int main(int argc, char *argv[]) { // bool haveM = false; #ifdef EPETRA_MPI // Initialize MPI MPI_Init(&argc,&argv); Epetra_MpiComm Comm( MPI_COMM_WORLD ); #else Epetra_SerialComm Comm; #endif int MyPID = Comm.MyPID(); int nev = 5; int blockSize = 5; int maxIterations = 1000; double tol = 1.0e-8; bool verbose=false, locking=false, fullOrtho=true; std::string k_filename = ""; std::string m_filename = ""; std::string which = "SM"; Teuchos::CommandLineProcessor cmdp(false,true); cmdp.setOption("nev",&nev,"Number of eigenvalues to compute."); cmdp.setOption("blocksize",&blockSize,"Block size used in LOBPCG."); cmdp.setOption("maxiters",&maxIterations,"Maximum number of iterations used in LOBPCG."); cmdp.setOption("tol",&tol,"Convergence tolerance requested for computed eigenvalues."); cmdp.setOption("verbose","quiet",&verbose,"Print messages and results."); cmdp.setOption("locking","nolocking",&locking,"Use locking of converged eigenvalues."); cmdp.setOption("fullortho","nofullortho",&fullOrtho,"Use full orthogonalization."); cmdp.setOption("sort",&which,"Targetted eigenvalues (SM,LM,SR,or LR)."); cmdp.setOption("K-filename",&k_filename,"Filename and path of the stiffness matrix."); cmdp.setOption("M-filename",&m_filename,"Filename and path of the mass matrix."); if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL) { #ifdef HAVE_MPI MPI_Finalize(); #endif return -1; } if (k_filename=="") { cout << "The matrix K must be supplied through an input file!!!" << endl; #ifdef HAVE_MPI MPI_Finalize(); #endif return -1; } if (m_filename!="") { haveM = true; } // //********************************************************************** //******************Set up the problem to be solved********************* //********************************************************************** // // *****Read in matrix from file****** // Teuchos::RCP<Epetra_Map> Map; Teuchos::RCP<Epetra_CrsMatrix> K, M; EpetraExt::readEpetraLinearSystem( k_filename, Comm, &K, &Map ); if (haveM) { EpetraExt::readEpetraLinearSystem( m_filename, Comm, &M, &Map ); } // //************************************ // Start the block Davidson iteration //*********************************** // // Variables used for the LOBPCG Method // // Set verbosity level int verbosity = Anasazi::Errors + Anasazi::Warnings; if (verbose) { verbosity += Anasazi::FinalSummary + Anasazi::TimingDetails; } // // Create parameter list to pass into solver // Teuchos::ParameterList MyPL; MyPL.set( "Verbosity", verbosity ); MyPL.set( "Which", which ); MyPL.set( "Block Size", blockSize ); MyPL.set( "Maximum Iterations", maxIterations ); MyPL.set( "Convergence Tolerance", tol ); MyPL.set( "Use Locking", locking ); MyPL.set( "Locking Tolerance", tol/10 ); MyPL.set( "Full Ortho", fullOrtho ); typedef Epetra_MultiVector MV; typedef Epetra_Operator OP; typedef Anasazi::MultiVecTraits<double, MV> MVT; typedef Anasazi::OperatorTraits<double, MV, OP> OPT; // // Create the eigenproblem to be solved. // Teuchos::RCP<Epetra_MultiVector> ivec = Teuchos::rcp( new Epetra_MultiVector(*Map, blockSize) ); ivec->Random(); Teuchos::RCP<Anasazi::BasicEigenproblem<double, MV, OP> > MyProblem; if (haveM) { MyProblem = Teuchos::rcp( new Anasazi::BasicEigenproblem<double, MV, OP>( K, M, ivec ) ); } else { MyProblem = Teuchos::rcp( new Anasazi::BasicEigenproblem<double, MV, OP>( K, ivec ) ); } // Inform the eigenproblem that (K,M) is Hermitian MyProblem->setHermitian(true); // Set the number of eigenvalues requested MyProblem->setNEV( nev ); // Inform the eigenproblem that you are finished passing it information bool boolret = MyProblem->setProblem(); if (boolret != true) { if (verbose && MyPID == 0) { cout << "Anasazi::BasicEigenproblem::setProblem() returned