Exemple #1
0
int
main(int argc, char *argv[])
{
  char   **av ;
  int    ac, nargs, n ;
  MRI    *mri_src, *mri_dst = NULL, *mri_bias, *mri_orig, *mri_aseg = NULL ;
  char   *in_fname, *out_fname ;
  int          msec, minutes, seconds ;
  struct timeb start ;

  char cmdline[CMD_LINE_LEN] ;

  make_cmd_version_string
  (argc, argv,
   "$Id: mri_normalize.c,v 1.80 2012/10/16 21:38:35 nicks Exp $",
   "$Name:  $",
   cmdline);

  /* rkt: check for and handle version tag */
  nargs = handle_version_option
          (argc, argv,
           "$Id: mri_normalize.c,v 1.80 2012/10/16 21:38:35 nicks Exp $",
           "$Name:  $");
  if (nargs && argc - nargs == 1)
  {
    exit (0);
  }
  argc -= nargs;

  Progname = argv[0] ;
  ErrorInit(NULL, NULL, NULL) ;
  DiagInit(NULL, NULL, NULL) ;

  mni.max_gradient = MAX_GRADIENT ;
  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++)
  {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (argc < 3)
  {
    usage_exit(0) ;
  }
  if (argc < 1)
  {
    ErrorExit(ERROR_BADPARM, "%s: no input name specified", Progname) ;
  }
  in_fname = argv[1] ;

  if (argc < 2)
  {
    ErrorExit(ERROR_BADPARM, "%s: no output name specified", Progname) ;
  }
  out_fname = argv[2] ;

  if(verbose)
  {
    printf( "reading from %s...\n", in_fname) ;
  }
  mri_src = MRIread(in_fname) ;
  if (!mri_src)
    ErrorExit(ERROR_NO_FILE, "%s: could not open source file %s",
              Progname, in_fname) ;
  MRIaddCommandLine(mri_src, cmdline) ;

  if(nsurfs > 0)
  {
    MRI_SURFACE *mris ;
    MRI         *mri_dist=NULL, *mri_dist_sup=NULL, *mri_ctrl, *mri_dist_one ;
    LTA          *lta= NULL ;
    int          i ;
    TRANSFORM    *surface_xform ;

    if (control_point_fname)  // do one pass with only file control points first
    {
      MRI3dUseFileControlPoints(mri_src, control_point_fname) ;
      mri_dst =
        MRI3dGentleNormalize(mri_src,
                             NULL,
                             DEFAULT_DESIRED_WHITE_MATTER_VALUE,
                             NULL,
                             intensity_above,
                             intensity_below/2,1,
                             bias_sigma, mri_not_control);
    }
    else
    {
      mri_dst = MRIcopy(mri_src, NULL) ;
    }
    for (i = 0 ; i < nsurfs ; i++)
    {
      mris = MRISread(surface_fnames[i]) ;
      if (mris == NULL)
        ErrorExit(ERROR_NOFILE,"%s: could not surface %s",
                  Progname,surface_fnames[i]);
      surface_xform = surface_xforms[i] ;
      TransformInvert(surface_xform, NULL) ;
      if (surface_xform->type == MNI_TRANSFORM_TYPE ||
          surface_xform->type == TRANSFORM_ARRAY_TYPE ||
          surface_xform->type  == REGISTER_DAT)
      {
        lta = (LTA *)(surface_xform->xform) ;

#if 0
        if (invert)
        {
          VOL_GEOM vgtmp;
          LT *lt;
          MATRIX *m_tmp = lta->xforms[0].m_L ;
          lta->xforms[0].m_L = MatrixInverse(lta->xforms[0].m_L, NULL) ;
          MatrixFree(&m_tmp) ;
          lt = &lta->xforms[0];
          if (lt->dst.valid == 0 || lt->src.valid == 0)
          {
            printf( "WARNING:***************************************************************\n");
            printf( "WARNING:dst volume infor is invalid.  Most likely produce wrong inverse.\n");
            printf( "WARNING:***************************************************************\n");
          }
          copyVolGeom(&lt->dst, &vgtmp);
          copyVolGeom(&lt->src, &lt->dst);
          copyVolGeom(&vgtmp, &lt->src);
        }
#endif
      }

      if (stricmp(surface_xform_fnames[i], "identity.nofile") != 0)
      {
        MRIStransform(mris, NULL, surface_xform, NULL) ;
      }

      mri_dist_one = MRIcloneDifferentType(mri_dst, MRI_FLOAT) ;
      printf("computing distance transform\n") ;
      MRIScomputeDistanceToSurface(mris, mri_dist_one, mri_dist_one->xsize) ;
      if (i == 0)
      {
        mri_dist = MRIcopy(mri_dist_one, NULL) ;
      }
      else
      {
        MRIcombineDistanceTransforms(mri_dist_one, mri_dist, mri_dist) ;
      }
//  MRIminAbs(mri_dist_one, mri_dist, mri_dist) ;
      MRIfree(&mri_dist_one) ;
    }
    MRIscalarMul(mri_dist, mri_dist, -1) ;

    if (nonmax_suppress)
    {
      printf("computing nonmaximum suppression\n") ;
      mri_dist_sup = MRInonMaxSuppress(mri_dist, NULL, 0, 1) ;
      mri_ctrl = MRIcloneDifferentType(mri_dist_sup, MRI_UCHAR) ;
      MRIbinarize(mri_dist_sup, mri_ctrl, min_dist, CONTROL_NONE, CONTROL_MARKED) ;
    }
    else if (erode)
    {
      int i ;
      mri_ctrl = MRIcloneDifferentType(mri_dist, MRI_UCHAR) ;
      MRIbinarize(mri_dist, mri_ctrl, min_dist, CONTROL_NONE, CONTROL_MARKED) ;
      for (i = 0 ; i < erode ; i++)
      {
        MRIerode(mri_ctrl, mri_ctrl) ;
      }
    }
    else
    {
      mri_ctrl = MRIcloneDifferentType(mri_dist, MRI_UCHAR) ;
      MRIbinarize(mri_dist, mri_ctrl, min_dist, CONTROL_NONE, CONTROL_MARKED) ;
    }

    if (control_point_fname)
    {
      MRInormAddFileControlPoints(mri_ctrl, CONTROL_MARKED) ;
    }

    if (mask_sigma > 0)
    {
      MRI *mri_smooth, *mri_mag, *mri_grad ;
      mri_smooth = MRIgaussianSmooth(mri_dst, mask_sigma, 1, NULL) ;
      mri_mag = MRIcloneDifferentType(mri_dst, MRI_FLOAT) ;
      mri_grad = MRIsobel(mri_smooth, NULL, mri_mag) ;
      MRIbinarize(mri_mag, mri_mag, mask_thresh, 1, 0) ;
      MRImask(mri_ctrl, mri_mag, mri_ctrl, 0, CONTROL_NONE) ;
      MRIfree(&mri_grad) ;
      MRIfree(&mri_mag) ;
      MRIfree(&mri_smooth) ;
    }
    if (mask_orig_fname)
    {
      MRI *mri_orig ;

      mri_orig = MRIread(mask_orig_fname) ;
      MRIbinarize(mri_orig, mri_orig, mask_orig_thresh, 0, 1) ;

