Exemple #1
0
int
mpfr_exp2 (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode)
{
  int inexact;
  long xint;
  mpfr_t xfrac;
  MPFR_SAVE_EXPO_DECL (expo);

  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
    {
      if (MPFR_IS_NAN (x))
        {
          MPFR_SET_NAN (y);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_INF (x))
        {
          if (MPFR_IS_POS (x))
            MPFR_SET_INF (y);
          else
            MPFR_SET_ZERO (y);
          MPFR_SET_POS (y);
          MPFR_RET (0);
        }
      else /* 2^0 = 1 */
        {
          MPFR_ASSERTD (MPFR_IS_ZERO(x));
          return mpfr_set_ui (y, 1, rnd_mode);
        }
    }

  /* since the smallest representable non-zero float is 1/2*2^__gmpfr_emin,
     if x < __gmpfr_emin - 1, the result is either 1/2*2^__gmpfr_emin or 0 */
  MPFR_ASSERTN (MPFR_EMIN_MIN >= LONG_MIN + 2);
  if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emin - 1) < 0))
    {
      mp_rnd_t rnd2 = rnd_mode;
      /* in round to nearest mode, round to zero when x <= __gmpfr_emin-2 */
      if (rnd_mode == GMP_RNDN &&
          mpfr_cmp_si_2exp (x, __gmpfr_emin - 2, 0) <= 0)
        rnd2 = GMP_RNDZ;
      return mpfr_underflow (y, rnd2, 1);
    }

  MPFR_ASSERTN (MPFR_EMAX_MAX <= LONG_MAX);
  if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emax) >= 0))
    return mpfr_overflow (y, rnd_mode, 1);

  /* We now know that emin - 1 <= x < emax. */

  MPFR_SAVE_EXPO_MARK (expo);

  /* 2^x = 1 + x*log(2) + O(x^2) for x near zero, and for |x| <= 1 we have
     |2^x - 1| <= x < 2^EXP(x). If x > 0 we must round away from 0 (dir=1);
     if x < 0 we must round toward 0 (dir=0). */
  MPFR_SMALL_INPUT_AFTER_SAVE_EXPO (y, __gmpfr_one, - MPFR_GET_EXP (x), 0,
                                    MPFR_SIGN(x) > 0, rnd_mode, expo, {});

  xint = mpfr_get_si (x, GMP_RNDZ);
  mpfr_init2 (xfrac, MPFR_PREC (x));
  mpfr_sub_si (xfrac, x, xint, GMP_RNDN); /* exact */

  if (MPFR_IS_ZERO (xfrac))
    {
      mpfr_set_ui (y, 1, GMP_RNDN);
      inexact = 0;
    }
  else
    {
      /* Declaration of the intermediary variable */
      mpfr_t t;

      /* Declaration of the size variable */
      mp_prec_t Ny = MPFR_PREC(y);              /* target precision */
      mp_prec_t Nt;                             /* working precision */
      mp_exp_t err;                             /* error */
      MPFR_ZIV_DECL (loop);

      /* compute the precision of intermediary variable */
      /* the optimal number of bits : see algorithms.tex */
      Nt = Ny + 5 + MPFR_INT_CEIL_LOG2 (Ny);

      /* initialise of intermediary variable */
      mpfr_init2 (t, Nt);

      /* First computation */
      MPFR_ZIV_INIT (loop, Nt);
      for (;;)
        {
          /* compute exp(x*ln(2))*/
          mpfr_const_log2 (t, GMP_RNDU);       /* ln(2) */
          mpfr_mul (t, xfrac, t, GMP_RNDU);    /* xfrac * ln(2) */
          err = Nt - (MPFR_GET_EXP (t) + 2);   /* Estimate of the error */
          mpfr_exp (t, t, GMP_RNDN);           /* exp(xfrac * ln(2)) */

          if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd_mode)))
            break;

          /* Actualisation of the precision */
          MPFR_ZIV_NEXT (loop, Nt);
          mpfr_set_prec (t, Nt);
        }
      MPFR_ZIV_FREE (loop);

      inexact = mpfr_set (y, t, rnd_mode);

      mpfr_clear (t);
    }

  mpfr_clear (xfrac);
  mpfr_clear_flags ();
  mpfr_mul_2si (y, y, xint, GMP_RNDN); /* exact or overflow */
  /* Note: We can have an overflow only when t was rounded up to 2. */
  MPFR_ASSERTD (MPFR_IS_PURE_FP (y) || inexact > 0);
  MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (y, inexact, rnd_mode);
}
Exemple #2
0
Fichier : mul.c Projet : gnooth/xcl
static int
mpfr_mul3 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
    /* Old implementation */
    int sign_product, cc, inexact;
    mpfr_exp_t ax;
    mp_limb_t *tmp;
    mp_limb_t b1;
    mpfr_prec_t bq, cq;
    mp_size_t bn, cn, tn, k;
    MPFR_TMP_DECL(marker);

    /* deal with special cases */
    if (MPFR_ARE_SINGULAR(b,c))
    {
        if (MPFR_IS_NAN(b) || MPFR_IS_NAN(c))
        {
            MPFR_SET_NAN(a);
            MPFR_RET_NAN;
        }
        sign_product = MPFR_MULT_SIGN( MPFR_SIGN(b) , MPFR_SIGN(c) );
        if (MPFR_IS_INF(b))
        {
            if (MPFR_IS_INF(c) || MPFR_NOTZERO(c))
            {
                MPFR_SET_SIGN(a,sign_product);
                MPFR_SET_INF(a);
                MPFR_RET(0); /* exact */
            }
            else
            {
                MPFR_SET_NAN(a);
                MPFR_RET_NAN;
            }
        }
        else if (MPFR_IS_INF(c))
        {
            if (MPFR_NOTZERO(b))
            {
                MPFR_SET_SIGN(a, sign_product);
                MPFR_SET_INF(a);
                MPFR_RET(0); /* exact */
            }
            else
            {
                MPFR_SET_NAN(a);
                MPFR_RET_NAN;
            }
        }
        else
        {
            MPFR_ASSERTD(MPFR_IS_ZERO(b) || MPFR_IS_ZERO(c));
            MPFR_SET_SIGN(a, sign_product);
            MPFR_SET_ZERO(a);
            MPFR_RET(0); /* 0 * 0 is exact */
        }
    }
    sign_product = MPFR_MULT_SIGN( MPFR_SIGN(b) , MPFR_SIGN(c) );

    ax = MPFR_GET_EXP (b) + MPFR_GET_EXP (c);

    bq = MPFR_PREC(b);
    cq = MPFR_PREC(c);

    MPFR_ASSERTD(bq+cq > bq); /* PREC_MAX is /2 so no integer overflow */

    bn = (bq+GMP_NUMB_BITS-1)/GMP_NUMB_BITS; /* number of limbs of b */
    cn = (cq+GMP_NUMB_BITS-1)/GMP_NUMB_BITS; /* number of limbs of c */
    k = bn + cn; /* effective nb of limbs used by b*c (= tn or tn+1) below */
    tn = (bq + cq + GMP_NUMB_BITS - 1) / GMP_NUMB_BITS;
    /* <= k, thus no int overflow */
    MPFR_ASSERTD(tn <= k);

    /* Check for no size_t overflow*/
    MPFR_ASSERTD((size_t) k <= ((size_t) -1) / BYTES_PER_MP_LIMB);
    MPFR_TMP_MARK(marker);
    tmp = (mp_limb_t *) MPFR_TMP_ALLOC((size_t) k * BYTES_PER_MP_LIMB);

    /* multiplies two mantissa in temporary allocated space */
    b1 = (MPFR_LIKELY(bn >= cn)) ?
         mpn_mul (tmp, MPFR_MANT(b), bn, MPFR_MANT(c), cn)
         : mpn_mul (tmp, MPFR_MANT(c), cn, MPFR_MANT(b), bn);

    /* now tmp[0]..tmp[k-1] contains the product of both mantissa,
       with tmp[k-1]>=2^(GMP_NUMB_BITS-2) */
    b1 >>= GMP_NUMB_BITS - 1; /* msb from the product */

    /* if the mantissas of b and c are uniformly distributed in ]1/2, 1],
       then their product is in ]1/4, 1/2] with probability 2*ln(2)-1 ~ 0.386
       and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
    tmp += k - tn;
    if (MPFR_UNLIKELY(b1 == 0))
        mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
    cc = mpfr_round_raw (MPFR_MANT (a), tmp, bq + cq,
                         MPFR_IS_NEG_SIGN(sign_product),
                         MPFR_PREC (a), rnd_mode, &inexact);

    /* cc = 1 ==> result is a power of two */
    if (MPFR_UNLIKELY(cc))
        MPFR_MANT(a)[MPFR_LIMB_SIZE(a)-1] = MPFR_LIMB_HIGHBIT;

    MPFR_TMP_FREE(marker);

    {
        mpfr_exp_t ax2 = ax + (mpfr_exp_t) (b1 - 1 + cc);
        if (MPFR_UNLIKELY( ax2 > __gmpfr_emax))
            return mpfr_overflow (a, rnd_mode, sign_product);
        if (MPFR_UNLIKELY( ax2 < __gmpfr_emin))
        {
            /* In the rounding to the nearest mode, if the exponent of the exact
               result (i.e. before rounding, i.e. without taking cc into account)
               is < __gmpfr_emin - 1 or the exact result is a power of 2 (i.e. if
               both arguments are powers of 2), then round to zero. */
            if (rnd_mode == MPFR_RNDN &&
                    (ax + (mpfr_exp_t) b1 < __gmpfr_emin ||
                     (mpfr_powerof2_raw (b) && mpfr_powerof2_raw (c))))
                rnd_mode = MPFR_RNDZ;
            return mpfr_underflow (a, rnd_mode, sign_product);
        }
        MPFR_SET_EXP (a, ax2);
        MPFR_SET_SIGN(a, sign_product);
    }
    MPFR_RET (inexact);
}
Exemple #3
0
int
mpfr_sqr (mpfr_ptr a, mpfr_srcptr b, mpfr_rnd_t rnd_mode)
{
  int cc, inexact;
  mpfr_exp_t ax;
  mp_limb_t *tmp;
  mp_limb_t b1;
  mpfr_prec_t bq;
  mp_size_t bn, tn;
  MPFR_TMP_DECL(marker);

  MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", b, b, rnd_mode),
                 ("y[%#R]=%R inexact=%d", a, a, inexact));

  /* deal with special cases */
  if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(b)))
    {
      if (MPFR_IS_NAN(b))
        {
          MPFR_SET_NAN(a);
          MPFR_RET_NAN;
        }
      MPFR_SET_POS (a);
      if (MPFR_IS_INF(b))
        MPFR_SET_INF(a);
      else
        ( MPFR_ASSERTD(MPFR_IS_ZERO(b)), MPFR_SET_ZERO(a) );
      MPFR_RET(0);
    }
  ax = 2 * MPFR_GET_EXP (b);
  bq = MPFR_PREC(b);

  MPFR_ASSERTD (2 * bq > bq); /* PREC_MAX is /2 so no integer overflow */

  bn = MPFR_LIMB_SIZE(b); /* number of limbs of b */
  tn = 1 + (2 * bq - 1) / GMP_NUMB_BITS; /* number of limbs of square,
                                               2*bn or 2*bn-1 */

  MPFR_TMP_MARK(marker);
  tmp = (mp_limb_t *) MPFR_TMP_ALLOC((size_t) 2 * bn * BYTES_PER_MP_LIMB);

  /* Multiplies the mantissa in temporary allocated space */
  mpn_sqr_n (tmp, MPFR_MANT(b), bn);
  b1 = tmp[2 * bn - 1];

  /* now tmp[0]..tmp[2*bn-1] contains the product of both mantissa,
     with tmp[2*bn-1]>=2^(GMP_NUMB_BITS-2) */
  b1 >>= GMP_NUMB_BITS - 1; /* msb from the product */

  /* if the mantissas of b and c are uniformly distributed in ]1/2, 1],
     then their product is in ]1/4, 1/2] with probability 2*ln(2)-1 ~ 0.386
     and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
  tmp += 2 * bn - tn; /* +0 or +1 */
  if (MPFR_UNLIKELY(b1 == 0))
    mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */

  cc = mpfr_round_raw (MPFR_MANT (a), tmp, 2 * bq, 0,
                       MPFR_PREC (a), rnd_mode, &inexact);
  /* cc = 1 ==> result is a power of two */
  if (MPFR_UNLIKELY(cc))
    MPFR_MANT(a)[MPFR_LIMB_SIZE(a)-1] = MPFR_LIMB_HIGHBIT;

  MPFR_TMP_FREE(marker);
  {
    mpfr_exp_t ax2 = ax + (mpfr_exp_t) (b1 - 1 + cc);
    if (MPFR_UNLIKELY( ax2 > __gmpfr_emax))
      return mpfr_overflow (a, rnd_mode, MPFR_SIGN_POS);
    if (MPFR_UNLIKELY( ax2 < __gmpfr_emin))
      {
        /* In the rounding to the nearest mode, if the exponent of the exact
           result (i.e. before rounding, i.e. without taking cc into account)
           is < __gmpfr_emin - 1 or the exact result is a power of 2 (i.e. if
           both arguments are powers of 2), then round to zero. */
        if (rnd_mode == MPFR_RNDN &&
            (ax + (mpfr_exp_t) b1 < __gmpfr_emin || mpfr_powerof2_raw (b)))
          rnd_mode = MPFR_RNDZ;
        return mpfr_underflow (a, rnd_mode, MPFR_SIGN_POS);
      }
    MPFR_SET_EXP (a, ax2);
    MPFR_SET_POS (a);
  }
  MPFR_RET (inexact);
}
Exemple #4
0
int
mpfr_sqrt (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode)
{
  mp_size_t rsize; /* number of limbs of r (plus 1 if exact limb multiple) */
  mp_size_t rrsize;
  mp_size_t usize; /* number of limbs of u */
  mp_size_t tsize; /* number of limbs of the sqrtrem remainder */
  mp_size_t k;
  mp_size_t l;
  mpfr_limb_ptr rp, rp0;
  mpfr_limb_ptr up;
  mpfr_limb_ptr sp;
  mp_limb_t sticky0; /* truncated part of input */
  mp_limb_t sticky1; /* truncated part of rp[0] */
  mp_limb_t sticky;
  int odd_exp;
  int sh; /* number of extra bits in rp[0] */
  int inexact; /* return ternary flag */
  mpfr_exp_t expr;
  MPFR_TMP_DECL(marker);

  MPFR_LOG_FUNC
    (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (u), mpfr_log_prec, u, rnd_mode),
     ("y[%Pu]=%.*Rg inexact=%d",
      mpfr_get_prec (r), mpfr_log_prec, r, inexact));

  if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(u)))
    {
      if (MPFR_IS_NAN(u))
        {
          MPFR_SET_NAN(r);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_ZERO(u))
        {
          /* 0+ or 0- */
          MPFR_SET_SAME_SIGN(r, u);
          MPFR_SET_ZERO(r);
          MPFR_RET(0); /* zero is exact */
        }
      else
        {
          MPFR_ASSERTD(MPFR_IS_INF(u));
          /* sqrt(-Inf) = NAN */
          if (MPFR_IS_NEG(u))
            {
              MPFR_SET_NAN(r);
              MPFR_RET_NAN;
            }
          MPFR_SET_POS(r);
          MPFR_SET_INF(r);
          MPFR_RET(0);
        }
    }
  if (MPFR_UNLIKELY(MPFR_IS_NEG(u)))
    {
      MPFR_SET_NAN(r);
      MPFR_RET_NAN;
    }
  MPFR_SET_POS(r);

  MPFR_TMP_MARK (marker);
  MPFR_UNSIGNED_MINUS_MODULO(sh,MPFR_PREC(r));
  if (sh == 0 && rnd_mode == MPFR_RNDN)
    sh = GMP_NUMB_BITS; /* ugly case */
  rsize = MPFR_LIMB_SIZE(r) + (sh == GMP_NUMB_BITS);
  /* rsize is the number of limbs of r + 1 if exact limb multiple and rounding
     to nearest, this is the number of wanted limbs for the square root */
  rrsize = rsize + rsize;
  usize = MPFR_LIMB_SIZE(u); /* number of limbs of u */
  rp0 = MPFR_MANT(r);
  rp = (sh < GMP_NUMB_BITS) ? rp0 : MPFR_TMP_LIMBS_ALLOC (rsize);
  up = MPFR_MANT(u);
  sticky0 = MPFR_LIMB_ZERO; /* truncated part of input */
  sticky1 = MPFR_LIMB_ZERO; /* truncated part of rp[0] */
  odd_exp = (unsigned int) MPFR_GET_EXP (u) & 1;
  inexact = -1; /* return ternary flag */

  sp = MPFR_TMP_LIMBS_ALLOC (rrsize);

  /* copy the most significant limbs of u to {sp, rrsize} */
  if (MPFR_LIKELY(usize <= rrsize)) /* in case r and u have the same precision,
                                       we have indeed rrsize = 2 * usize */
    {
      k = rrsize - usize;
      if (MPFR_LIKELY(k))
        MPN_ZERO (sp, k);
      if (odd_exp)
        {
          if (MPFR_LIKELY(k))
            sp[k - 1] = mpn_rshift (sp + k, up, usize, 1);
          else
            sticky0 = mpn_rshift (sp, up, usize, 1);
        }
      else
        MPN_COPY (sp + rrsize - usize, up, usize);
    }
  else /* usize > rrsize: truncate the input */
    {
      k = usize - rrsize;
      if (odd_exp)
        sticky0 = mpn_rshift (sp, up + k, rrsize, 1);
      else
        MPN_COPY (sp, up + k, rrsize);
      l = k;
      while (sticky0 == MPFR_LIMB_ZERO && l != 0)
        sticky0 = up[--l];
    }

  /* sticky0 is non-zero iff the truncated part of the input is non-zero */

  /* mpn_rootrem with NULL 2nd argument is faster than mpn_sqrtrem, thus use
     it if available and if the user asked to use GMP internal functions */
#if defined(WANT_GMP_INTERNALS) && defined(HAVE___GMPN_ROOTREM)
  tsize = __gmpn_rootrem (rp, NULL, sp, rrsize, 2);
#else
  tsize = mpn_sqrtrem (rp, NULL, sp, rrsize);
#endif

  /* a return value of zero in mpn_sqrtrem indicates a perfect square */
  sticky = sticky0 || tsize != 0;

  /* truncate low bits of rp[0] */
  sticky1 = rp[0] & ((sh < GMP_NUMB_BITS) ? MPFR_LIMB_MASK(sh)
                     : ~MPFR_LIMB_ZERO);
  rp[0] -= sticky1;

  sticky = sticky || sticky1;

  expr = (MPFR_GET_EXP(u) + odd_exp) / 2;  /* exact */

  if (rnd_mode == MPFR_RNDZ || rnd_mode == MPFR_RNDD || sticky == MPFR_LIMB_ZERO)
    {
      inexact = (sticky == MPFR_LIMB_ZERO) ? 0 : -1;
      goto truncate;
    }
  else if (rnd_mode == MPFR_RNDN)
    {
      /* if sh < GMP_NUMB_BITS, the round bit is bit (sh-1) of sticky1
                  and the sticky bit is formed by the low sh-1 bits from
                  sticky1, together with the sqrtrem remainder and sticky0. */
      if (sh < GMP_NUMB_BITS)
        {
          if (sticky1 & (MPFR_LIMB_ONE << (sh - 1)))
            { /* round bit is set */
              if (sticky1 == (MPFR_LIMB_ONE << (sh - 1)) && tsize == 0
                  && sticky0 == 0)
                goto even_rule;
              else
                goto add_one_ulp;
            }
          else /* round bit is zero */
            goto truncate; /* with the default inexact=-1 */
        }
      else /* sh = GMP_NUMB_BITS: the round bit is the most significant bit
              of rp[0], and the remaining GMP_NUMB_BITS-1 bits contribute to
              the sticky bit */
        {
          if (sticky1 & MPFR_LIMB_HIGHBIT)
            { /* round bit is set */
              if (sticky1 == MPFR_LIMB_HIGHBIT && tsize == 0 && sticky0 == 0)
                goto even_rule;
              else
                goto add_one_ulp;
            }
          else /* round bit is zero */
            goto truncate; /* with the default inexact=-1 */
        }
    }
  else /* rnd_mode=GMP_RDNU, necessarily sticky <> 0, thus add 1 ulp */
    goto add_one_ulp;

 even_rule: /* has to set inexact */
  if (sh < GMP_NUMB_BITS)
    inexact = (rp[0] & (MPFR_LIMB_ONE << sh)) ? 1 : -1;
  else
    inexact = (rp[1] & MPFR_LIMB_ONE) ? 1 : -1;
  if (inexact == -1)
    goto truncate;
  /* else go through add_one_ulp */

 add_one_ulp:
  inexact = 1; /* always here */
  if (sh == GMP_NUMB_BITS)
    {
      rp ++;
      rsize --;
      sh = 0;
    }
  if (mpn_add_1 (rp0, rp, rsize, MPFR_LIMB_ONE << sh))
    {
      expr ++;
      rp[rsize - 1] = MPFR_LIMB_HIGHBIT;
    }
  goto end;

 truncate: /* inexact = 0 or -1 */
  if (sh == GMP_NUMB_BITS)
    MPN_COPY (rp0, rp + 1, rsize - 1);

 end:
  MPFR_ASSERTN (expr >= MPFR_EMIN_MIN && expr <= MPFR_EMAX_MAX);
  MPFR_EXP (r) = expr;
  MPFR_TMP_FREE(marker);

  return mpfr_check_range (r, inexact, rnd_mode);
}
Exemple #5
0
int
mpfr_asin (mpfr_ptr asin, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
  mpfr_t xp;
  int compared, inexact;
  mpfr_prec_t prec;
  mpfr_exp_t xp_exp;
  MPFR_SAVE_EXPO_DECL (expo);
  MPFR_ZIV_DECL (loop);

  MPFR_LOG_FUNC (
    ("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
    ("asin[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (asin), mpfr_log_prec, asin,
     inexact));

  /* Special cases */
  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
    {
      if (MPFR_IS_NAN (x) || MPFR_IS_INF (x))
        {
          MPFR_SET_NAN (asin);
          MPFR_RET_NAN;
        }
      else /* x = 0 */
        {
          MPFR_ASSERTD (MPFR_IS_ZERO (x));
          MPFR_SET_ZERO (asin);
          MPFR_SET_SAME_SIGN (asin, x);
          MPFR_RET (0); /* exact result */
        }
    }

  /* asin(x) = x + x^3/6 + ... so the error is < 2^(3*EXP(x)-2) */
  MPFR_FAST_COMPUTE_IF_SMALL_INPUT (asin, x, -2 * MPFR_GET_EXP (x), 2, 1,
                                    rnd_mode, {});

