Exemple #1
0
void
_arb_poly_tan_series(arb_ptr g,
    arb_srcptr h, slong hlen, slong len, slong prec)
{
    hlen = FLINT_MIN(hlen, len);

    if (hlen == 1)
    {
        arb_tan(g, h, prec);
        _arb_vec_zero(g + 1, len - 1);
    }
    else if (len == 2)
    {
        arb_t t;
        arb_init(t);
        arb_tan(g, h, prec);
        arb_mul(t, g, g, prec);
        arb_add_ui(t, t, 1, prec);
        arb_mul(g + 1, t, h + 1, prec);  /* safe since hlen >= 2 */
        arb_clear(t);
    }
    else
    {
        arb_ptr t, u;

        t = _arb_vec_init(2 * len);
        u = t + len;

        NEWTON_INIT(TAN_NEWTON_CUTOFF, len)

        NEWTON_BASECASE(n)
        _arb_poly_sin_cos_series_basecase(t, u, h, hlen, n, prec, 0);
        _arb_poly_div_series(g, t, n, u, n, n, prec);
        NEWTON_END_BASECASE

        NEWTON_LOOP(m, n)
        _arb_poly_mullow(u, g, m, g, m, n, prec);
        arb_add_ui(u, u, 1, prec);
        _arb_poly_atan_series(t, g, m, n, prec);
        _arb_poly_sub(t + m, h + m, FLINT_MAX(0, hlen - m), t + m, n - m, prec);
        _arb_poly_mullow(g + m, u, n, t + m, n - m, n - m, prec);
        NEWTON_END_LOOP

        NEWTON_END

        _arb_vec_clear(t, 2 * len);
    }
}
Exemple #2
0
void
_arb_poly_inv_series(arb_ptr Qinv,
    arb_srcptr Q, slong Qlen, slong len, slong prec)
{
    arb_inv(Qinv, Q, prec);

    if (Qlen == 1)
    {
        _arb_vec_zero(Qinv + 1, len - 1);
    }
    else if (len == 2)
    {
        arb_div(Qinv + 1, Qinv, Q, prec);
        arb_mul(Qinv + 1, Qinv + 1, Q + 1, prec);
        arb_neg(Qinv + 1, Qinv + 1);
    }
    else
    {
        slong Qnlen, Wlen, W2len;
        arb_ptr W;

        W = _arb_vec_init(len);

        NEWTON_INIT(1, len)
        NEWTON_LOOP(m, n)

        Qnlen = FLINT_MIN(Qlen, n);
        Wlen = FLINT_MIN(Qnlen + m - 1, n);
        W2len = Wlen - m;
        MULLOW(W, Q, Qnlen, Qinv, m, Wlen, prec);
        MULLOW(Qinv + m, Qinv, m, W + m, W2len, n - m, prec);
        _arb_vec_neg(Qinv + m, Qinv + m, n - m);

        NEWTON_END_LOOP
        NEWTON_END

        _arb_vec_clear(W, len);
    }
}
Exemple #3
0
/* with inverse=1 simultaneously computes g = exp(-x) to length n
with inverse=0 uses g as scratch space, computing
g = exp(-x) only to length (n+1)/2 */
static void
_arb_poly_exp_series_newton(arb_ptr f, arb_ptr g,
                            arb_srcptr h, slong len, slong prec, int inverse, slong cutoff)
{
    slong alloc;
    arb_ptr T, U, hprime;

    alloc = 3 * len;
    T = _arb_vec_init(alloc);
    U = T + len;
    hprime = U + len;

    _arb_poly_derivative(hprime, h, len, prec);
    arb_zero(hprime + len - 1);

    NEWTON_INIT(cutoff, len)

    /* f := exp(h) + O(x^m), g := exp(-h) + O(x^m2) */
    NEWTON_BASECASE(n)
    _arb_poly_exp_series_basecase(f, h, n, n, prec);
    _arb_poly_inv_series(g, f, (n + 1) / 2, (n + 1) / 2, prec);
    NEWTON_END_BASECASE