      MRImask(mri_ctrl, mri_orig, mri_ctrl, 0, CONTROL_NONE) ;
      MRIfree(&mri_orig) ;
    }
    if (Gdiag & DIAG_WRITE && DIAG_VERBOSE_ON)
    {
      MRIwrite(mri_dist, "d.mgz");
      MRIwrite(mri_dist_sup, "dm.mgz");
      MRIwrite(mri_ctrl, "c.mgz");
    }
    MRIeraseBorderPlanes(mri_ctrl, 4) ;
    if (aseg_fname)
    {
      mri_aseg = MRIread(aseg_fname) ;
      if (mri_aseg == NULL)
      {
        ErrorExit(ERROR_NOFILE,
                  "%s: could not load aseg from %s", Progname, aseg_fname) ;
      }
      remove_nonwm_voxels(mri_ctrl, mri_aseg, mri_ctrl) ;
      MRIfree(&mri_aseg) ;
    }
    else
    {
      remove_surface_outliers(mri_ctrl, mri_dist, mri_dst, mri_ctrl) ;
    }
    mri_bias = MRIbuildBiasImage(mri_dst, mri_ctrl, NULL, 0.0) ;
    if (mri_dist)
    {
      MRIfree(&mri_dist) ;
    }
    if (mri_dist_sup)
    {
      MRIfree(&mri_dist_sup) ;
    }
    if (bias_sigma> 0)
    {
      MRI *mri_kernel = MRIgaussian1d(bias_sigma, -1) ;
      if (Gdiag & DIAG_WRITE && DIAG_VERBOSE_ON)
      {
        MRIwrite(mri_bias, "b.mgz") ;
      }
      printf("smoothing bias field\n") ;
      MRIconvolveGaussian(mri_bias, mri_bias, mri_kernel) ;
      if (Gdiag & DIAG_WRITE && DIAG_VERBOSE_ON)
      {
        MRIwrite(mri_bias, "bs.mgz") ;
      }
      MRIfree(&mri_kernel);
    }
    MRIfree(&mri_ctrl) ;
    mri_dst = MRIapplyBiasCorrectionSameGeometry
              (mri_dst, mri_bias, mri_dst,
               DEFAULT_DESIRED_WHITE_MATTER_VALUE) ;
    printf("writing normalized volume to %s\n", out_fname) ;
    MRIwrite(mri_dst, out_fname) ;
    exit(0) ;
  } // end if(surface_fname)

  if (!mriConformed(mri_src) && conform > 0)
  {
    printf("unconformed source detected - conforming...\n") ;
    mri_src = MRIconform(mri_src) ;
  }

  if (mask_fname)
  {
    MRI *mri_mask ;

    mri_mask = MRIread(mask_fname) ;
    if (!mri_mask)
      ErrorExit(ERROR_NOFILE, "%s: could not open mask volume %s.\n",
                Progname, mask_fname) ;
    MRImask(mri_src, mri_mask, mri_src, 0, 0) ;
    MRIfree(&mri_mask) ;
  }

  if (read_flag)
  {
    MRI *mri_ctrl ;
    double scale ;

    mri_bias = MRIread(bias_volume_fname) ;
    if (!mri_bias)
      ErrorExit
      (ERROR_BADPARM,
       "%s: could not read bias volume %s", Progname, bias_volume_fname) ;
    mri_ctrl = MRIread(control_volume_fname) ;
    if (!mri_ctrl)
      ErrorExit
      (ERROR_BADPARM,
       "%s: could not read control volume %s",
       Progname, control_volume_fname) ;
    MRIbinarize(mri_ctrl, mri_ctrl, 1, 0, 128) ;
    mri_dst = MRImultiply(mri_bias, mri_src, NULL) ;
    scale = MRImeanInLabel(mri_dst, mri_ctrl, 128) ;
    printf("mean in wm is %2.0f, scaling by %2.2f\n", scale, 110/scale) ;
    scale = 110/scale ;
    MRIscalarMul(mri_dst, mri_dst, scale) ;
    MRIwrite(mri_dst, out_fname) ;
    exit(0) ;
  }

  if(long_flag)
  {
    MRI *mri_ctrl ;
    double scale ;

    mri_bias = MRIread(long_bias_volume_fname) ;
    if (!mri_bias)
      ErrorExit
      (ERROR_BADPARM,
       "%s: could not read bias volume %s", Progname, long_bias_volume_fname) ;
    mri_ctrl = MRIread(long_control_volume_fname) ;
    if (!mri_ctrl)
      ErrorExit
      (ERROR_BADPARM,
       "%s: could not read control volume %s",
       Progname, long_control_volume_fname) ;
    MRIbinarize(mri_ctrl, mri_ctrl, 1, 0, CONTROL_MARKED) ;
    if (mri_ctrl->type != MRI_UCHAR)
    {
      MRI *mri_tmp ;
      mri_tmp = MRIchangeType(mri_ctrl, MRI_UCHAR, 0, 1,1);
      MRIfree(&mri_ctrl) ;
      mri_ctrl = mri_tmp ;
    }
    scale = MRImeanInLabel(mri_src, mri_ctrl, CONTROL_MARKED) ;
    printf("mean in wm is %2.0f, scaling by %2.2f\n", scale, 110/scale) ;
    scale = DEFAULT_DESIRED_WHITE_MATTER_VALUE/scale ;
    mri_dst = MRIscalarMul(mri_src, NULL, scale) ;
    MRIremoveWMOutliers(mri_dst, mri_ctrl, mri_ctrl, intensity_below/2) ;
    mri_bias = MRIbuildBiasImage(mri_dst, mri_ctrl, NULL, 0.0) ;
    MRIsoapBubble(mri_bias, mri_ctrl, mri_bias, 50, 1) ;
    MRIapplyBiasCorrectionSameGeometry(mri_dst, mri_bias, mri_dst,
                                       DEFAULT_DESIRED_WHITE_MATTER_VALUE);
    //    MRIwrite(mri_dst, out_fname) ;
    //    exit(0) ;
  } // end if(long_flag)

  if (grad_thresh > 0)
  {
    float thresh ;
    MRI   *mri_mag, *mri_grad, *mri_smooth ;
    MRI *mri_kernel = MRIgaussian1d(.5, -1) ;

    mri_not_control = MRIcloneDifferentType(mri_src, MRI_UCHAR) ;
    switch (scan_type)
    {
    case MRI_MGH_MPRAGE:
      thresh = 15 ;
      break ;
    case MRI_WASHU_MPRAGE:
      thresh = 20 ;
      break ;
    case MRI_UNKNOWN:
    default:
      thresh = 12 ;
      break ;
    }
    mri_smooth = MRIconvolveGaussian(mri_src, NULL, mri_kernel) ;
    thresh = grad_thresh ;
    mri_mag = MRIcloneDifferentType(mri_src, MRI_FLOAT) ;
    mri_grad = MRIsobel(mri_smooth, NULL, mri_mag) ;
    MRIwrite(mri_mag, "m.mgz") ;
    MRIbinarize(mri_mag, mri_not_control, thresh, 0, 1) ;
    MRIwrite(mri_not_control, "nc.mgz") ;
    MRIfree(&mri_mag) ;
    MRIfree(&mri_grad) ;
    MRIfree(&mri_smooth) ;
    MRIfree(&mri_kernel) ;
  }
#if 0
#if 0
  if ((mri_src->type != MRI_UCHAR) ||
      (!(mri_src->xsize == 1 && mri_src->ysize == 1 && mri_src->zsize == 1)))
#else
  if (conform || (mri_src->type != MRI_UCHAR && conform > 0))
#endif
  {
    MRI  *mri_tmp ;