  /* Set x_p=|x| (x is a normal number) */
  mpfr_init2 (xp, MPFR_PREC (x));
  inexact = mpfr_abs (xp, x, MPFR_RNDN);
  MPFR_ASSERTD (inexact == 0);

  compared = mpfr_cmp_ui (xp, 1);

  MPFR_SAVE_EXPO_MARK (expo);

  if (MPFR_UNLIKELY (compared >= 0))
    {
      mpfr_clear (xp);
      if (compared > 0)                  /* asin(x) = NaN for |x| > 1 */
        {
          MPFR_SAVE_EXPO_FREE (expo);
          MPFR_SET_NAN (asin);
          MPFR_RET_NAN;
        }
      else                              /* x = 1 or x = -1 */
        {
          if (MPFR_IS_POS (x)) /* asin(+1) = Pi/2 */
            inexact = mpfr_const_pi (asin, rnd_mode);
          else /* asin(-1) = -Pi/2 */
            {
              inexact = -mpfr_const_pi (asin, MPFR_INVERT_RND(rnd_mode));
              MPFR_CHANGE_SIGN (asin);
            }
          mpfr_div_2ui (asin, asin, 1, rnd_mode);
        }
    }
  else
    {
      /* Compute exponent of 1 - ABS(x) */
      mpfr_ui_sub (xp, 1, xp, MPFR_RNDD);
      MPFR_ASSERTD (MPFR_GET_EXP (xp) <= 0);
      MPFR_ASSERTD (MPFR_GET_EXP (x) <= 0);
      xp_exp = 2 - MPFR_GET_EXP (xp);

      /* Set up initial prec */
      prec = MPFR_PREC (asin) + 10 + xp_exp;

      /* use asin(x) = atan(x/sqrt(1-x^2)) */
      MPFR_ZIV_INIT (loop, prec);
      for (;;)
        {
          mpfr_set_prec (xp, prec);
          mpfr_sqr (xp, x, MPFR_RNDN);
          mpfr_ui_sub (xp, 1, xp, MPFR_RNDN);
          mpfr_sqrt (xp, xp, MPFR_RNDN);
          mpfr_div (xp, x, xp, MPFR_RNDN);
          mpfr_atan (xp, xp, MPFR_RNDN);
          if (MPFR_LIKELY (MPFR_CAN_ROUND (xp, prec - xp_exp,
                                           MPFR_PREC (asin), rnd_mode)))
            break;
          MPFR_ZIV_NEXT (loop, prec);
        }
      MPFR_ZIV_FREE (loop);
      inexact = mpfr_set (asin, xp, rnd_mode);

      mpfr_clear (xp);
    }

  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (asin, inexact, rnd_mode);
}
Exemple #6
0
int
mpfr_pow_si (mpfr_ptr y, mpfr_srcptr x, long int n, mpfr_rnd_t rnd)
{
  MPFR_LOG_FUNC
    (("x[%Pu]=%.*Rg n=%ld rnd=%d",
      mpfr_get_prec (x), mpfr_log_prec, x, n, rnd),
     ("y[%Pu]=%.*Rg", mpfr_get_prec (y), mpfr_log_prec, y));

  if (n >= 0)
    return mpfr_pow_ui (y, x, n, rnd);
  else
    {
      if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
        {
          if (MPFR_IS_NAN (x))
            {
              MPFR_SET_NAN (y);
              MPFR_RET_NAN;
            }
          else
            {
              int positive = MPFR_IS_POS (x) || ((unsigned long) n & 1) == 0;
              if (MPFR_IS_INF (x))
                MPFR_SET_ZERO (y);
              else /* x is zero */
                {
                  MPFR_ASSERTD (MPFR_IS_ZERO (x));
                  MPFR_SET_INF (y);
                  mpfr_set_divby0 ();
                }
              if (positive)
                MPFR_SET_POS (y);
              else
                MPFR_SET_NEG (y);
              MPFR_RET (0);
            }
        }

      /* detect exact powers: x^(-n) is exact iff x is a power of 2 */
      if (mpfr_cmp_si_2exp (x, MPFR_SIGN(x), MPFR_EXP(x) - 1) == 0)
        {
          mpfr_exp_t expx = MPFR_EXP (x) - 1, expy;
          MPFR_ASSERTD (n < 0);
          /* Warning: n * expx may overflow!
           *
           * Some systems (apparently alpha-freebsd) abort with
           * LONG_MIN / 1, and LONG_MIN / -1 is undefined.
           * http://www.freebsd.org/cgi/query-pr.cgi?pr=72024
           *
           * Proof of the overflow checking. The expressions below are
           * assumed to be on the rational numbers, but the word "overflow"
           * still has its own meaning in the C context. / still denotes
           * the integer (truncated) division, and // denotes the exact
           * division.
           * - First, (__gmpfr_emin - 1) / n and (__gmpfr_emax - 1) / n
           *   cannot overflow due to the constraints on the exponents of
           *   MPFR numbers.
           * - If n = -1, then n * expx = - expx, which is representable
           *   because of the constraints on the exponents of MPFR numbers.
           * - If expx = 0, then n * expx = 0, which is representable.
           * - If n < -1 and expx > 0:
           *   + If expx > (__gmpfr_emin - 1) / n, then
           *           expx >= (__gmpfr_emin - 1) / n + 1
           *                > (__gmpfr_emin - 1) // n,
           *     and
           *           n * expx < __gmpfr_emin - 1,
           *     i.e.
           *           n * expx <= __gmpfr_emin - 2.
           *     This corresponds to an underflow, with a null result in
           *     the rounding-to-nearest mode.
           *   + If expx <= (__gmpfr_emin - 1) / n, then n * expx cannot
           *     overflow since 0 < expx <= (__gmpfr_emin - 1) / n and
           *           0 > n * expx >= n * ((__gmpfr_emin - 1) / n)
           *                        >= __gmpfr_emin - 1.
           * - If n < -1 and expx < 0:
           *   + If expx < (__gmpfr_emax - 1) / n, then
           *           expx <= (__gmpfr_emax - 1) / n - 1
           *                < (__gmpfr_emax - 1) // n,
           *     and
           *           n * expx > __gmpfr_emax - 1,
           *     i.e.
           *           n * expx >= __gmpfr_emax.
           *     This corresponds to an overflow (2^(n * expx) has an
           *     exponent > __gmpfr_emax).
           *   + If expx >= (__gmpfr_emax - 1) / n, then n * expx cannot
           *     overflow since 0 > expx >= (__gmpfr_emax - 1) / n and
           *           0 < n * expx <= n * ((__gmpfr_emax - 1) / n)
           *                        <= __gmpfr_emax - 1.
           * Note: one could use expx bounds based on MPFR_EXP_MIN and
           * MPFR_EXP_MAX instead of __gmpfr_emin and __gmpfr_emax. The
           * current bounds do not lead to noticeably slower code and
           * allow us to avoid a bug in Sun's compiler for Solaris/x86
           * (when optimizations are enabled); known affected versions:
           *   cc: Sun C 5.8 2005/10/13
           *   cc: Sun C 5.8 Patch 121016-02 2006/03/31
           *   cc: Sun C 5.8 Patch 121016-04 2006/10/18
           */
          expy =
            n != -1 && expx > 0 && expx > (__gmpfr_emin - 1) / n ?
            MPFR_EMIN_MIN - 2 /* Underflow */ :
            n != -1 && expx < 0 && expx < (__gmpfr_emax - 1) / n ?
            MPFR_EMAX_MAX /* Overflow */ : n * expx;
          return mpfr_set_si_2exp (y, n % 2 ? MPFR_INT_SIGN (x) : 1,
                                   expy, rnd);
        }

      /* General case */
      {
        /* Declaration of the intermediary variable */
        mpfr_t t;
        /* Declaration of the size variable */
        mpfr_prec_t Ny;                              /* target precision */
        mpfr_prec_t Nt;                              /* working precision */
        mpfr_rnd_t rnd1;
        int size_n;
        int inexact;
        unsigned long abs_n;
        MPFR_SAVE_EXPO_DECL (expo);
        MPFR_ZIV_DECL (loop);

        abs_n = - (unsigned long) n;
        count_leading_zeros (size_n, (mp_limb_t) abs_n);
        size_n = GMP_NUMB_BITS - size_n;

        /* initial working precision */
        Ny = MPFR_PREC (y);
        Nt = Ny + size_n + 3 + MPFR_INT_CEIL_LOG2 (Ny);

        MPFR_SAVE_EXPO_MARK (expo);

        /* initialise of intermediary   variable */
        mpfr_init2 (t, Nt);

        /* We will compute rnd(rnd1(1/x) ^ |n|), where rnd1 is the rounding
           toward sign(x), to avoid spurious overflow or underflow, as in
           mpfr_pow_z. */
        rnd1 = MPFR_EXP (x) < 1 ? MPFR_RNDZ :
          (MPFR_SIGN (x) > 0 ? MPFR_RNDU : MPFR_RNDD);

        MPFR_ZIV_INIT (loop, Nt);
        for (;;)
          {
            MPFR_BLOCK_DECL (flags);

            /* compute (1/x)^|n| */
            MPFR_BLOCK (flags, mpfr_ui_div (t, 1, x, rnd1));
            MPFR_ASSERTD (! MPFR_UNDERFLOW (flags));
            /* t = (1/x)*(1+theta) where |theta| <= 2^(-Nt) */
            if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags)))
              goto overflow;
            MPFR_BLOCK (flags, mpfr_pow_ui (t, t, abs_n, rnd));
            /* t = (1/x)^|n|*(1+theta')^(|n|+1) where |theta'| <= 2^(-Nt).
               If (|n|+1)*2^(-Nt) <= 1/2, which is satisfied as soon as
               Nt >= bits(n)+2, then we can use Lemma \ref{lemma_graillat}
               from algorithms.tex, which yields x^n*(1+theta) with
               |theta| <= 2(|n|+1)*2^(-Nt), thus the error is bounded by
               2(|n|+1) ulps <= 2^(bits(n)+2) ulps. */
            if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags)))
              {
              overflow:
                MPFR_ZIV_FREE (loop);
                mpfr_clear (t);
                MPFR_SAVE_EXPO_FREE (expo);
                MPFR_LOG_MSG (("overflow\n", 0));
                return mpfr_overflow (y, rnd, abs_n & 1 ?
                                      MPFR_SIGN (x) : MPFR_SIGN_POS);
              }
            if (MPFR_UNLIKELY (MPFR_UNDERFLOW (flags)))
              {
                MPFR_ZIV_FREE (loop);
                mpfr_clear (t);
                MPFR_LOG_MSG (("underflow\n", 0));
                if (rnd == MPFR_RNDN)
                  {
                    mpfr_t y2, nn;

                    /* We cannot decide now whether the result should be
                       rounded toward zero or away from zero. So, like
                       in mpfr_pow_pos_z, let's use the general case of
                       mpfr_pow in precision 2. */
                    MPFR_ASSERTD (mpfr_cmp_si_2exp (x, MPFR_SIGN (x),
                                                    MPFR_EXP (x) - 1) != 0);
                    mpfr_init2 (y2, 2);
                    mpfr_init2 (nn, sizeof (long) * CHAR_BIT);
                    inexact = mpfr_set_si (nn, n, MPFR_RNDN);
                    MPFR_ASSERTN (inexact == 0);
                    inexact = mpfr_pow_general (y2, x, nn, rnd, 1,
                                                (mpfr_save_expo_t *) NULL);
                    mpfr_clear (nn);
                    mpfr_set (y, y2, MPFR_RNDN);
                    mpfr_clear (y2);
                    MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_UNDERFLOW);
                    goto end;
                  }
                else
                  {
                    MPFR_SAVE_EXPO_FREE (expo);
                    return mpfr_underflow (y, rnd, abs_n & 1 ?
                                           MPFR_SIGN (x) : MPFR_SIGN_POS);
                  }
              }
            /* error estimate -- see pow function in algorithms.ps */
            if (MPFR_LIKELY (MPFR_CAN_ROUND (t, Nt - size_n - 2, Ny, rnd)))
              break;

            /* actualisation of the precision */
            MPFR_ZIV_NEXT (loop, Nt);
            mpfr_set_prec (t, Nt);
          }
        MPFR_ZIV_FREE (loop);

        inexact = mpfr_set (y, t, rnd);
        mpfr_clear (t);

      end:
        MPFR_SAVE_EXPO_FREE (expo);
        return mpfr_check_range (y, inexact, rnd);
      }
    }
}
Exemple #7
0
int
mpfr_log2 (mpfr_ptr r, mpfr_srcptr a, mp_rnd_t rnd_mode)
{
  int inexact;
  MPFR_SAVE_EXPO_DECL (expo);

  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (a)))
    {
      /* If a is NaN, the result is NaN */
      if (MPFR_IS_NAN (a))
        {
          MPFR_SET_NAN (r);
          MPFR_RET_NAN;
        }
      /* check for infinity before zero */
      else if (MPFR_IS_INF (a))
        {
          if (MPFR_IS_NEG (a))
            /* log(-Inf) = NaN */
            {
              MPFR_SET_NAN (r);
              MPFR_RET_NAN;
            }
          else /* log(+Inf) = +Inf */
            {
              MPFR_SET_INF (r);
              MPFR_SET_POS (r);
              MPFR_RET (0);
            }
        }
      else /* a is zero */
        {
          MPFR_ASSERTD (MPFR_IS_ZERO (a));
          MPFR_SET_INF (r);
          MPFR_SET_NEG (r);
          MPFR_RET (0); /* log2(0) is an exact -infinity */
        }
    }

  /* If a is negative, the result is NaN */
  if (MPFR_UNLIKELY (MPFR_IS_NEG (a)))
    {
      MPFR_SET_NAN (r);
      MPFR_RET_NAN;
    }

  /* If a is 1, the result is 0 */
  if (MPFR_UNLIKELY (mpfr_cmp_ui (a, 1) == 0))
    {
      MPFR_SET_ZERO (r);
      MPFR_SET_POS (r);
      MPFR_RET (0); /* only "normal" case where the result is exact */
    }

  /* If a is 2^N, log2(a) is exact*/
  if (MPFR_UNLIKELY (mpfr_cmp_ui_2exp (a, 1, MPFR_GET_EXP (a) - 1) == 0))
    return mpfr_set_si(r, MPFR_GET_EXP (a) - 1, rnd_mode);

  MPFR_SAVE_EXPO_MARK (expo);

  /* General case */
  {
    /* Declaration of the intermediary variable */
    mpfr_t t, tt;
    /* Declaration of the size variable */
    mp_prec_t Ny = MPFR_PREC(r);              /* target precision */
    mp_prec_t Nt;                             /* working precision */
    mp_exp_t err;                             /* error */
    MPFR_ZIV_DECL (loop);

    /* compute the precision of intermediary variable */
    /* the optimal number of bits : see algorithms.tex */
    Nt = Ny + 3 + MPFR_INT_CEIL_LOG2 (Ny);

    /* initialise of intermediary       variable */
    mpfr_init2 (t, Nt);
    mpfr_init2 (tt, Nt);

    /* First computation of log2 */
    MPFR_ZIV_INIT (loop, Nt);
    for (;;)
      {
        /* compute log2 */
        mpfr_const_log2(t,GMP_RNDD); /* log(2) */
        mpfr_log(tt,a,GMP_RNDN);     /* log(a) */
        mpfr_div(t,tt,t,GMP_RNDN); /* log(a)/log(2) */

        /* estimation of the error */
        err = Nt-3;
        if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd_mode)))
          break;

        /* actualisation of the precision */
        MPFR_ZIV_NEXT (loop, Nt);
        mpfr_set_prec (t, Nt);
        mpfr_set_prec (tt, Nt);
      }
    MPFR_ZIV_FREE (loop);

    inexact = mpfr_set (r, t, rnd_mode);

    mpfr_clear (t);
    mpfr_clear (tt);
  }

  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (r, inexact, rnd_mode);
}
Exemple #8
0
int
mpfr_sub (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mp_rnd_t rnd_mode)
{
  MPFR_LOG_FUNC (("b[%#R]=%R c[%#R]=%R rnd=%d", b, b, c, c, rnd_mode),
                 ("a[%#R]=%R", a, a));

  if (MPFR_ARE_SINGULAR (b,c))
    {
      if (MPFR_IS_NAN (b) || MPFR_IS_NAN (c))
        {
          MPFR_SET_NAN (a);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_INF (b))
        {
          if (!MPFR_IS_INF (c) || MPFR_SIGN (b) != MPFR_SIGN(c))
            {
              MPFR_SET_INF (a);
              MPFR_SET_SAME_SIGN (a, b);
              MPFR_RET (0); /* exact */
            }
          else
            {
              MPFR_SET_NAN (a); /* Inf - Inf */
              MPFR_RET_NAN;
            }
        }
      else if (MPFR_IS_INF (c))
        {
          MPFR_SET_INF (a);
          MPFR_SET_OPPOSITE_SIGN (a, c);
          MPFR_RET (0); /* exact */
        }
      else if (MPFR_IS_ZERO (b))
        {
          if (MPFR_IS_ZERO (c))
            {
              int sign = rnd_mode != GMP_RNDD
                ? ((MPFR_IS_NEG(b) && MPFR_IS_POS(c)) ? -1 : 1)
                : ((MPFR_IS_POS(b) && MPFR_IS_NEG(c)) ? 1 : -1);
              MPFR_SET_SIGN (a, sign);
              MPFR_SET_ZERO (a);
              MPFR_RET(0); /* 0 - 0 is exact */
            }
          else
            return mpfr_neg (a, c, rnd_mode);
        }
      else
        {
          MPFR_ASSERTD (MPFR_IS_ZERO (c));
          return mpfr_set (a, b, rnd_mode);
        }
    }
  MPFR_CLEAR_FLAGS (a);
  MPFR_ASSERTD (MPFR_IS_PURE_FP (b) && MPFR_IS_PURE_FP (c));

  if (MPFR_LIKELY (MPFR_SIGN (b) == MPFR_SIGN (c)))
    { /* signs are equal, it's a real subtraction */
      if (MPFR_LIKELY (MPFR_PREC (a) == MPFR_PREC (b)
                       && MPFR_PREC (b) == MPFR_PREC (c)))
        return mpfr_sub1sp (a, b, c, rnd_mode);
      else
        return mpfr_sub1 (a, b, c, rnd_mode);
    }
  else
    { /* signs differ, it's an addition */
      if (MPFR_GET_EXP (b) < MPFR_GET_EXP (c))
         { /* exchange rounding modes toward +/- infinity */
          int inexact;
          rnd_mode = MPFR_INVERT_RND (rnd_mode);
          if (MPFR_LIKELY (MPFR_PREC (a) == MPFR_PREC (b)
                           && MPFR_PREC (b) == MPFR_PREC (c)))
            inexact = mpfr_add1sp (a, c, b, rnd_mode);
          else
            inexact = mpfr_add1 (a, c, b, rnd_mode);
          MPFR_CHANGE_SIGN (a);
          return -inexact;
        }
      else
        {
          if (MPFR_LIKELY (MPFR_PREC (a) == MPFR_PREC (b)
                           && MPFR_PREC (b) == MPFR_PREC (c)))
            return mpfr_add1sp (a, b, c, rnd_mode);
          else
            return mpfr_add1 (a, b, c, rnd_mode);
        }
    }
}
Exemple #9
0
int
mpfr_tanh (mpfr_ptr y, mpfr_srcptr xt , mpfr_rnd_t rnd_mode)
{
  /****** Declaration ******/
  mpfr_t x;
  int inexact;
  MPFR_SAVE_EXPO_DECL (expo);

  MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", xt, xt, rnd_mode),
                 ("y[%#R]=%R inexact=%d", y, y, inexact));

  /* Special value checking */
  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (xt)))
    {
      if (MPFR_IS_NAN (xt))
        {
          MPFR_SET_NAN (y);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_INF (xt))
        {
          /* tanh(inf) = 1 && tanh(-inf) = -1 */
          return mpfr_set_si (y, MPFR_INT_SIGN (xt), rnd_mode);
        }
      else /* tanh (0) = 0 and xt is zero */
        {
          MPFR_ASSERTD (MPFR_IS_ZERO(xt));
          MPFR_SET_ZERO (y);
          MPFR_SET_SAME_SIGN (y, xt);
          MPFR_RET (0);
        }
    }

  /* tanh(x) = x - x^3/3 + ... so the error is < 2^(3*EXP(x)-1) */
  MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, xt, -2 * MPFR_GET_EXP (xt), 1, 0,
                                    rnd_mode, {});

  MPFR_TMP_INIT_ABS (x, xt);

  MPFR_SAVE_EXPO_MARK (expo);

  /* General case */
  {
    /* Declaration of the intermediary variable */
    mpfr_t t, te;
    mpfr_exp_t d;

    /* Declaration of the size variable */
    mpfr_prec_t Ny = MPFR_PREC(y);   /* target precision */
    mpfr_prec_t Nt;                  /* working precision */
    long int err;                  /* error */
    int sign = MPFR_SIGN (xt);
    MPFR_ZIV_DECL (loop);
    MPFR_GROUP_DECL (group);

    /* First check for BIG overflow of exp(2*x):
       For x > 0, exp(2*x) > 2^(2*x)
       If 2 ^(2*x) > 2^emax or x>emax/2, there is an overflow */
    if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emax/2) >= 0)) {
      /* initialise of intermediary variables
         since 'set_one' label assumes the variables have been
         initialize */
      MPFR_GROUP_INIT_2 (group, MPFR_PREC_MIN, t, te);
      goto set_one;
    }

    /* Compute the precision of intermediary variable */
    /* The optimal number of bits: see algorithms.tex */
    Nt = Ny + MPFR_INT_CEIL_LOG2 (Ny) + 4;
    /* if x is small, there will be a cancellation in exp(2x)-1 */
    if (MPFR_GET_EXP (x) < 0)
      Nt += -MPFR_GET_EXP (x);

    /* initialise of intermediary variable */
    MPFR_GROUP_INIT_2 (group, Nt, t, te);

    MPFR_ZIV_INIT (loop, Nt);
    for (;;) {
      /* tanh = (exp(2x)-1)/(exp(2x)+1) */
      mpfr_mul_2ui (te, x, 1, MPFR_RNDN);  /* 2x */
      /* since x > 0, we can only have an overflow */
      mpfr_exp (te, te, MPFR_RNDN);        /* exp(2x) */
      if (MPFR_UNLIKELY (MPFR_IS_INF (te))) {
      set_one:
        inexact = MPFR_FROM_SIGN_TO_INT (sign);
        mpfr_set4 (y, __gmpfr_one, MPFR_RNDN, sign);
        if (MPFR_IS_LIKE_RNDZ (rnd_mode, MPFR_IS_NEG_SIGN (sign)))
          {
            inexact = -inexact;
            mpfr_nexttozero (y);
          }
        break;
      }
      d = MPFR_GET_EXP (te);              /* For Error calculation */
      mpfr_add_ui (t, te, 1, MPFR_RNDD);   /* exp(2x) + 1*/
      mpfr_sub_ui (te, te, 1, MPFR_RNDU);  /* exp(2x) - 1*/
      d = d - MPFR_GET_EXP (te);
      mpfr_div (t, te, t, MPFR_RNDN);      /* (exp(2x)-1)/(exp(2x)+1)*/