with error." << endl; } #ifdef HAVE_MPI MPI_Finalize() ; #endif return -1; } // Initialize the LOBPCG solver Anasazi::LOBPCGSolMgr<double, MV, OP> MySolverMgr(MyProblem, MyPL); // Solve the problem to the specified tolerances or length Anasazi::ReturnType returnCode = MySolverMgr.solve(); if (returnCode != Anasazi::Converged && MyPID==0 && verbose) { cout << "Anasazi::EigensolverMgr::solve() returned unconverged." << endl; } // Get the eigenvalues and eigenvectors from the eigenproblem Anasazi::Eigensolution<double,MV> sol = MyProblem->getSolution(); std::vector<Anasazi::Value<double> > evals = sol.Evals; Teuchos::RCP<MV> evecs = sol.Evecs; std::vector<int> index = sol.index; int numev = sol.numVecs; if (numev > 0) { // Compute residuals. Teuchos::LAPACK<int,double> lapack; std::vector<double> normEV(numev); // Get storage Teuchos::RCP<Epetra_MultiVector> Kevecs, Mevecs; Teuchos::SerialDenseMatrix<int,double> B(numev,numev); B.putScalar(0.0); for (int i=0; i<numev; i++) {B(i,i) = evals[i].realpart;} // Compute K*evecs Kevecs = Teuchos::rcp(new Epetra_MultiVector(*Map,numev) ); OPT::Apply( *K, *evecs, *Kevecs ); // Compute M*evecs if (haveM) { Mevecs = Teuchos::rcp(new Epetra_MultiVector(*Map,numev) ); OPT::Apply( *M, *evecs, *Mevecs ); } else { Mevecs = evecs; } // Compute K*evecs - lambda*M*evecs and its norm MVT::MvTimesMatAddMv( -1.0, *Mevecs, B, 1.0, *Kevecs ); MVT::MvNorm( *Kevecs, normEV ); // Scale the norms by the eigenvalue for (int i=0; i<numev; i++) { normEV[i] /= Teuchos::ScalarTraits<double>::magnitude( evals[i].realpart ); } // Output computed eigenvalues and their direct residuals if (verbose && MyPID==0) { cout.setf(std::ios_base::right, std::ios_base::adjustfield); cout<<endl<< "Actual Residuals"<<endl; cout<< std::setw(16) << "Real Part" << std::setw(20) << "Direct Residual"<< endl; cout<<"-----------------------------------------------------------"<<endl; for (int i=0; i<numev; i++) { cout<< std::setw(16) << evals[i].realpart << std::setw(20) << normEV[i] << endl; } cout<<"-----------------------------------------------------------"<<endl; } } #ifdef EPETRA_MPI MPI_Finalize() ; #endif return 0; } // end LOBPCGEpetraExFile.cpp
int main(int argc, char *argv[]) { #ifdef EPETRA_MPI // Initialize MPI MPI_Init(&argc,&argv); Epetra_MpiComm Comm(MPI_COMM_WORLD); #else Epetra_SerialComm Comm; #endif bool testFailed; bool boolret; int MyPID = Comm.MyPID(); bool verbose = true; bool debug = false; std::string which("SM"); Teuchos::CommandLineProcessor cmdp(false,true); cmdp.setOption("verbose","quiet",&verbose,"Print messages and results."); cmdp.setOption("debug","nodebug",&debug,"Print debugging information."); cmdp.setOption("sort",&which,"Targetted eigenvalues (SM,LM,SR,LR,SI,or LI)."); if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL) { #ifdef HAVE_MPI MPI_Finalize(); #endif return -1; } typedef double ScalarType; typedef Teuchos::ScalarTraits<ScalarType> ScalarTypeTraits; typedef ScalarTypeTraits::magnitudeType MagnitudeType; typedef Epetra_MultiVector MV; typedef Epetra_Operator OP; typedef Anasazi::MultiVecTraits<ScalarType,MV> MVTraits; typedef Anasazi::OperatorTraits<ScalarType,MV,OP> OpTraits; // Dimension of the matrix int nx = 10; // Discretization points in any one direction. int NumGlobalElements = nx*nx; // Size of matrix nx*nx // Construct a Map that puts approximately the same number of // equations on each processor. Epetra_Map Map(NumGlobalElements, 0, Comm); // Get update list and number of local equations from newly created Map. int NumMyElements = Map.NumMyElements(); std::vector<int> MyGlobalElements(NumMyElements); Map.MyGlobalElements(&MyGlobalElements[0]); // Create an integer vector NumNz