    fprintf
    (stderr,
     "downsampling to 8 bits and scaling to isotropic voxels...\n") ;
    mri_tmp = MRIconform(mri_src) ;
    mri_src = mri_tmp ;
  }
#endif

  if(aseg_fname)
  {
    printf("Reading aseg %s\n",aseg_fname);
    mri_aseg = MRIread(aseg_fname) ;
    if (mri_aseg == NULL)
      ErrorExit
      (ERROR_NOFILE,
       "%s: could not read aseg from file %s", Progname, aseg_fname) ;
    if (!mriConformed(mri_aseg))
    {
      ErrorExit(ERROR_UNSUPPORTED, "%s: aseg volume %s must be conformed",
                Progname, aseg_fname) ;
    }
  }
  else
  {
    mri_aseg = NULL ;
  }

  if(verbose)
  {
    printf( "normalizing image...\n") ;
  }
  fflush(stdout);
  fflush(stderr);

  TimerStart(&start) ;

  if (control_point_fname)
  {
    MRI3dUseFileControlPoints(mri_src, control_point_fname) ;
  }

  // this just setup writing control-point volume saving
  if(control_volume_fname)
  {
    MRI3dWriteControlPoints(control_volume_fname) ;
  }


  /* first do a gentle normalization to get
     things in the right intensity range */
  if(long_flag == 0)   // if long, then this will already have been done with base control points
  {
    if(control_point_fname != NULL)  /* do one pass with only
                                         file control points first */
      mri_dst =
        MRI3dGentleNormalize(mri_src,
                             NULL,
                             DEFAULT_DESIRED_WHITE_MATTER_VALUE,
                             NULL,
                             intensity_above,
                             intensity_below/2,1,
                             bias_sigma, mri_not_control);
    else
    {
      mri_dst = MRIcopy(mri_src, NULL) ;
    }
  }
  fflush(stdout);
  fflush(stderr);

  if(mri_aseg)
  {
    MRI *mri_ctrl, *mri_bias ;
    int  i ;

    printf("processing with aseg\n");

    mri_ctrl = MRIclone(mri_aseg, NULL) ;
    for (i = 0 ; i < NWM_LABELS ; i++)
    {
      MRIcopyLabel(mri_aseg, mri_ctrl, aseg_wm_labels[i]) ;
    }
    printf("removing outliers in the aseg WM...\n") ;
    MRIremoveWMOutliersAndRetainMedialSurface(mri_dst,
        mri_ctrl,
        mri_ctrl,
        intensity_below) ;
    MRIbinarize(mri_ctrl, mri_ctrl, 1, CONTROL_NONE, CONTROL_MARKED) ;
    MRInormAddFileControlPoints(mri_ctrl, CONTROL_MARKED) ;

    if (interior_fname1)
    {
      MRIS *mris_interior1, *mris_interior2 ;
      mris_interior1 = MRISread(interior_fname1) ;
      if (mris_interior1 == NULL)
        ErrorExit(ERROR_NOFILE,
                  "%s: could not read white matter surface from %s\n",
                  Progname, interior_fname1) ;
      mris_interior2 = MRISread(interior_fname2) ;
      if (mris_interior2 == NULL)
        ErrorExit(ERROR_NOFILE,
                  "%s: could not read white matter surface from %s\n",
                  Progname, interior_fname2) ;
      add_interior_points(mri_ctrl,
                          mri_dst,
                          intensity_above,
                          1.25*intensity_below,
                          mris_interior1,
                          mris_interior2,
                          mri_aseg,
                          mri_ctrl) ;
      MRISfree(&mris_interior1) ;
      MRISfree(&mris_interior2) ;
    }
    if (Gdiag & DIAG_WRITE && DIAG_VERBOSE_ON)
    {
      MRIwrite(mri_ctrl, "norm_ctrl.mgz") ;
    }

    printf("Building bias image\n");
    fflush(stdout);
    fflush(stderr);
    mri_bias = MRIbuildBiasImage(mri_dst, mri_ctrl, NULL, 0.0) ;
    fflush(stdout);
    fflush(stderr);

    if (bias_sigma> 0)
    {
      printf("Smoothing with sigma %g\n",bias_sigma);
      MRI *mri_kernel = MRIgaussian1d(bias_sigma, -1) ;
      MRIconvolveGaussian(mri_bias, mri_bias, mri_kernel) ;
      MRIfree(&mri_kernel);
      fflush(stdout);
      fflush(stderr);
    }
    MRIfree(&mri_ctrl) ;
    MRIfree(&mri_aseg) ;
    printf("Applying bias correction\n");
    mri_dst = MRIapplyBiasCorrectionSameGeometry
              (mri_dst, mri_bias, mri_dst,
               DEFAULT_DESIRED_WHITE_MATTER_VALUE) ;
    if (Gdiag & DIAG_WRITE && DIAG_VERBOSE_ON)
    {
      MRIwrite(mri_dst, "norm_1.mgz") ;
    }
    fflush(stdout);
    fflush(stderr);
  } // if(mri_aseg)
  else
  {
    printf("processing without aseg, no1d=%d\n",no1d);
    if (!no1d)
    {
      printf("MRInormInit(): \n");
      MRInormInit(mri_src, &mni, 0, 0, 0, 0, 0.0f) ;
      printf("MRInormalize(): \n");
      mri_dst = MRInormalize(mri_src, NULL, &mni) ;
      if (!mri_dst)
      {
        no1d = 1 ;
        printf("1d normalization failed - trying no1d...\n") ;
        // ErrorExit(ERROR_BADPARM, "%s: normalization failed", Progname) ;
      }
    }
    if(no1d)
    {
      if ((file_only && nosnr) ||
          ((gentle_flag != 0) && (control_point_fname != NULL)))
      {
        if (mri_dst == NULL)
        {
          mri_dst = MRIcopy(mri_src, NULL) ;
        }
      }
      else
      {
        if (nosnr)
        {
          if (interior_fname1)
          {
            MRIS *mris_interior1, *mris_interior2 ;
            MRI  *mri_ctrl ;