      /* Calculation of the error */
      d = MAX(3, d + 1);
      err = Nt - (d + 1);

      if (MPFR_LIKELY ((d <= Nt / 2) && MPFR_CAN_ROUND (t, err, Ny, rnd_mode)))
        {
          inexact = mpfr_set4 (y, t, rnd_mode, sign);
          break;
        }

      /* if t=1, we still can round since |sinh(x)| < 1 */
      if (MPFR_GET_EXP (t) == 1)
        goto set_one;

      /* Actualisation of the precision */
      MPFR_ZIV_NEXT (loop, Nt);
      MPFR_GROUP_REPREC_2 (group, Nt, t, te);
    }
    MPFR_ZIV_FREE (loop);
    MPFR_GROUP_CLEAR (group);
  }
  MPFR_SAVE_EXPO_FREE (expo);
  inexact = mpfr_check_range (y, inexact, rnd_mode);

  return inexact;
}
Exemple #10
0
/* The computation of z = pow(x,y) is done by
   z = exp(y * log(x)) = x^y
   For the special cases, see Section F.9.4.4 of the C standard:
     _ pow(±0, y) = ±inf for y an odd integer < 0.
     _ pow(±0, y) = +inf for y < 0 and not an odd integer.
     _ pow(±0, y) = ±0 for y an odd integer > 0.
     _ pow(±0, y) = +0 for y > 0 and not an odd integer.
     _ pow(-1, ±inf) = 1.
     _ pow(+1, y) = 1 for any y, even a NaN.
     _ pow(x, ±0) = 1 for any x, even a NaN.
     _ pow(x, y) = NaN for finite x < 0 and finite non-integer y.
     _ pow(x, -inf) = +inf for |x| < 1.
     _ pow(x, -inf) = +0 for |x| > 1.
     _ pow(x, +inf) = +0 for |x| < 1.
     _ pow(x, +inf) = +inf for |x| > 1.
     _ pow(-inf, y) = -0 for y an odd integer < 0.
     _ pow(-inf, y) = +0 for y < 0 and not an odd integer.
     _ pow(-inf, y) = -inf for y an odd integer > 0.
     _ pow(-inf, y) = +inf for y > 0 and not an odd integer.
     _ pow(+inf, y) = +0 for y < 0.
     _ pow(+inf, y) = +inf for y > 0. */
int
mpfr_pow (mpfr_ptr z, mpfr_srcptr x, mpfr_srcptr y, mpfr_rnd_t rnd_mode)
{
  int inexact;
  int cmp_x_1;
  int y_is_integer;
  MPFR_SAVE_EXPO_DECL (expo);

  MPFR_LOG_FUNC
    (("x[%Pu]=%.*Rg y[%Pu]=%.*Rg rnd=%d",
      mpfr_get_prec (x), mpfr_log_prec, x,
      mpfr_get_prec (y), mpfr_log_prec, y, rnd_mode),
     ("z[%Pu]=%.*Rg inexact=%d",
      mpfr_get_prec (z), mpfr_log_prec, z, inexact));

  if (MPFR_ARE_SINGULAR (x, y))
    {
      /* pow(x, 0) returns 1 for any x, even a NaN. */
      if (MPFR_UNLIKELY (MPFR_IS_ZERO (y)))
        return mpfr_set_ui (z, 1, rnd_mode);
      else if (MPFR_IS_NAN (x))
        {
          MPFR_SET_NAN (z);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_NAN (y))
        {
          /* pow(+1, NaN) returns 1. */
          if (mpfr_cmp_ui (x, 1) == 0)
            return mpfr_set_ui (z, 1, rnd_mode);
          MPFR_SET_NAN (z);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_INF (y))
        {
          if (MPFR_IS_INF (x))
            {
              if (MPFR_IS_POS (y))
                MPFR_SET_INF (z);
              else
                MPFR_SET_ZERO (z);
              MPFR_SET_POS (z);
              MPFR_RET (0);
            }
          else
            {
              int cmp;
              cmp = mpfr_cmpabs (x, __gmpfr_one) * MPFR_INT_SIGN (y);
              MPFR_SET_POS (z);
              if (cmp > 0)
                {
                  /* Return +inf. */
                  MPFR_SET_INF (z);
                  MPFR_RET (0);
                }
              else if (cmp < 0)
                {
                  /* Return +0. */
                  MPFR_SET_ZERO (z);
                  MPFR_RET (0);
                }
              else
                {
                  /* Return 1. */
                  return mpfr_set_ui (z, 1, rnd_mode);
                }
            }
        }
      else if (MPFR_IS_INF (x))
        {
          int negative;
          /* Determine the sign now, in case y and z are the same object */
          negative = MPFR_IS_NEG (x) && is_odd (y);
          if (MPFR_IS_POS (y))
            MPFR_SET_INF (z);
          else
            MPFR_SET_ZERO (z);
          if (negative)
            MPFR_SET_NEG (z);
          else
            MPFR_SET_POS (z);
          MPFR_RET (0);
        }
      else
        {
          int negative;
          MPFR_ASSERTD (MPFR_IS_ZERO (x));
          /* Determine the sign now, in case y and z are the same object */
          negative = MPFR_IS_NEG(x) && is_odd (y);
          if (MPFR_IS_NEG (y))
            {
              MPFR_ASSERTD (! MPFR_IS_INF (y));
              MPFR_SET_INF (z);
              mpfr_set_divby0 ();
            }
          else
            MPFR_SET_ZERO (z);
          if (negative)
            MPFR_SET_NEG (z);
          else
            MPFR_SET_POS (z);
          MPFR_RET (0);
        }
    }

  /* x^y for x < 0 and y not an integer is not defined */
  y_is_integer = mpfr_integer_p (y);
  if (MPFR_IS_NEG (x) && ! y_is_integer)
    {
      MPFR_SET_NAN (z);
      MPFR_RET_NAN;
    }

  /* now the result cannot be NaN:
     (1) either x > 0
     (2) or x < 0 and y is an integer */

  cmp_x_1 = mpfr_cmpabs (x, __gmpfr_one);
  if (cmp_x_1 == 0)
    return mpfr_set_si (z, MPFR_IS_NEG (x) && is_odd (y) ? -1 : 1, rnd_mode);

  /* now we have:
     (1) either x > 0
     (2) or x < 0 and y is an integer
     and in addition |x| <> 1.
  */

  /* detect overflow: an overflow is possible if
     (a) |x| > 1 and y > 0
     (b) |x| < 1 and y < 0.
     FIXME: this assumes 1 is always representable.

     FIXME2: maybe we can test overflow and underflow simultaneously.
     The idea is the following: first compute an approximation to
     y * log2|x|, using rounding to nearest. If |x| is not too near from 1,
     this approximation should be accurate enough, and in most cases enable
     one to prove that there is no underflow nor overflow.
     Otherwise, it should enable one to check only underflow or overflow,
     instead of both cases as in the present case.
  */
  if (cmp_x_1 * MPFR_SIGN (y) > 0)
    {
      mpfr_t t;
      int negative, overflow;

      MPFR_SAVE_EXPO_MARK (expo);
      mpfr_init2 (t, 53);
      /* we want a lower bound on y*log2|x|:
         (i) if x > 0, it suffices to round log2(x) toward zero, and
             to round y*o(log2(x)) toward zero too;
         (ii) if x < 0, we first compute t = o(-x), with rounding toward 1,
              and then follow as in case (1). */
      if (MPFR_SIGN (x) > 0)
        mpfr_log2 (t, x, MPFR_RNDZ);
      else
        {
          mpfr_neg (t, x, (cmp_x_1 > 0) ? MPFR_RNDZ : MPFR_RNDU);
          mpfr_log2 (t, t, MPFR_RNDZ);
        }
      mpfr_mul (t, t, y, MPFR_RNDZ);
      overflow = mpfr_cmp_si (t, __gmpfr_emax) > 0;
      mpfr_clear (t);
      MPFR_SAVE_EXPO_FREE (expo);
      if (overflow)
        {
          MPFR_LOG_MSG (("early overflow detection\n", 0));
          negative = MPFR_SIGN(x) < 0 && is_odd (y);
          return mpfr_overflow (z, rnd_mode, negative ? -1 : 1);
        }
    }

  /* Basic underflow checking. One has:
   *   - if y > 0, |x^y| < 2^(EXP(x) * y);
   *   - if y < 0, |x^y| <= 2^((EXP(x) - 1) * y);
   * so that one can compute a value ebound such that |x^y| < 2^ebound.
   * If we have ebound <= emin - 2 (emin - 1 in directed rounding modes),
   * then there is an underflow and we can decide the return value.
   */
  if (MPFR_IS_NEG (y) ? (MPFR_GET_EXP (x) > 1) : (MPFR_GET_EXP (x) < 0))
    {
      mpfr_t tmp;
      mpfr_eexp_t ebound;
      int inex2;

      /* We must restore the flags. */
      MPFR_SAVE_EXPO_MARK (expo);
      mpfr_init2 (tmp, sizeof (mpfr_exp_t) * CHAR_BIT);
      inex2 = mpfr_set_exp_t (tmp, MPFR_GET_EXP (x), MPFR_RNDN);
      MPFR_ASSERTN (inex2 == 0);
      if (MPFR_IS_NEG (y))
        {
          inex2 = mpfr_sub_ui (tmp, tmp, 1, MPFR_RNDN);
          MPFR_ASSERTN (inex2 == 0);
        }
      mpfr_mul (tmp, tmp, y, MPFR_RNDU);
      if (MPFR_IS_NEG (y))
        mpfr_nextabove (tmp);
      /* tmp doesn't necessarily fit in ebound, but that doesn't matter
         since we get the minimum value in such a case. */
      ebound = mpfr_get_exp_t (tmp, MPFR_RNDU);
      mpfr_clear (tmp);
      MPFR_SAVE_EXPO_FREE (expo);
      if (MPFR_UNLIKELY (ebound <=
                         __gmpfr_emin - (rnd_mode == MPFR_RNDN ? 2 : 1)))
        {
          /* warning: mpfr_underflow rounds away from 0 for MPFR_RNDN */
          MPFR_LOG_MSG (("early underflow detection\n", 0));
          return mpfr_underflow (z,
                                 rnd_mode == MPFR_RNDN ? MPFR_RNDZ : rnd_mode,
                                 MPFR_SIGN (x) < 0 && is_odd (y) ? -1 : 1);
        }
    }

  /* If y is an integer, we can use mpfr_pow_z (based on multiplications),
     but if y is very large (I'm not sure about the best threshold -- VL),
     we shouldn't use it, as it can be very slow and take a lot of memory
     (and even crash or make other programs crash, as several hundred of
     MBs may be necessary). Note that in such a case, either x = +/-2^b
     (this case is handled below) or x^y cannot be represented exactly in
     any precision supported by MPFR (the general case uses this property).
  */
  if (y_is_integer && (MPFR_GET_EXP (y) <= 256))
    {
      mpz_t zi;

      MPFR_LOG_MSG (("special code for y not too large integer\n", 0));
      mpz_init (zi);
      mpfr_get_z (zi, y, MPFR_RNDN);
      inexact = mpfr_pow_z (z, x, zi, rnd_mode);
      mpz_clear (zi);
      return inexact;
    }

  /* Special case (+/-2^b)^Y which could be exact. If x is negative, then
     necessarily y is a large integer. */
  {
    mpfr_exp_t b = MPFR_GET_EXP (x) - 1;

    MPFR_ASSERTN (b >= LONG_MIN && b <= LONG_MAX);  /* FIXME... */
    if (mpfr_cmp_si_2exp (x, MPFR_SIGN(x), b) == 0)
      {
        mpfr_t tmp;
        int sgnx = MPFR_SIGN (x);

        MPFR_LOG_MSG (("special case (+/-2^b)^Y\n", 0));
        /* now x = +/-2^b, so x^y = (+/-1)^y*2^(b*y) is exact whenever b*y is
           an integer */
        MPFR_SAVE_EXPO_MARK (expo);
        mpfr_init2 (tmp, MPFR_PREC (y) + sizeof (long) * CHAR_BIT);
        inexact = mpfr_mul_si (tmp, y, b, MPFR_RNDN); /* exact */
        MPFR_ASSERTN (inexact == 0);
        /* Note: as the exponent range has been extended, an overflow is not
           possible (due to basic overflow and underflow checking above, as
           the result is ~ 2^tmp), and an underflow is not possible either
           because b is an integer (thus either 0 or >= 1). */
        MPFR_CLEAR_FLAGS ();
        inexact = mpfr_exp2 (z, tmp, rnd_mode);
        mpfr_clear (tmp);
        if (sgnx < 0 && is_odd (y))
          {
            mpfr_neg (z, z, rnd_mode);
            inexact = -inexact;
          }
        /* Without the following, the overflows3 test in tpow.c fails. */
        MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
        MPFR_SAVE_EXPO_FREE (expo);
        return mpfr_check_range (z, inexact, rnd_mode);
      }
  }

  MPFR_SAVE_EXPO_MARK (expo);

  /* Case where |y * log(x)| is very small. Warning: x can be negative, in
     that case y is a large integer. */
  {
    mpfr_t t;
    mpfr_exp_t err;

    /* We need an upper bound on the exponent of y * log(x). */
    mpfr_init2 (t, 16);
    if (MPFR_IS_POS(x))
      mpfr_log (t, x, cmp_x_1 < 0 ? MPFR_RNDD : MPFR_RNDU); /* away from 0 */
    else
      {
        /* if x < -1, round to +Inf, else round to zero */
        mpfr_neg (t, x, (mpfr_cmp_si (x, -1) < 0) ? MPFR_RNDU : MPFR_RNDD);
        mpfr_log (t, t, (mpfr_cmp_ui (t, 1) < 0) ? MPFR_RNDD : MPFR_RNDU);
      }
    MPFR_ASSERTN (MPFR_IS_PURE_FP (t));
    err = MPFR_GET_EXP (y) + MPFR_GET_EXP (t);
    mpfr_clear (t);
    MPFR_CLEAR_FLAGS ();
    MPFR_SMALL_INPUT_AFTER_SAVE_EXPO (z, __gmpfr_one, - err, 0,
                                      (MPFR_SIGN (y) > 0) ^ (cmp_x_1 < 0),
                                      rnd_mode, expo, {});
  }

  /* General case */
  inexact = mpfr_pow_general (z, x, y, rnd_mode, y_is_integer, &expo);

  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (z, inexact, rnd_mode);
}
Exemple #11
0
int
mpfr_zeta (mpfr_t z, mpfr_srcptr s, mp_rnd_t rnd_mode)
{
  mpfr_t z_pre, s1, y, p;
  double sd, eps, m1, c;
  long add;
  mp_prec_t precz, prec1, precs, precs1;
  int inex;
  MPFR_GROUP_DECL (group);
  MPFR_ZIV_DECL (loop);
  MPFR_SAVE_EXPO_DECL (expo);

  MPFR_LOG_FUNC (("s[%#R]=%R rnd=%d", s, s, rnd_mode),
                 ("z[%#R]=%R inexact=%d", z, z, inex));

  /* Zero, Nan or Inf ? */
  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (s)))
    {
      if (MPFR_IS_NAN (s))
        {
          MPFR_SET_NAN (z);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_INF (s))
        {
          if (MPFR_IS_POS (s))
            return mpfr_set_ui (z, 1, GMP_RNDN); /* Zeta(+Inf) = 1 */
          MPFR_SET_NAN (z); /* Zeta(-Inf) = NaN */
          MPFR_RET_NAN;
        }
      else /* s iz zero */
        {
          MPFR_ASSERTD (MPFR_IS_ZERO (s));
          mpfr_set_ui (z, 1, rnd_mode);
          mpfr_div_2ui (z, z, 1, rnd_mode);
          MPFR_CHANGE_SIGN (z);
          MPFR_RET (0);
        }
    }

  /* s is neither Nan, nor Inf, nor Zero */

  /* check tiny s: we have zeta(s) = -1/2 - 1/2 log(2 Pi) s + ... around s=0,
     and for |s| <= 0.074, we have |zeta(s) + 1/2| <= |s|.
     Thus if |s| <= 1/4*ulp(1/2), we can deduce the correct rounding
     (the 1/4 covers the case where |zeta(s)| < 1/2 and rounding to nearest).
     A sufficient condition is that EXP(s) + 1 < -PREC(z). */
  if (MPFR_EXP(s) + 1 < - (mp_exp_t) MPFR_PREC(z))
    {
      int signs = MPFR_SIGN(s);
      mpfr_set_si_2exp (z, -1, -1, rnd_mode); /* -1/2 */
      if ((rnd_mode == GMP_RNDU || rnd_mode == GMP_RNDZ) && signs < 0)
        {
          mpfr_nextabove (z); /* z = -1/2 + epsilon */
          inex = 1;
        }
      else if (rnd_mode == GMP_RNDD && signs > 0)
        {
          mpfr_nextbelow (z); /* z = -1/2 - epsilon */
          inex = -1;
        }
      else
        {
          if (rnd_mode == GMP_RNDU) /* s > 0: z = -1/2 */
            inex = 1;
          else if (rnd_mode == GMP_RNDD)
            inex = -1;              /* s < 0: z = -1/2 */
          else /* (GMP_RNDZ and s > 0) or GMP_RNDN: z = -1/2 */
            inex = (signs > 0) ? 1 : -1;
        }
      return mpfr_check_range (z, inex, rnd_mode);
    }

  /* Check for case s= -2n */
  if (MPFR_IS_NEG (s))
    {
      mpfr_t tmp;
      tmp[0] = *s;
      MPFR_EXP (tmp) = MPFR_EXP (s) - 1;
      if (mpfr_integer_p (tmp))
        {
          MPFR_SET_ZERO (z);
          MPFR_SET_POS (z);
          MPFR_RET (0);
        }
    }

  MPFR_SAVE_EXPO_MARK (expo);

  /* Compute Zeta */
  if (MPFR_IS_POS (s) && MPFR_GET_EXP (s) >= 0) /* Case s >= 1/2 */
    inex = mpfr_zeta_pos (z, s, rnd_mode);
  else /* use reflection formula
          zeta(s) = 2^s*Pi^(s-1)*sin(Pi*s/2)*gamma(1-s)*zeta(1-s) */
    {
      precz = MPFR_PREC (z);
      precs = MPFR_PREC (s);

      /* Precision precs1 needed to represent 1 - s, and s + 2,
         without any truncation */
      precs1 = precs + 2 + MAX (0, - MPFR_GET_EXP (s));
      sd = mpfr_get_d (s, GMP_RNDN) - 1.0;
      if (sd < 0.0)
        sd = -sd; /* now sd = abs(s-1.0) */
      /* Precision prec1 is the precision on elementary computations;
         it ensures a final precision prec1 - add for zeta(s) */
      /* eps = pow (2.0, - (double) precz - 14.0); */
      eps = __gmpfr_ceil_exp2 (- (double) precz - 14.0);
      m1 = 1.0 + MAX(1.0 / eps,  2.0 * sd) * (1.0 + eps);
      c = (1.0 + eps) * (1.0 + eps * MAX(8.0, m1));
      /* add = 1 + floor(log(c*c*c*(13 + m1))/log(2)); */
      add = __gmpfr_ceil_log2 (c * c * c * (13.0 + m1));
      prec1 = precz + add;
      prec1 = MAX (prec1, precs1) + 10;

      MPFR_GROUP_INIT_4 (group, prec1, z_pre, s1, y, p);
      MPFR_ZIV_INIT (loop, prec1);
      for (;;)
        {
          mpfr_sub (s1, __gmpfr_one, s, GMP_RNDN);/* s1 = 1-s */
          mpfr_zeta_pos (z_pre, s1, GMP_RNDN);   /* zeta(1-s)  */
          mpfr_gamma (y, s1, GMP_RNDN);          /* gamma(1-s) */
          if (MPFR_IS_INF (y)) /* Zeta(s) < 0 for -4k-2 < s < -4k,
                                  Zeta(s) > 0 for -4k < s < -4k+2 */
            {
              MPFR_SET_INF (z_pre);
              mpfr_div_2ui (s1, s, 2, GMP_RNDN); /* s/4, exact */
              mpfr_frac (s1, s1, GMP_RNDN); /* exact, -1 < s1 < 0 */
              if (mpfr_cmp_si_2exp (s1, -1, -1) > 0)
                MPFR_SET_NEG (z_pre);
              else
                MPFR_SET_POS (z_pre);
              break;
            }
          mpfr_mul (z_pre, z_pre, y, GMP_RNDN);  /* gamma(1-s)*zeta(1-s) */
          mpfr_const_pi (p, GMP_RNDD);
          mpfr_mul (y, s, p, GMP_RNDN);
          mpfr_div_2ui (y, y, 1, GMP_RNDN);      /* s*Pi/2 */
          mpfr_sin (y, y, GMP_RNDN);             /* sin(Pi*s/2) */
          mpfr_mul (z_pre, z_pre, y, GMP_RNDN);
          mpfr_mul_2ui (y, p, 1, GMP_RNDN);      /* 2*Pi */
          mpfr_neg (s1, s1, GMP_RNDN);           /* s-1 */
          mpfr_pow (y, y, s1, GMP_RNDN);         /* (2*Pi)^(s-1) */
          mpfr_mul (z_pre, z_pre, y, GMP_RNDN);
          mpfr_mul_2ui (z_pre, z_pre, 1, GMP_RNDN);

          if (MPFR_LIKELY (MPFR_CAN_ROUND (z_pre, prec1 - add, precz,
                                           rnd_mode)))
            break;

          MPFR_ZIV_NEXT (loop, prec1);
          MPFR_GROUP_REPREC_4 (group, prec1, z_pre, s1, y, p);
        }
      MPFR_ZIV_FREE (loop);
      inex = mpfr_set (z, z_pre, rnd_mode);
      MPFR_GROUP_CLEAR (group);
    }