that is used to build the Petra Matrix. // NumNz[i] is the Number of OFF-DIAGONAL term for the ith global equation // on this processor std::vector<int> NumNz(NumMyElements); /* We are building a matrix of block structure: | T -I | |-I T -I | | -I T | | ... -I| | -I T| where each block is dimension nx by nx and the matrix is on the order of nx*nx. The block T is a tridiagonal matrix. */ for (int i=0; i<NumMyElements; i++) { if (MyGlobalElements[i] == 0 || MyGlobalElements[i] == NumGlobalElements-1 || MyGlobalElements[i] == nx-1 || MyGlobalElements[i] == nx*(nx-1) ) { NumNz[i] = 3; } else if (MyGlobalElements[i] < nx || MyGlobalElements[i] > nx*(nx-1) || MyGlobalElements[i]%nx == 0 || (MyGlobalElements[i]+1)%nx == 0) { NumNz[i] = 4; } else { NumNz[i] = 5; } } // Create an Epetra_Matrix Teuchos::RCP<Epetra_CrsMatrix> A = Teuchos::rcp( new Epetra_CrsMatrix(Copy, Map, &NumNz[0]) ); // Diffusion coefficient, can be set by user. // When rho*h/2 <= 1, the discrete convection-diffusion operator has real eigenvalues. // When rho*h/2 > 1, the operator has complex eigenvalues. double rho = 2*(nx+1); // Compute coefficients for discrete convection-diffution operator const double one = 1.0; std::vector<double> Values(4); std::vector<int> Indices(4); double h = one /(nx+1); double h2 = h*h; double c = 5.0e-01*rho/ h; Values[0] = -one/h2 - c; Values[1] = -one/h2 + c; Values[2] = -one/h2; Values[3]= -one/h2; double diag = 4.0 / h2; int NumEntries, info; for (int i=0; i<NumMyElements; i++) { if (MyGlobalElements[i]==0) { Indices[0] = 1; Indices[1] = nx; NumEntries = 2; info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[1], &Indices[0]); assert( info==0 ); } else if (MyGlobalElements[i] == nx*(nx-1)) { Indices[0] = nx*(nx-1)+1; Indices[1] = nx*(nx-2); NumEntries = 2; info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[1], &Indices[0]); assert( info==0 ); } else if (MyGlobalElements[i] == nx-1) { Indices[0] = nx-2; NumEntries = 1; info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0]); assert( info==0 ); Indices[0] = 2*nx-1; info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[2], &Indices[0]); assert( info==0 ); } else if (MyGlobalElements[i] == NumGlobalElements-1) { Indices[0] = NumGlobalElements-2; NumEntries = 1; info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0]); assert( info==0 ); Indices[0] = nx*(nx-1)-1; info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[2], &Indices[0]); assert( info==0 ); } else if (MyGlobalElements[i] < nx) { Indices[0] = MyGlobalElements[i]-1; Indices[1] = MyGlobalElements[i]+1; Indices[2] = MyGlobalElements[i]+nx; NumEntries = 3; info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0]); assert( info==0 ); } else if (MyGlobalElements[i] > nx*(nx-1)) { Indices[0] = MyGlobalElements[i]-1; Indices[1] = MyGlobalElements[i]+1; Indices[2] = MyGlobalElements[i]-nx; NumEntries = 3; info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0]); assert( info==0 ); } else if (MyGlobalElements[i]%nx == 0) { Indices[0] = MyGlobalElements[i]+1; Indices[1] = MyGlobalElements[i]-nx; Indices[2] = MyGlobalElements[i]+nx; NumEntries = 3; info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[1], &Indices[0]); assert( info==0 ); } else if ((MyGlobalElements[i]+1)%nx == 0) { Indices[0] = MyGlobalElements[i]-nx; Indices[1] = MyGlobalElements[i]+nx; NumEntries = 2; info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[2], &Indices[0]); assert( info==0 ); Indices[0] = MyGlobalElements[i]-1; NumEntries = 1; info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0]); assert( info==0 ); } else { Indices[0] = MyGlobalElements[i]-1; Indices[1] = MyGlobalElements[i]+1; Indices[2] = MyGlobalElements[i]-nx; Indices[3] = MyGlobalElements[i]+nx; NumEntries = 4; info = A->InsertGlobalValues(MyGlobalElements[i], NumEntries, &Values[0], &Indices[0]); assert( info==0 ); } // Put in the diagonal entry info = A->InsertGlobalValues(MyGlobalElements[i], 1, &diag, &MyGlobalElements[i]); assert( info==0 ); } // Finish up info = A->FillComplete(); assert( info==0 ); A->SetTracebackMode(1); // Shutdown Epetra Warning tracebacks //************************************ // Start the block Davidson iteration //*********************************** // // Variables used for the Generalized Davidson Method // int nev = 4; int blockSize = 1; int maxDim = 50; int restartDim = 10; int maxRestarts = 500; double tol = 1e-10; // Set verbosity level int verbosity = Anasazi::Errors + Anasazi::Warnings; if (verbose) { verbosity += Anasazi::FinalSummary + Anasazi::TimingDetails; } if (debug) { verbosity += Anasazi::Debug; } // // Create parameter list to pass into solver manager // Teuchos::ParameterList MyPL; MyPL.set( "Verbosity", verbosity ); MyPL.set( "Which", which ); MyPL.set( "Block Size", blockSize ); MyPL.set( "Maximum Subspace Dimension", maxDim); MyPL.set( "Restart Dimension", restartDim); MyPL.set( "Maximum Restarts", maxRestarts ); MyPL.set( "Convergence Tolerance", tol ); MyPL.set( "Relative Convergence Tolerance", true ); MyPL.set( "Initial Guess", "User" ); // Create an Epetra_MultiVector for an initial vector to start the solver. // Note: This needs to have the same number of columns as the blocksize. Teuchos::RCP<Epetra_MultiVector> ivec = Teuchos::rcp( new Epetra_MultiVector(Map, blockSize) ); ivec->Random(); // Create the eigenproblem. Teuchos::RCP<Anasazi::BasicEigenproblem<double, MV, OP> > MyProblem = Teuchos::rcp( new Anasazi::BasicEigenproblem<double,MV,OP>() ); MyProblem->setA(A); MyProblem->setInitVec(ivec); // Inform the eigenproblem that the operator A is non-Hermitian MyProblem->setHermitian(false); // Set the number of eigenvalues requested MyProblem->setNEV( nev ); // Inform the eigenproblem that you are finishing passing it information boolret = MyProblem->setProblem(); if (boolret != true) { if (verbose && MyPID == 0) { std::cout << "Anasazi::BasicEigenproblem::setProblem() returned with error." << std::endl; } #ifdef HAVE_MPI MPI_Finalize() ; #endif return -1; } // Initialize the Block Arnoldi solver Anasazi::GeneralizedDavidsonSolMgr<double, MV, OP> MySolverMgr(MyProblem, MyPL); // Solve the problem to the specified tolerances or length Anasazi::ReturnType returnCode = MySolverMgr.solve(); testFailed = false; if (returnCode != Anasazi::Converged && MyPID==0 && verbose) { testFailed = true; } // Get the eigenvalues and eigenvectors from the eigenproblem Anasazi::Eigensolution<ScalarType,MV> sol = MyProblem->getSolution(); std::vector<Anasazi::Value<ScalarType> > evals = sol.Evals; Teuchos::RCP<MV> evecs = sol.Evecs; std::vector<int> index = sol.index; int numev = sol.numVecs; // Output computed eigenvalues and their direct residuals if (verbose && MyPID==0) { int numritz = (int)evals.size(); std::cout.setf(std::ios_base::right, std::ios_base::adjustfield); std::cout<<std::endl<< "Computed Ritz Values"<< std::endl; std::cout<< std::setw(16) << "Real Part" << std::setw(16) << "Imag Part" << std::endl; std::cout<<"-----------------------------------------------------------"<<std::endl; for (int i=0; i<numritz; i++) { std::cout<< std::setw(16) << evals[i].realpart << std::setw(16) << evals[i].imagpart << std::endl; } std::cout<<"-----------------------------------------------------------"<<std::endl; } if (numev > 0) { // Compute residuals. Teuchos::LAPACK<int,double> lapack; std::vector<double> normA(numev); // The problem is non-Hermitian. int