            printf("computing initial normalization using surface interiors\n");
            mri_ctrl = MRIcloneDifferentType(mri_src, MRI_UCHAR) ;
            mris_interior1 = MRISread(interior_fname1) ;
            if (mris_interior1 == NULL)
              ErrorExit(ERROR_NOFILE,
                        "%s: could not read white matter surface from %s\n",
                        Progname, interior_fname1) ;
            mris_interior2 = MRISread(interior_fname2) ;
            if (mris_interior2 == NULL)
              ErrorExit(ERROR_NOFILE,
                        "%s: could not read white matter surface from %s\n",
                        Progname, interior_fname2) ;
            add_interior_points(mri_ctrl,
                                mri_dst,
                                intensity_above,
                                1.25*intensity_below,
                                mris_interior1,
                                mris_interior2,
                                mri_aseg,
                                mri_ctrl) ;
            MRISfree(&mris_interior1) ;
            MRISfree(&mris_interior2) ;
            mri_bias = MRIbuildBiasImage(mri_dst, mri_ctrl, NULL, 0.0) ;
            if (bias_sigma> 0)
            {
              MRI *mri_kernel = MRIgaussian1d(bias_sigma, -1) ;
              MRIconvolveGaussian(mri_bias, mri_bias, mri_kernel) ;
              MRIfree(&mri_kernel);
            }
            mri_dst = MRIapplyBiasCorrectionSameGeometry
                      (mri_src,
                       mri_bias,
                       mri_dst,
                       DEFAULT_DESIRED_WHITE_MATTER_VALUE) ;
            MRIfree(&mri_ctrl) ;
          }
          else if (long_flag == 0)  // no initial normalization specified
          {
            mri_dst = MRIcopy(mri_src, NULL) ;
          }
        }
        else
        {
          printf("computing initial normalization using SNR...\n") ;
          mri_dst = MRInormalizeHighSignalLowStd
                    (mri_src, mri_dst, bias_sigma,
                     DEFAULT_DESIRED_WHITE_MATTER_VALUE) ;
        }
      }
      if (!mri_dst)
        ErrorExit
        (ERROR_BADPARM, "%s: could not allocate volume", Progname) ;
    }
  } // else (not using aseg)
  fflush(stdout);
  fflush(stderr);

  if (file_only == 0)
    MRI3dGentleNormalize(mri_dst, NULL, DEFAULT_DESIRED_WHITE_MATTER_VALUE,
                         mri_dst,
                         intensity_above, intensity_below/2,
                         file_only, bias_sigma, mri_not_control);

  mri_orig = MRIcopy(mri_dst, NULL) ;
  printf("\n");
  printf("Iterating %d times\n",num_3d_iter);
  for (n = 0 ; n < num_3d_iter ; n++)
  {
    if(file_only)
    {
      break ;
    }

    printf( "---------------------------------\n");
    printf( "3d normalization pass %d of %d\n", n+1, num_3d_iter) ;
    if (gentle_flag)
      MRI3dGentleNormalize(mri_dst, NULL, DEFAULT_DESIRED_WHITE_MATTER_VALUE,
                           mri_dst,
                           intensity_above/2, intensity_below/2,
                           file_only, bias_sigma, mri_not_control);
    else
      MRI3dNormalize(mri_orig, mri_dst, DEFAULT_DESIRED_WHITE_MATTER_VALUE,
                     mri_dst,
                     intensity_above, intensity_below,
                     file_only, prune, bias_sigma, scan_type, mri_not_control);
  }
  printf( "Done iterating ---------------------------------\n");

  // this just setup writing control-point volume saving
  if(control_volume_fname)
  {
    MRI3dWriteControlPoints(control_volume_fname) ;
  }

  if(bias_volume_fname)
  {
    mri_bias = compute_bias(mri_src, mri_dst, NULL) ;
    printf("writing bias field to %s....\n", bias_volume_fname) ;
    MRIwrite(mri_bias, bias_volume_fname) ;
    MRIfree(&mri_bias) ;
  }

  if (verbose)
  {
    printf("writing output to %s\n", out_fname) ;
  }
  MRIwrite(mri_dst, out_fname) ;
  msec = TimerStop(&start) ;

  MRIfree(&mri_src);
  MRIfree(&mri_dst);

  seconds = nint((float)msec/1000.0f) ;
  minutes = seconds / 60 ;
  seconds = seconds % 60 ;
  printf( "3D bias adjustment took %d minutes and %d seconds.\n",
          minutes, seconds) ;
  exit(0) ;
  return(0) ;
}
int
main(int argc, char *argv[]) {
  char          **av, fname[STRLEN], *T1_fname, *PD_fname, *output_dir, *mdir ;
  int           ac, nargs, msec, s ;
  MRI_SURFACE   *mris ;
  MRI           *mri_flash1, *mri_flash2, *mri_masked, *mri_masked_smooth, *mri_kernel,
  *mri_mean, *mri_dif, *mri_binary, *mri_distance ;
  MRI *mri_smooth, *mri_grad, *mri_inner ;
  struct timeb  then ;
  double        l_spring ;
  MRI_SEGMENTATION *mriseg ;


  /* rkt: check for and handle version tag */
  nargs = handle_version_option (argc, argv, "$Id: mris_AA_shrinkwrap.c,v 1.5 2011/03/02 00:04:34 nicks Exp $", "$Name: stable5 $");
  if (nargs && argc - nargs == 1)
    exit (0);
  argc -= nargs;

  Gdiag |= DIAG_SHOW ;
  Progname = argv[0] ;
  ErrorInit(NULL, NULL, NULL) ;
  DiagInit(NULL, NULL, NULL) ;

  memset(&parms, 0, sizeof(parms)) ;

  parms.projection = NO_PROJECTION ;
  parms.tol = 0.05 ;
  parms.check_tol = 1 ;
  parms.ignore_energy = 1 ;
  parms.dt = 0.5f ;
  parms.base_dt = BASE_DT_SCALE*parms.dt ;

  parms.l_spring_norm = 1 ;
  parms.l_shrinkwrap = 0 ;
  parms.l_intensity = 1 ;

  parms.niterations = 0 ;
  parms.write_iterations = 0 /*WRITE_ITERATIONS */;
  parms.integration_type = INTEGRATE_MOMENTUM ;
  parms.momentum = 0.0 /*0.8*/ ;
  parms.l_intensity = 1 ;
  parms.dt_increase = 1.0 /* DT_INCREASE */;
  parms.dt_decrease = 0.50 /* DT_DECREASE*/ ;
  parms.error_ratio = 50.0 /*ERROR_RATIO */;
  /*  parms.integration_type = INTEGRATE_LINE_MINIMIZE ;*/
  parms.l_surf_repulse = 0.0 ;
  parms.l_repulse = 0 /*1*/ ;

  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  mdir = getenv("FREESURFER_HOME") ;
  if (!mdir)
    ErrorExit(ERROR_BADPARM, "FREESURFER_HOME not defined in environment") ;

  if (argc < 4)
    usage_exit() ;

  /* set default parameters for white and gray matter surfaces */
  parms.niterations = 1000 ;
  if (parms.momentum < 0.0)
    parms.momentum = 0.0 /*0.75*/ ;

  TimerStart(&then) ;
  T1_fname = argv[1] ;
  PD_fname = argv[2] ;
  output_dir = argv[3] ;
  fprintf(stderr, "reading volume %s...\n", T1_fname) ;
  mri_flash1 = MRIread(T1_fname) ;
  if (!mri_flash1)
    ErrorExit(ERROR_NOFILE, "%s: could not read input volume %s", Progname, T1_fname) ;

  mri_flash2 = MRIread(PD_fname) ;
  if (!mri_flash2)
    ErrorExit(ERROR_NOFILE, "%s: could not read input volume %s", Progname, T1_fname) ;