  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (z, inex, rnd_mode);
}
Exemple #12
0
/* set f to the rational q */
int
mpfr_set_q (mpfr_ptr f, mpq_srcptr q, mpfr_rnd_t rnd)
{
  mpz_srcptr num, den;
  mpfr_t n, d;
  int inexact;
  int cn, cd;
  long shift;
  mp_size_t sn, sd;
  MPFR_SAVE_EXPO_DECL (expo);

  num = mpq_numref (q);
  den = mpq_denref (q);
  /* NAN and INF for mpq are not really documented, but could be found */
  if (MPFR_UNLIKELY (mpz_sgn (num) == 0))
    {
      if (MPFR_UNLIKELY (mpz_sgn (den) == 0))
        {
          MPFR_SET_NAN (f);
          MPFR_RET_NAN;
        }
      else
        {
          MPFR_SET_ZERO (f);
          MPFR_SET_POS (f);
          MPFR_RET (0);
        }
    }
  if (MPFR_UNLIKELY (mpz_sgn (den) == 0))
    {
      MPFR_SET_INF (f);
      MPFR_SET_SIGN (f, mpz_sgn (num));
      MPFR_RET (0);
    }

  MPFR_SAVE_EXPO_MARK (expo);

  cn = set_z (n, num, &sn);
  cd = set_z (d, den, &sd);

  sn -= sd;
  if (MPFR_UNLIKELY (sn > MPFR_EMAX_MAX / GMP_NUMB_BITS))
    {
      MPFR_SAVE_EXPO_FREE (expo);
      inexact = mpfr_overflow (f, rnd, MPFR_SIGN (f));
      goto end;
    }
  if (MPFR_UNLIKELY (sn < MPFR_EMIN_MIN / GMP_NUMB_BITS -1))
    {
      MPFR_SAVE_EXPO_FREE (expo);
      if (rnd == MPFR_RNDN)
        rnd = MPFR_RNDZ;
      inexact = mpfr_underflow (f, rnd, MPFR_SIGN (f));
      goto end;
    }

  inexact = mpfr_div (f, n, d, rnd);
  shift = GMP_NUMB_BITS*sn+cn-cd;
  MPFR_ASSERTD (shift == GMP_NUMB_BITS*sn+cn-cd);
  cd = mpfr_mul_2si (f, f, shift, rnd);
  MPFR_SAVE_EXPO_FREE (expo);
  if (MPFR_UNLIKELY (cd != 0))
    inexact = cd;
  else
    inexact = mpfr_check_range (f, inexact, rnd);
 end:
  mpfr_clear (d);
  mpfr_clear (n);
  MPFR_RET (inexact);
}
Exemple #13
0
/* Set iop to the integral part of op and fop to its fractional part */
int
mpfr_modf (mpfr_ptr iop, mpfr_ptr fop, mpfr_srcptr op, mpfr_rnd_t rnd_mode)
{
  mpfr_exp_t ope;
  mpfr_prec_t opq;
  int inexi, inexf;

  MPFR_LOG_FUNC
    (("op[%Pu]=%.*Rg rnd=%d",
      mpfr_get_prec (op), mpfr_log_prec, op, rnd_mode),
     ("iop[%Pu]=%.*Rg fop[%Pu]=%.*Rg",
      mpfr_get_prec (iop), mpfr_log_prec, iop,
      mpfr_get_prec (fop), mpfr_log_prec, fop));

  MPFR_ASSERTN (iop != fop);

  if ( MPFR_UNLIKELY (MPFR_IS_SINGULAR (op)) )
    {
      if (MPFR_IS_NAN (op))
        {
          MPFR_SET_NAN (iop);
          MPFR_SET_NAN (fop);
          MPFR_RET_NAN;
        }
      MPFR_SET_SAME_SIGN (iop, op);
      MPFR_SET_SAME_SIGN (fop, op);
      if (MPFR_IS_INF (op))
        {
          MPFR_SET_INF (iop);
          MPFR_SET_ZERO (fop);
          MPFR_RET (0);
        }
      else /* op is zero */
        {
          MPFR_ASSERTD (MPFR_IS_ZERO (op));
          MPFR_SET_ZERO (iop);
          MPFR_SET_ZERO (fop);
          MPFR_RET (0);
        }
    }

  ope = MPFR_GET_EXP (op);
  opq = MPFR_PREC (op);

  if (ope <= 0)   /* 0 < |op| < 1 */
    {
      inexf = (fop != op) ? mpfr_set (fop, op, rnd_mode) : 0;
      MPFR_SET_SAME_SIGN (iop, op);
      MPFR_SET_ZERO (iop);
      MPFR_RET (INEX(0, inexf));
    }
  else if (ope >= opq) /* op has no fractional part */
    {
      inexi = (iop != op) ? mpfr_set (iop, op, rnd_mode) : 0;
      MPFR_SET_SAME_SIGN (fop, op);
      MPFR_SET_ZERO (fop);
      MPFR_RET (INEX(inexi, 0));
    }
  else /* op has both integral and fractional parts */
    {
      if (iop != op)
        {
          inexi = mpfr_rint_trunc (iop, op, rnd_mode);
          inexf = mpfr_frac (fop, op, rnd_mode);
        }
      else
        {
          MPFR_ASSERTN (fop != op);
          inexf = mpfr_frac (fop, op, rnd_mode);
          inexi = mpfr_rint_trunc (iop, op, rnd_mode);
        }
      MPFR_RET (INEX(inexi, inexf));
    }
}
Exemple #14
0
int
mpfr_ui_div (mpfr_ptr y, unsigned long int u, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
  MPFR_LOG_FUNC
    (("u=%lu x[%Pu]=%.*Rg rnd=%d",
      u, mpfr_get_prec(x), mpfr_log_prec, x, rnd_mode),
     ("y[%Pu]=%.*Rg", mpfr_get_prec(y), mpfr_log_prec, y));

  if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(x)))
    {
      if (MPFR_IS_NAN(x))
        {
          MPFR_SET_NAN(y);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_INF(x)) /* u/Inf = 0 */
        {
          MPFR_SET_ZERO(y);
          MPFR_SET_SAME_SIGN(y,x);
          MPFR_RET(0);
        }
      else /* u / 0 */
        {
          MPFR_ASSERTD(MPFR_IS_ZERO(x));
          if (u)
            {
              /* u > 0, so y = sign(x) * Inf */
              MPFR_SET_SAME_SIGN(y, x);
              MPFR_SET_INF(y);
              MPFR_SET_DIVBY0 ();
              MPFR_RET(0);
            }
          else
            {
              /* 0 / 0 */
              MPFR_SET_NAN(y);
              MPFR_RET_NAN;
            }
        }
    }
  else if (MPFR_LIKELY(u != 0))
    {
      mpfr_t uu;
      mp_limb_t up[1];
      int cnt;
      int inex;

      MPFR_SAVE_EXPO_DECL (expo);

      MPFR_TMP_INIT1(up, uu, GMP_NUMB_BITS);
      MPFR_ASSERTN(u == (mp_limb_t) u);
      count_leading_zeros(cnt, (mp_limb_t) u);
      up[0] = (mp_limb_t) u << cnt;

      /* Optimization note: Exponent save/restore operations may be
         removed if mpfr_div works even when uu is out-of-range. */
      MPFR_SAVE_EXPO_MARK (expo);
      MPFR_SET_EXP (uu, GMP_NUMB_BITS - cnt);
      inex = mpfr_div (y, uu, x, rnd_mode);
      MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
      MPFR_SAVE_EXPO_FREE (expo);
      return mpfr_check_range (y, inex, rnd_mode);
    }
  else /* u = 0, and x != 0 */
    {
      MPFR_SET_ZERO(y);         /* if u=0, then set y to 0 */
      MPFR_SET_SAME_SIGN(y, x); /* u considered as +0: sign(+0/x) = sign(x) */
      MPFR_RET(0);
    }
}
Exemple #15
0
int
mpfr_log (mpfr_ptr r, mpfr_srcptr a, mpfr_rnd_t rnd_mode)
{
  int inexact;
  mpfr_prec_t p, q;
  mpfr_t tmp1, tmp2;
  MPFR_SAVE_EXPO_DECL (expo);
  MPFR_ZIV_DECL (loop);
  MPFR_GROUP_DECL(group);

  MPFR_LOG_FUNC
    (("a[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (a), mpfr_log_prec, a, rnd_mode),
     ("r[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (r), mpfr_log_prec, r,
      inexact));

  /* Special cases */
  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (a)))
    {
      /* If a is NaN, the result is NaN */
      if (MPFR_IS_NAN (a))
        {
          MPFR_SET_NAN (r);
          MPFR_RET_NAN;
        }
      /* check for infinity before zero */
      else if (MPFR_IS_INF (a))
        {
          if (MPFR_IS_NEG (a))
            /* log(-Inf) = NaN */
            {
              MPFR_SET_NAN (r);
              MPFR_RET_NAN;
            }
          else /* log(+Inf) = +Inf */
            {
              MPFR_SET_INF (r);
              MPFR_SET_POS (r);
              MPFR_RET (0);
            }
        }
      else /* a is zero */
        {
          MPFR_ASSERTD (MPFR_IS_ZERO (a));
          MPFR_SET_INF (r);
          MPFR_SET_NEG (r);
          mpfr_set_divby0 ();
          MPFR_RET (0); /* log(0) is an exact -infinity */
        }
    }
  /* If a is negative, the result is NaN */
  else if (MPFR_UNLIKELY (MPFR_IS_NEG (a)))
    {
      MPFR_SET_NAN (r);
      MPFR_RET_NAN;
    }
  /* If a is 1, the result is 0 */
  else if (MPFR_UNLIKELY (MPFR_GET_EXP (a) == 1 && mpfr_cmp_ui (a, 1) == 0))
    {
      MPFR_SET_ZERO (r);
      MPFR_SET_POS (r);
      MPFR_RET (0); /* only "normal" case where the result is exact */
    }

  q = MPFR_PREC (r);

  /* use initial precision about q+lg(q)+5 */
  p = q + 5 + 2 * MPFR_INT_CEIL_LOG2 (q);
  /* % ~(mpfr_prec_t)GMP_NUMB_BITS  ;
     m=q; while (m) { p++; m >>= 1; }  */
  /* if (MPFR_LIKELY(p % GMP_NUMB_BITS != 0))
      p += GMP_NUMB_BITS - (p%GMP_NUMB_BITS); */

  MPFR_SAVE_EXPO_MARK (expo);
  MPFR_GROUP_INIT_2 (group, p, tmp1, tmp2);

  MPFR_ZIV_INIT (loop, p);
  for (;;)
    {
      long m;
      mpfr_exp_t cancel;

      /* Calculus of m (depends on p) */
      m = (p + 1) / 2 - MPFR_GET_EXP (a) + 1;

      mpfr_mul_2si (tmp2, a, m, MPFR_RNDN);    /* s=a*2^m,        err<=1 ulp  */
      mpfr_div (tmp1, __gmpfr_four, tmp2, MPFR_RNDN);/* 4/s,      err<=2 ulps */
      mpfr_agm (tmp2, __gmpfr_one, tmp1, MPFR_RNDN); /* AG(1,4/s),err<=3 ulps */
      mpfr_mul_2ui (tmp2, tmp2, 1, MPFR_RNDN); /* 2*AG(1,4/s),    err<=3 ulps */
      mpfr_const_pi (tmp1, MPFR_RNDN);         /* compute pi,     err<=1ulp   */
      mpfr_div (tmp2, tmp1, tmp2, MPFR_RNDN);  /* pi/2*AG(1,4/s), err<=5ulps  */
      mpfr_const_log2 (tmp1, MPFR_RNDN);      /* compute log(2),  err<=1ulp   */
      mpfr_mul_si (tmp1, tmp1, m, MPFR_RNDN); /* compute m*log(2),err<=2ulps  */
      mpfr_sub (tmp1, tmp2, tmp1, MPFR_RNDN); /* log(a),    err<=7ulps+cancel */

      if (MPFR_LIKELY (MPFR_IS_PURE_FP (tmp1) && MPFR_IS_PURE_FP (tmp2)))
        {
          cancel = MPFR_GET_EXP (tmp2) - MPFR_GET_EXP (tmp1);
          MPFR_LOG_MSG (("canceled bits=%ld\n", (long) cancel));
          MPFR_LOG_VAR (tmp1);
          if (MPFR_UNLIKELY (cancel < 0))
            cancel = 0;

          /* we have 7 ulps of error from the above roundings,
             4 ulps from the 4/s^2 second order term,
             plus the canceled bits */
          if (MPFR_LIKELY (MPFR_CAN_ROUND (tmp1, p-cancel-4, q, rnd_mode)))
            break;

          /* VL: I think it is better to have an increment that it isn't
             too low; in particular, the increment must be positive even
             if cancel = 0 (can this occur?). */
          p += cancel >= 8 ? cancel : 8;
        }
      else
        {
          /* TODO: find why this case can occur and what is best to do
             with it. */
          p += 32;
        }

      MPFR_ZIV_NEXT (loop, p);
      MPFR_GROUP_REPREC_2 (group, p, tmp1, tmp2);
    }
  MPFR_ZIV_FREE (loop);
  inexact = mpfr_set (r, tmp1, rnd_mode);
  /* We clean */
  MPFR_GROUP_CLEAR (group);

  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (r, inexact, rnd_mode);
}
Exemple #16
0
/* computes tan(x) = sign(x)*sqrt(1/cos(x)^2-1) */
int
mpfr_tan (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode)
{
  mp_prec_t precy, m;
  int inexact;
  mpfr_t s, c;
  MPFR_ZIV_DECL (loop);
  MPFR_SAVE_EXPO_DECL (expo);
  MPFR_GROUP_DECL (group);

  MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
                  ("y[%#R]=%R inexact=%d", y, y, inexact));

  if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(x)))
    {
      if (MPFR_IS_NAN(x) || MPFR_IS_INF(x))
        {
          MPFR_SET_NAN(y);
          MPFR_RET_NAN;
        }
      else /* x is zero */
        {
          MPFR_ASSERTD(MPFR_IS_ZERO(x));
          MPFR_SET_ZERO(y);
          MPFR_SET_SAME_SIGN(y, x);
          MPFR_RET(0);
        }
    }

  /* tan(x) = x + x^3/3 + ... so the error is < 2^(3*EXP(x)-1) */
  MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, x, -2 * MPFR_GET_EXP (x), 1, 1,
                                    rnd_mode, {});

  MPFR_SAVE_EXPO_MARK (expo);

  /* Compute initial precision */
  precy = MPFR_PREC (y);
  m = precy + MPFR_INT_CEIL_LOG2 (precy) + 13;
  MPFR_ASSERTD (m >= 2); /* needed for the error analysis in algorithms.tex */

  MPFR_GROUP_INIT_2 (group, m, s, c);
  MPFR_ZIV_INIT (loop, m);
  for (;;)
    {
      /* The only way to get an overflow is to get ~ Pi/2
         But the result will be ~ 2^Prec(y). */
      mpfr_sin_cos (s, c, x, GMP_RNDN); /* err <= 1/2 ulp on s and c */
      mpfr_div (c, s, c, GMP_RNDN);     /* err <= 4 ulps */
      MPFR_ASSERTD (!MPFR_IS_SINGULAR (c));
      if (MPFR_LIKELY (MPFR_CAN_ROUND (c, m - 2, precy, rnd_mode)))
        break;
      MPFR_ZIV_NEXT (loop, m);
      MPFR_GROUP_REPREC_2 (group, m, s, c);
    }
  MPFR_ZIV_FREE (loop);
  inexact = mpfr_set (y, c, rnd_mode);
  MPFR_GROUP_CLEAR (group);

  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (y, inexact, rnd_mode);
}
Exemple #17
0
int
mpfr_sin (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
  mpfr_t c, xr;
  mpfr_srcptr xx;
  mpfr_exp_t expx, err;
  mpfr_prec_t precy, m;
  int inexact, sign, reduce;
  MPFR_ZIV_DECL (loop);
  MPFR_SAVE_EXPO_DECL (expo);

  MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
                  ("y[%#R]=%R inexact=%d", y, y, inexact));

  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
    {
      if (MPFR_IS_NAN (x) || MPFR_IS_INF (x))
        {
          MPFR_SET_NAN (y);
          MPFR_RET_NAN;

        }
      else /* x is zero */
        {
          MPFR_ASSERTD (MPFR_IS_ZERO (x));
          MPFR_SET_ZERO (y);
          MPFR_SET_SAME_SIGN (y, x);
          MPFR_RET (0);
        }
    }

  /* sin(x) = x - x^3/6 + ... so the error is < 2^(3*EXP(x)-2) */
  MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, x, -2 * MPFR_GET_EXP (x), 2, 0,
                                    rnd_mode, {});

  MPFR_SAVE_EXPO_MARK (expo);

  /* Compute initial precision */
  precy = MPFR_PREC (y);

  if (precy >= MPFR_SINCOS_THRESHOLD)
    return mpfr_sin_fast (y, x, rnd_mode);

  m = precy + MPFR_INT_CEIL_LOG2 (precy) + 13;
  expx = MPFR_GET_EXP (x);

  mpfr_init (c);
  mpfr_init (xr);

  MPFR_ZIV_INIT (loop, m);
  for (;;)
    {
      /* first perform argument reduction modulo 2*Pi (if needed),
         also helps to determine the sign of sin(x) */
      if (expx >= 2) /* If Pi < x < 4, we need to reduce too, to determine
                        the sign of sin(x). For 2 <= |x| < Pi, we could avoid
                        the reduction. */
        {
          reduce = 1;
          /* As expx + m - 1 will silently be converted into mpfr_prec_t
             in the mpfr_set_prec call, the assert below may be useful to
             avoid undefined behavior. */
          MPFR_ASSERTN (expx + m - 1 <= MPFR_PREC_MAX);
          mpfr_set_prec (c, expx + m - 1);
          mpfr_set_prec (xr, m);
          mpfr_const_pi (c, MPFR_RNDN);
          mpfr_mul_2ui (c, c, 1, MPFR_RNDN);
          mpfr_remainder (xr, x, c, MPFR_RNDN);
          /* The analysis is similar to that of cos.c:
             |xr - x - 2kPi| <= 2^(2-m). Thus we can decide the sign
             of sin(x) if xr is at distance at least 2^(2-m) of both
             0 and +/-Pi. */
          mpfr_div_2ui (c, c, 1, MPFR_RNDN);
          /* Since c approximates Pi with an error <= 2^(2-expx-m) <= 2^(-m),
             it suffices to check that c - |xr| >= 2^(2-m). */
          if (MPFR_SIGN (xr) > 0)
            mpfr_sub (c, c, xr, MPFR_RNDZ);
          else
            mpfr_add (c, c, xr, MPFR_RNDZ);
          if (MPFR_IS_ZERO(xr)
              || MPFR_EXP(xr) < (mpfr_exp_t) 3 - (mpfr_exp_t) m
              || MPFR_EXP(c) < (mpfr_exp_t) 3 - (mpfr_exp_t) m)
            goto ziv_next;

          /* |xr - x - 2kPi| <= 2^(2-m), thus |sin(xr) - sin(x)| <= 2^(2-m) */
          xx = xr;
        }
      else /* the input argument is already reduced */
        {
          reduce = 0;
          xx = x;
        }

      sign = MPFR_SIGN(xx);
      /* now that the argument is reduced, precision m is enough */
      mpfr_set_prec (c, m);
      mpfr_cos (c, xx, MPFR_RNDZ);    /* can't be exact */
      mpfr_nexttoinf (c);           /* now c = cos(x) rounded away */
      mpfr_mul (c, c, c, MPFR_RNDU); /* away */
      mpfr_ui_sub (c, 1, c, MPFR_RNDZ);
      mpfr_sqrt (c, c, MPFR_RNDZ);
      if (MPFR_IS_NEG_SIGN(sign))
        MPFR_CHANGE_SIGN(c);

      /* Warning: c may be 0! */
      if (MPFR_UNLIKELY (MPFR_IS_ZERO (c)))
        {
          /* Huge cancellation: increase prec a lot! */
          m = MAX (m, MPFR_PREC (x));
          m = 2 * m;
        }
      else
        {
          /* the absolute error on c is at most 2^(3-m-EXP(c)),
             plus 2^(2-m) if there was an argument reduction.
             Since EXP(c) <= 1, 3-m-EXP(c) >= 2-m, thus the error
             is at most 2^(3-m-EXP(c)) in case of argument reduction. */
          err = 2 * MPFR_GET_EXP (c) + (mpfr_exp_t) m - 3 - (reduce != 0);
          if (MPFR_CAN_ROUND (c, err, precy, rnd_mode))
            break;

          /* check for huge cancellation (Near 0) */
          if (err < (mpfr_exp_t) MPFR_PREC (y))
            m += MPFR_PREC (y) - err;
          /* Check if near 1 */
          if (MPFR_GET_EXP (c) == 1)
            m += m;
        }

    ziv_next:
      /* Else generic increase */
      MPFR_ZIV_NEXT (loop, m);
    }
  MPFR_ZIV_FREE (loop);

  inexact = mpfr_set (y, c, rnd_mode);
  /* inexact cannot be 0, since this would mean that c was representable
     within the target precision, but in that case mpfr_can_round will fail */

  mpfr_clear (c);
  mpfr_clear (xr);

  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (y, inexact, rnd_mode);
}
Exemple #18
0
int
mpfr_frexp (mpfr_exp_t *exp, mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd)
{
  int inex;
  mpfr_flags_t saved_flags = __gmpfr_flags;
  MPFR_BLOCK_DECL (flags);

  MPFR_LOG_FUNC
    (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd),
     ("y[%Pu]=%.*Rg exp=%" MPFR_EXP_FSPEC "d inex=%d", mpfr_get_prec (y),
      mpfr_log_prec, y, (mpfr_eexp_t) *exp, inex));

  if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(x)))
    {
      if (MPFR_IS_NAN(x))
        {
          MPFR_SET_NAN(y);
          MPFR_RET_NAN; /* exp is unspecified */
        }
      else if (MPFR_IS_INF(x))
        {
          MPFR_SET_INF(y);
          MPFR_SET_SAME_SIGN(y,x);
          MPFR_RET(0); /* exp is unspecified */
        }
      else
        {
          MPFR_SET_ZERO(y);
          MPFR_SET_SAME_SIGN(y,x);
          *exp = 0;
          MPFR_RET(0);
        }
    }

  MPFR_BLOCK (flags, inex = mpfr_set (y, x, rnd));
  __gmpfr_flags = saved_flags;

  /* Possible overflow due to the rounding, no possible underflow. */

  if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags)))
    {
      int inex2;

      /* An overflow here means that the exponent of y would be larger than
         the one of x, thus x would be rounded to the next power of 2, and
         the returned y should be 1/2 in absolute value, rounded (i.e. with
         possible underflow or overflow). This also implies that x and y are
         different objects, so that the exponent of x has not been lost. */
      MPFR_LOG_MSG (("Internal overflow\n", 0));
      MPFR_ASSERTD (x != y);
      *exp = MPFR_GET_EXP (x) + 1;
      inex2 = mpfr_set_si_2exp (y, MPFR_INT_SIGN (x), -1, rnd);
      MPFR_LOG_MSG (("inex=%d inex2=%d\n", inex, inex2));
      if (inex2 != 0)
        inex = inex2;
      MPFR_RET (inex);
    }