i=0; std::vector<int> curind(1); std::vector<double> resnorm(1), tempnrm(1); Teuchos::RCP<MV> tempAevec; Teuchos::RCP<const MV> evecr, eveci; Epetra_MultiVector Aevec(Map,numev); // Compute A*evecs OpTraits::Apply( *A, *evecs, Aevec ); Teuchos::SerialDenseMatrix<int,double> Breal(1,1), Bimag(1,1); while (i<numev) { if (index[i]==0) { // Get a view of the current eigenvector (evecr) curind[0] = i; evecr = MVTraits::CloneView( *evecs, curind ); // Get a copy of A*evecr tempAevec = MVTraits::CloneCopy( Aevec, curind ); // Compute A*evecr - lambda*evecr Breal(0,0) = evals[i].realpart; MVTraits::MvTimesMatAddMv( -1.0, *evecr, Breal, 1.0, *tempAevec ); // Compute the norm of the residual and increment counter MVTraits::MvNorm( *tempAevec, resnorm ); normA[i] = resnorm[0] / Teuchos::ScalarTraits<MagnitudeType>::magnitude( evals[i].realpart ); i++; } else { // Get a view of the real part of the eigenvector (evecr) curind[0] = i; evecr = MVTraits::CloneView( *evecs, curind ); // Get a copy of A*evecr tempAevec = MVTraits::CloneCopy( Aevec, curind ); // Get a view of the imaginary part of the eigenvector (eveci) curind[0] = i+1; eveci = MVTraits::CloneView( *evecs, curind ); // Set the eigenvalue into Breal and Bimag Breal(0,0) = evals[i].realpart; Bimag(0,0) = evals[i].imagpart; // Compute A*evecr - evecr*lambdar + eveci*lambdai MVTraits::MvTimesMatAddMv( -1.0, *evecr, Breal, 1.0, *tempAevec ); MVTraits::MvTimesMatAddMv( 1.0, *eveci, Bimag, 1.0, *tempAevec ); MVTraits::MvNorm( *tempAevec, tempnrm ); // Get a copy of A*eveci tempAevec = MVTraits::CloneCopy( Aevec, curind ); // Compute A*eveci - eveci*lambdar - evecr*lambdai MVTraits::MvTimesMatAddMv( -1.0, *evecr, Bimag, 1.0, *tempAevec ); MVTraits::MvTimesMatAddMv( -1.0, *eveci, Breal, 1.0, *tempAevec ); MVTraits::MvNorm( *tempAevec, resnorm ); // Compute the norms and scale by magnitude of eigenvalue normA[i] = lapack.LAPY2( tempnrm[0], resnorm[0] ) / lapack.LAPY2( evals[i].realpart, evals[i].imagpart ); normA[i+1] = normA[i]; i=i+2; } } // Output computed eigenvalues and their direct residuals if (verbose && MyPID==0) { std::cout.setf(std::ios_base::right, std::ios_base::adjustfield); std::cout<<std::endl<< "Actual Residuals"<<std::endl; std::cout<< std::setw(16) << "Real Part" << std::setw(16) << "Imag Part" << std::setw(20) << "Direct Residual"<< std::endl; std::cout<<"-----------------------------------------------------------"<<std::endl; for (int j=0; j<numev; j++) { std::cout<< std::setw(16) << evals[j].realpart << std::setw(16) << evals[j].imagpart << std::setw(20) << normA[j] << std::endl; if ( normA[j] > tol ) { testFailed = true; } } std::cout<<"-----------------------------------------------------------"<<std::endl; } } #ifdef EPETRA_MPI MPI_Finalize(); #endif if (testFailed) { if (verbose && MyPID==0) { std::cout << "End Result: TEST FAILED" << std::endl; } return -1; } // // Default return value // if (verbose && MyPID==0) { std::cout << "End Result: TEST PASSED" << std::endl; } return 0; }
int main(int argc, char *argv[]) { int i; #ifdef EPETRA_MPI // Initialize MPI MPI_Init(&argc,&argv); Epetra_MpiComm Comm(MPI_COMM_WORLD); #else Epetra_SerialComm Comm; #endif int MyPID = Comm.MyPID(); // Number of dimension of the domain int space_dim = 2; // Size of each of the dimensions of the domain std::vector<double> brick_dim( space_dim ); brick_dim[0] = 1.0; brick_dim[1] = 1.0; // Number of elements in each of the dimensions of the domain std::vector<int> elements( space_dim ); elements[0] = 10; elements[1] = 10; // Create problem Teuchos::RCP<ModalProblem> testCase = Teuchos::rcp( new ModeLaplace2DQ2(Comm, brick_dim[0], elements[0], brick_dim[1], elements[1]) ); // Get the stiffness and mass matrices