static void MakeFunnyCompound (DemoEntityManager* const scene, const dVector& origin)
{
	NewtonWorld* const world = scene->GetNewton();

	// create an empty compound collision
	NewtonCollision* const compound = NewtonCreateCompoundCollision (world, 0);
	
	
#if 1
	NewtonCompoundCollisionBeginAddRemove(compound);	

	// add a bunch of convex collision at random position and orientation over the surface of a big sphere
	float radio = 5.0f;
	for (int i = 0 ; i < 300; i ++) {
		NewtonCollision* collision = NULL;

		float pitch = RandomVariable (1.0f) * 2.0f * 3.1416f;
		float yaw = RandomVariable (1.0f) * 2.0f * 3.1416f;
		float roll = RandomVariable (1.0f) * 2.0f * 3.1416f;

		float x = RandomVariable (0.5f);
		float y = RandomVariable (0.5f);
		float z = RandomVariable (0.5f);
		if ((x == 0.0f) && (y == 0.0f) && (z == 0.0f)){
			x = 0.1f;
		}
		dVector p (x, y, z, 1.0f) ;
		p = p.Scale (radio / dSqrt (p % p));

		dMatrix matrix (dPitchMatrix (pitch) * dYawMatrix (yaw) * dRollMatrix (roll));
		matrix.m_posit = p;
		int r = dRand();	
		switch ((r >>2) & 3) 
		{
			case 0:
			{
				collision = NewtonCreateSphere(world, 0.5, 0, &matrix[0][0]) ;
				break; 
			}

			case 1:
			{
				collision = NewtonCreateCapsule(world, 0.3f, 0.2f, 0.5f, 0, &matrix[0][0]) ;
				break; 
			}

			case 2:
			{
				collision = NewtonCreateCylinder(world, 0.25, 0.5, 0.25, 0, &matrix[0][0]) ;
				break; 
			}

			case 3:
			{
				collision = NewtonCreateCone(world, 0.25, 0.25, 0, &matrix[0][0]) ;
				break; 
			}
		}

		dAssert (collision);
		// we can set a collision id, and use data per sub collision 
		NewtonCollisionSetUserID(collision, i);
		NewtonCollisionSetUserData(collision, (void*) i);

		// add this new collision 
		NewtonCompoundCollisionAddSubCollision (compound, collision);
		NewtonDestroyCollision(collision);
	}
	// finish adding shapes
	NewtonCompoundCollisionEndAddRemove(compound);	

	{
		// remove the first 10 shapes
		// test remove shape form a compound
		NewtonCompoundCollisionBeginAddRemove(compound);	
		void* node = NewtonCompoundCollisionGetFirstNode(compound);
		for (int i = 0; i < 10; i ++) {
			//NewtonCollision* const collision = NewtonCompoundCollisionGetCollisionFromNode(compound, node);
			void* const nextNode = NewtonCompoundCollisionGetNextNode(compound, node);
			NewtonCompoundCollisionRemoveSubCollision(compound, node);
			node = nextNode;
		}
		// finish remove 

		void* handle1 = NewtonCompoundCollisionGetNodeByIndex (compound, 30);
		void* handle2 = NewtonCompoundCollisionGetNodeByIndex (compound, 100);
		NewtonCollision* const shape1 = NewtonCompoundCollisionGetCollisionFromNode (compound, handle1);
		NewtonCollision* const shape2 = NewtonCompoundCollisionGetCollisionFromNode (compound, handle2);

		NewtonCollision* const copyShape1 = NewtonCollisionCreateInstance (shape1);
		NewtonCollision* const copyShape2 = NewtonCollisionCreateInstance (shape2);

		// you can also remove shape by their index
		NewtonCompoundCollisionRemoveSubCollisionByIndex (compound, 30);	
		NewtonCompoundCollisionRemoveSubCollisionByIndex (compound, 100);	

		handle1 = NewtonCompoundCollisionAddSubCollision (compound, copyShape1);
		handle2 = NewtonCompoundCollisionAddSubCollision (compound, copyShape2);
		NewtonDestroyCollision(copyShape1);
		NewtonDestroyCollision(copyShape2);

		NewtonCompoundCollisionEndAddRemove(compound);	
	}

	{
		// show how to modify the children of a compound collision
		NewtonCompoundCollisionBeginAddRemove(compound);	
		for (void* node = NewtonCompoundCollisionGetFirstNode(compound); node; node = NewtonCompoundCollisionGetNextNode(compound, node)) { 
			NewtonCollision* const collision = NewtonCompoundCollisionGetCollisionFromNode(compound, node);
			// you can scale, change the matrix, change the inertia, do anything you want with the change
			NewtonCollisionSetUserData(collision, NULL);
		}
		NewtonCompoundCollisionEndAddRemove(compound);	
	}