  *exp = MPFR_GET_EXP (y);
  /* Do not use MPFR_SET_EXP because the range has not been checked yet. */
  MPFR_EXP (y) = 0;
  return mpfr_check_range (y, inex, rnd);
}
Exemple #19
0
int
mpfr_add (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
  MPFR_LOG_FUNC (("b[%#R]=%R c[%#R]=%R rnd=%d", b, b, c, c, rnd_mode),
                 ("a[%#R]=%R", a, a));

  if (MPFR_ARE_SINGULAR(b,c))
    {
      if (MPFR_IS_NAN(b) || MPFR_IS_NAN(c))
        {
          MPFR_SET_NAN(a);
          MPFR_RET_NAN;
        }
      /* neither b nor c is NaN here */
      else if (MPFR_IS_INF(b))
        {
          if (!MPFR_IS_INF(c) || MPFR_SIGN(b) == MPFR_SIGN(c))
            {
              MPFR_SET_INF(a);
              MPFR_SET_SAME_SIGN(a, b);
              MPFR_RET(0); /* exact */
            }
          else
            {
              MPFR_SET_NAN(a);
              MPFR_RET_NAN;
            }
        }
      else if (MPFR_IS_INF(c))
          {
            MPFR_SET_INF(a);
            MPFR_SET_SAME_SIGN(a, c);
            MPFR_RET(0); /* exact */
          }
      /* now either b or c is zero */
      else if (MPFR_IS_ZERO(b))
        {
          if (MPFR_IS_ZERO(c))
            {
              /* for round away, we take the same convention for 0 + 0
                 as for round to zero or to nearest: it always gives +0,
                 except (-0) + (-0) = -0. */
              MPFR_SET_SIGN(a,
                            (rnd_mode != MPFR_RNDD ?
                             ((MPFR_IS_NEG(b) && MPFR_IS_NEG(c)) ? -1 : 1) :
                             ((MPFR_IS_POS(b) && MPFR_IS_POS(c)) ? 1 : -1)));
              MPFR_SET_ZERO(a);
              MPFR_RET(0); /* 0 + 0 is exact */
            }
          return mpfr_set (a, c, rnd_mode);
        }
      else
        {
          MPFR_ASSERTD(MPFR_IS_ZERO(c));
          return mpfr_set (a, b, rnd_mode);
        }
    }

  MPFR_ASSERTD(MPFR_IS_PURE_FP(b) && MPFR_IS_PURE_FP(c));

  if (MPFR_UNLIKELY(MPFR_SIGN(b) != MPFR_SIGN(c)))
    { /* signs differ, it's a subtraction */
      if (MPFR_LIKELY(MPFR_PREC(a) == MPFR_PREC(b)
                      && MPFR_PREC(b) == MPFR_PREC(c)))
        return mpfr_sub1sp(a,b,c,rnd_mode);
      else
        return mpfr_sub1(a, b, c, rnd_mode);
    }
  else
    { /* signs are equal, it's an addition */
      if (MPFR_LIKELY(MPFR_PREC(a) == MPFR_PREC(b)
                      && MPFR_PREC(b) == MPFR_PREC(c)))
        if (MPFR_GET_EXP(b) < MPFR_GET_EXP(c))
          return mpfr_add1sp(a, c, b, rnd_mode);
        else
          return mpfr_add1sp(a, b, c, rnd_mode);
      else
        if (MPFR_GET_EXP(b) < MPFR_GET_EXP(c))
          return mpfr_add1(a, c, b, rnd_mode);
        else
          return mpfr_add1(a, b, c, rnd_mode);
    }
}
Exemple #20
0
/* returns 0 if result exact, non-zero otherwise */
int
mpfr_div_ui (mpfr_ptr y, mpfr_srcptr x, unsigned long int u, mpfr_rnd_t rnd_mode)
{
  long i;
  int sh;
  mp_size_t xn, yn, dif;
  mp_limb_t *xp, *yp, *tmp, c, d;
  mpfr_exp_t exp;
  int inexact, middle = 1, nexttoinf;
  MPFR_TMP_DECL(marker);

  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
    {
      if (MPFR_IS_NAN (x))
        {
          MPFR_SET_NAN (y);
          MPFR_RET_NAN;
        }
      else if (MPFR_IS_INF (x))
        {
          MPFR_SET_INF (y);
          MPFR_SET_SAME_SIGN (y, x);
          MPFR_RET (0);
        }
      else
        {
          MPFR_ASSERTD (MPFR_IS_ZERO(x));
          if (u == 0) /* 0/0 is NaN */
            {
              MPFR_SET_NAN(y);
              MPFR_RET_NAN;
            }
          else
            {
              MPFR_SET_ZERO(y);
              MPFR_SET_SAME_SIGN (y, x);
              MPFR_RET(0);
            }
        }
    }
  else if (MPFR_UNLIKELY (u <= 1))
    {
      if (u < 1)
        {
          /* x/0 is Inf since x != 0*/
          MPFR_SET_INF (y);
          MPFR_SET_SAME_SIGN (y, x);
          MPFR_RET (0);
        }
      else /* y = x/1 = x */
        return mpfr_set (y, x, rnd_mode);
    }
  else if (MPFR_UNLIKELY (IS_POW2 (u)))
    return mpfr_div_2si (y, x, MPFR_INT_CEIL_LOG2 (u), rnd_mode);

  MPFR_SET_SAME_SIGN (y, x);

  MPFR_TMP_MARK (marker);
  xn = MPFR_LIMB_SIZE (x);
  yn = MPFR_LIMB_SIZE (y);

  xp = MPFR_MANT (x);
  yp = MPFR_MANT (y);
  exp = MPFR_GET_EXP (x);

  dif = yn + 1 - xn;

  /* we need to store yn+1 = xn + dif limbs of the quotient */
  /* don't use tmp=yp since the mpn_lshift call below requires yp >= tmp+1 */
  tmp = (mp_limb_t*) MPFR_TMP_ALLOC ((yn + 1) * BYTES_PER_MP_LIMB);

  c = (mp_limb_t) u;
  MPFR_ASSERTN (u == c);
  if (dif >= 0)
    c = mpn_divrem_1 (tmp, dif, xp, xn, c); /* used all the dividend */
  else /* dif < 0 i.e. xn > yn, don't use the (-dif) low limbs from x */
    c = mpn_divrem_1 (tmp, 0, xp - dif, yn + 1, c);

  inexact = (c != 0);

  /* First pass in estimating next bit of the quotient, in case of RNDN    *
   * In case we just have the right number of bits (postpone this ?),      *
   * we need to check whether the remainder is more or less than half      *
   * the divisor. The test must be performed with a subtraction, so as     *
   * to prevent carries.                                                   */

  if (MPFR_LIKELY (rnd_mode == MPFR_RNDN))
    {
      if (c < (mp_limb_t) u - c) /* We have u > c */
        middle = -1;
      else if (c > (mp_limb_t) u - c)
        middle = 1;
      else
        middle = 0; /* exactly in the middle */
    }

  /* If we believe that we are right in the middle or exact, we should check
     that we did not neglect any word of x (division large / 1 -> small). */

  for (i=0; ((inexact == 0) || (middle == 0)) && (i < -dif); i++)
    if (xp[i])
      inexact = middle = 1; /* larger than middle */

  /*
     If the high limb of the result is 0 (xp[xn-1] < u), remove it.
     Otherwise, compute the left shift to be performed to normalize.
     In the latter case, we discard some low bits computed. They
     contain information useful for the rounding, hence the updating
     of middle and inexact.
  */

  if (tmp[yn] == 0)
    {
      MPN_COPY(yp, tmp, yn);
      exp -= GMP_NUMB_BITS;
    }
  else
    {
      int shlz;

      count_leading_zeros (shlz, tmp[yn]);

      /* shift left to normalize */
      if (MPFR_LIKELY (shlz != 0))
        {
          mp_limb_t w = tmp[0] << shlz;

          mpn_lshift (yp, tmp + 1, yn, shlz);
          yp[0] += tmp[0] >> (GMP_NUMB_BITS - shlz);

          if (w > (MPFR_LIMB_ONE << (GMP_NUMB_BITS - 1)))
            { middle = 1; }
          else if (w < (MPFR_LIMB_ONE << (GMP_NUMB_BITS - 1)))
            { middle = -1; }
          else
            { middle = (c != 0); }

          inexact = inexact || (w != 0);
          exp -= shlz;
        }
      else
        { /* this happens only if u == 1 and xp[xn-1] >=
Exemple #21
0
int
mpfr_rint (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode)
{
  int sign;
  int rnd_away;
  mpfr_exp_t exp;

  if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(u) ))
    {
      if (MPFR_IS_NAN(u))
        {
          MPFR_SET_NAN(r);
          MPFR_RET_NAN;
        }
      MPFR_SET_SAME_SIGN(r, u);
      if (MPFR_IS_INF(u))
        {
          MPFR_SET_INF(r);
          MPFR_RET(0);  /* infinity is exact */
        }
      else /* now u is zero */
        {
          MPFR_ASSERTD(MPFR_IS_ZERO(u));
          MPFR_SET_ZERO(r);
          MPFR_RET(0);  /* zero is exact */
        }
    }
  MPFR_SET_SAME_SIGN (r, u); /* Does nothing if r==u */

  sign = MPFR_INT_SIGN (u);
  exp = MPFR_GET_EXP (u);

  rnd_away =
    rnd_mode == MPFR_RNDD ? sign < 0 :
    rnd_mode == MPFR_RNDU ? sign > 0 :
    rnd_mode == MPFR_RNDZ ? 0        :
    rnd_mode == MPFR_RNDA ? 1        :
    -1; /* round to nearest-even (RNDN) or nearest-away (RNDNA) */

  /* rnd_away:
     1 if round away from zero,
     0 if round to zero,
     -1 if not decided yet.
   */

  if (MPFR_UNLIKELY (exp <= 0))  /* 0 < |u| < 1 ==> round |u| to 0 or 1 */
    {
      /* Note: in the MPFR_RNDN mode, 0.5 must be rounded to 0. */
      if (rnd_away != 0 &&
          (rnd_away > 0 ||
           (exp == 0 && (rnd_mode == MPFR_RNDNA ||
                         !mpfr_powerof2_raw (u)))))
        {
          mp_limb_t *rp;
          mp_size_t rm;

          rp = MPFR_MANT(r);
          rm = (MPFR_PREC(r) - 1) / GMP_NUMB_BITS;
          rp[rm] = MPFR_LIMB_HIGHBIT;
          MPN_ZERO(rp, rm);
          MPFR_SET_EXP (r, 1);  /* |r| = 1 */
          MPFR_RET(sign > 0 ? 2 : -2);
        }
      else
        {
          MPFR_SET_ZERO(r);  /* r = 0 */
          MPFR_RET(sign > 0 ? -2 : 2);
        }
    }
  else  /* exp > 0, |u| >= 1 */
    {
      mp_limb_t *up, *rp;
      mp_size_t un, rn, ui;
      int sh, idiff;
      int uflags;

      /*
       * uflags will contain:
       *   _ 0 if u is an integer representable in r,
       *   _ 1 if u is an integer not representable in r,
       *   _ 2 if u is not an integer.
       */

      up = MPFR_MANT(u);
      rp = MPFR_MANT(r);

      un = MPFR_LIMB_SIZE(u);
      rn = MPFR_LIMB_SIZE(r);
      MPFR_UNSIGNED_MINUS_MODULO (sh, MPFR_PREC (r));

      MPFR_SET_EXP (r, exp); /* Does nothing if r==u */

      if ((exp - 1) / GMP_NUMB_BITS >= un)
        {
          ui = un;
          idiff = 0;
          uflags = 0;  /* u is an integer, representable or not in r */
        }
      else
        {
          mp_size_t uj;

          ui = (exp - 1) / GMP_NUMB_BITS + 1;  /* #limbs of the int part */
          MPFR_ASSERTD (un >= ui);
          uj = un - ui;  /* lowest limb of the integer part */
          idiff = exp % GMP_NUMB_BITS;  /* #int-part bits in up[uj] or 0 */

          uflags = idiff == 0 || (up[uj] << idiff) == 0 ? 0 : 2;
          if (uflags == 0)
            while (uj > 0)
              if (up[--uj] != 0)
                {
                  uflags = 2;
                  break;
                }
        }

      if (ui > rn)
        {
          /* More limbs in the integer part of u than in r.
             Just round u with the precision of r. */
          MPFR_ASSERTD (rp != up && un > rn);
          MPN_COPY (rp, up + (un - rn), rn); /* r != u */
          if (rnd_away < 0)
            {
              /* This is a rounding to nearest mode (MPFR_RNDN or MPFR_RNDNA).
                 Decide the rounding direction here. */
              if (rnd_mode == MPFR_RNDN &&
                  (rp[0] & (MPFR_LIMB_ONE << sh)) == 0)
                { /* halfway cases rounded toward zero */
                  mp_limb_t a, b;
                  /* a: rounding bit and some of the following bits */
                  /* b: boundary for a (weight of the rounding bit in a) */
                  if (sh != 0)
                    {
                      a = rp[0] & ((MPFR_LIMB_ONE << sh) - 1);
                      b = MPFR_LIMB_ONE << (sh - 1);
                    }
                  else
                    {
                      a = up[un - rn - 1];
                      b = MPFR_LIMB_HIGHBIT;
                    }
                  rnd_away = a > b;
                  if (a == b)
                    {
                      mp_size_t i;
                      for (i = un - rn - 1 - (sh == 0); i >= 0; i--)
                        if (up[i] != 0)
                          {
                            rnd_away = 1;
                            break;
                          }
                    }
                }
              else  /* halfway cases rounded away from zero */
                rnd_away =  /* rounding bit */
                  ((sh != 0 && (rp[0] & (MPFR_LIMB_ONE << (sh - 1))) != 0) ||
                   (sh == 0 && (up[un - rn - 1] & MPFR_LIMB_HIGHBIT) != 0));
            }
          if (uflags == 0)
            { /* u is an integer; determine if it is representable in r */
              if (sh != 0 && rp[0] << (GMP_NUMB_BITS - sh) != 0)
                uflags = 1;  /* u is not representable in r */
              else
                {
                  mp_size_t i;
                  for (i = un - rn - 1; i >= 0; i--)
                    if (up[i] != 0)
                      {
                        uflags = 1;  /* u is not representable in r */
                        break;
                      }
                }
            }
        }
      else  /* ui <= rn */
        {
          mp_size_t uj, rj;
          int ush;

          uj = un - ui;  /* lowest limb of the integer part in u */
          rj = rn - ui;  /* lowest limb of the integer part in r */

          if (MPFR_LIKELY (rp != up))
            MPN_COPY(rp + rj, up + uj, ui);

          /* Ignore the lowest rj limbs, all equal to zero. */
          rp += rj;
          rn = ui;

          /* number of fractional bits in whole rp[0] */
          ush = idiff == 0 ? 0 : GMP_NUMB_BITS - idiff;

          if (rj == 0 && ush < sh)
            {
              /* If u is an integer (uflags == 0), we need to determine
                 if it is representable in r, i.e. if its sh - ush bits
                 in the non-significant part of r are all 0. */
              if (uflags == 0 && (rp[0] & ((MPFR_LIMB_ONE << sh) -
                                           (MPFR_LIMB_ONE << ush))) != 0)
                uflags = 1;  /* u is an integer not representable in r */
            }
          else  /* The integer part of u fits in r, we'll round to it. */
            sh = ush;

          if (rnd_away < 0)
            {
              /* This is a rounding to nearest mode.
                 Decide the rounding direction here. */
              if (uj == 0 && sh == 0)
                rnd_away = 0; /* rounding bit = 0 (not represented in u) */
              else if (rnd_mode == MPFR_RNDN &&
                       (rp[0] & (MPFR_LIMB_ONE << sh)) == 0)
                { /* halfway cases rounded toward zero */
                  mp_limb_t a, b;
                  /* a: rounding bit and some of the following bits */
                  /* b: boundary for a (weight of the rounding bit in a) */
                  if (sh != 0)
                    {
                      a = rp[0] & ((MPFR_LIMB_ONE << sh) - 1);
                      b = MPFR_LIMB_ONE << (sh - 1);
                    }
                  else
                    {
                      MPFR_ASSERTD (uj >= 1);  /* see above */
                      a = up[uj - 1];
                      b = MPFR_LIMB_HIGHBIT;
                    }
                  rnd_away = a > b;
                  if (a == b)
                    {
                      mp_size_t i;
                      for (i = uj - 1 - (sh == 0); i >= 0; i--)
                        if (up[i] != 0)
                          {
                            rnd_away = 1;
                            break;
                          }
                    }
                }
              else  /* halfway cases rounded away from zero */
                rnd_away =  /* rounding bit */
                  ((sh != 0 && (rp[0] & (MPFR_LIMB_ONE << (sh - 1))) != 0) ||
                   (sh == 0 && (MPFR_ASSERTD (uj >= 1),
                                up[uj - 1] & MPFR_LIMB_HIGHBIT) != 0));
            }
          /* Now we can make the low rj limbs to 0 */
          MPN_ZERO (rp-rj, rj);
        }

      if (sh != 0)
        rp[0] &= MP_LIMB_T_MAX << sh;

      /* If u is a representable integer, there is no rounding. */
      if (uflags == 0)
        MPFR_RET(0);

      MPFR_ASSERTD (rnd_away >= 0);  /* rounding direction is defined */
      if (rnd_away && mpn_add_1(rp, rp, rn, MPFR_LIMB_ONE << sh))
        {
          if (exp == __gmpfr_emax)
            return mpfr_overflow(r, rnd_mode, MPFR_SIGN(r)) >= 0 ?
              uflags : -uflags;
          else
            {
              MPFR_SET_EXP(r, exp + 1);
              rp[rn-1] = MPFR_LIMB_HIGHBIT;
            }
        }

      MPFR_RET (rnd_away ^ (sign < 0) ? uflags : -uflags);
    }  /* exp > 0, |u| >= 1 */
}
Exemple #22
0
/* compute sign(b) * (|b| + |c|)
   Returns 0 iff result is exact,
   a negative value when the result is less than the exact value,
   a positive value otherwise. */
int
mpfr_add1sp (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
  mpfr_uexp_t d;
  mpfr_prec_t p;
  unsigned int sh;
  mp_size_t n;
  mp_limb_t *ap, *cp;
  mpfr_exp_t bx;
  mp_limb_t limb;
  int inexact;
  MPFR_TMP_DECL(marker);

  MPFR_TMP_MARK(marker);

  MPFR_ASSERTD(MPFR_PREC(a) == MPFR_PREC(b) && MPFR_PREC(b) == MPFR_PREC(c));
  MPFR_ASSERTD(MPFR_IS_PURE_FP(b));
  MPFR_ASSERTD(MPFR_IS_PURE_FP(c));
  MPFR_ASSERTD(MPFR_GET_EXP(b) >= MPFR_GET_EXP(c));

  /* Read prec and num of limbs */
  p = MPFR_PREC(b);
  n = MPFR_PREC2LIMBS (p);
  MPFR_UNSIGNED_MINUS_MODULO(sh, p);
  bx = MPFR_GET_EXP(b);
  d = (mpfr_uexp_t) (bx - MPFR_GET_EXP(c));

  DEBUG (printf ("New add1sp with diff=%lu\n", (unsigned long) d));

  if (MPFR_UNLIKELY(d == 0))
    {
      /* d==0 */
      DEBUG( mpfr_print_mant_binary("C= ", MPFR_MANT(c), p) );
      DEBUG( mpfr_print_mant_binary("B= ", MPFR_MANT(b), p) );
      bx++;                                /* exp + 1 */
      ap = MPFR_MANT(a);
      limb = mpn_add_n(ap, MPFR_MANT(b), MPFR_MANT(c), n);
      DEBUG( mpfr_print_mant_binary("A= ", ap, p) );
      MPFR_ASSERTD(limb != 0);             /* There must be a carry */
      limb = ap[0];                        /* Get LSB (In fact, LSW) */
      mpn_rshift(ap, ap, n, 1);            /* Shift mantissa A */
      ap[n-1] |= MPFR_LIMB_HIGHBIT;        /* Set MSB */
      ap[0]   &= ~MPFR_LIMB_MASK(sh);      /* Clear LSB bit */
      if (MPFR_LIKELY((limb&(MPFR_LIMB_ONE<<sh)) == 0)) /* Check exact case */
        { inexact = 0; goto set_exponent; }
      /* Zero: Truncate
         Nearest: Even Rule => truncate or add 1
         Away: Add 1 */
      if (MPFR_LIKELY(rnd_mode==MPFR_RNDN))
        {
          if (MPFR_LIKELY((ap[0]&(MPFR_LIMB_ONE<<sh))==0))
            { inexact = -1; goto set_exponent; }
          else
            goto add_one_ulp;
        }
      MPFR_UPDATE_RND_MODE(rnd_mode, MPFR_IS_NEG(b));
      if (rnd_mode==MPFR_RNDZ)
        { inexact = -1; goto set_exponent; }
      else
        goto add_one_ulp;
    }
  else if (MPFR_UNLIKELY (d >= p))
    {
      if (MPFR_LIKELY (d > p))
        {
          /* d > p : Copy B in A */
          /* Away:    Add 1
             Nearest: Trunc
             Zero:    Trunc */
          if (MPFR_LIKELY (rnd_mode==MPFR_RNDN
                           || MPFR_IS_LIKE_RNDZ (rnd_mode, MPFR_IS_NEG (b))))
            {
            copy_set_exponent:
              ap = MPFR_MANT (a);
              MPN_COPY (ap, MPFR_MANT(b), n);
              inexact = -1;
              goto set_exponent;
            }
          else
            {
            copy_add_one_ulp:
              ap = MPFR_MANT(a);
              MPN_COPY (ap, MPFR_MANT(b), n);
              goto add_one_ulp;
            }
        }
      else
        {
          /* d==p : Copy B in A */
          /* Away:    Add 1
             Nearest: Even Rule if C is a power of 2, else Add 1
             Zero:    Trunc */
          if (MPFR_LIKELY(rnd_mode==MPFR_RNDN))
            {
              /* Check if C was a power of 2 */
              cp = MPFR_MANT(c);
              if (MPFR_UNLIKELY(cp[n-1] == MPFR_LIMB_HIGHBIT))
                {
                  mp_size_t k = n-1;
                  do {
                    k--;
                  } while (k>=0 && cp[k]==0);
                  if (MPFR_UNLIKELY(k<0))
                    /* Power of 2: Even rule */
                    if ((MPFR_MANT (b)[0]&(MPFR_LIMB_ONE<<sh))==0)
                      goto copy_set_exponent;
                }
              /* Not a Power of 2 */
              goto copy_add_one_ulp;
            }
          else if (MPFR_IS_LIKE_RNDZ (rnd_mode, MPFR_IS_NEG (b)))
            goto copy_set_exponent;
          else
            goto copy_add_one_ulp;
        }
    }
  else
    {
      mp_limb_t mask;
      mp_limb_t bcp, bcp1; /* Cp and C'p+1 */

