Exemple #1
0
METHODDEF void
start_pass_fdctmgr (j_compress_ptr cinfo)
{
  my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
  int ci, qtblno, i;
  jpeg_component_info *compptr;
  JQUANT_TBL * qtbl;
#ifdef DCT_ISLOW_SUPPORTED
  DCTELEM * dtbl;
#endif

  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    qtblno = compptr->quant_tbl_no;
    /* Make sure specified quantization table is present */
    if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
	cinfo->quant_tbl_ptrs[qtblno] == NULL)
      ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
    qtbl = cinfo->quant_tbl_ptrs[qtblno];
    /* Compute divisors for this quant table */
    /* We may do this more than once for same table, but it's not a big deal */
    switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
    case JDCT_ISLOW:
      /* For LL&M IDCT method, divisors are equal to raw quantization
       * coefficients multiplied by 8 (to counteract scaling).
       */
      if (fdct->divisors[qtblno] == NULL) {
	fdct->divisors[qtblno] = (DCTELEM *)
	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				      DCTSIZE2 * SIZEOF(DCTELEM));
      }
      dtbl = fdct->divisors[qtblno];
      for (i = 0; i < DCTSIZE2; i++) {
	dtbl[i] = ((DCTELEM) qtbl->quantval[jpeg_zigzag_order[i]]) << 3;
      }
      break;
#endif
#ifdef DCT_IFAST_SUPPORTED
    case JDCT_IFAST:
      {
	/* For AA&N IDCT method, divisors are equal to quantization
	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
	 *   scalefactor[0] = 1
	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
	 * We apply a further scale factor of 8.
	 */
#define CONST_BITS 14
	static const INT16 aanscales[DCTSIZE2] = {
	  /* precomputed values scaled up by 14 bits: in natural order */
	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
	};
	SHIFT_TEMPS

	if (fdct->divisors[qtblno] == NULL) {
	  fdct->divisors[qtblno] = (DCTELEM *)
	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
					DCTSIZE2 * SIZEOF(DCTELEM));
	}
	dtbl = fdct->divisors[qtblno];
	for (i = 0; i < DCTSIZE2; i++) {
	  dtbl[i] = (DCTELEM)
	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[jpeg_zigzag_order[i]],
				  (INT32) aanscales[i]),
		    CONST_BITS-3);
	}
      }
      break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
    case JDCT_FLOAT:
      {
	/* For float AA&N IDCT method, divisors are equal to quantization
	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
	 *   scalefactor[0] = 1
	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
	 * We apply a further scale factor of 8.
	 * What's actually stored is 1/divisor so that the inner loop can
	 * use a multiplication rather than a division.
	 */
	FAST_FLOAT * fdtbl;
	int row, col;
	static const double aanscalefactor[DCTSIZE] = {
	  1.0, 1.387039845, 1.306562965, 1.175875602,
	  1.0, 0.785694958, 0.541196100, 0.275899379
	};

	if (fdct->float_divisors[qtblno] == NULL) {
	  fdct->float_divisors[qtblno] = (FAST_FLOAT *)
	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
					DCTSIZE2 * SIZEOF(FAST_FLOAT));
	}
	fdtbl = fdct->float_divisors[qtblno];
	i = 0;
	for (row = 0; row < DCTSIZE; row++) {
	  for (col = 0; col < DCTSIZE; col++) {
	    fdtbl[i] = (FAST_FLOAT)
	      (1.0 / (((double) qtbl->quantval[jpeg_zigzag_order[i]] *
		       aanscalefactor[row] * aanscalefactor[col] * 8.0)));
	    i++;
	  }
	}
      }
      break;
#endif
    default:
      ERREXIT(cinfo, JERR_NOT_COMPILED);
      break;
    }
  }
}
Exemple #2
0
METHODDEF void
start_input_pass (j_decompress_ptr cinfo)
{
  my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
  int ci, qtblno, i;
  jpeg_component_info *compptr;
  JQUANT_TBL * qtbl;