//	NewtonCollisionSetScale(compound, 0.5f, 0.25f, 0.125f);

#else 

	//test Yeside compound shape shape
	//	- Rotation="1.5708 -0 0" Translation="0 0 0.024399" Size="0.021 0.096" Pos="0 0 0.115947"
	//	- Rotation="1.5708 -0 0" Translation="0 0 0.056366" Size="0.195 0.024" Pos="0 0 0.147914"
	//	- Rotation="1.5708 -0 0" Translation="0 0 -0.056366" Size="0.0065 0.07 Pos="0 0 0.035182"

	NewtonCompoundCollisionBeginAddRemove(compound);	

	NewtonCollision* collision;
	dMatrix offsetMatrix (dPitchMatrix(1.5708f));
	offsetMatrix.m_posit.m_z = 0.115947f;
	collision = NewtonCreateCylinder (world, 0.021f, 0.096f, 0, &offsetMatrix[0][0]) ;
	NewtonCompoundCollisionAddSubCollision (compound, collision);
	NewtonDestroyCollision(collision);

	offsetMatrix.m_posit.m_z = 0.035182f;
	collision = NewtonCreateCylinder (world, 0.0065f, 0.07f, 0, &offsetMatrix[0][0]) ;
	NewtonCompoundCollisionAddSubCollision (compound, collision);
	NewtonDestroyCollision(collision);

	offsetMatrix.m_posit.m_z = 0.147914f;
	collision = NewtonCreateCylinder (world, 0.195f, 0.024f, 0, &offsetMatrix[0][0]) ;
	NewtonCompoundCollisionAddSubCollision (compound, collision);
	NewtonDestroyCollision(collision);

	NewtonCompoundCollisionEndAddRemove(compound);	

#endif



	// for now we will simple make simple Box,  make a visual Mesh
	DemoMesh* const visualMesh = new DemoMesh ("big ball", compound, "metal_30.tga", "metal_30.tga", "metal_30.tga");

	int instaceCount = 2;
	dMatrix matrix (dGetIdentityMatrix());
	matrix.m_posit = origin;
	for (int ix = 0; ix < instaceCount; ix ++) {
		for (int iz = 0; iz < instaceCount; iz ++) {
			dFloat y = origin.m_y;
			dFloat x = origin.m_x + (ix - instaceCount/2) * 15.0f;
			dFloat z = origin.m_z + (iz - instaceCount/2) * 15.0f;
			matrix.m_posit = FindFloor (world, dVector (x, y + 10.0f, z, 0.0f), 20.0f); ;
			matrix.m_posit.m_y += 15.0f;
			CreateSimpleSolid (scene, visualMesh, 10.0f, matrix, compound, 0);
		}
	}
	visualMesh->Release();

	NewtonDestroyCollision(compound);
}
static void AddStructuredFractured (DemoEntityManager* const scene, const dVector& origin, int materialID, const char* const assetName)
{
	// create the shape and visual mesh as a common data to be re used
	NewtonWorld* const world = scene->GetNewton();


#if 0
	// load the mesh asset
	DemoEntity entity(GetIdentityMatrix(), NULL);	
	entity.LoadNGD_mesh (assetName, world);
	DemoMesh____* const mesh = entity.GetMesh();
	dAssert (mesh);

	// convert the mesh to a newtonMesh
	NewtonMesh* const solidMesh = mesh->CreateNewtonMesh (world, entity.GetMeshMatrix() * entity.GetCurrentMatrix());
#else
	int externalMaterial = LoadTexture("wood_0.tga");
	NewtonCollision* const collision = CreateConvexCollision (world, dGetIdentityMatrix(), dVector (3.0f, 3.0f, 3.0f, 0.0), _BOX_PRIMITIVE, 0);
	NewtonMesh* const solidMesh = NewtonMeshCreateFromCollision(collision);
	NewtonDestroyCollision(collision);
	//NewtonMeshTriangulate(solidMesh);
	NewtonMeshApplyBoxMapping (solidMesh, externalMaterial, externalMaterial, externalMaterial);
#endif


	// create a random point cloud
	dVector points[MAX_POINT_CLOUD_SIZE];
	int pointCount = MakeRandomPoisonPointCloud (solidMesh, points);
//	int pointCount = MakeRandomGuassianPointCloud (solidMesh, points, MAX_POINT_CLOUD_SIZE);

	// create and interiors material for texturing the fractured pieces
	//int internalMaterial = LoadTexture("KAMEN-stup.tga");
	int internalMaterial = LoadTexture("concreteBrick.tga");

	// crate a texture matrix for uv mapping of fractured pieces
	dMatrix textureMatrix (dGetIdentityMatrix());
	textureMatrix[0][0] = 1.0f / 2.0f;
	textureMatrix[1][1] = 1.0f / 2.0f;