  //  setMRIforSurface(mri_flash1);
  sprintf(fname, "%s/lib/bem/ic%d.tri", mdir, ic_init) ;
  mris = MRISread(fname) ;
  if (!mris)
    ErrorExit(ERROR_NOFILE, "%s: could not read icosahedron %s", Progname, fname) ;

  mri_mean = MRImean(mri_flash1, NULL, 5) ;
  MRIwrite(mri_mean, "mean.mgz") ;

  mri_dif = MRIabsdiff(mri_flash1, mri_flash2, NULL) ;
  MRIwrite(mri_dif, "dif.mgz") ;

  mriseg = MRIsegment(mri_mean, 30, 100000) ;
  s = MRIsegmentMax(mriseg) ;
  mri_masked = MRIsegmentToImage(mri_flash1, NULL, mriseg, s) ;
  MRIwrite(mri_masked, "mask.mgz") ;
  MRIsegmentFree(&mriseg) ;

  // MRIthresholdMask(mri_dif, mri_masked, mri_dif, 1, 0) ;
  // MRIwrite(mri_dif, "dif_masked.mgz") ;


  mri_kernel = MRIgaussian1d(2, 0) ;
  mri_smooth = MRIconvolveGaussian(mri_dif, NULL, mri_kernel) ;
  MRIwrite(mri_smooth, "smooth.mgz") ;
  MRIScopyVolGeomFromMRI(mris, mri_smooth) ;
  mris->useRealRAS = 1 ;

  initialize_surface_position(mris, mri_dif, 1, &parms) ;
  MRISwrite(mris, "init") ;
  MRISrepositionToInnerSkull(mris, mri_smooth, &parms) ;

  exit(0) ;
  mri_grad = MRIsobel(mri_smooth, NULL, NULL) ;
  MRIwrite(mri_grad, "grad.mgz") ;
  mri_inner = MRIfindInnerBoundary(mri_dif, mri_grad, NULL, 5.0) ;
  MRIwrite(mri_inner, "inner.mgz") ;
  MRIbinarize(mri_inner, mri_inner, 10, 0, 128) ;

  MRISpositionOptimalSphere(mris, mri_inner, 6) ;
  MRISwrite(mris, "optimal") ;
  exit(0) ;
  parms.sigma = 4 / mri_flash1->xsize ;
  // mri_dist = create_distance_map(mri_masked, NULL, BORDER_VAL, OUTSIDE_BORDER_STEP) ;
  MRISsetVals(mris,parms.sigma) ;
  MRIScopyValToVal2(mris) ;
  MRISsetVals(mris, 0) ;
  sprintf(parms.base_name, "%s_inner_skull%s%s", "test", output_suffix, suffix) ;
  parms.mri_brain = mri_masked ;
  l_spring = parms.l_spring_norm ;
  mri_kernel = MRIgaussian1d(parms.sigma, 0) ;


  mri_binary = MRIbinarize(mri_dif, mri_binary, 40, 0, 128) ;
  MRIwrite(mri_binary, "bin.mgz") ;
  mri_distance = MRIdistanceTransform(mri_binary, NULL, 128, 100, DTRANS_MODE_SIGNED, NULL) ;
  MRIwrite(mri_distance, "dist.mgz") ;
  mri_masked_smooth = MRIconvolveGaussian(mri_distance, NULL, mri_kernel) ;
  MRIfree(&mri_kernel) ;
  MRIwrite(mri_masked_smooth, "dif_smooth.mgz") ;

  MRISwrite(mris, "inner_skull.tri") ;

  msec = TimerStop(&then) ;
  fprintf(stderr,"positioning took %2.1f minutes\n", (float)msec/(60*1000.0f));
  exit(0) ;
  return(0) ;  /* for ansi */
}
Exemple #3
0
int
main(int argc, char *argv[]) {
  char   **av ;
  int    ac, nargs, width, height, depth, x, y, z, xborder, yborder, zborder,
  xrborder, yrborder, zrborder ;
  char   *in_fname, *out_fname ;
  MRI    *mri_smooth, *mri_grad, *mri_filter_src, *mri_filter_dst, *mri_dst,
  *mri_tmp, *mri_blur, *mri_src, *mri_filtered, *mri_direction,
  *mri_offset, *mri_up, *mri_polv, *mri_dir, *mri_clip, *mri_full ;
  MRI_REGION  region, clip_region ;

  /* rkt: check for and handle version tag */
  nargs = handle_version_option (argc, argv, "$Id: mri_nlfilter.c,v 1.14 2011/03/02 00:04:23 nicks Exp $", "$Name:  $");
  if (nargs && argc - nargs == 1)
    exit (0);
  argc -= nargs;

  Progname = argv[0] ;
  ErrorInit(NULL, NULL, NULL) ;
  DiagInit(NULL, NULL, NULL) ;

  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (argc < 3)
    usage_exit() ;

  in_fname = argv[1] ;
  out_fname = argv[2] ;

  mri_full = mri_src = MRIread(in_fname) ;
  if (!mri_src)
    ErrorExit(ERROR_NOFILE, "%s: could not read '%s'", Progname, in_fname) ;
  if (!FZERO(blur_sigma))   /* allocate a blurring kernel */
  {
    mri_blur = MRIgaussian1d(blur_sigma, 0) ;
    if (!mri_blur)
      ErrorExit(ERROR_BADPARM,
                "%s: could not allocate blurring kernel with sigma=%2.3f",
                Progname, blur_sigma) ;
  } else
    mri_blur = NULL ;

  MRIboundingBox(mri_full, 0, &clip_region) ;
  REGIONexpand(&clip_region, &clip_region, (filter_window_size+1)/2) ;
  mri_src = MRIextractRegion(mri_full, NULL, &clip_region) ;
  width = mri_src->width ;
  height = mri_src->height ;
  depth = mri_src->depth ;
  mri_dst = MRIclone(mri_src, NULL) ;
  if (!mri_dst)
    ErrorExit(ERROR_NOFILE, "%s: could allocate space for destination image",
              Progname) ;

  for (z = 0 ; z < depth ; z += region_size) {
    for (y = 0 ; y < height ; y += region_size) {
      DiagHeartbeat((float)(z*height+y) / (float)(height*(depth-1))) ;
      for (x = 0 ; x < width ; x += region_size) {
        region.x = x ;
        region.y = y ;
        region.z = z ;
        region.dx = region.dy = region.dz = region_size ;
        if (region.x == 142)
          DiagBreak() ;
        REGIONexpand(&region, &region, (filter_window_size+1)/2) ;
        MRIclipRegion(mri_src, &region, &region) ;
        if (region.x == 142)
          DiagBreak() ;