Teuchos::RCP<Epetra_CrsMatrix> K = Teuchos::rcp( const_cast<Epetra_CrsMatrix *>(testCase->getStiffness()), false ); Teuchos::RCP<Epetra_CrsMatrix> M = Teuchos::rcp( const_cast<Epetra_CrsMatrix *>(testCase->getMass()), false ); // // ******************************************************* // Set up Amesos direct solver for inner iteration // ******************************************************* // // Create the shifted system K - sigma * M. // For the buckling transformation, this shift must be nonzero. double sigma = 1.0; Epetra_CrsMatrix Kcopy( *K ); int addErr = EpetraExt::MatrixMatrix::Add( *M, false, -sigma, Kcopy, 1.0 ); if (addErr != 0) { if (MyPID == 0) { std::cout << "EpetraExt::MatrixMatrix::Add returned with error: " << addErr << std::endl; } #ifdef HAVE_MPI MPI_Finalize() ; #endif return -1; } // Create Epetra linear problem class to solve "x = b" Epetra_LinearProblem AmesosProblem; AmesosProblem.SetOperator(&Kcopy); // Create Amesos factory and solver for solving "(K - sigma*M)x = b" using a direct factorization Amesos amesosFactory; Teuchos::RCP<Amesos_BaseSolver> AmesosSolver = Teuchos::rcp( amesosFactory.Create( "Klu", AmesosProblem ) ); // The AmesosBucklingOp class assumes that the symbolic/numeric factorizations have already // been performed on the linear problem. AmesosSolver->SymbolicFactorization(); AmesosSolver->NumericFactorization(); // // ************************************ // Start the block Arnoldi iteration // ************************************ // // Variables used for the Block Arnoldi Method // int nev = 10; int blockSize = 3; int numBlocks = 3*nev/blockSize; int maxRestarts = 5; //int step = 5; double tol = 1.0e-8; std::string which = "LM"; int verbosity = Anasazi::Errors + Anasazi::Warnings + Anasazi::FinalSummary; // // Create parameter list to pass into solver // Teuchos::ParameterList MyPL; MyPL.set( "Verbosity", verbosity ); MyPL.set( "Which", which ); MyPL.set( "Block Size", blockSize ); MyPL.set( "Num Blocks", numBlocks ); MyPL.set( "Maximum Restarts", maxRestarts ); MyPL.set( "Convergence Tolerance", tol ); //MyPL.set( "Step Size", step ); typedef Epetra_MultiVector MV; typedef Epetra_Operator OP; typedef Anasazi::MultiVecTraits<double, MV> MVT; typedef Anasazi::OperatorTraits<double, MV, OP> OPT; // Create an Epetra_MultiVector for an initial vector to start the solver. // Note: This needs to have the same number of columns as the blocksize. Teuchos::RCP<Epetra_MultiVector> ivec = Teuchos::rcp( new Epetra_MultiVector(K->Map(), blockSize) ); MVT::MvRandom( *ivec ); // Create the Epetra_Operator for the buckling transformation using the Amesos direct solver. Teuchos::RCP<AmesosBucklingOp> BucklingOp = Teuchos::rcp( new AmesosBucklingOp(AmesosProblem, AmesosSolver, K) ); Teuchos::RCP<Anasazi::BasicEigenproblem<double,MV,OP> > MyProblem = Teuchos::rcp( new Anasazi::BasicEigenproblem<double,MV,OP>(BucklingOp, K, ivec) ); // Inform the eigenproblem that the matrix pencil (K,M) is symmetric MyProblem->setHermitian(true); // Set the number of eigenvalues requested MyProblem->setNEV( nev ); // Inform the eigenproblem that you are finished passing it information bool boolret = MyProblem->setProblem(); if (boolret != true) { if (MyPID == 0) { std::cout << "Anasazi::BasicEigenproblem::setProblem() returned with error." << std::endl; } #ifdef HAVE_MPI MPI_Finalize() ; #endif return -1; } // Initialize the Block Arnoldi solver Anasazi::BlockKrylovSchurSolMgr<double, MV, OP> MySolverMgr(MyProblem, MyPL); // Solve the problem to the specified tolerances or length Anasazi::ReturnType returnCode = MySolverMgr.solve(); if (returnCode != Anasazi::Converged && MyPID==0) { std::cout << "Anasazi::EigensolverMgr::solve() returned