  for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    compptr = cinfo->cur_comp_info[ci];
    qtblno = compptr->quant_tbl_no;
    /* Make sure specified quantization table is present */
    if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
	cinfo->quant_tbl_ptrs[qtblno] == NULL)
      ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
    qtbl = cinfo->quant_tbl_ptrs[qtblno];
    /* Create multiplier table from quant table, unless we already did so. */
    if (compptr->dct_table != NULL)
      continue;
    switch (idct->real_method[compptr->component_index]) {
#ifdef PROVIDE_ISLOW_TABLES
    case JDCT_ISLOW:
      {
	/* For LL&M IDCT method, multipliers are equal to raw quantization
	 * coefficients, but are stored in natural order as ints.
	 */
	ISLOW_MULT_TYPE * ismtbl;
	compptr->dct_table =
	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				      DCTSIZE2 * SIZEOF(ISLOW_MULT_TYPE));
	ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
	for (i = 0; i < DCTSIZE2; i++) {
	  ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[ZIG[i]];
	}
      }
      break;
#endif
#ifdef DCT_IFAST_SUPPORTED
    case JDCT_IFAST:
      {
	/* For AA&N IDCT method, multipliers are equal to quantization
	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
	 *   scalefactor[0] = 1
	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
	 * For integer operation, the multiplier table is to be scaled by
	 * IFAST_SCALE_BITS.  The multipliers are stored in natural order.
	 */
	IFAST_MULT_TYPE * ifmtbl;
#define CONST_BITS 14
	static const INT16 aanscales[DCTSIZE2] = {
	  /* precomputed values scaled up by 14 bits */
	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
	};
	SHIFT_TEMPS

	compptr->dct_table =
	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				      DCTSIZE2 * SIZEOF(IFAST_MULT_TYPE));
	ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
	for (i = 0; i < DCTSIZE2; i++) {
	  ifmtbl[i] = (IFAST_MULT_TYPE)
	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[ZIG[i]],
				  (INT32) aanscales[i]),
		    CONST_BITS-IFAST_SCALE_BITS);
	}
      }
      break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
    case JDCT_FLOAT:
      {
	/* For float AA&N IDCT method, multipliers are equal to quantization
	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
	 *   scalefactor[0] = 1
	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
	 * The multipliers are stored in natural order.
	 */
	FLOAT_MULT_TYPE * fmtbl;
	int row, col;
	static const double aanscalefactor[DCTSIZE] = {
	  1.0, 1.387039845, 1.306562965, 1.175875602,
	  1.0, 0.785694958, 0.541196100, 0.275899379
	};

	compptr->dct_table =
	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
				      DCTSIZE2 * SIZEOF(FLOAT_MULT_TYPE));
	fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
	i = 0;
	for (row = 0; row < DCTSIZE; row++) {
	  for (col = 0; col < DCTSIZE; col++) {
	    fmtbl[i] = (FLOAT_MULT_TYPE)
	      ((double) qtbl->quantval[ZIG[i]] *
	       aanscalefactor[row] * aanscalefactor[col]);
	    i++;
	  }
	}
      }
      break;
#endif
    default:
      ERREXIT(cinfo, JERR_NOT_COMPILED);
      break;
    }
  }
}
Exemple #3
0
METHODDEF void
start_pass (j_decompress_ptr cinfo)
{
  my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
  int ci, i;
  jpeg_component_info *compptr;
  int method = 0;
  inverse_DCT_method_ptr method_ptr = NULL;
  JQUANT_TBL * qtbl;