        /* check for < 0 width regions */
        xborder = x-region.x ;
        yborder = y-region.y ;
        zborder = z-region.z ;
        xrborder = MAX(0, (region.dx-xborder) - region_size) ;
        yrborder = MAX(0, (region.dy-yborder) - region_size) ;
        zrborder = MAX(0, (region.dz-zborder) - region_size) ;
#if 0
        if (region.dx < 2*xborder || region.dy<2*yborder||region.dz<2*zborder)
          continue ;
#endif

        if (DIAG_VERBOSE_ON && (Gdiag & DIAG_SHOW))
          fprintf(stderr, "extracting region (%d, %d, %d) --> (%d, %d, %d)...",
                  region.x,region.y,region.z, region.x+region.dx-1,
                  region.y+region.dy-1,region.z+region.dz-1) ;
        mri_clip = MRIextractRegion(mri_src, NULL, &region) ;
        if (DIAG_VERBOSE_ON && (Gdiag & DIAG_SHOW))
          fprintf(stderr, "done.\nsmoothing region and up-sampling...") ;

        if (mri_blur)   /* smooth the input image to generate offset field */
          mri_smooth = MRIconvolveGaussian(mri_clip, NULL, mri_blur) ;
        else
          mri_smooth = MRIcopy(mri_clip, NULL) ;  /* no smoothing */
        if (!mri_smooth)
          ErrorExit(ERROR_BADPARM, "%s: image smoothing failed", Progname) ;

        /* now up-sample the smoothed image, and compute offset field in
           up-sampled domain */
        mri_up = MRIupsample2(mri_smooth, NULL) ;
        if (!mri_up)
          ErrorExit(ERROR_BADPARM, "%s: up sampling failed", Progname) ;
        MRIfree(&mri_smooth) ;
        if (DIAG_VERBOSE_ON && (Gdiag & DIAG_SHOW))
          fprintf(stderr, "done.\n") ;
        mri_smooth = mri_up ;
        mri_grad = MRIsobel(mri_smooth, NULL, NULL) ;
        mri_dir = MRIclone(mri_smooth, NULL) ;
        MRIfree(&mri_smooth) ;
        if (DIAG_VERBOSE_ON && (Gdiag & DIAG_SHOW))
          fprintf(stderr, "computing direction map...") ;
        mri_direction =
          MRIoffsetDirection(mri_grad, offset_window_size, NULL, mri_dir) ;

        if (DIAG_VERBOSE_ON && (Gdiag & DIAG_SHOW))
          fprintf(stderr, "computing offset magnitudes...") ;
        MRIfree(&mri_grad) ;
        mri_offset =
          MRIoffsetMagnitude(mri_direction, NULL, offset_search_len);
        MRIfree(&mri_direction) ;
        if (!mri_offset)
          ErrorExit(ERROR_NOMEMORY,
                    "%s: offset calculation failed", Progname) ;
        if (DIAG_VERBOSE_ON && (Gdiag & DIAG_SHOW))
          fprintf(stderr, "done.\nfiltering image...") ;
        mri_filter_src = MRIupsample2(mri_clip, NULL) ;
        MRIfree(&mri_clip) ;
        switch (filter_type) {
        case FILTER_CPOLV_MEDIAN:
          mri_polv = MRIplaneOfLeastVarianceNormal(mri_filter_src,NULL,5);
          mri_filter_dst =
            MRIpolvMedian(mri_filter_src, NULL, mri_polv,filter_window_size);
          MRIfree(&mri_polv) ;
          break ;
        case FILTER_GAUSSIAN:
          mri_filter_dst =
            MRIconvolveGaussian(mri_filter_src, NULL, mri_gaussian) ;
          if (!mri_filter_dst)
            ErrorExit(ERROR_NOMEMORY,
                      "%s: could not allocate temporary buffer space",Progname);
          break ;
        case FILTER_MEDIAN:
          mri_filter_dst = MRImedian(mri_filter_src,NULL,filter_window_size, NULL);
          if (!mri_filter_dst)
            ErrorExit(ERROR_NOMEMORY,
                      "%s: could not allocate temporary buffer space",Progname);
          break ;
        case FILTER_MEAN:
          mri_filter_dst = MRImean(mri_filter_src, NULL, filter_window_size) ;
          if (!mri_filter_dst)
            ErrorExit(ERROR_NOMEMORY,
                      "%s: could not allocate temporary buffer space",Progname);
          break ;
        case FILTER_MINMAX:
          mri_filter_dst =
            MRIminmax(mri_filter_src, NULL, mri_dir, filter_window_size) ;
          if (!mri_filter_dst)
            ErrorExit(ERROR_NOMEMORY,
                      "%s: could not allocate space for filtered image",
                      Progname) ;
          break ;
        default:
          mri_filter_dst = MRIcopy(mri_filter_src, NULL) ; /* no filtering */
          break ;
        }
        MRIfree(&mri_dir) ;
        MRIfree(&mri_filter_src) ;

        if (no_offset)
        {
          mri_filtered = MRIcopy(mri_filter_dst, NULL) ;
        }
        else
        {
          if (DIAG_VERBOSE_ON && (Gdiag & DIAG_SHOW))
            fprintf(stderr, "applying offset field...") ;
          if (Gdiag & DIAG_WRITE)
            MRIwrite(mri_filter_dst, "minmax.mgz") ;
          mri_filtered = MRIapplyOffset(mri_filter_dst, NULL, mri_offset) ;
          if (!mri_filtered)
            ErrorExit(ERROR_NOMEMORY,
                      "%s: could not allocate filtered image", Progname) ;
          if (DIAG_VERBOSE_ON && (Gdiag & DIAG_SHOW))
            fprintf(stderr, "done.\n") ;
          if (region.x == 142)
          DiagBreak() ;
          MRIfree(&mri_offset) ;
        }
        MRIfree(&mri_filter_dst) ;
        if (Gdiag & DIAG_WRITE)
          MRIwrite(mri_filtered, "upfilt.mgz") ;
        mri_tmp = MRIdownsample2(mri_filtered, NULL) ;
        MRIfree(&mri_filtered) ;
        if (Gdiag & DIAG_WRITE)
          MRIwrite(mri_tmp, "downfilt.mgz") ;
        region.x += xborder ;
        region.y += yborder ;
        region.z += zborder ;
#if 0
        region.dx -=2*xborder;
        region.dy-= 2*yborder;
        region.dz -= 2 * zborder;
#else
        region.dx -= xrborder + xborder;
        region.dy -= yrborder + yborder;
        region.dz -= zrborder + zborder;
#endif
        if (region.dx <= 0 || region.dy <= 0 || region.dz <= 0) {
          fprintf(stderr, "invalid region: (%d,%d,%d) --> (%d,%d,%d)\n",
                  region.x,region.y,region.z,region.dx,region.dy,region.dz);
        } else
          MRIextractIntoRegion(mri_tmp,mri_dst,xborder,yborder,zborder,&region);
        MRIfree(&mri_tmp);
      }
    }
  }
  MRIextractIntoRegion(mri_dst,mri_full, 0, 0, 0, &clip_region);
  MRIfree(&mri_dst) ;
  if (DIAG_VERBOSE_ON && (Gdiag & DIAG_SHOW))
    fprintf(stderr, "writing output image %s...", out_fname) ;
  MRIwrite(mri_full, out_fname) ;
  MRIfree(&mri_full) ;
  if (DIAG_VERBOSE_ON && (Gdiag & DIAG_SHOW))
    fprintf(stderr, "done.\n") ;
  exit(0) ;
  return(0) ;  /* for ansi */
}
int
main(int argc, char *argv[]) {
  char         *ref_fname, *in_fname, *out_fname, fname[STRLEN], **av ;
  MRI          *mri_ref, *mri_in, *mri_orig, *mri_in_red, *mri_ref_red,
  *mri_in_tmp, *mri_ref_tmp, *mri_ref_orig, *mri_in_orig ;
  int          ac, nargs, i, msec, minutes, seconds ;
  struct timeb start ;
  MATRIX       *m_L ;