	/// create the fractured collision and mesh
	int debreePhysMaterial = NewtonMaterialGetDefaultGroupID(world);
	NewtonCollision* structuredFracturedCollision = NewtonCreateFracturedCompoundCollision (world, solidMesh, 0, debreePhysMaterial, pointCount, &points[0][0], sizeof (dVector), internalMaterial, &textureMatrix[0][0],
																							OnReconstructMainMeshCallBack, OnEmitFracturedCompound, OnEmitFracturedChunk);

// uncomment this to test serialization
#if 0
	FILE* file = fopen ("serialize.bin", "wb");
	NewtonCollisionSerialize (world, structuredFracturedCollision, DemoEntityManager::SerializeFile, file);
	NewtonDestroyCollision (structuredFracturedCollision);
	fclose (file);

	file = fopen ("serialize.bin", "rb");
	structuredFracturedCollision = NewtonCreateCollisionFromSerialization (world, DemoEntityManager::DeserializeFile, file);
	NewtonFracturedCompoundSetCallbacks (structuredFracturedCollision, OnReconstructMainMeshCallBack, OnEmitFracturedCompound, OnEmitFracturedChunk);
	fclose (file);
#endif	

#if 0
	// test the interface
	dTree<void*, void*> detachableNodes;
	NewtonCompoundCollisionBeginAddRemove(structuredFracturedCollision);	

	// remove all chunk that can be detached for the first layer
	for (void* node = NewtonCompoundCollisionGetFirstNode(structuredFracturedCollision); node; node = NewtonCompoundCollisionGetNextNode(structuredFracturedCollision, node)) { 
		if (NewtonFracturedCompoundIsNodeFreeToDetach (structuredFracturedCollision, node)) {
			detachableNodes.Insert(node, node);
		}

		// remove any node that can be deched fro the secund layer, this codul; be reusive
		void* neighbors[32];
		int count = NewtonFracturedCompoundNeighborNodeList (structuredFracturedCollision, node, neighbors, sizeof (neighbors) / sizeof (neighbors[0]));
		for (int i = 0; i < count; i ++ ) {
			if (NewtonFracturedCompoundIsNodeFreeToDetach (structuredFracturedCollision, neighbors[i])) {
				detachableNodes.Insert(node, node);
			}
		}
	}

	// now delete the actual nodes
	dTree<void*, void*>::Iterator iter (detachableNodes) ;
	for (iter.Begin(); iter; iter ++) { 
		void* const node = iter.GetNode()->GetInfo(); 
		NewtonCompoundCollisionRemoveSubCollision (structuredFracturedCollision, node);
	}
	NewtonCompoundCollisionEndAddRemove(structuredFracturedCollision);	
#endif
	
#if 1
	dVector plane (0.0f, 1.0f, 0.0f, 0.0f);
	NewtonCollision* const crack = NewtonFracturedCompoundPlaneClip (structuredFracturedCollision, &plane[0]);
	if (crack) {
		NewtonDestroyCollision (structuredFracturedCollision);
	}
#endif




    dVector com(0.0f);
    dVector inertia(0.0f);
    NewtonConvexCollisionCalculateInertialMatrix (structuredFracturedCollision, &inertia[0], &com[0]);	

    //dFloat mass = 10.0f;
    //int materialId = 0;
    //create the rigid body
	dMatrix matrix (dGetIdentityMatrix());
	matrix.m_posit = origin;
	matrix.m_posit.m_y = 20.0;
	matrix.m_posit.m_w = 1.0f;
    NewtonBody* const rigidBody = NewtonCreateDynamicBody (world, structuredFracturedCollision, &matrix[0][0]);

	// set the mass and center of mass
	dFloat density = 1.0f;
	dFloat mass = density * NewtonConvexCollisionCalculateVolume (structuredFracturedCollision);
	NewtonBodySetMassProperties (rigidBody, mass, structuredFracturedCollision);


	// set the transform call back function
	NewtonBodySetTransformCallback (rigidBody, DemoEntity::TransformCallback);

	// set the force and torque call back function
	NewtonBodySetForceAndTorqueCallback (rigidBody, PhysicsApplyGravityForce);

	// create the entity and visual mesh and attach to the body as user data
	CreateVisualEntity (scene, rigidBody);

    // assign the wood id
//    NewtonBodySetMaterialGroupID (rigidBody, materialId);

    // set a destructor for this rigid body
//    NewtonBodySetDestructorCallback (rigidBody, PhysicsBodyDestructor);

	// release the interior texture
//	ReleaseTexture (internalMaterial);

	// delete the solid mesh since it no longed needed
	NewtonMeshDestroy (solidMesh);

	// destroy the fracture collision
	NewtonDestroyCollision (structuredFracturedCollision);
}
void dNewtonCollisionCompound::RemoveCollision(void* const handle)
{
	NewtonCompoundCollisionRemoveSubCollision(m_shape, handle);
}