static int mips32_pracc_write_mem32(struct mips_ejtag *ejtag_info, uint32_t addr, int count, uint32_t *buf)
{
	static const uint32_t code[] = {
															/* start: */
		MIPS32_MTC0(15,31,0),								/* move $15 to COP0 DeSave */
		MIPS32_LUI(15,UPPER16(MIPS32_PRACC_STACK)),			/* $15 = MIPS32_PRACC_STACK */
		MIPS32_ORI(15,15,LOWER16(MIPS32_PRACC_STACK)),
		MIPS32_SW(8,0,15),									/* sw $8,($15) */
		MIPS32_SW(9,0,15),									/* sw $9,($15) */
		MIPS32_SW(10,0,15),									/* sw $10,($15) */
		MIPS32_SW(11,0,15),									/* sw $11,($15) */

		MIPS32_ADDI(8,15,NEG16(MIPS32_PRACC_STACK-MIPS32_PRACC_PARAM_IN)),  /* $8= MIPS32_PRACC_PARAM_IN */
		MIPS32_LW(9,0,8),									/* Load write addr to $9 */
		MIPS32_LW(10,4,8),									/* Load write count to $10 */
		MIPS32_ADDI(8,8,8),									/* $8 += 8 beginning of data */

															/* loop: */
		MIPS32_LW(11,0,8),									/* lw $11,0($8), Load $11 with the word @mem[$8] */
		MIPS32_SW(11,0,9),									/* sw $11,0($9) */

		MIPS32_ADDI(9,9,4),									/* $9 += 4 */
		MIPS32_BNE(10,9,NEG16(4)),							/* bne $10, $9, loop */
		MIPS32_ADDI(8,8,4),									/* $8 += 4 */

															/* end: */
		MIPS32_LW(11,0,15),									/* lw $11,($15) */
		MIPS32_LW(10,0,15),									/* lw $10,($15) */
		MIPS32_LW(9,0,15),									/* lw $9,($15) */
		MIPS32_LW(8,0,15),									/* lw $8,($15) */
		MIPS32_B(NEG16(21)),								/* b start */
		MIPS32_MFC0(15,31,0),								/* move COP0 DeSave to $15 */
	};

	/* TODO remove array */
	uint32_t *param_in = malloc((count + 2) * sizeof(uint32_t));
	param_in[0] = addr;
	param_in[1] = addr + (count * sizeof(uint32_t));	/* last address */

	memcpy(&param_in[2], buf, count * sizeof(uint32_t));

	int retval;
	retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code,
		count + 2, param_in, 0, NULL, 1);

	free(param_in);

	return retval;
}
Exemple #2
0
/**
 * \b mips32_pracc_sync_cache
 *
 * Synchronize Caches to Make Instruction Writes Effective
 * (ref. doc. MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set,
 *  Document Number: MD00086, Revision 2.00, June 9, 2003)
 *
 * When the instruction stream is written, the SYNCI instruction should be used
 * in conjunction with other instructions to make the newly-written instructions effective.
 *
 * Explanation :
 * A program that loads another program into memory is actually writing the D- side cache.
 * The instructions it has loaded can't be executed until they reach the I-cache.
 *
 * After the instructions have been written, the loader should arrange
 * to write back any containing D-cache line and invalidate any locations
 * already in the I-cache.
 *
 * You can do that with cache instructions, but those instructions are only available in kernel mode,
 * and a loader writing instructions for the use of its own process need not be privileged software.
 *
 * In the latest MIPS32/64 CPUs, MIPS provides the synci instruction,
 * which does the whole job for a cache-line-sized chunk of the memory you just loaded:
 * That is, it arranges a D-cache write-back and an I-cache invalidate.
 *
 * To employ synci at user level, you need to know the size of a cache line,
 * and that can be obtained with a rdhwr SYNCI_Step
 * from one of the standard “hardware registers”.
 */
static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info,
		uint32_t start_addr, uint32_t end_addr)
{
	static const uint32_t code[] = {
															/* start: */
		MIPS32_MTC0(15, 31, 0),								/* move $15 to COP0 DeSave */
		MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)),		/* $15 = MIPS32_PRACC_STACK */
		MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
		MIPS32_SW(8, 0, 15),								/* sw $8,($15) */
		MIPS32_SW(9, 0, 15),								/* sw $9,($15) */
		MIPS32_SW(10, 0, 15),								/* sw $10,($15) */
		MIPS32_SW(11, 0, 15),								/* sw $11,($15) */

		MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)),		/* $8 = MIPS32_PRACC_PARAM_IN */
		MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
		MIPS32_LW(9, 0, 8),									/* Load write start_addr to $9 */
		MIPS32_LW(10, 4, 8),								/* Load write end_addr to $10 */

		MIPS32_RDHWR(11, MIPS32_SYNCI_STEP),				/* $11 = MIPS32_SYNCI_STEP */
		MIPS32_BEQ(11, 0, 6),								/* beq $11, $0, end */
		MIPS32_NOP,
															/* synci_loop : */
		MIPS32_SYNCI(0, 9),									/* synci 0($9) */
		MIPS32_SLTU(8, 10, 9),								/* sltu $8, $10, $9  # $8 = $10 < $9 ? 1 : 0 */
		MIPS32_BNE(8, 0, NEG16(3)),							/* bne $8, $0, synci_loop */
		MIPS32_ADDU(9, 9, 11),								/* $9 += MIPS32_SYNCI_STEP */
		MIPS32_SYNC,
															/* end: */
		MIPS32_LW(11, 0, 15),								/* lw $11,($15) */
		MIPS32_LW(10, 0, 15),								/* lw $10,($15) */
		MIPS32_LW(9, 0, 15),								/* lw $9,($15) */
		MIPS32_LW(8, 0, 15),								/* lw $8,($15) */
		MIPS32_B(NEG16(24)),								/* b start */
		MIPS32_MFC0(15, 31, 0),								/* move COP0 DeSave to $15 */
	};

	/* TODO remove array */
	uint32_t *param_in = malloc(2 * sizeof(uint32_t));
	int retval;
	param_in[0] = start_addr;
	param_in[1] = end_addr;

	retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 2, param_in, 0, NULL, 1);

	free(param_in);

	return retval;
}
Exemple #3
0
/* fastdata upload/download requires an initialized working area
 * to load the download code; it should not be called otherwise
 * fetch order from the fastdata area
 * 1. start addr
 * 2. end addr
 * 3. data ...
 */
int mips32_pracc_fastdata_xfer(struct mips_ejtag *ejtag_info, struct working_area *source,
								int write, uint32_t addr, int count, uint32_t *buf)
{
	uint32_t handler_code[] = {
		/* caution when editing, table is modified below */
		/* r15 points to the start of this code */
		MIPS32_SW(8,MIPS32_FASTDATA_HANDLER_SIZE - 4,15),
		MIPS32_SW(9,MIPS32_FASTDATA_HANDLER_SIZE - 8,15),
		MIPS32_SW(10,MIPS32_FASTDATA_HANDLER_SIZE - 12,15),
		MIPS32_SW(11,MIPS32_FASTDATA_HANDLER_SIZE - 16,15),
		/* start of fastdata area in t0 */
		MIPS32_LUI(8,UPPER16(MIPS32_PRACC_FASTDATA_AREA)),
		MIPS32_ORI(8,8,LOWER16(MIPS32_PRACC_FASTDATA_AREA)),
		MIPS32_LW(9,0,8),								/* start addr in t1 */
		MIPS32_LW(10,0,8),								/* end addr to t2 */
														/* loop: */
		/* 8 */ MIPS32_LW(11,0,0),						/* lw t3,[t8 | r9] */
		/* 9 */ MIPS32_SW(11,0,0),						/* sw t3,[r9 | r8] */
		MIPS32_BNE(10,9,NEG16(3)),						/* bne $t2,t1,loop */
		MIPS32_ADDI(9,9,4),								/* addi t1,t1,4 */