  /* rkt: check for and handle version tag */
  nargs = handle_version_option (argc, argv, "$Id: mri_linear_register.c,v 1.13 2011/03/02 00:04:22 nicks Exp $", "$Name: stable5 $");
  if (nargs && argc - nargs == 1)
    exit (0);
  argc -= nargs;

  parms.mri_crop = NULL ;
  parms.l_intensity = 1.0f ;
  parms.niterations = 100 ;
  parms.levels = -1 ;   /* use default */
  parms.dt = 1e-6 ;  /* was 5e-6 */
  parms.tol = INTEGRATION_TOL*5 ;

  parms.dt = 5e-6 ;  /* was 5e-6 */
  parms.tol = 1e-3 ;
  parms.momentum = 0.8 ;
  parms.max_levels = MAX_LEVELS ;
  parms.factor = 1.0 ;
  parms.niterations = 25 ;
  Progname = argv[0] ;


  DiagInit(NULL, NULL, NULL) ;
  ErrorInit(NULL, NULL, NULL) ;

  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (argc < 4)
    ErrorExit(ERROR_BADPARM,
              "usage: %s <in brain> <template> <output file name>\n",
              Progname) ;

  in_fname = argv[1] ;
  ref_fname = argv[2] ;
  if (xform_mean_fname) {
    int   sno, nsubjects ;
    FILE  *fp ;

    parms.m_xform_mean = MatrixAsciiRead(xform_mean_fname, NULL) ;
    if (!parms.m_xform_mean)
      ErrorExit(Gerror, "%s: could not read parameter means from %s",
                Progname, xform_mean_fname) ;

    fp = fopen(xform_covariance_fname, "r") ;
    if (!fp)
      ErrorExit(ERROR_NOFILE, "%s: could not read covariances from %s",
                Progname, xform_covariance_fname) ;

    fscanf(fp, "nsubjects=%d", &nsubjects) ;
    printf("reading %d transforms...\n", nsubjects) ;

    parms.m_xforms = (MATRIX **)calloc(nsubjects, sizeof(MATRIX *)) ;
    if (!parms.m_xforms)
      ErrorExit(ERROR_NOMEMORY, "%s: could not allocate array of %d xforms",
                Progname, nsubjects) ;
    for (sno = 0 ; sno < nsubjects ; sno++) {
      parms.m_xforms[sno] = MatrixAsciiReadFrom(fp, NULL) ;
      if (!parms.m_xforms[sno])
        ErrorExit(ERROR_NOMEMORY, "%s: could not allocate %dth xform",
                  Progname, sno) ;

    }
    parms.m_xform_covariance = MatrixAsciiReadFrom(fp, NULL) ;
    if (!parms.m_xform_covariance)
      ErrorExit(Gerror, "%s: could not read parameter covariance from %s",
                Progname, xform_covariance_fname) ;
    fclose(fp) ;
    parms.l_priors = l_priors ;
    parms.nxforms = nsubjects ;
  }
  out_fname = argv[3] ;
  FileNameOnly(out_fname, fname) ;
  FileNameRemoveExtension(fname, fname) ;
  strcpy(parms.base_name, fname) ;
  fprintf(stderr, "logging results to %s.log\n", parms.base_name) ;

  TimerStart(&start) ;
  fprintf(stderr, "reading '%s'...\n", ref_fname) ;
  fflush(stderr) ;
  mri_ref = MRIread(ref_fname) ;
  if (!mri_ref)
    ErrorExit(ERROR_NOFILE, "%s: could not open reference volume %s.\n",
              Progname, ref_fname) ;
  if (mri_ref->type != MRI_UCHAR) {
    MRI *mri_tmp ;

    mri_tmp = MRIchangeType(mri_ref, MRI_UCHAR, 0.0, 0.999, FALSE) ;
    MRIfree(&mri_ref) ;
    mri_ref = mri_tmp ;
  }

  if (var_fname)  /* read in a volume of standard deviations */
  {
    MRI *mri_var, *mri_tmp ;

    fprintf(stderr, "reading '%s'...\n", var_fname) ;
    mri_var = MRIread(var_fname) ;
    if (!mri_var)
      ErrorExit(ERROR_NOFILE, "%s: could not open variance volume %s.\n",
                Progname, var_fname) ;
    mri_tmp = MRIconcatenateFrames(mri_ref, mri_var, NULL) ;
    MRIfree(&mri_var) ;
    MRIfree(&mri_ref) ;
    mri_ref = mri_tmp ;
  }
  fprintf(stderr, "reading '%s'...\n", in_fname) ;
  fflush(stderr) ;
  mri_orig = mri_in = MRIread(in_fname) ;
  if (!mri_in)
    ErrorExit(ERROR_NOFILE, "%s: could not open input volume %s.\n",
              Progname, in_fname) ;
  if (mri_in->type != MRI_UCHAR) {
    MRI *mri_tmp ;

    mri_orig = mri_tmp = MRIchangeType(mri_in, MRI_UCHAR, 0.0, 0.999, FALSE) ;
    MRIfree(&mri_in) ;
    mri_in = mri_tmp ;
  }

  /* make sure they are the same size */
  if (mri_in->width  != mri_ref->width ||
      mri_in->height != mri_ref->height  ||
      mri_in->depth  != mri_ref->depth) {
    int  width, height, depth ;
    MRI  *mri_tmp ;

    width = MAX(mri_in->width, mri_ref->width) ;
    height = MAX(mri_in->height, mri_ref->height) ;
    depth = MAX(mri_in->depth, mri_ref->depth) ;
    mri_tmp = MRIalloc(width, height, depth, MRI_UCHAR) ;
    MRIextractInto(mri_in, mri_tmp, 0, 0, 0,
                   mri_in->width, mri_in->height, mri_in->depth, 0, 0, 0) ;
#if 0
    MRIfree(&mri_in) ;
#else
    parms.mri_in = mri_in ;
#endif
    mri_in = mri_orig = mri_tmp ;

    mri_tmp = MRIallocSequence(width, height,depth,MRI_UCHAR,mri_ref->nframes);
    MRIextractInto(mri_ref, mri_tmp, 0, 0, 0,
                   mri_ref->width, mri_ref->height, mri_ref->depth, 0, 0, 0) ;
#if 0
    MRIfree(&mri_ref) ;
#else
    parms.mri_in = mri_in ;
#endif
    mri_ref = mri_tmp ;
  }


  if (!FZERO(tx) || !FZERO(ty) || !FZERO(tz)) {
    MRI *mri_tmp ;