unconverged." << std::endl; } // Get the eigenvalues and eigenvectors from the eigenproblem Anasazi::Eigensolution<double,MV> sol = MyProblem->getSolution(); std::vector<Anasazi::Value<double> > evals = sol.Evals; Teuchos::RCP<MV> evecs = sol.Evecs; int numev = sol.numVecs; if (numev > 0) { // Undo buckling transformation; computed eigenvalues are real std::vector<double> compEvals(numev); for (i=0; i<numev; ++i) { compEvals[i] = sigma*evals[i].realpart/(evals[i].realpart-1.0); } // Remember, eigenvectors are constructed K-orthogonal to preserve symmetry, // so numerator of the Rayleigh quotient is 1.0. Teuchos::SerialDenseMatrix<int,double> dmatr(numev,numev); Epetra_MultiVector tempvec(M->Map(), MVT::GetNumberVecs( *evecs )); OPT::Apply( *M, *evecs, tempvec ); MVT::MvTransMv( 1.0, tempvec, *evecs, dmatr ); if (MyPID==0) { double rq_eval = 0.0; std::cout.setf(std::ios_base::right, std::ios_base::adjustfield); std::cout<<"Actual Eigenvalues (obtained by Rayleigh quotient) : "<<std::endl; std::cout<<"------------------------------------------------------"<<std::endl; std::cout<<std::setw(16)<<"Real Part" <<std::setw(16)<<"Rayleigh Error"<<std::endl; std::cout<<"------------------------------------------------------"<<std::endl; for (i=0; i<numev; i++) { rq_eval = 1.0 / dmatr(i,i); std::cout<<std::setw(16)<<rq_eval <<std::setw(16)<<Teuchos::ScalarTraits<double>::magnitude(rq_eval-compEvals[i]) <<std::endl; } std::cout<<"------------------------------------------------------"<<std::endl; } } #ifdef EPETRA_MPI MPI_Finalize(); #endif return 0; }
int main(int argc, char *argv[]) { int i, j, info; const double one = 1.0; const double zero = 0.0; Teuchos::LAPACK<int,double> lapack; #ifdef EPETRA_MPI // Initialize MPI MPI_Init(&argc,&argv); Epetra_MpiComm Comm(MPI_COMM_WORLD); #else Epetra_SerialComm Comm; #endif int MyPID = Comm.MyPID(); // Dimension of the matrix int m = 500; int n = 100; // Construct a Map that puts approximately the same number of // equations on each processor. Epetra_Map RowMap(m, 0, Comm); Epetra_Map ColMap(n, 0, Comm); // Get update list and number of local equations from newly created Map. int NumMyRowElements = RowMap.NumMyElements(); std::vector<int> MyGlobalRowElements(NumMyRowElements); RowMap.MyGlobalElements(&MyGlobalRowElements[0]); /* We are building an m by n matrix with entries A(i,j) = k*(si)*(tj - 1) if i <= j = k*(tj)*(si - 1) if i > j where si = i/(m+1) and tj = j/(n+1) and k = 1/(n+1). */ // Create an Epetra_Matrix Teuchos::RCP<Epetra_CrsMatrix> A = Teuchos::rcp( new Epetra_CrsMatrix(Copy, RowMap, n) ); // Compute coefficients for discrete integral operator std::vector<double> Values(n); std::vector<int> Indices(n); double inv_mp1 = one/(m+1); double inv_np1 = one/(n+1); for (i=0; i<n; i++) { Indices[i] = i; } for (i=0; i<NumMyRowElements; i++) { // for (j=0; j<n; j++) { // if ( MyGlobalRowElements[i] <= j ) { Values[j] = inv_np1 * ( (MyGlobalRowElements[i]+one)*inv_mp1 ) * ( (j+one)*inv_np1 - one ); // k*(si)*(tj-1) } else { Values[j] = inv_np1 * ( (j+one)*inv_np1 ) * ( (MyGlobalRowElements[i]+one)*inv_mp1 - one ); // k*(tj)*(si-1) } } info = A->InsertGlobalValues(MyGlobalRowElements[i], n, &Values[0], &Indices[0]); assert( info==0 ); } // Finish up info = A->FillComplete(ColMap, RowMap); assert( info==0 ); info = A->OptimizeStorage(); assert( info==0 ); A->SetTracebackMode(1); // Shutdown Epetra Warning tracebacks //************************************ // Start the block Arnoldi iteration //*********************************** // // Variables used for the Block Arnoldi Method // int nev = 4; int blockSize = 1; int numBlocks = 10; int maxRestarts = 20; int verbosity = Anasazi::Errors + Anasazi::Warnings + Anasazi::FinalSummary; double tol = lapack.LAMCH('E'); std::string which = "LM"; // // Create parameter list to pass into solver // Teuchos::ParameterList MyPL; MyPL.set( "Verbosity", verbosity ); MyPL.set( "Which", which ); MyPL.set( "Block Size", blockSize ); MyPL.set( "Num Blocks", numBlocks ); MyPL.set( "Maximum Restarts", maxRestarts ); MyPL.set( "Convergence Tolerance", tol ); typedef Anasazi::MultiVec<double> MV; typedef Anasazi::Operator<double> OP; // Create an Anasazi::EpetraMultiVec for an initial vector to start the solver. // Note: This needs to have the same number of columns as the blocksize. Teuchos::RCP<Anasazi::EpetraMultiVec> ivec = Teuchos::rcp( new Anasazi::EpetraMultiVec(ColMap, blockSize) ); ivec->MvRandom(); // Call the constructor for the (A^T*A) operator Teuchos::RCP<Anasazi::EpetraSymOp> Amat = Teuchos::rcp( new Anasazi::EpetraSymOp(A) ); Teuchos::RCP<Anasazi::BasicEigenproblem<double, MV, OP> > MyProblem = Teuchos::rcp( new Anasazi::BasicEigenproblem<double, MV, OP>(Amat, ivec) ); // Inform the eigenproblem that the matrix A is symmetric MyProblem->setHermitian(true); // Set the number of eigenvalues requested and the blocksize the solver should use MyProblem->setNEV( nev ); // Inform the eigenproblem that you are finished passing it information bool boolret = MyProblem->setProblem(); if (boolret != true) { if (MyPID == 0) { cout << "Anasazi::BasicEigenproblem::setProblem() returned with error." << endl; } #ifdef HAVE_MPI MPI_Finalize() ; #endif return -1; } // Initialize the Block Arnoldi solver Anasazi::BlockKrylovSchurSolMgr<double, MV, OP> MySolverMgr(MyProblem, MyPL); // Solve the problem to the specified tolerances or length Anasazi::ReturnType returnCode = MySolverMgr.solve(); if (returnCode != Anasazi::Converged && MyPID==0) { cout << "Anasazi::EigensolverMgr::solve() returned unconverged." << endl; } // Get the eigenvalues and eigenvectors from the eigenproblem Anasazi::Eigensolution<double,MV> sol = MyProblem->getSolution(); std::vector<Anasazi::Value<double> > evals = sol.Evals; int numev = sol.numVecs; if (numev > 0) { // Compute singular values/vectors and direct residuals. // // Compute singular values which are the square root of the eigenvalues if (MyPID==0) { cout<<"------------------------------------------------------"<<endl; cout<<"Computed Singular Values: "<<endl; cout<<"------------------------------------------------------"<<endl; } for (i=0; i<numev; i++) { evals[i].realpart = Teuchos::ScalarTraits<double>::squareroot( evals[i].realpart ); } // // Compute left singular vectors : u = Av/sigma // std::vector<double> tempnrm(numev), directnrm(numev); std::vector<int> index(numev); for (i=0; i<numev; i++) { index[i] = i; } Anasazi::EpetraMultiVec Av(RowMap,numev), u(RowMap,numev); Anasazi::EpetraMultiVec* evecs = dynamic_cast<Anasazi::EpetraMultiVec* >(sol.Evecs->CloneViewNonConst( index )); Teuchos::SerialDenseMatrix<int,double> S(numev,numev); A->Apply( *evecs, Av ); Av.MvNorm( tempnrm ); for (i=0; i<numev; i++) { S(i,i) = one/tempnrm[i]; }; u.MvTimesMatAddMv( one, Av, S, zero ); // // Compute direct residuals : || Av - sigma*u || // for (i=0; i<numev; i++) { S(i,i) = evals[i].realpart; } Av.MvTimesMatAddMv( -one, u, S, one ); Av.MvNorm( directnrm ); if (MyPID==0) { cout.setf(std::ios_base::right, std::ios_base::adjustfield); cout<<std::setw(16)<<"Singular Value" <<std::setw(20)<<"Direct Residual" <<endl; cout<<"------------------------------------------------------"<<endl; for (i=0; i<numev; i++) { cout<<std::setw(16)<<evals[i].realpart <<std::setw(20)<<directnrm[i] <<endl; } cout<<"------------------------------------------------------"<<endl; } } #ifdef EPETRA_MPI MPI_Finalize() ; #endif return 0; }