      /* General case: 1 <= d < p */
      cp = MPFR_TMP_LIMBS_ALLOC (n);

      /* Shift c in temporary allocated place */
      {
        mpfr_uexp_t dm;
        mp_size_t m;

        dm = d % GMP_NUMB_BITS;
        m = d / GMP_NUMB_BITS;
        if (MPFR_UNLIKELY(dm == 0))
          {
            /* dm = 0 and m > 0: Just copy */
            MPFR_ASSERTD(m!=0);
            MPN_COPY(cp, MPFR_MANT(c)+m, n-m);
            MPN_ZERO(cp+n-m, m);
          }
        else if (MPFR_LIKELY(m == 0))
          {
            /* dm >=1 and m == 0: just shift */
            MPFR_ASSERTD(dm >= 1);
            mpn_rshift(cp, MPFR_MANT(c), n, dm);
          }
        else
          {
            /* dm > 0 and m > 0: shift and zero  */
            mpn_rshift(cp, MPFR_MANT(c)+m, n-m, dm);
            MPN_ZERO(cp+n-m, m);
          }
      }

      DEBUG( mpfr_print_mant_binary("Before", MPFR_MANT(c), p) );
      DEBUG( mpfr_print_mant_binary("B=    ", MPFR_MANT(b), p) );
      DEBUG( mpfr_print_mant_binary("After ", cp, p) );

      /* Compute bcp=Cp and bcp1=C'p+1 */
      if (MPFR_LIKELY (sh > 0))
        {
          /* Try to compute them from C' rather than C */
          bcp = (cp[0] & (MPFR_LIMB_ONE<<(sh-1))) ;
          if (MPFR_LIKELY(cp[0]&MPFR_LIMB_MASK(sh-1)))
            bcp1 = 1;
          else
            {
              /* We can't compute C'p+1 from C'. Compute it from C */
              /* Start from bit x=p-d+sh in mantissa C
                 (+sh since we have already looked sh bits in C'!) */
              mpfr_prec_t x = p-d+sh-1;
              if (MPFR_LIKELY(x>p))
                /* We are already looked at all the bits of c, so C'p+1 = 0*/
                bcp1 = 0;
              else
                {
                  mp_limb_t *tp = MPFR_MANT(c);
                  mp_size_t kx = n-1 - (x / GMP_NUMB_BITS);
                  mpfr_prec_t sx = GMP_NUMB_BITS-1-(x%GMP_NUMB_BITS);
                  DEBUG (printf ("(First) x=%lu Kx=%ld Sx=%lu\n",
                                 (unsigned long) x, (long) kx,
                                 (unsigned long) sx));
                  /* Looks at the last bits of limb kx (if sx=0 does nothing)*/
                  if (tp[kx] & MPFR_LIMB_MASK(sx))
                    bcp1 = 1;
                  else
                    {
                      /*kx += (sx==0);*/
                      /*If sx==0, tp[kx] hasn't been checked*/
                      do {
                        kx--;
                      } while (kx>=0 && tp[kx]==0);
                      bcp1 = (kx >= 0);
                    }
                }
            }
        }
      else /* sh == 0 */
        {
          /* Compute Cp and C'p+1 from C with sh=0 */
          mp_limb_t *tp = MPFR_MANT(c);
          /* Start from bit x=p-d in mantissa C */
          mpfr_prec_t  x = p-d;
          mp_size_t   kx = n-1 - (x / GMP_NUMB_BITS);
          mpfr_prec_t sx = GMP_NUMB_BITS-1-(x%GMP_NUMB_BITS);
          MPFR_ASSERTD(p >= d);
          bcp = tp[kx] & (MPFR_LIMB_ONE<<sx);
          /* Looks at the last bits of limb kx (If sx=0, does nothing)*/
          if (tp[kx]&MPFR_LIMB_MASK(sx))
            bcp1 = 1;
          else
            {
              do {
                kx--;
              } while (kx>=0 && tp[kx]==0);
              bcp1 = (kx>=0);
            }
        }
      DEBUG (printf("sh=%u Cp=%lu C'p+1=%lu\n", sh,
                    (unsigned long) bcp, (unsigned long) bcp1));

      /* Clean shifted C' */
      mask = ~MPFR_LIMB_MASK(sh);
      cp[0] &= mask;

      /* Add the mantissa c from b in a */
      ap = MPFR_MANT(a);
      limb = mpn_add_n (ap, MPFR_MANT(b), cp, n);
      DEBUG( mpfr_print_mant_binary("Add=  ", ap, p) );

      /* Check for overflow */
      if (MPFR_UNLIKELY (limb))
        {
          limb = ap[0] & (MPFR_LIMB_ONE<<sh); /* Get LSB */
          mpn_rshift (ap, ap, n, 1);          /* Shift mantissa*/
          bx++;                               /* Fix exponent */
          ap[n-1] |= MPFR_LIMB_HIGHBIT;       /* Set MSB */
          ap[0]   &= mask;                    /* Clear LSB bit */
          bcp1    |= bcp;                     /* Recompute C'p+1 */
          bcp      = limb;                    /* Recompute Cp */
          DEBUG (printf ("(Overflow) Cp=%lu C'p+1=%lu\n",
                         (unsigned long) bcp, (unsigned long) bcp1));
          DEBUG (mpfr_print_mant_binary ("Add=  ", ap, p));
        }

      /* Round:
          Zero: Truncate but could be exact.
          Away: Add 1 if Cp or C'p+1 !=0
          Nearest: Truncate but could be exact if Cp==0
                   Add 1 if C'p+1 !=0,
                   Even rule else */
      if (MPFR_LIKELY(rnd_mode == MPFR_RNDN))
        {
          if (MPFR_LIKELY(bcp == 0))
            { inexact = MPFR_LIKELY(bcp1) ? -1 : 0; goto set_exponent; }
          else if (MPFR_UNLIKELY(bcp1==0) && (ap[0]&(MPFR_LIMB_ONE<<sh))==0)
            { inexact = -1; goto set_exponent; }
          else
            goto add_one_ulp;
        }
      MPFR_UPDATE_RND_MODE(rnd_mode, MPFR_IS_NEG(b));
      if (rnd_mode == MPFR_RNDZ)
        {
          inexact = MPFR_LIKELY(bcp || bcp1) ? -1 : 0;
          goto set_exponent;
        }
      else
        {
          if (MPFR_UNLIKELY(bcp==0 && bcp1==0))
            { inexact = 0; goto set_exponent; }
          else
            goto add_one_ulp;
        }
    }
  MPFR_ASSERTN(0);

 add_one_ulp:
  /* add one unit in last place to a */
  DEBUG( printf("AddOneUlp\n") );
  if (MPFR_UNLIKELY( mpn_add_1(ap, ap, n, MPFR_LIMB_ONE<<sh) ))
    {
      /* Case 100000x0 = 0x1111x1 + 1*/
      DEBUG( printf("Pow of 2\n") );
      bx++;
      ap[n-1] = MPFR_LIMB_HIGHBIT;
    }
  inexact = 1;

 set_exponent:
  if (MPFR_UNLIKELY(bx > __gmpfr_emax)) /* Check for overflow */
    {
      DEBUG( printf("Overflow\n") );
      MPFR_TMP_FREE(marker);
      MPFR_SET_SAME_SIGN(a,b);
      return mpfr_overflow(a, rnd_mode, MPFR_SIGN(a));
    }
  MPFR_SET_EXP (a, bx);
  MPFR_SET_SAME_SIGN(a,b);

  MPFR_TMP_FREE(marker);
  MPFR_RET (inexact * MPFR_INT_SIGN (a));
}
Exemple #23
0
/* (y, z) <- (sin(x), cos(x)), return value is 0 iff both results are exact */
int 
mpfr_sin_cos (mpfr_ptr y, mpfr_ptr z, mpfr_srcptr x, mp_rnd_t rnd_mode) 
{
  int prec, m, ok, e, inexact, neg;
  mpfr_t c, k;

  if (MPFR_IS_NAN(x) || MPFR_IS_INF(x))
    {
      MPFR_SET_NAN(y);
      MPFR_SET_NAN(z);
      MPFR_RET_NAN;
    }

  if (MPFR_IS_ZERO(x))
    {
      MPFR_CLEAR_FLAGS(y);
      MPFR_SET_ZERO(y);
      MPFR_SET_SAME_SIGN(y, x);
      mpfr_set_ui (z, 1, GMP_RNDN);
      MPFR_RET(0);
    }

  prec = MAX(MPFR_PREC(y), MPFR_PREC(z));
  m = prec + _mpfr_ceil_log2 ((double) prec) + ABS(MPFR_EXP(x)) + 13;

  mpfr_init2 (c, m);
  mpfr_init2 (k, m);

  /* first determine sign */
  mpfr_const_pi (c, GMP_RNDN);
  mpfr_mul_2ui (c, c, 1, GMP_RNDN); /* 2*Pi */
  mpfr_div (k, x, c, GMP_RNDN);      /* x/(2*Pi) */
  mpfr_floor (k, k);                 /* floor(x/(2*Pi)) */
  mpfr_mul (c, k, c, GMP_RNDN);
  mpfr_sub (k, x, c, GMP_RNDN);      /* 0 <= k < 2*Pi */
  mpfr_const_pi (c, GMP_RNDN); /* cached */
  neg = mpfr_cmp (k, c) > 0;
  mpfr_clear (k);

  do
    {
      mpfr_cos (c, x, GMP_RNDZ);
      if ((ok = mpfr_can_round (c, m, GMP_RNDZ, rnd_mode, MPFR_PREC(z))))
        {
          inexact = mpfr_set (z, c, rnd_mode);
          mpfr_mul (c, c, c, GMP_RNDU);
          mpfr_ui_sub (c, 1, c, GMP_RNDN);
          e = 2 + (-MPFR_EXP(c)) / 2;
          mpfr_sqrt (c, c, GMP_RNDN);
          if (neg)
            mpfr_neg (c, c, GMP_RNDN);

          /* the absolute error on c is at most 2^(e-m) = 2^(EXP(c)-err) */
          e = MPFR_EXP(c) + m - e;
          ok = (e >= 0) && mpfr_can_round (c, e, GMP_RNDN, rnd_mode,
                                           MPFR_PREC(y));
        }

      if (ok == 0)
	{
	  m += _mpfr_ceil_log2 ((double) m);
	  mpfr_set_prec (c, m);
	}
    }
  while (ok == 0);

  inexact = mpfr_set (y, c, rnd_mode) || inexact;

  mpfr_clear (c);

  return inexact; /* inexact */
}
int
mpfr_set_uj_2exp (mpfr_t x, uintmax_t j, intmax_t e, mpfr_rnd_t rnd)
{
  unsigned int cnt, i;
  mp_size_t k, len;
  mp_limb_t limb;
  mp_limb_t yp[sizeof(uintmax_t) / sizeof(mp_limb_t)];
  mpfr_t y;
  unsigned long uintmax_bit_size = sizeof(uintmax_t) * CHAR_BIT;
  unsigned long bpml = GMP_NUMB_BITS % uintmax_bit_size;

  /* Special case */
  if (j == 0)
    {
      MPFR_SET_POS(x);
      MPFR_SET_ZERO(x);
      MPFR_RET(0);
    }

  MPFR_ASSERTN (sizeof(uintmax_t) % sizeof(mp_limb_t) == 0);

  /* Create an auxillary var */
  MPFR_TMP_INIT1 (yp, y, uintmax_bit_size);
  k = numberof (yp);
  if (k == 1)
    limb = yp[0] = j;
  else
    {
      /* Note: either GMP_NUMB_BITS = uintmax_bit_size, then k = 1 the
         shift j >>= bpml is never done, or GMP_NUMB_BITS < uintmax_bit_size
         and bpml = GMP_NUMB_BITS. */
      for (i = 0; i < k; i++, j >>= bpml)
        yp[i] = j; /* Only the low bits are copied */

      /* Find the first limb not equal to zero. */
      do
        {
          MPFR_ASSERTD (k > 0);
          limb = yp[--k];
        }
      while (limb == 0);
      k++;
    }
  count_leading_zeros(cnt, limb);
  len = numberof (yp) - k;

  /* Normalize it: len = number of last 0 limb, k number of non-zero limbs */
  if (MPFR_LIKELY(cnt))
    mpn_lshift (yp+len, yp, k, cnt);  /* Normalize the High Limb*/
  else if (len != 0)
    MPN_COPY_DECR (yp+len, yp, k);    /* Must use DECR */
  if (len != 0)
    /* Note: when numberof(yp)==1, len is constant and null, so the compiler
       can optimize out this code. */
    {
      if (len == 1)
        yp[0] = (mp_limb_t) 0;
      else
        MPN_ZERO (yp, len);   /* Zeroing the last limbs */
    }
  e += k * GMP_NUMB_BITS - cnt;    /* Update Expo */
  MPFR_ASSERTD (MPFR_LIMB_MSB(yp[numberof (yp) - 1]) != 0);

  /* Check expo underflow / overflow (can't use mpfr_check_range) */
  if (MPFR_UNLIKELY(e < __gmpfr_emin))
    {
      /* The following test is necessary because in the rounding to the
       * nearest mode, mpfr_underflow always rounds away from 0. In
       * this rounding mode, we need to round to 0 if:
       *   _ |x| < 2^(emin-2), or
       *   _ |x| = 2^(emin-2) and the absolute value of the exact
       *     result is <= 2^(emin-2). */
      if (rnd == MPFR_RNDN && (e+1 < __gmpfr_emin || mpfr_powerof2_raw(y)))
        rnd = MPFR_RNDZ;
      return mpfr_underflow (x, rnd, MPFR_SIGN_POS);
    }
  if (MPFR_UNLIKELY(e > __gmpfr_emax))
    return mpfr_overflow (x, rnd, MPFR_SIGN_POS);
  MPFR_SET_EXP (y, e);

  /* Final: set x to y (rounding if necessary) */
  return mpfr_set (x, y, rnd);
}
Exemple #25
0
Fichier : mul.c Projet : gnooth/xcl
int
mpfr_mul (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
    int sign, inexact;
    mpfr_exp_t ax, ax2;
    mp_limb_t *tmp;
    mp_limb_t b1;
    mpfr_prec_t bq, cq;
    mp_size_t bn, cn, tn, k;
    MPFR_TMP_DECL (marker);

    MPFR_LOG_FUNC (("b[%#R]=%R c[%#R]=%R rnd=%d", b, b, c, c, rnd_mode),
                   ("a[%#R]=%R inexact=%d", a, a, inexact));

    /* deal with special cases */
    if (MPFR_ARE_SINGULAR (b, c))
    {
        if (MPFR_IS_NAN (b) || MPFR_IS_NAN (c))
        {
            MPFR_SET_NAN (a);
            MPFR_RET_NAN;
        }
        sign = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c));
        if (MPFR_IS_INF (b))
        {
            if (!MPFR_IS_ZERO (c))
            {
                MPFR_SET_SIGN (a, sign);
                MPFR_SET_INF (a);
                MPFR_RET (0);
            }
            else
            {
                MPFR_SET_NAN (a);
                MPFR_RET_NAN;
            }
        }
        else if (MPFR_IS_INF (c))
        {
            if (!MPFR_IS_ZERO (b))
            {
                MPFR_SET_SIGN (a, sign);
                MPFR_SET_INF (a);
                MPFR_RET(0);
            }
            else
            {
                MPFR_SET_NAN (a);
                MPFR_RET_NAN;
            }
        }
        else
        {
            MPFR_ASSERTD (MPFR_IS_ZERO(b) || MPFR_IS_ZERO(c));
            MPFR_SET_SIGN (a, sign);
            MPFR_SET_ZERO (a);
            MPFR_RET (0);
        }
    }
    sign = MPFR_MULT_SIGN (MPFR_SIGN (b), MPFR_SIGN (c));

    ax = MPFR_GET_EXP (b) + MPFR_GET_EXP (c);
    /* Note: the exponent of the exact result will be e = bx + cx + ec with
       ec in {-1,0,1} and the following assumes that e is representable. */

    /* FIXME: Useful since we do an exponent check after ?
     * It is useful iff the precision is big, there is an overflow
     * and we are doing further mults...*/
#ifdef HUGE
    if (MPFR_UNLIKELY (ax > __gmpfr_emax + 1))
        return mpfr_overflow (a, rnd_mode, sign);
    if (MPFR_UNLIKELY (ax < __gmpfr_emin - 2))
        return mpfr_underflow (a, rnd_mode == MPFR_RNDN ? MPFR_RNDZ : rnd_mode,
                               sign);
#endif

    bq = MPFR_PREC (b);
    cq = MPFR_PREC (c);

    MPFR_ASSERTD (bq+cq > bq); /* PREC_MAX is /2 so no integer overflow */

    bn = (bq+GMP_NUMB_BITS-1)/GMP_NUMB_BITS; /* number of limbs of b */
    cn = (cq+GMP_NUMB_BITS-1)/GMP_NUMB_BITS; /* number of limbs of c */
    k = bn + cn; /* effective nb of limbs used by b*c (= tn or tn+1) below */
    tn = (bq + cq + GMP_NUMB_BITS - 1) / GMP_NUMB_BITS;
    MPFR_ASSERTD (tn <= k); /* tn <= k, thus no int overflow */

    /* Check for no size_t overflow*/
    MPFR_ASSERTD ((size_t) k <= ((size_t) -1) / BYTES_PER_MP_LIMB);
    MPFR_TMP_MARK (marker);
    tmp = (mp_limb_t *) MPFR_TMP_ALLOC ((size_t) k * BYTES_PER_MP_LIMB);

    /* multiplies two mantissa in temporary allocated space */
    if (MPFR_UNLIKELY (bn < cn))
    {
        mpfr_srcptr z = b;
        mp_size_t zn  = bn;
        b = c;
        bn = cn;
        c = z;
        cn = zn;
    }
    MPFR_ASSERTD (bn >= cn);
    if (MPFR_LIKELY (bn <= 2))
    {
        if (bn == 1)
        {
            /* 1 limb * 1 limb */
            umul_ppmm (tmp[1], tmp[0], MPFR_MANT (b)[0], MPFR_MANT (c)[0]);
            b1 = tmp[1];
        }
        else if (MPFR_UNLIKELY (cn == 1))
        {
            /* 2 limbs * 1 limb */
            mp_limb_t t;
            umul_ppmm (tmp[1], tmp[0], MPFR_MANT (b)[0], MPFR_MANT (c)[0]);
            umul_ppmm (tmp[2], t, MPFR_MANT (b)[1], MPFR_MANT (c)[0]);
            add_ssaaaa (tmp[2], tmp[1], tmp[2], tmp[1], 0, t);
            b1 = tmp[2];
        }
        else
        {
            /* 2 limbs * 2 limbs */
            mp_limb_t t1, t2, t3;
            /* First 2 limbs * 1 limb */
            umul_ppmm (tmp[1], tmp[0], MPFR_MANT (b)[0], MPFR_MANT (c)[0]);
            umul_ppmm (tmp[2], t1, MPFR_MANT (b)[1], MPFR_MANT (c)[0]);
            add_ssaaaa (tmp[2], tmp[1], tmp[2], tmp[1], 0, t1);
            /* Second, the other 2 limbs * 1 limb product */
            umul_ppmm (t1, t2, MPFR_MANT (b)[0], MPFR_MANT (c)[1]);
            umul_ppmm (tmp[3], t3, MPFR_MANT (b)[1], MPFR_MANT (c)[1]);
            add_ssaaaa (tmp[3], t1, tmp[3], t1, 0, t3);
            /* Sum those two partial products */
            add_ssaaaa (tmp[2], tmp[1], tmp[2], tmp[1], t1, t2);
            tmp[3] += (tmp[2] < t1);
            b1 = tmp[3];
        }
        b1 >>= (GMP_NUMB_BITS - 1);
        tmp += k - tn;
        if (MPFR_UNLIKELY (b1 == 0))
            mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
    }
    else
        /* Mulders' mulhigh. Disable if squaring, since it is not tuned for
           such a case */
        if (MPFR_UNLIKELY (bn > MPFR_MUL_THRESHOLD && b != c))
Exemple #26
0
int
mpfr_sub1sp (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
  mpfr_exp_t bx,cx;
  mpfr_uexp_t d;
  mpfr_prec_t p, sh, cnt;
  mp_size_t n;
  mp_limb_t *ap, *bp, *cp;
  mp_limb_t limb;
  int inexact;
  mp_limb_t bcp,bcp1; /* Cp and C'p+1 */
  mp_limb_t bbcp = (mp_limb_t) -1, bbcp1 = (mp_limb_t) -1; /* Cp+1 and C'p+2,
    gcc claims that they might be used uninitialized. We fill them with invalid
    values, which should produce a failure if so. See README.dev file. */

  MPFR_TMP_DECL(marker);

  MPFR_TMP_MARK(marker);

  MPFR_ASSERTD(MPFR_PREC(a) == MPFR_PREC(b) && MPFR_PREC(b) == MPFR_PREC(c));
  MPFR_ASSERTD(MPFR_IS_PURE_FP(b));
  MPFR_ASSERTD(MPFR_IS_PURE_FP(c));

  /* Read prec and num of limbs */
  p = MPFR_PREC (b);
  n = MPFR_PREC2LIMBS (p);

  /* Fast cmp of |b| and |c|*/
  bx = MPFR_GET_EXP (b);
  cx = MPFR_GET_EXP (c);
  if (MPFR_UNLIKELY(bx == cx))
    {
      mp_size_t k = n - 1;
      /* Check mantissa since exponent are equals */
      bp = MPFR_MANT(b);
      cp = MPFR_MANT(c);
      while (k>=0 && MPFR_UNLIKELY(bp[k] == cp[k]))
        k--;
      if (MPFR_UNLIKELY(k < 0))
        /* b == c ! */
        {
          /* Return exact number 0 */
          if (rnd_mode == MPFR_RNDD)
            MPFR_SET_NEG(a);
          else
            MPFR_SET_POS(a);
          MPFR_SET_ZERO(a);
          MPFR_RET(0);
        }
      else if (bp[k] > cp[k])
        goto BGreater;
      else
        {
          MPFR_ASSERTD(bp[k]<cp[k]);
          goto CGreater;
        }
    }
  else if (MPFR_UNLIKELY(bx < cx))
    {
      /* Swap b and c and set sign */
      mpfr_srcptr t;
      mpfr_exp_t tx;
    CGreater:
      MPFR_SET_OPPOSITE_SIGN(a,b);
      t  = b;  b  = c;  c  = t;
      tx = bx; bx = cx; cx = tx;
    }
  else
    {
      /* b > c */
    BGreater:
      MPFR_SET_SAME_SIGN(a,b);
    }