		MIPS32_LW(8,MIPS32_FASTDATA_HANDLER_SIZE - 4,15),
		MIPS32_LW(9,MIPS32_FASTDATA_HANDLER_SIZE - 8,15),
		MIPS32_LW(10,MIPS32_FASTDATA_HANDLER_SIZE - 12,15),
		MIPS32_LW(11,MIPS32_FASTDATA_HANDLER_SIZE - 16,15),

		MIPS32_LUI(15,UPPER16(MIPS32_PRACC_TEXT)),
		MIPS32_ORI(15,15,LOWER16(MIPS32_PRACC_TEXT)),
		MIPS32_JR(15),									/* jr start */
		MIPS32_MFC0(15,31,0),							/* move COP0 DeSave to $15 */
	};

	uint32_t jmp_code[] = {
		MIPS32_MTC0(15,31,0),			/* move $15 to COP0 DeSave */
		/* 1 */ MIPS32_LUI(15,0),		/* addr of working area added below */
		/* 2 */ MIPS32_ORI(15,15,0),	/* addr of working area added below */
		MIPS32_JR(15),					/* jump to ram program */
		MIPS32_NOP,
	};

	int retval, i;
	uint32_t val, ejtag_ctrl, address;

	if (source->size < MIPS32_FASTDATA_HANDLER_SIZE)
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;

	if (write)
	{
		handler_code[8] = MIPS32_LW(11,0,8);	/* load data from probe at fastdata area */
		handler_code[9] = MIPS32_SW(11,0,9);	/* store data to RAM @ r9 */
	}
	else
	{
		handler_code[8] = MIPS32_LW(11,0,9);	/* load data from RAM @ r9 */
		handler_code[9] = MIPS32_SW(11,0,8);	/* store data to probe at fastdata area */
	}

	/* write program into RAM */
	mips32_pracc_write_mem32(ejtag_info, source->address, ARRAY_SIZE(handler_code), handler_code);

	LOG_DEBUG("%s using 0x%.8" PRIx32 " for write handler\n", __func__, source->address);

	jmp_code[1] |= UPPER16(source->address);
	jmp_code[2] |= LOWER16(source->address);

	for (i = 0; i < (int) ARRAY_SIZE(jmp_code); i++)
	{
		if ((retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl)) != ERROR_OK)
			return retval;

		mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA, NULL);
		mips_ejtag_drscan_32(ejtag_info, &jmp_code[i]);

		/* Clear the access pending bit (let the processor eat!) */
		ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
		mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL, NULL);
		mips_ejtag_drscan_32(ejtag_info, &ejtag_ctrl);
	}

	if ((retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl)) != ERROR_OK)
		return retval;

	/* next fetch to dmseg should be in FASTDATA_AREA, check */
	address = 0;
	mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS, NULL);
	mips_ejtag_drscan_32(ejtag_info, &address);

	if (address != MIPS32_PRACC_FASTDATA_AREA)
		return ERROR_FAIL;

	/* Send the load start address */
	val = addr;
	mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA, NULL);
	mips_ejtag_fastdata_scan(ejtag_info, 1, &val);

	/* Send the load end address */
	val = addr + (count - 1) * 4;
	mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA, NULL);
	mips_ejtag_fastdata_scan(ejtag_info, 1, &val);

	for (i = 0; i < count; i++)
	{
		/* Send the data out using fastdata (clears the access pending bit) */
		if ((retval = mips_ejtag_fastdata_scan(ejtag_info, write, buf++)) != ERROR_OK)
			return retval;
	}

	if ((retval = jtag_execute_queue()) != ERROR_OK)
	{
		LOG_ERROR("fastdata load failed");
		return retval;
	}

	if ((retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl)) != ERROR_OK)
		return retval;

	address = 0;
	mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS, NULL);
	mips_ejtag_drscan_32(ejtag_info, &address);

	if (address != MIPS32_PRACC_TEXT)
		LOG_ERROR("mini program did not return to start\n");

	return retval;
}