    fprintf(stderr, "translating second volume by (%2.1f, %2.1f, %2.1f)\n",
            tx, ty, tz) ;
    mri_tmp = MRItranslate(mri_in, NULL, tx, ty, tz) ;
    MRIfree(&mri_in) ;
    mri_in = mri_tmp ;
  }

  if (!FZERO(rzrot)) {
    MRI *mri_tmp ;

    fprintf(stderr,
            "rotating second volume by %2.1f degrees around Z axis\n",
            (float)DEGREES(rzrot)) ;
    mri_tmp = MRIrotateZ_I(mri_in, NULL, rzrot) ;
    MRIfree(&mri_in) ;
    mri_in = mri_tmp ;
  }
  if (!FZERO(rxrot)) {
    MRI *mri_tmp ;

    fprintf(stderr,
            "rotating second volume by %2.1f degrees around X axis\n",
            (float)DEGREES(rxrot)) ;
    mri_tmp = MRIrotateX_I(mri_in, NULL, rxrot) ;
    MRIfree(&mri_in) ;
    mri_in = mri_tmp ;
  }
  if (!FZERO(ryrot)) {
    MRI *mri_tmp ;

    fprintf(stderr,
            "rotating second volume by %2.1f degrees around Y axis\n",
            (float)DEGREES(ryrot)) ;
    mri_tmp = MRIrotateY_I(mri_in, NULL, ryrot) ;
    MRIfree(&mri_in) ;
    mri_in = mri_tmp ;
  }

  if (!transform_loaded)   /* wasn't preloaded */
    parms.lta = LTAalloc(1, mri_in) ;

  if (!FZERO(blur_sigma)) {
    MRI *mri_kernel, *mri_tmp ;

    mri_kernel = MRIgaussian1d(blur_sigma, 100) ;
    mri_tmp = MRIconvolveGaussian(mri_in, NULL, mri_kernel) ;
    mri_in = mri_tmp ;
    MRIfree(&mri_kernel) ;
  }
  MRIscaleMeanIntensities(mri_in, mri_ref, mri_in);

  mri_ref_orig = mri_ref ;
  mri_in_orig = mri_in ;
  if (nreductions > 0) {
    mri_in_red = mri_in_tmp = MRIcopy(mri_in, NULL) ;
    mri_ref_red = mri_ref_tmp = MRIcopy(mri_ref, NULL) ;
    for (i = 0 ; i < nreductions ; i++) {
      mri_in_red = MRIreduceByte(mri_in_tmp, NULL) ;
      mri_ref_red = MRIreduceMeanAndStdByte(mri_ref_tmp,NULL);
      MRIfree(&mri_in_tmp);
      MRIfree(&mri_ref_tmp) ;
      mri_in_tmp = mri_in_red ;
      mri_ref_tmp = mri_ref_red ;
    }
    mri_in = mri_in_red ;
    mri_ref = mri_ref_red ;
  }
  /* for diagnostics */
  if (full_res) {
    parms.mri_ref = mri_ref ;
    parms.mri_in = mri_in ;
  } else {
    parms.mri_ref = mri_ref_orig ;
    parms.mri_in = mri_in_orig ;
  }

  m_L = initialize_transform(mri_in, mri_ref, &parms) ;

  if (use_gradient) {
    MRI  *mri_in_mag, *mri_ref_mag, *mri_grad, *mri_mag ;

    printf("computing gradient magnitude of input image...\n") ;
    mri_mag = MRIalloc(mri_in->width, mri_in->height, mri_in->depth,MRI_FLOAT);
    MRIcopyHeader(mri_in, mri_mag) ;
    mri_grad = MRIsobel(mri_in, NULL, mri_mag) ;
    MRIfree(&mri_grad) ;

    /* convert it to ubytes */
    MRIvalScale(mri_mag, mri_mag, 0.0f, 255.0f) ;
    mri_in_mag = MRIclone(mri_in, NULL) ;
    MRIcopy(mri_mag, mri_in_mag) ;
    MRIfree(&mri_mag) ;

    /* now compute gradient of ref image */
    printf("computing gradient magnitude of reference image...\n") ;
    mri_mag = MRIalloc(mri_ref->width, mri_ref->height, mri_ref->depth,MRI_FLOAT);
    MRIcopyHeader(mri_ref, mri_mag) ;
    mri_grad = MRIsobel(mri_ref, NULL, mri_mag) ;
    MRIfree(&mri_grad) ;

    /* convert it to ubytes */
    MRIvalScale(mri_mag, mri_mag, 0.0f, 255.0f) ;
    mri_ref_mag = MRIclone(mri_ref, NULL) ;
    MRIcopy(mri_mag, mri_ref_mag) ;
    MRIfree(&mri_mag) ;

    register_mri(mri_in_mag, mri_ref_mag, &parms, m_L) ;
    MRIfree(&mri_in_mag) ;
    MRIfree(&mri_ref_mag) ;
  }
  register_mri(mri_in, mri_ref, &parms, m_L) ;
  if (check_crop_flag)  /* not working yet! */
  {
    printf("searching for cropped regions in the input image...\n") ;
    parms.mri_crop = find_cropping(mri_orig, mri_ref, &parms) ;
    MRIwrite(parms.mri_crop, "crop.mgh") ;
    register_mri(mri_in, mri_ref, &parms, m_L) ;
  }

  if (voxel_coords) {
    printf("transforming xform to voxel coordinates...\n") ;
    MRIrasXformToVoxelXform(mri_in_orig, mri_ref_orig,
                            parms.lta->xforms[0].m_L,
                            parms.lta->xforms[0].m_L);
    if (Gdiag & DIAG_WRITE) {
      MRI *mri_tmp ;

      mri_tmp = MRIlinearTransform(mri_in_orig, NULL,parms.lta->xforms[0].m_L);
      MRIwriteImageViews(mri_tmp, "morphed", IMAGE_SIZE) ;
      MRIfree(&mri_tmp) ;
    }
  }
  // save src and target info in lta
  getVolGeom(mri_in_orig, &parms.lta->xforms[0].src);
  getVolGeom(mri_ref_orig, &parms.lta->xforms[0].dst);
  fprintf(stderr, "writing output transformation to %s...\n", out_fname) ;
  if (invert_flag) {
    MATRIX *m_tmp ;

    m_tmp = MatrixInverse(parms.lta->xforms[0].m_L, NULL) ;
    MatrixFree(&parms.lta->xforms[0].m_L) ;
    // change src and dst
    getVolGeom(mri_in_orig, &parms.lta->xforms[0].dst);
    getVolGeom(mri_ref_orig, &parms.lta->xforms[0].src);
    parms.lta->xforms[0].m_L = m_tmp ;
  }
  //
  LTAwriteEx(parms.lta, out_fname) ;
  //
  if (mri_ref)
    MRIfree(&mri_ref) ;
  if (mri_in)
    MRIfree(&mri_in) ;
  msec = TimerStop(&start) ;
  seconds = nint((float)msec/1000.0f) ;
  minutes = seconds / 60 ;
  seconds = seconds % 60 ;
  fprintf(stderr, "registration took %d minutes and %d seconds.\n",
          minutes, seconds) ;
  exit(0) ;
  return(0) ;
}