  /* Now b > c */
  MPFR_ASSERTD(bx >= cx);
  d = (mpfr_uexp_t) bx - cx;
  DEBUG (printf ("New with diff=%lu\n", (unsigned long) d));

  if (MPFR_UNLIKELY(d <= 1))
    {
      if (MPFR_LIKELY(d < 1))
        {
          /* <-- b -->
             <-- c --> : exact sub */
          ap = MPFR_MANT(a);
          mpn_sub_n (ap, MPFR_MANT(b), MPFR_MANT(c), n);
          /* Normalize */
        ExactNormalize:
          limb = ap[n-1];
          if (MPFR_LIKELY(limb))
            {
              /* First limb is not zero. */
              count_leading_zeros(cnt, limb);
              /* cnt could be == 0 <= SubD1Lose */
              if (MPFR_LIKELY(cnt))
                {
                  mpn_lshift(ap, ap, n, cnt); /* Normalize number */
                  bx -= cnt; /* Update final expo */
                }
              /* Last limb should be ok */
              MPFR_ASSERTD(!(ap[0] & MPFR_LIMB_MASK((unsigned int) (-p)
                                                    % GMP_NUMB_BITS)));
            }
          else
            {
              /* First limb is zero */
              mp_size_t k = n-1, len;
              /* Find the first limb not equal to zero.
                 FIXME:It is assume it exists (since |b| > |c| and same prec)*/
              do
                {
                  MPFR_ASSERTD( k > 0 );
                  limb = ap[--k];
                }
              while (limb == 0);
              MPFR_ASSERTD(limb != 0);
              count_leading_zeros(cnt, limb);
              k++;
              len = n - k; /* Number of last limb */
              MPFR_ASSERTD(k >= 0);
              if (MPFR_LIKELY(cnt))
                mpn_lshift(ap+len, ap, k, cnt); /* Normalize the High Limb*/
              else
                {
                  /* Must use DECR since src and dest may overlap & dest>=src*/
                  MPN_COPY_DECR(ap+len, ap, k);
                }
              MPN_ZERO(ap, len); /* Zeroing the last limbs */
              bx -= cnt + len*GMP_NUMB_BITS; /* Update Expo */
              /* Last limb should be ok */
              MPFR_ASSERTD(!(ap[len]&MPFR_LIMB_MASK((unsigned int) (-p)
                                                    % GMP_NUMB_BITS)));
            }
          /* Check expo underflow */
          if (MPFR_UNLIKELY(bx < __gmpfr_emin))
            {
              MPFR_TMP_FREE(marker);
              /* inexact=0 */
              DEBUG( printf("(D==0 Underflow)\n") );
              if (rnd_mode == MPFR_RNDN &&
                  (bx < __gmpfr_emin - 1 ||
                   (/*inexact >= 0 &&*/ mpfr_powerof2_raw (a))))
                rnd_mode = MPFR_RNDZ;
              return mpfr_underflow (a, rnd_mode, MPFR_SIGN(a));
            }
          MPFR_SET_EXP (a, bx);
          /* No rounding is necessary since the result is exact */
          MPFR_ASSERTD(ap[n-1] > ~ap[n-1]);
          MPFR_TMP_FREE(marker);
          return 0;
        }
      else /* if (d == 1) */
        {
          /* | <-- b -->
             |  <-- c --> */
          mp_limb_t c0, mask;
          mp_size_t k;
          MPFR_UNSIGNED_MINUS_MODULO(sh, p);
          /* If we lose at least one bit, compute 2*b-c (Exact)
           * else compute b-c/2 */
          bp = MPFR_MANT(b);
          cp = MPFR_MANT(c);
          k = n-1;
          limb = bp[k] - cp[k]/2;
          if (limb > MPFR_LIMB_HIGHBIT)
            {
              /* We can't lose precision: compute b-c/2 */
              /* Shift c in the allocated temporary block */
            SubD1NoLose:
              c0 = cp[0] & (MPFR_LIMB_ONE<<sh);
              cp = MPFR_TMP_LIMBS_ALLOC (n);
              mpn_rshift(cp, MPFR_MANT(c), n, 1);
              if (MPFR_LIKELY(c0 == 0))
                {
                  /* Result is exact: no need of rounding! */
                  ap = MPFR_MANT(a);
                  mpn_sub_n (ap, bp, cp, n);
                  MPFR_SET_EXP(a, bx); /* No expo overflow! */
                  /* No truncate or normalize is needed */
                  MPFR_ASSERTD(ap[n-1] > ~ap[n-1]);
                  /* No rounding is necessary since the result is exact */
                  MPFR_TMP_FREE(marker);
                  return 0;
                }
              ap = MPFR_MANT(a);
              mask = ~MPFR_LIMB_MASK(sh);
              cp[0] &= mask; /* Delete last bit of c */
              mpn_sub_n (ap, bp, cp, n);
              MPFR_SET_EXP(a, bx);                 /* No expo overflow! */
              MPFR_ASSERTD( !(ap[0] & ~mask) );    /* Check last bits */
              /* No normalize is needed */
              MPFR_ASSERTD(ap[n-1] > ~ap[n-1]);
              /* Rounding is necessary since c0 = 1*/
              /* Cp =-1 and C'p+1=0 */
              bcp = 1; bcp1 = 0;
              if (MPFR_LIKELY(rnd_mode == MPFR_RNDN))
                {
                  /* Even Rule apply: Check Ap-1 */
                  if (MPFR_LIKELY( (ap[0] & (MPFR_LIMB_ONE<<sh)) == 0) )
                    goto truncate;
                  else
                    goto sub_one_ulp;
                }
              MPFR_UPDATE_RND_MODE(rnd_mode, MPFR_IS_NEG(a));
              if (rnd_mode == MPFR_RNDZ)
                goto sub_one_ulp;
              else
                goto truncate;
            }
          else if (MPFR_LIKELY(limb < MPFR_LIMB_HIGHBIT))
            {
              /* We lose at least one bit of prec */
              /* Calcul of 2*b-c (Exact) */
              /* Shift b in the allocated temporary block */
            SubD1Lose:
              bp = MPFR_TMP_LIMBS_ALLOC (n);
              mpn_lshift (bp, MPFR_MANT(b), n, 1);
              ap = MPFR_MANT(a);
              mpn_sub_n (ap, bp, cp, n);
              bx--;
              goto ExactNormalize;
            }
          else
            {
              /* Case: limb = 100000000000 */
              /* Check while b[k] == c'[k] (C' is C shifted by 1) */
              /* If b[k]<c'[k] => We lose at least one bit*/
              /* If b[k]>c'[k] => We don't lose any bit */
              /* If k==-1 => We don't lose any bit
                 AND the result is 100000000000 0000000000 00000000000 */
              mp_limb_t carry;
              do {
                carry = cp[k]&MPFR_LIMB_ONE;
                k--;
              } while (k>=0 &&
                       bp[k]==(carry=cp[k]/2+(carry<<(GMP_NUMB_BITS-1))));
              if (MPFR_UNLIKELY(k<0))
                {
                  /*If carry then (sh==0 and Virtual c'[-1] > Virtual b[-1]) */
                  if (MPFR_UNLIKELY(carry)) /* carry = cp[0]&MPFR_LIMB_ONE */
                    {
                      /* FIXME: Can be faster? */
                      MPFR_ASSERTD(sh == 0);
                      goto SubD1Lose;
                    }
                  /* Result is a power of 2 */
                  ap = MPFR_MANT (a);
                  MPN_ZERO (ap, n);
                  ap[n-1] = MPFR_LIMB_HIGHBIT;
                  MPFR_SET_EXP (a, bx); /* No expo overflow! */
                  /* No Normalize is needed*/
                  /* No Rounding is needed */
                  MPFR_TMP_FREE (marker);
                  return 0;
                }
              /* carry = cp[k]/2+(cp[k-1]&1)<<(GMP_NUMB_BITS-1) = c'[k]*/
              else if (bp[k] > carry)
                goto SubD1NoLose;
              else
                {
                  MPFR_ASSERTD(bp[k]<carry);
                  goto SubD1Lose;
                }
            }
        }
    }
  else if (MPFR_UNLIKELY(d >= p))
    {
      ap = MPFR_MANT(a);
      MPFR_UNSIGNED_MINUS_MODULO(sh, p);
      /* We can't set A before since we use cp for rounding... */
      /* Perform rounding: check if a=b or a=b-ulp(b) */
      if (MPFR_UNLIKELY(d == p))
        {
          /* cp == -1 and c'p+1 = ? */
          bcp  = 1;
          /* We need Cp+1 later for a very improbable case. */
          bbcp = (MPFR_MANT(c)[n-1] & (MPFR_LIMB_ONE<<(GMP_NUMB_BITS-2)));
          /* We need also C'p+1 for an even more unprobable case... */
          if (MPFR_LIKELY( bbcp ))
            bcp1 = 1;
          else
            {
              cp = MPFR_MANT(c);
              if (MPFR_UNLIKELY(cp[n-1] == MPFR_LIMB_HIGHBIT))
                {
                  mp_size_t k = n-1;
                  do {
                    k--;
                  } while (k>=0 && cp[k]==0);
                  bcp1 = (k>=0);
                }
              else
                bcp1 = 1;
            }
          DEBUG( printf("(D=P) Cp=-1 Cp+1=%d C'p+1=%d \n", bbcp!=0, bcp1!=0) );
          bp = MPFR_MANT (b);

          /* Even if src and dest overlap, it is ok using MPN_COPY */
          if (MPFR_LIKELY(rnd_mode == MPFR_RNDN))
            {
              if (MPFR_UNLIKELY( bcp && bcp1==0 ))
                /* Cp=-1 and C'p+1=0: Even rule Apply! */
                /* Check Ap-1 = Bp-1 */
                if ((bp[0] & (MPFR_LIMB_ONE<<sh)) == 0)
                  {
                    MPN_COPY(ap, bp, n);
                    goto truncate;
                  }
              MPN_COPY(ap, bp, n);
              goto sub_one_ulp;
            }
          MPFR_UPDATE_RND_MODE(rnd_mode, MPFR_IS_NEG(a));
          if (rnd_mode == MPFR_RNDZ)
            {
              MPN_COPY(ap, bp, n);
              goto sub_one_ulp;
            }
          else
            {
              MPN_COPY(ap, bp, n);
              goto truncate;
            }
        }
      else
        {
          /* Cp=0, Cp+1=-1 if d==p+1, C'p+1=-1 */
          bcp = 0; bbcp = (d==p+1); bcp1 = 1;
          DEBUG( printf("(D>P) Cp=%d Cp+1=%d C'p+1=%d\n", bcp!=0,bbcp!=0,bcp1!=0) );
          /* Need to compute C'p+2 if d==p+1 and if rnd_mode=NEAREST
             (Because of a very improbable case) */
          if (MPFR_UNLIKELY(d==p+1 && rnd_mode==MPFR_RNDN))
            {
              cp = MPFR_MANT(c);
              if (MPFR_UNLIKELY(cp[n-1] == MPFR_LIMB_HIGHBIT))
                {
                  mp_size_t k = n-1;
                  do {
                    k--;
                  } while (k>=0 && cp[k]==0);
                  bbcp1 = (k>=0);
                }
              else
                bbcp1 = 1;
              DEBUG( printf("(D>P) C'p+2=%d\n", bbcp1!=0) );
            }
          /* Copy mantissa B in A */
          MPN_COPY(ap, MPFR_MANT(b), n);
          /* Round */
          if (MPFR_LIKELY(rnd_mode == MPFR_RNDN))
            goto truncate;
          MPFR_UPDATE_RND_MODE(rnd_mode, MPFR_IS_NEG(a));
          if (rnd_mode == MPFR_RNDZ)
            goto sub_one_ulp;
          else /* rnd_mode = AWAY */
            goto truncate;
        }
    }
  else
    {
      mpfr_uexp_t dm;
      mp_size_t m;
      mp_limb_t mask;

      /* General case: 2 <= d < p */
      MPFR_UNSIGNED_MINUS_MODULO(sh, p);
      cp = MPFR_TMP_LIMBS_ALLOC (n);

      /* Shift c in temporary allocated place */
      dm = d % GMP_NUMB_BITS;
      m = d / GMP_NUMB_BITS;
      if (MPFR_UNLIKELY(dm == 0))
        {
          /* dm = 0 and m > 0: Just copy */
          MPFR_ASSERTD(m!=0);
          MPN_COPY(cp, MPFR_MANT(c)+m, n-m);
          MPN_ZERO(cp+n-m, m);
        }
      else if (MPFR_LIKELY(m == 0))
        {
          /* dm >=2 and m == 0: just shift */
          MPFR_ASSERTD(dm >= 2);
          mpn_rshift(cp, MPFR_MANT(c), n, dm);
        }
      else
        {
          /* dm > 0 and m > 0: shift and zero  */
          mpn_rshift(cp, MPFR_MANT(c)+m, n-m, dm);
          MPN_ZERO(cp+n-m, m);
        }

      DEBUG( mpfr_print_mant_binary("Before", MPFR_MANT(c), p) );
      DEBUG( mpfr_print_mant_binary("B=    ", MPFR_MANT(b), p) );
      DEBUG( mpfr_print_mant_binary("After ", cp, p) );

      /* Compute bcp=Cp and bcp1=C'p+1 */
      if (MPFR_LIKELY(sh))
        {
          /* Try to compute them from C' rather than C (FIXME: Faster?) */
          bcp = (cp[0] & (MPFR_LIMB_ONE<<(sh-1))) ;
          if (MPFR_LIKELY( cp[0] & MPFR_LIMB_MASK(sh-1) ))
            bcp1 = 1;
          else
            {
              /* We can't compute C'p+1 from C'. Compute it from C */
              /* Start from bit x=p-d+sh in mantissa C
                 (+sh since we have already looked sh bits in C'!) */
              mpfr_prec_t x = p-d+sh-1;
              if (MPFR_LIKELY(x>p))
                /* We are already looked at all the bits of c, so C'p+1 = 0*/
                bcp1 = 0;
              else
                {
                  mp_limb_t *tp = MPFR_MANT(c);
                  mp_size_t kx = n-1 - (x / GMP_NUMB_BITS);
                  mpfr_prec_t sx = GMP_NUMB_BITS-1-(x%GMP_NUMB_BITS);
                  DEBUG (printf ("(First) x=%lu Kx=%ld Sx=%lu\n",
                                 (unsigned long) x, (long) kx,
                                 (unsigned long) sx));
                  /* Looks at the last bits of limb kx (if sx=0 does nothing)*/
                  if (tp[kx] & MPFR_LIMB_MASK(sx))
                    bcp1 = 1;
                  else
                    {
                      /*kx += (sx==0);*/
                      /*If sx==0, tp[kx] hasn't been checked*/
                      do {
                        kx--;
                      } while (kx>=0 && tp[kx]==0);
                      bcp1 = (kx >= 0);
                    }
                }
            }
        }
      else
        {
          /* Compute Cp and C'p+1 from C with sh=0 */
          mp_limb_t *tp = MPFR_MANT(c);
          /* Start from bit x=p-d in mantissa C */
          mpfr_prec_t  x = p-d;
          mp_size_t   kx = n-1 - (x / GMP_NUMB_BITS);
          mpfr_prec_t sx = GMP_NUMB_BITS-1-(x%GMP_NUMB_BITS);
          MPFR_ASSERTD(p >= d);
          bcp = (tp[kx] & (MPFR_LIMB_ONE<<sx));
          /* Looks at the last bits of limb kx (If sx=0, does nothing)*/
          if (tp[kx] & MPFR_LIMB_MASK(sx))
            bcp1 = 1;
          else
            {
              /*kx += (sx==0);*/ /*If sx==0, tp[kx] hasn't been checked*/
              do {
                kx--;
              } while (kx>=0 && tp[kx]==0);
              bcp1 = (kx>=0);
            }
        }
      DEBUG( printf("sh=%lu Cp=%d C'p+1=%d\n", sh, bcp!=0, bcp1!=0) );

      /* Check if we can lose a bit, and if so compute Cp+1 and C'p+2 */
      bp = MPFR_MANT(b);
      if (MPFR_UNLIKELY((bp[n-1]-cp[n-1]) <= MPFR_LIMB_HIGHBIT))
        {
          /* We can lose a bit so we precompute Cp+1 and C'p+2 */
          /* Test for trivial case: since C'p+1=0, Cp+1=0 and C'p+2 =0 */
          if (MPFR_LIKELY(bcp1 == 0))
            {
              bbcp = 0;
              bbcp1 = 0;
            }
          else /* bcp1 != 0 */
            {
              /* We can lose a bit:
                 compute Cp+1 and C'p+2 from mantissa C */
              mp_limb_t *tp = MPFR_MANT(c);
              /* Start from bit x=(p+1)-d in mantissa C */
              mpfr_prec_t x  = p+1-d;
              mp_size_t kx = n-1 - (x/GMP_NUMB_BITS);
              mpfr_prec_t sx = GMP_NUMB_BITS-1-(x%GMP_NUMB_BITS);
              MPFR_ASSERTD(p > d);
              DEBUG (printf ("(pre) x=%lu Kx=%ld Sx=%lu\n",
                             (unsigned long) x, (long) kx,
                             (unsigned long) sx));
              bbcp = (tp[kx] & (MPFR_LIMB_ONE<<sx)) ;
              /* Looks at the last bits of limb kx (If sx=0, does nothing)*/
              /* If Cp+1=0, since C'p+1!=0, C'p+2=1 ! */
              if (MPFR_LIKELY(bbcp==0 || (tp[kx]&MPFR_LIMB_MASK(sx))))
                bbcp1 = 1;
              else
                {
                  /*kx += (sx==0);*/ /*If sx==0, tp[kx] hasn't been checked*/
                  do {
                    kx--;
                  } while (kx>=0 && tp[kx]==0);
                  bbcp1 = (kx>=0);
                  DEBUG (printf ("(Pre) Scan done for %ld\n", (long) kx));
                }
            } /*End of Bcp1 != 0*/
          DEBUG( printf("(Pre) Cp+1=%d C'p+2=%d\n", bbcp!=0, bbcp1!=0) );
        } /* End of "can lose a bit" */

      /* Clean shifted C' */
      mask = ~MPFR_LIMB_MASK (sh);
      cp[0] &= mask;

      /* Subtract the mantissa c from b in a */
      ap = MPFR_MANT(a);
      mpn_sub_n (ap, bp, cp, n);
      DEBUG( mpfr_print_mant_binary("Sub=  ", ap, p) );

     /* Normalize: we lose at max one bit*/
      if (MPFR_UNLIKELY(MPFR_LIMB_MSB(ap[n-1]) == 0))
        {
          /* High bit is not set and we have to fix it! */
          /* Ap >= 010000xxx001 */
          mpn_lshift(ap, ap, n, 1);
          /* Ap >= 100000xxx010 */
          if (MPFR_UNLIKELY(bcp!=0)) /* Check if Cp = -1 */
            /* Since Cp == -1, we have to substract one more */
            {
              mpn_sub_1(ap, ap, n, MPFR_LIMB_ONE<<sh);
              MPFR_ASSERTD(MPFR_LIMB_MSB(ap[n-1]) != 0);
            }
          /* Ap >= 10000xxx001 */
          /* Final exponent -1 since we have shifted the mantissa */
          bx--;
          /* Update bcp and bcp1 */
          MPFR_ASSERTN(bbcp != (mp_limb_t) -1);
          MPFR_ASSERTN(bbcp1 != (mp_limb_t) -1);
          bcp  = bbcp;
          bcp1 = bbcp1;
          /* We dont't have anymore a valid Cp+1!
             But since Ap >= 100000xxx001, the final sub can't unnormalize!*/
        }
      MPFR_ASSERTD( !(ap[0] & ~mask) );

      /* Rounding */
      if (MPFR_LIKELY(rnd_mode == MPFR_RNDN))
        {
          if (MPFR_LIKELY(bcp==0))
            goto truncate;
          else if ((bcp1) || ((ap[0] & (MPFR_LIMB_ONE<<sh)) != 0))
            goto sub_one_ulp;
          else
            goto truncate;
        }

      /* Update rounding mode */
      MPFR_UPDATE_RND_MODE(rnd_mode, MPFR_IS_NEG(a));
      if (rnd_mode == MPFR_RNDZ && (MPFR_LIKELY(bcp || bcp1)))
        goto sub_one_ulp;
      goto truncate;
    }
  MPFR_RET_NEVER_GO_HERE ();

  /* Sub one ulp to the result */
 sub_one_ulp:
  mpn_sub_1 (ap, ap, n, MPFR_LIMB_ONE << sh);
  /* Result should be smaller than exact value: inexact=-1 */
  inexact = -1;
  /* Check normalisation */
  if (MPFR_UNLIKELY(MPFR_LIMB_MSB(ap[n-1]) == 0))
    {
      /* ap was a power of 2, and we lose a bit */
      /* Now it is 0111111111111111111[00000 */
      mpn_lshift(ap, ap, n, 1);
      bx--;
      /* And the lost bit x depends on Cp+1, and Cp */
      /* Compute Cp+1 if it isn't already compute (ie d==1) */
      /* FIXME: Is this case possible? */
      if (MPFR_UNLIKELY(d == 1))
        bbcp = 0;
      DEBUG( printf("(SubOneUlp)Cp=%d, Cp+1=%d C'p+1=%d\n", bcp!=0,bbcp!=0,bcp1!=0));
      /* Compute the last bit (Since we have shifted the mantissa)
         we need one more bit!*/
      MPFR_ASSERTN(bbcp != (mp_limb_t) -1);
      if ( (rnd_mode == MPFR_RNDZ && bcp==0)
           || (rnd_mode==MPFR_RNDN && bbcp==0)
           || (bcp && bcp1==0) ) /*Exact result*/
        {
          ap[0] |= MPFR_LIMB_ONE<<sh;
          if (rnd_mode == MPFR_RNDN)
            inexact = 1;
          DEBUG( printf("(SubOneUlp) Last bit set\n") );
        }
      /* Result could be exact if C'p+1 = 0 and rnd == Zero
         since we have had one more bit to the result */
      /* Fixme: rnd_mode == MPFR_RNDZ needed ? */
      if (bcp1==0 && rnd_mode==MPFR_RNDZ)
        {
          DEBUG( printf("(SubOneUlp) Exact result\n") );
          inexact = 0;
        }
    }

  goto end_of_sub;

 truncate:
  /* Check if the result is an exact power of 2: 100000000000
     in which cases, we could have to do sub_one_ulp due to some nasty reasons:
     If Result is a Power of 2:
      + If rnd = AWAY,
      |  If Cp=-1 and C'p+1 = 0, SubOneUlp and the result is EXACT.
         If Cp=-1 and C'p+1 =-1, SubOneUlp and the result is above.
         Otherwise truncate
      + If rnd = NEAREST,
         If Cp= 0 and Cp+1  =-1 and C'p+2=-1, SubOneUlp and the result is above
         If cp=-1 and C'p+1 = 0, SubOneUlp and the result is exact.
         Otherwise truncate.
      X bit should always be set if SubOneUlp*/
  if (MPFR_UNLIKELY(ap[n-1] == MPFR_LIMB_HIGHBIT))
    {
      mp_size_t k = n-1;
      do {
        k--;
      } while (k>=0 && ap[k]==0);
      if (MPFR_UNLIKELY(k<0))
        {
          /* It is a power of 2! */
          /* Compute Cp+1 if it isn't already compute (ie d==1) */
          /* FIXME: Is this case possible? */
          if (d == 1)
            bbcp=0;
          DEBUG( printf("(Truncate) Cp=%d, Cp+1=%d C'p+1=%d C'p+2=%d\n", \
                 bcp!=0, bbcp!=0, bcp1!=0, bbcp1!=0) );
          MPFR_ASSERTN(bbcp != (mp_limb_t) -1);
          MPFR_ASSERTN((rnd_mode != MPFR_RNDN) || (bcp != 0) || (bbcp == 0) || (bbcp1 != (mp_limb_t) -1));
          if (((rnd_mode != MPFR_RNDZ) && bcp)
              ||
              ((rnd_mode == MPFR_RNDN) && (bcp == 0) && (bbcp) && (bbcp1)))
            {
              DEBUG( printf("(Truncate) Do sub\n") );
              mpn_sub_1 (ap, ap, n, MPFR_LIMB_ONE << sh);
              mpn_lshift(ap, ap, n, 1);
              ap[0] |= MPFR_LIMB_ONE<<sh;
              bx--;
              /* FIXME: Explain why it works (or why not)... */
              inexact = (bcp1 == 0) ? 0 : (rnd_mode==MPFR_RNDN) ? -1 : 1;
              goto end_of_sub;
            }
        }
    }