    /* extend from length m to length n */
    NEWTON_LOOP(m, n)

    slong m2 = (m + 1) / 2;
    slong l = m - 1; /* shifted for derivative */

    /* g := exp(-h) + O(x^m) */
    _arb_poly_mullow(T, f, m, g, m2, m, prec);
    _arb_poly_mullow(g + m2, g, m2, T + m2, m - m2, m - m2, prec);
    _arb_vec_neg(g + m2, g + m2, m - m2);

    /* U := h' + g (f' - f h') + O(x^(n-1))
        Note: should replace h' by h' mod x^(m-1) */
    _arb_vec_zero(f + m, n - m);
    _arb_poly_mullow(T, f, n, hprime, n, n, prec); /* should be mulmid */
    _arb_poly_derivative(U, f, n, prec);
    arb_zero(U + n - 1); /* should skip low terms */
    _arb_vec_sub(U + l, U + l, T + l, n - l, prec);
    _arb_poly_mullow(T + l, g, n - m, U + l, n - m, n - m, prec);
    _arb_vec_add(U + l, hprime + l, T + l, n - m, prec);

    /* f := f + f * (h - int U) + O(x^n) = exp(h) + O(x^n) */
    _arb_poly_integral(U, U, n, prec); /* should skip low terms */
    _arb_vec_sub(U + m, h + m, U + m, n - m, prec);
    _arb_poly_mullow(f + m, f, n - m, U + m, n - m, n - m, prec);

    /* g := exp(-h) + O(x^n) */
    /* not needed if we only want exp(x) */
    if (n == len && inverse)
    {
        _arb_poly_mullow(T, f, n, g, m, n, prec);
        _arb_poly_mullow(g + m, g, m, T + m, n - m, n - m, prec);
        _arb_vec_neg(g + m, g + m, n - m);
    }

    NEWTON_END_LOOP

    NEWTON_END

    _arb_vec_clear(T, alloc);
}
Exemple #4
0
void
_arb_poly_inv_series(arb_ptr Qinv,
    arb_srcptr Q, slong Qlen, slong len, slong prec)
{
    Qlen = FLINT_MIN(Qlen, len);

    arb_inv(Qinv, Q, prec);

    if (Qlen == 1)
    {
        _arb_vec_zero(Qinv + 1, len - 1);
    }
    else if (len == 2)
    {
        arb_mul(Qinv + 1, Qinv, Qinv, prec);
        arb_mul(Qinv + 1, Qinv + 1, Q + 1, prec);
        arb_neg(Qinv + 1, Qinv + 1);
    }
    else
    {
        slong i, j, blen;

        /* The basecase algorithm is faster for much larger Qlen or len than
           this, but unfortunately also much less numerically stable. */
        if (Qlen == 2 || len <= 8)
            blen = len;
        else
            blen = FLINT_MIN(len, 4);

        for (i = 1; i < blen; i++)
        {
            arb_mul(Qinv + i, Q + 1, Qinv + i - 1, prec);

            for (j = 2; j < FLINT_MIN(i + 1, Qlen); j++)
                arb_addmul(Qinv + i, Q + j, Qinv + i - j, prec);

            if (!arb_is_one(Qinv))
                arb_mul(Qinv + i, Qinv + i, Qinv, prec);

            arb_neg(Qinv + i, Qinv + i);
        }

        if (len > blen)
        {
            slong Qnlen, Wlen, W2len;
            arb_ptr W;

            W = _arb_vec_init(len);

            NEWTON_INIT(blen, len)
            NEWTON_LOOP(m, n)

            Qnlen = FLINT_MIN(Qlen, n);
            Wlen = FLINT_MIN(Qnlen + m - 1, n);
            W2len = Wlen - m;
            MULLOW(W, Q, Qnlen, Qinv, m, Wlen, prec);
            MULLOW(Qinv + m, Qinv, m, W + m, W2len, n - m, prec);
            _arb_vec_neg(Qinv + m, Qinv + m, n - m);

            NEWTON_END_LOOP
            NEWTON_END

            _arb_vec_clear(W, len);
        }
    }
}