  for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
       ci++, compptr++) {
    /* Select the proper IDCT routine for this component's scaling */
    switch (compptr->DCT_scaled_size) {
#ifdef IDCT_SCALING_SUPPORTED
    case 1:
      method_ptr = jpeg_idct_1x1;
      method = JDCT_ISLOW;	/* jidctred uses islow-style table */
      break;
    case 2:
      method_ptr = jpeg_idct_2x2;
      method = JDCT_ISLOW;	/* jidctred uses islow-style table */
      break;
    case 4:
      method_ptr = jpeg_idct_4x4;
      method = JDCT_ISLOW;	/* jidctred uses islow-style table */
      break;
#endif
    case DCTSIZE:
      switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
      case JDCT_ISLOW:
	method_ptr = jpeg_idct_islow;
	method = JDCT_ISLOW;
	break;
#endif
#ifdef DCT_IFAST_SUPPORTED
      case JDCT_IFAST:
	method_ptr = jpeg_idct_ifast;
	method = JDCT_IFAST;
	break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
      case JDCT_FLOAT:
	method_ptr = jpeg_idct_float;
	method = JDCT_FLOAT;
	break;
#endif
      default:
	ERREXIT(cinfo, JERR_NOT_COMPILED);
	break;
      }
      break;
    default:
      ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
      break;
    }
    idct->pub.inverse_DCT[ci] = method_ptr;
    /* Create multiplier table from quant table.
     * However, we can skip this if the component is uninteresting
     * or if we already built the table.  Also, if no quant table
     * has yet been saved for the component, we leave the
     * multiplier table all-zero; we'll be reading zeroes from the
     * coefficient controller's buffer anyway.
     */
    if (! compptr->component_needed || idct->cur_method[ci] == method)
      continue;
    qtbl = compptr->quant_table;
    if (qtbl == NULL)		/* happens if no data yet for component */
      continue;
    idct->cur_method[ci] = method;
    switch (method) {
#ifdef PROVIDE_ISLOW_TABLES
    case JDCT_ISLOW:
      {
	/* For LL&M IDCT method, multipliers are equal to raw quantization
	 * coefficients, but are stored in natural order as ints.
	 */
	ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
	for (i = 0; i < DCTSIZE2; i++) {
	  ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[jpeg_zigzag_order[i]];
	}
      }
      break;
#endif
#ifdef DCT_IFAST_SUPPORTED
    case JDCT_IFAST:
      {
	/* For AA&N IDCT method, multipliers are equal to quantization
	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
	 *   scalefactor[0] = 1
	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
	 * For integer operation, the multiplier table is to be scaled by
	 * IFAST_SCALE_BITS.  The multipliers are stored in natural order.
	 */
	IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
#define CONST_BITS 14
	static const INT16 aanscales[DCTSIZE2] = {
	  /* precomputed values scaled up by 14 bits */
	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
	};
	SHIFT_TEMPS

	for (i = 0; i < DCTSIZE2; i++) {
	  ifmtbl[i] = (IFAST_MULT_TYPE)
	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[jpeg_zigzag_order[i]],
				  (INT32) aanscales[i]),
		    CONST_BITS-IFAST_SCALE_BITS);
	}
      }
      break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
    case JDCT_FLOAT:
      {
	/* For float AA&N IDCT method, multipliers are equal to quantization
	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
	 *   scalefactor[0] = 1
	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
	 * The multipliers are stored in natural order.
	 */
	FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
	int row, col;
	static const double aanscalefactor[DCTSIZE] = {
	  1.0, 1.387039845, 1.306562965, 1.175875602,
	  1.0, 0.785694958, 0.541196100, 0.275899379
	};

	i = 0;
	for (row = 0; row < DCTSIZE; row++) {
	  for (col = 0; col < DCTSIZE; col++) {
	    fmtbl[i] = (FLOAT_MULT_TYPE)
	      ((double) qtbl->quantval[jpeg_zigzag_order[i]] *
	       aanscalefactor[row] * aanscalefactor[col]);
	    i++;
	  }
	}
      }
      break;
#endif
    default:
      ERREXIT(cinfo, JERR_NOT_COMPILED);
      break;
    }
  }
}
PUBLIC JPEG_RET_E JPEGFW_AdjustQuantTbl_Dec()
{
	int32 time_out_flag = 0;
	uint8 tbl_id = 0;
	uint8 tbl_num = 0;
	uint32 qtable_addr = (uint32)INV_QUANT_TBL_ADDR;
	uint32 cmd = 0;
	int32 tmp = 0;
	int32 index1 = 0, index2 = 0;
	uint16 yuv_id = 0;
	JPEG_CODEC_T *jpeg_fw_codec = Get_JPEGDecCodec();