  /* Calcul of Inexact flag.*/
  inexact = MPFR_LIKELY(bcp || bcp1) ? 1 : 0;

 end_of_sub:
  /* Update Expo */
  /* FIXME: Is this test really useful?
      If d==0      : Exact case. This is never called.
      if 1 < d < p : bx=MPFR_EXP(b) or MPFR_EXP(b)-1 > MPFR_EXP(c) > emin
      if d == 1    : bx=MPFR_EXP(b). If we could lose any bits, the exact
                     normalisation is called.
      if d >=  p   : bx=MPFR_EXP(b) >= MPFR_EXP(c) + p > emin
     After SubOneUlp, we could have one bit less.
      if 1 < d < p : bx >= MPFR_EXP(b)-2 >= MPFR_EXP(c) > emin
      if d == 1    : bx >= MPFR_EXP(b)-1 = MPFR_EXP(c) > emin.
      if d >=  p   : bx >= MPFR_EXP(b)-1 > emin since p>=2.
  */
  MPFR_ASSERTD( bx >= __gmpfr_emin);
  /*
    if (MPFR_UNLIKELY(bx < __gmpfr_emin))
    {
      DEBUG( printf("(Final Underflow)\n") );
      if (rnd_mode == MPFR_RNDN &&
          (bx < __gmpfr_emin - 1 ||
           (inexact >= 0 && mpfr_powerof2_raw (a))))
        rnd_mode = MPFR_RNDZ;
      MPFR_TMP_FREE(marker);
      return mpfr_underflow (a, rnd_mode, MPFR_SIGN(a));
    }
  */
  MPFR_SET_EXP (a, bx);

  MPFR_TMP_FREE(marker);
  MPFR_RET (inexact * MPFR_INT_SIGN (a));
}
Exemple #27
0
int
mpfr_sinh_cosh (mpfr_ptr sh, mpfr_ptr ch, mpfr_srcptr xt, mpfr_rnd_t rnd_mode)
{
    mpfr_t x;
    int inexact_sh, inexact_ch;

    MPFR_ASSERTN (sh != ch);

    MPFR_LOG_FUNC
    (("x[%Pu]=%.*Rg rnd=%d",
      mpfr_get_prec (xt), mpfr_log_prec, xt, rnd_mode),
     ("sh[%Pu]=%.*Rg ch[%Pu]=%.*Rg",
      mpfr_get_prec (sh), mpfr_log_prec, sh,
      mpfr_get_prec (ch), mpfr_log_prec, ch));

    if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (xt)))
    {
        if (MPFR_IS_NAN (xt))
        {
            MPFR_SET_NAN (ch);
            MPFR_SET_NAN (sh);
            MPFR_RET_NAN;
        }
        else if (MPFR_IS_INF (xt))
        {
            MPFR_SET_INF (sh);
            MPFR_SET_SAME_SIGN (sh, xt);
            MPFR_SET_INF (ch);
            MPFR_SET_POS (ch);
            MPFR_RET (0);
        }
        else /* xt is zero */
        {
            MPFR_ASSERTD (MPFR_IS_ZERO (xt));
            MPFR_SET_ZERO (sh);                   /* sinh(0) = 0 */
            MPFR_SET_SAME_SIGN (sh, xt);
            inexact_sh = 0;
            inexact_ch = mpfr_set_ui (ch, 1, rnd_mode); /* cosh(0) = 1 */
            return INEX(inexact_sh,inexact_ch);
        }
    }

    /* Warning: if we use MPFR_FAST_COMPUTE_IF_SMALL_INPUT here, make sure
       that the code also works in case of overlap (see sin_cos.c) */

    MPFR_TMP_INIT_ABS (x, xt);

    {
        mpfr_t s, c, ti;
        mpfr_exp_t d;
        mpfr_prec_t N;    /* Precision of the intermediary variables */
        long int err;    /* Precision of error */
        MPFR_ZIV_DECL (loop);
        MPFR_SAVE_EXPO_DECL (expo);
        MPFR_GROUP_DECL (group);

        MPFR_SAVE_EXPO_MARK (expo);

        /* compute the precision of intermediary variable */
        N = MPFR_PREC (ch);
        N = MAX (N, MPFR_PREC (sh));
        /* the optimal number of bits : see algorithms.ps */
        N = N + MPFR_INT_CEIL_LOG2 (N) + 4;

        /* initialise of intermediary variables */
        MPFR_GROUP_INIT_3 (group, N, s, c, ti);

        /* First computation of sinh_cosh */
        MPFR_ZIV_INIT (loop, N);
        for (;;)
        {
            MPFR_BLOCK_DECL (flags);

            /* compute sinh_cosh */
            MPFR_BLOCK (flags, mpfr_exp (s, x, MPFR_RNDD));
            if (MPFR_OVERFLOW (flags))
                /* exp(x) does overflow */
            {
                /* since cosh(x) >= exp(x), cosh(x) overflows too */
                inexact_ch = mpfr_overflow (ch, rnd_mode, MPFR_SIGN_POS);
                /* sinh(x) may be representable */
                inexact_sh = mpfr_sinh (sh, xt, rnd_mode);
                MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW);
                break;
            }
            d = MPFR_GET_EXP (s);
            mpfr_ui_div (ti, 1, s, MPFR_RNDU);  /* 1/exp(x) */
            mpfr_add (c, s, ti, MPFR_RNDU);     /* exp(x) + 1/exp(x) */
            mpfr_sub (s, s, ti, MPFR_RNDN);     /* exp(x) - 1/exp(x) */
            mpfr_div_2ui (c, c, 1, MPFR_RNDN);  /* 1/2(exp(x) + 1/exp(x)) */
            mpfr_div_2ui (s, s, 1, MPFR_RNDN);  /* 1/2(exp(x) - 1/exp(x)) */

            /* it may be that s is zero (in fact, it can only occur when exp(x)=1,
               and thus ti=1 too) */
            if (MPFR_IS_ZERO (s))
                err = N; /* double the precision */
            else
            {
                /* calculation of the error */
                d = d - MPFR_GET_EXP (s) + 2;
                /* error estimate: err = N-(__gmpfr_ceil_log2(1+pow(2,d)));*/
                err = N - (MAX (d, 0) + 1);
                if (MPFR_LIKELY (MPFR_CAN_ROUND (s, err, MPFR_PREC (sh),
                                                 rnd_mode) &&               \
                                 MPFR_CAN_ROUND (c, err, MPFR_PREC (ch),
                                                 rnd_mode)))
                {
                    inexact_sh = mpfr_set4 (sh, s, rnd_mode, MPFR_SIGN (xt));
                    inexact_ch = mpfr_set (ch, c, rnd_mode);
                    break;
                }
            }
            /* actualisation of the precision */
            N += err;
            MPFR_ZIV_NEXT (loop, N);
            MPFR_GROUP_REPREC_3 (group, N, s, c, ti);
        }
        MPFR_ZIV_FREE (loop);
        MPFR_GROUP_CLEAR (group);
        MPFR_SAVE_EXPO_FREE (expo);
    }

    /* now, let's raise the flags if needed */
    inexact_sh = mpfr_check_range (sh, inexact_sh, rnd_mode);
    inexact_ch = mpfr_check_range (ch, inexact_ch, rnd_mode);

    return INEX(inexact_sh,inexact_ch);
}
Exemple #28
0
int
mpfr_log10 (mpfr_ptr r, mpfr_srcptr a, mpfr_rnd_t rnd_mode)
{
  int inexact;
  MPFR_SAVE_EXPO_DECL (expo);

  /* If a is NaN, the result is NaN */
  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (a)))
    {
      if (MPFR_IS_NAN (a))
        {
          MPFR_SET_NAN (r);
          MPFR_RET_NAN;
        }
      /* check for infinity before zero */
      else if (MPFR_IS_INF (a))
        {
          if (MPFR_IS_NEG (a))
            /* log10(-Inf) = NaN */
            {
              MPFR_SET_NAN (r);
              MPFR_RET_NAN;
            }
          else /* log10(+Inf) = +Inf */
            {
              MPFR_SET_INF (r);
              MPFR_SET_POS (r);
              MPFR_RET (0); /* exact */
            }
        }
      else /* a = 0 */
        {
          MPFR_ASSERTD (MPFR_IS_ZERO (a));
          MPFR_SET_INF (r);
          MPFR_SET_NEG (r);
          MPFR_RET (0); /* log10(0) is an exact -infinity */
        }
    }

  /* If a is negative, the result is NaN */
  if (MPFR_UNLIKELY (MPFR_IS_NEG (a)))
    {
      MPFR_SET_NAN (r);
      MPFR_RET_NAN;
    }

  /* If a is 1, the result is 0 */
  if (mpfr_cmp_ui (a, 1) == 0)
    {
      MPFR_SET_ZERO (r);
      MPFR_SET_POS (r);
      MPFR_RET (0); /* result is exact */
    }

  MPFR_SAVE_EXPO_MARK (expo);

  /* General case */
  {
    /* Declaration of the intermediary variable */
    mpfr_t t, tt;
    MPFR_ZIV_DECL (loop);
    /* Declaration of the size variable */
    mpfr_prec_t Ny = MPFR_PREC(r);   /* Precision of output variable */
    mpfr_prec_t Nt;        /* Precision of the intermediary variable */
    mpfr_exp_t  err;                           /* Precision of error */

    /* compute the precision of intermediary variable */
    /* the optimal number of bits : see algorithms.tex */
    Nt = Ny + 4 + MPFR_INT_CEIL_LOG2 (Ny);

    /* initialise of intermediary variables */
    mpfr_init2 (t, Nt);
    mpfr_init2 (tt, Nt);

    /* First computation of log10 */
    MPFR_ZIV_INIT (loop, Nt);
    for (;;)
      {
        /* compute log10 */
        mpfr_set_ui (t, 10, MPFR_RNDN);   /* 10 */
        mpfr_log (t, t, MPFR_RNDD);       /* log(10) */
        mpfr_log (tt, a, MPFR_RNDN);      /* log(a) */
        mpfr_div (t, tt, t, MPFR_RNDN);   /* log(a)/log(10) */

        /* estimation of the error */
        err = Nt - 4;
        if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd_mode)))
          break;

        /* log10(10^n) is exact:
           FIXME: Can we have 10^n exactly representable as a mpfr_t
           but n can't fit an unsigned long? */
        if (MPFR_IS_POS (t)
            && mpfr_integer_p (t) && mpfr_fits_ulong_p (t, MPFR_RNDN)
            && !mpfr_ui_pow_ui (tt, 10, mpfr_get_ui (t, MPFR_RNDN), MPFR_RNDN)
            && mpfr_cmp (a, tt) == 0)
          break;

        /* actualisation of the precision */
        MPFR_ZIV_NEXT (loop, Nt);
        mpfr_set_prec (t, Nt);
        mpfr_set_prec (tt, Nt);
      }
    MPFR_ZIV_FREE (loop);

    inexact = mpfr_set (r, t, rnd_mode);

    mpfr_clear (t);
    mpfr_clear (tt);
  }

  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (r, inexact, rnd_mode);
}
Exemple #29
0
int
mpfr_atanh (mpfr_ptr y, mpfr_srcptr xt , mpfr_rnd_t rnd_mode)
{
  int inexact;
  mpfr_t x, t, te;
  mpfr_prec_t Nx, Ny, Nt;
  mpfr_exp_t err;
  MPFR_ZIV_DECL (loop);
  MPFR_SAVE_EXPO_DECL (expo);

  MPFR_LOG_FUNC
    (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (xt), mpfr_log_prec, xt, rnd_mode),
    ("y[%Pu]=%.*Rg inexact=%d",
     mpfr_get_prec (y), mpfr_log_prec, y, inexact));

  /* Special cases */
  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (xt)))
    {
      /* atanh(NaN) = NaN, and atanh(+/-Inf) = NaN since tanh gives a result
         between -1 and 1 */
      if (MPFR_IS_NAN (xt) || MPFR_IS_INF (xt))
        {
          MPFR_SET_NAN (y);
          MPFR_RET_NAN;
        }
      else /* necessarily xt is 0 */
        {
          MPFR_ASSERTD (MPFR_IS_ZERO (xt));
          MPFR_SET_ZERO (y);   /* atanh(0) = 0 */
          MPFR_SET_SAME_SIGN (y,xt);
          MPFR_RET (0);
        }
    }

  /* atanh (x) = NaN as soon as |x| > 1, and arctanh(+/-1) = +/-Inf */
  if (MPFR_UNLIKELY (MPFR_GET_EXP (xt) > 0))
    {
      if (MPFR_GET_EXP (xt) == 1 && mpfr_powerof2_raw (xt))
        {
          MPFR_SET_INF (y);
          MPFR_SET_SAME_SIGN (y, xt);
          mpfr_set_divby0 ();
          MPFR_RET (0);
        }
      MPFR_SET_NAN (y);
      MPFR_RET_NAN;
    }

  /* atanh(x) = x + x^3/3 + ... so the error is < 2^(3*EXP(x)-1) */
  MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, xt, -2 * MPFR_GET_EXP (xt), 1, 1,
                                    rnd_mode, {});

  MPFR_SAVE_EXPO_MARK (expo);

  /* Compute initial precision */
  Nx = MPFR_PREC (xt);
  MPFR_TMP_INIT_ABS (x, xt);
  Ny = MPFR_PREC (y);
  Nt = MAX (Nx, Ny);
  /* the optimal number of bits : see algorithms.ps */
  Nt = Nt + MPFR_INT_CEIL_LOG2 (Nt) + 4;

  /* initialise of intermediary variable */
  mpfr_init2 (t, Nt);
  mpfr_init2 (te, Nt);

  /* First computation of cosh */
  MPFR_ZIV_INIT (loop, Nt);
  for (;;)
    {
      /* compute atanh */
      mpfr_ui_sub (te, 1, x, MPFR_RNDU);   /* (1-xt)*/
      mpfr_add_ui (t,  x, 1, MPFR_RNDD);   /* (xt+1)*/
      mpfr_div (t, t, te, MPFR_RNDN);      /* (1+xt)/(1-xt)*/
      mpfr_log (t, t, MPFR_RNDN);          /* ln((1+xt)/(1-xt))*/
      mpfr_div_2ui (t, t, 1, MPFR_RNDN);   /* (1/2)*ln((1+xt)/(1-xt))*/

      /* error estimate: see algorithms.tex */
      /* FIXME: this does not correspond to the value in algorithms.tex!!! */
      /* err=Nt-__gmpfr_ceil_log2(1+5*pow(2,1-MPFR_EXP(t)));*/
      err = Nt - (MAX (4 - MPFR_GET_EXP (t), 0) + 1);

      if (MPFR_LIKELY (MPFR_IS_ZERO (t)
                       || MPFR_CAN_ROUND (t, err, Ny, rnd_mode)))
        break;

      /* reactualisation of the precision */
      MPFR_ZIV_NEXT (loop, Nt);
      mpfr_set_prec (t, Nt);
      mpfr_set_prec (te, Nt);
    }
  MPFR_ZIV_FREE (loop);

  inexact = mpfr_set4 (y, t, rnd_mode, MPFR_SIGN (xt));

  mpfr_clear(t);
  mpfr_clear(te);

  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (y, inexact, rnd_mode);
}
Exemple #30
0
int
mpfr_eint (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd)
{
  int inex;
  mpfr_t tmp, ump;
  mp_exp_t err, te;
  mp_prec_t prec;
  MPFR_SAVE_EXPO_DECL (expo);
  MPFR_ZIV_DECL (loop);

  MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd),
                 ("y[%#R]=%R inexact=%d", y, y, inex));

  if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
    {
      /* exp(NaN) = exp(-Inf) = NaN */
      if (MPFR_IS_NAN (x) || (MPFR_IS_INF (x) && MPFR_IS_NEG(x)))
        {
          MPFR_SET_NAN (y);
          MPFR_RET_NAN;
        }
      /* eint(+inf) = +inf */
      else if (MPFR_IS_INF (x))
        {
          MPFR_SET_INF(y);
          MPFR_SET_POS(y);
          MPFR_RET(0);
        }
      else /* eint(+/-0) = -Inf */
        {
          MPFR_SET_INF(y);
          MPFR_SET_NEG(y);
          MPFR_RET(0);
        }
    }

  /* eint(x) = NaN for x < 0 */
  if (MPFR_IS_NEG(x))
    {
      MPFR_SET_NAN (y);
      MPFR_RET_NAN;
    }

  MPFR_SAVE_EXPO_MARK (expo);

  /* Since eint(x) >= exp(x)/x, we have log2(eint(x)) >= (x-log(x))/log(2).
     Let's compute k <= (x-log(x))/log(2) in a low precision. If k >= emax,
     then log2(eint(x)) >= emax, and eint(x) >= 2^emax, i.e. it overflows. */
  mpfr_init2 (tmp, 64);
  mpfr_init2 (ump, 64);
  mpfr_log (tmp, x, GMP_RNDU);
  mpfr_sub (ump, x, tmp, GMP_RNDD);
  mpfr_const_log2 (tmp, GMP_RNDU);
  mpfr_div (ump, ump, tmp, GMP_RNDD);
  /* FIXME: We really need mpfr_set_exp_t and mpfr_cmp_exp_t functions. */
  MPFR_ASSERTN (MPFR_EMAX_MAX <= LONG_MAX);
  if (mpfr_cmp_ui (ump, __gmpfr_emax) >= 0)
    {
      mpfr_clear (tmp);
      mpfr_clear (ump);
      MPFR_SAVE_EXPO_FREE (expo);
      return mpfr_overflow (y, rnd, 1);
    }

  /* Init stuff */
  prec = MPFR_PREC (y) + 2 * MPFR_INT_CEIL_LOG2 (MPFR_PREC (y)) + 6;

  /* eint() has a root 0.37250741078136663446..., so if x is near,
     already take more bits */
  if (MPFR_GET_EXP(x) == -1) /* 1/4 <= x < 1/2 */
    {
      double d;
      d = mpfr_get_d (x, GMP_RNDN) - 0.37250741078136663;
      d = (d == 0.0) ? -53 : __gmpfr_ceil_log2 (d);
      prec += -d;
    }

  mpfr_set_prec (tmp, prec);
  mpfr_set_prec (ump, prec);

  MPFR_ZIV_INIT (loop, prec);            /* Initialize the ZivLoop controler */
  for (;;)                               /* Infinite loop */
    {
      /* We need that the smallest value of k!/x^k is smaller than 2^(-p).
         The minimum is obtained for x=k, and it is smaller than e*sqrt(x)/e^x
         for x>=1. */
      if (MPFR_GET_EXP (x) > 0 && mpfr_cmp_d (x, ((double) prec +
                            0.5 * (double) MPFR_GET_EXP (x)) * LOG2 + 1.0) > 0)
        err = mpfr_eint_asympt (tmp, x);
      else
        {
          err = mpfr_eint_aux (tmp, x); /* error <= 2^err ulp(tmp) */
          te = MPFR_GET_EXP(tmp);
          mpfr_const_euler (ump, GMP_RNDN); /* 0.577 -> EXP(ump)=0 */
          mpfr_add (tmp, tmp, ump, GMP_RNDN);
          /* error <= 1/2 + 1/2*2^(EXP(ump)-EXP(tmp)) + 2^(te-EXP(tmp)+err)
             <= 1/2 + 2^(MAX(EXP(ump), te+err+1) - EXP(tmp))
             <= 2^(MAX(0, 1 + MAX(EXP(ump), te+err+1) - EXP(tmp))) */
          err = MAX(1, te + err + 2) - MPFR_GET_EXP(tmp);
          err = MAX(0, err);
          te = MPFR_GET_EXP(tmp);
          mpfr_log (ump, x, GMP_RNDN);
          mpfr_add (tmp, tmp, ump, GMP_RNDN);
          /* same formula as above, except now EXP(ump) is not 0 */
          err += te + 1;
          if (MPFR_LIKELY (!MPFR_IS_ZERO (ump)))
            err = MAX (MPFR_GET_EXP (ump), err);
          err = MAX(0, err - MPFR_GET_EXP (tmp));
        }
      if (MPFR_LIKELY (MPFR_CAN_ROUND (tmp, prec - err, MPFR_PREC (y), rnd)))
        break;
      MPFR_ZIV_NEXT (loop, prec);        /* Increase used precision */
      mpfr_set_prec (tmp, prec);
      mpfr_set_prec (ump, prec);
    }
  MPFR_ZIV_FREE (loop);                  /* Free the ZivLoop Controler */

  inex = mpfr_set (y, tmp, rnd);    /* Set y to the computed value */
  mpfr_clear (tmp);
  mpfr_clear (ump);

  MPFR_SAVE_EXPO_FREE (expo);
  return mpfr_check_range (y, inex, rnd);
}