> R;
    os << "\r\nMatrix R (def. constr.) = \r\n";
    ShowMatrix(os,R);

    R.Resize(10,10);
    os << "\r\nMatrix R (now 10x10) = \r\n";
    ShowMatrix(os,R);

    // change main window heading
    os <<endl
       <<"Matrix Tests (double)" <<endl
       <<"=====================" <<endl;
    
    // check <double> Matrix
    os << "\r\nFLOATING POINT!";

    Matrix<double> X(3,4), Y(4,3), Z(3,3);

    X(0,0) =  1.0; X(1,0) =  5.0; X(2,0) =  2.0;
    X(0,1) =  2.0; X(1,1) =  2.0; X(2,1) =  4.0;
    X(0,2) =  0.0; X(1,2) =  3.0; X(2,2) =  3.0;
    X(0,3) =  1.0; X(1,3) =  2.0; X(2,3) =  1.0;

    Y(0,0) =  0.0; Y(2,0) =  1.0;
    Y(0,1) =  1.0; Y(2,1) =  0.0;
    Y(0,2) =  2.0; Y(2,2) =  5.0;
    Y(1,0) =  1.0; Y(3,0) =  3.0;
    Y(1,1) =  3.0; Y(3,1) =  1.0;
    Y(1,2) =  2.0; Y(3,2) =  2.0;

    os << "\r\nMatrix X = \r\n";
    ShowMatrix(os,X);
    os << "\r\nMatrix Y = \r\n";
    ShowMatrix(os,Y);

    Z = X % Y;
    os << "\r\nMatrix Z (X % Y) = \r\n";
    ShowMatrix(os,Z);

    // check transposition
    Matrix<double> tX;
    tX = X.Transpose();
    os << "\r\nOriginal X =\r\n";
    ShowMatrix(os,X);
    os << "\r\nTranspose X =\r\n";
    ShowMatrix(os,tX);

    X(0,0) =  1; X(0,1) =  3; X(0,2) = -4; X(0,3) =  8;
    X(1,0) =  1; X(1,1) =  1; X(1,2) = -2; X(1,3) =  2;
    X(2,0) = -1; X(2,1) = -2; X(2,2) =  5; X(2,3) = -1;

    os << "\r\nOriginal X =\r\n";
    ShowMatrix(os,X);

    Matrix<double> lX(X.LinSolve());
    os << "\r\nX after elimination =\r\n";
    ShowMatrix(os,X);

    os << "\r\nlinear equation solution =\r\n";
    ShowMatrix(os,lX);

    X(0,0) =  1.0; X(1,0) =  3.0; X(2,0) =  5.0;
    X(0,1) =  2.0; X(1,1) =  5.0; X(2,1) =  6.0;
    X(0,2) =  0.0; X(1,2) =  4.0; X(2,2) =  3.0;
    X(0,3) =  0.1; X(1,3) = 12.5; X(2,3) = 10.3;

    os << "\r\nOriginal X =\r\n";
    ShowMatrix(os,X);

    lX = X.LinSolve();
    os << "\r\nX after elimination =\r\n";
    ShowMatrix(os,X);

    os << "\r\nlinear equation solution =\r\n";
    ShowMatrix(os,lX);

    Matrix<double> Adbl(3,3), Bdbl(3,1);

    Adbl(0,0) =  1.0; Adbl(0,1) =  2.0; Adbl(0,2) =  0.0;
    Adbl(1,0) =  3.0; Adbl(1,1) =  5.0; Adbl(1,2) =  4.0;
    Adbl(2,0) =  5.0; Adbl(2,1) =  6.0; Adbl(2,2) =  3.0;

    Bdbl(0,0) =  0.1;
    Bdbl(1,0) = 12.5;
    Bdbl(2,0) = 10.3;

    os << "\r\n\r\nmatrix Adbl = \r\n";
    ShowMatrix(os,Adbl);

    os << "\r\nmatrix Bdbl = \r\n";
    ShowMatrix(os,Bdbl);

    Matrix<double> alup(Adbl); // copy Adbl before LUP decomp
    os << "\r\nLU decomp of Adbl (before) = \r\n";
    ShowMatrix(os,alup);

    Matrix<size_t> aperm = alup.LUPDecompose();
    os << "\r\nLU decomp of Adbl (after) = \r\n";
    ShowMatrix(os,alup);

    os << "\r\nPermutation of Adbl = \r\n";
    ShowMatrix(os,aperm);

    Matrix<double> asol = alup.LUPSolve(aperm,Bdbl);
    os << "\r\nlinear solution of Adbl and Bdbl = \r\n";
    ShowMatrix(os,asol);

    Matrix<double> ainv = alup.LUPInvert(aperm);
    os << "\r\ninverse of Adbl and Bdbl = \r\n";
    ShowMatrix(os,ainv);

    Matrix<double> aid = Adbl % ainv;
    os << "\r\ninverse dot Adbl = \r\n";
    ShowMatrix(os,aid);

    Grid<size_t> iperm = ainv.LUPDecompose();
    Matrix<double> invinv = ainv.LUPInvert(iperm);
    os << "\r\ninverse of inverse =\r\n";
    ShowMatrix(os,invinv);
}