	SCI_ASSERT(jpeg_fw_codec != PNULL);

	if(jpeg_fw_codec->num_components == 1) 
	{
		tbl_num = 1;
	}else
	{
		tbl_num = 2;
	}
	
	if(!jpeg_fw_codec->progressive_mode)
	{
	        cmd = JPG_READ_REG(JPG_GLB_REG_BASE+GLB_CTRL_OFFSET, "DCAM_CFG: allow software to access the vsp buffer");
	        cmd |= (1<<2);		
	        JPG_WRITE_REG(JPG_GLB_REG_BASE+GLB_CTRL_OFFSET, cmd, "DCAM_CFG: allow software to access the vsp buffer");
	        time_out_flag = JPG_READ_REG_POLL(JPG_GLB_REG_BASE+GLB_CTRL_OFFSET, (1<<8), (1<<8), TIME_OUT_CLK, "DCAM_CFG: polling dcam clock status");

		if(time_out_flag != 0)
		{
			SCI_TRACE_LOW("time_out_flag %s,%d",__FUNCTION__,__LINE__);
			return JPEG_FAILED;
		}

		for(tbl_id = 0; tbl_id < tbl_num; tbl_id++)
		{
			const uint8  *quant_tbl_current = PNULL;
			uint32 i = 0;

			yuv_id = jpeg_fw_codec->tbl_map[tbl_id].quant_tbl_id;
			quant_tbl_current = jpeg_fw_codec->quant_tbl[yuv_id];

			for(i=0; i < JPEG_FW_DCTSIZE2; i+=2)
			{				
				index1 = jpeg_fw_ASIC_DCT_Matrix[i];
				index2 = jpeg_fw_ASIC_DCT_Matrix[i+1];	/*lint !e661 */
				
				tmp = ((quant_tbl_current[index1] & 0xFFFF) | (quant_tbl_current[index2]<<16));
				JPG_WRITE_REG(qtable_addr, tmp, "INV_QUANT_TAB_ADDR: Write Qtalbe into Qbuffer");
				qtable_addr += 4;		
			#if _CMODEL_
				{
				//	FILE *qfile = fopen("D:/SC6800H/code/Firmware/jpeg_codec/simulation/VC/Dec_WinPrj/trace/dct/qtable.txt", "ab+");
				//	fprintf_oneWord_hex(qfile, tmp);
				//	fclose(qfile);
				}
			#endif//_CMODEL_	
			}
		}

        	cmd = JPG_READ_REG(JPG_GLB_REG_BASE+GLB_CTRL_OFFSET, "DCAM_CFG: allow hardware to access the vsp buffer");
	        cmd = (cmd & ~0x4) ;
	        JPG_WRITE_REG(JPG_GLB_REG_BASE+GLB_CTRL_OFFSET, cmd, "DCAM_CFG: allow hardware to access the vsp buffer");
	        time_out_flag = JPG_READ_REG_POLL (JPG_GLB_REG_BASE+GLB_CTRL_OFFSET, 1, 1, TIME_OUT_CLK, "DCAM_CFG: polling dcam clock status");

		if(time_out_flag != 0)
		{
			time_out_flag = JPG_READ_REG (JPG_GLB_REG_BASE+GLB_CTRL_OFFSET, "DCAM_CFG: allow hardware to access the vsp buffer");
			SCI_TRACE_LOW("time_out_flag %s,%d %x",__FUNCTION__,__LINE__,time_out_flag);
			return JPEG_FAILED;
		}
	}else
	{
		JPEG_PROGRESSIVE_INFO_T *progressive_info = JPEGFW_GetProgInfo();
		int32 i;

		progressive_info->quant_tbl_new[0] = (int32 *)JpegDec_ExtraMemAlloc(sizeof(int32)*64);
		progressive_info->quant_tbl_new[1] = (int32 *)JpegDec_ExtraMemAlloc(sizeof(int32)*64);

		for(tbl_id = 0; tbl_id < tbl_num; tbl_id++)
		{
			const uint8 *quant;
			yuv_id = jpeg_fw_codec->tbl_map[tbl_id].quant_tbl_id;

			quant = jpeg_fw_codec->quant_tbl[yuv_id];

			if(progressive_info->low_quality_idct)
			{
				for(i = 0; i < JPEG_FW_DCTSIZE2; i++)
				{
					progressive_info->quant_tbl_new[tbl_id][i] = 			
						(int32)DESCALE(MULTIPLY16V16((int32)quant[i/*jpeg_fw_zigzag_tbl[i]*/], (int32)aanscales[i]), IFAST_SCALE_BITS);
				}
			}else
			{
				for(i = 0; i < JPEG_FW_DCTSIZE2; i++)
				{
					progressive_info->quant_tbl_new[tbl_id][jpeg_fw_zigzag_order[i]] = (int32)quant[i];
				}
			}
		}
	}
	
	return JPEG_SUCCESS;
}