static void
UsbPhyOpenHwInterface(
    NvDdkUsbPhyHandle hUsbPhy)
{
    static NvDdkUsbPhyCapabilities s_UsbPhyCap[] =
    {
        //  AP15
        { NV_FALSE, NV_FALSE },
        //  AP16
        { NV_FALSE, NV_TRUE },
        //  AP20
        { NV_TRUE, NV_FALSE},
    };
    NvDdkUsbPhyCapabilities *pUsbfCap = NULL;
    NvRmModuleCapability s_UsbPhyCaps[] =
    {
        {1, 0, 0, &s_UsbPhyCap[0]},  // AP15 A01
        {1, 1, 0, &s_UsbPhyCap[0]},  // AP15 A02
        {1, 2, 0, &s_UsbPhyCap[1]},  // AP16, USB1
        {1, 3, 0, &s_UsbPhyCap[1]},  // AP16, USB2
        {1, 5, 0, &s_UsbPhyCap[2]}, // AP20, USB1
        {1, 6, 0, &s_UsbPhyCap[2]}, // AP20, USB2
        {1, 7, 0, &s_UsbPhyCap[2]}, // AP20, USB3
    };

    NV_ASSERT_SUCCESS(
        NvRmModuleGetCapabilities(hUsbPhy->hRmDevice,
            NVRM_MODULE_ID(NvRmModuleID_Usb2Otg, hUsbPhy->Instance),
            s_UsbPhyCaps, NV_ARRAY_SIZE(s_UsbPhyCaps),
            (void**)&pUsbfCap));

    // Fill the client capabilities structure.
    NvOsMemcpy(&hUsbPhy->Caps, pUsbfCap, sizeof(NvDdkUsbPhyCapabilities));

    //NvOsDebugPrintf("NvDdkUsbPhyCapabilities::\n");
    //NvOsDebugPrintf("PhyRegInController::[%d] 0-FALSE 1-TRUE\n", hUsbPhy->Caps.PhyRegInController);
    //NvOsDebugPrintf("CommonClockAndReset::[%d] 0-FALSE 1-TRUE\n", hUsbPhy->Caps.CommonClockAndReset);

    if (hUsbPhy->Caps.PhyRegInController)
    {
        //NvOsDebugPrintf("AP20 USB Controllers\n");
        Ap20UsbPhyOpenHwInterface(hUsbPhy);
    }
}
Exemple #2
0
NvError 
NvRmPwmOpen(
    NvRmDeviceHandle hDevice,
    NvRmPwmHandle *phPwm)
{
    NvError status = NvSuccess;
    NvU32 PwmPhysAddr = 0, i = 0, PmcPhysAddr = 0;
    NvRmModuleCapability caps[4];  
    NvRmModuleCapability *pCap = NULL;

    NV_ASSERT(hDevice);
    NV_ASSERT(phPwm);
    
    NvOsMutexLock(s_hPwmMutex);
    
    if (s_hPwm)
    {
        s_hPwm->RefCount++;
        goto exit;
    }

    // Allcoate the memory for the pwm handle
    s_hPwm = NvOsAlloc(sizeof(NvRmPwm));
    if (!s_hPwm)
    {
        status = NvError_InsufficientMemory;
        goto fail;
    }
    NvOsMemset(s_hPwm, 0, sizeof(NvRmPwm));

    // Set the pwm handle parameters
    s_hPwm->RmDeviceHandle = hDevice;
    
    // Get the pwm physical and virtual base address
    NvRmModuleGetBaseAddress(hDevice,
            NVRM_MODULE_ID(NvRmModuleID_Pwm, 0),
            &PwmPhysAddr, &(s_hPwm->PwmBankSize));
    s_hPwm->PwmBankSize = PWM_BANK_SIZE;
    for (i = 0; i < NvRmPwmOutputId_Num-2; i++)
    {
        status = NvRmPhysicalMemMap(
            PwmPhysAddr + i*s_hPwm->PwmBankSize,
            s_hPwm->PwmBankSize, 
            NVOS_MEM_READ_WRITE,
            NvOsMemAttribute_Uncached,
            (void**)&s_hPwm->VirtualAddress[i]);
        if (status != NvSuccess)
        {
            NvOsFree(s_hPwm);
            goto fail;
        }
    }

    // Get the pmc physical and virtual base address
    NvRmModuleGetBaseAddress(hDevice,
            NVRM_MODULE_ID(NvRmModuleID_Pmif, 0),
            &PmcPhysAddr, &(s_hPwm->PmcBankSize));
    s_hPwm->PmcBankSize = PMC_BANK_SIZE;

    status = NvRmPhysicalMemMap(
            PmcPhysAddr,
            s_hPwm->PmcBankSize, 
            NVOS_MEM_READ_WRITE,
            NvOsMemAttribute_Uncached,
            (void**)&s_hPwm->VirtualAddress[NvRmPwmOutputId_Num-2]);
    if (status != NvSuccess)
    {
        NvOsFree(s_hPwm);
        goto fail;
    }

    caps[0].MajorVersion = 1;
    caps[0].MinorVersion = 0;
    caps[0].EcoLevel = 0;
    caps[0].Capability = &caps[0];

    caps[1].MajorVersion = 1;
    caps[1].MinorVersion = 1;
    caps[1].EcoLevel = 0;
    caps[1].Capability = &caps[1];

    caps[2].MajorVersion = 1;
    caps[2].MinorVersion = 2;
    caps[2].EcoLevel = 0;
    caps[2].Capability = &caps[2];

    caps[3].MajorVersion = 2;
    caps[3].MinorVersion = 0;
    caps[3].EcoLevel = 0;
    caps[3].Capability = &caps[3];

    NV_ASSERT_SUCCESS(NvRmModuleGetCapabilities(
        hDevice,
        NvRmModuleID_Pwm,
        caps,
        sizeof(caps)/sizeof(caps[0]),
        (void**)&pCap));

    if ((pCap->MajorVersion > 1) ||
        ((pCap->MajorVersion == 1) && (pCap->MinorVersion > 0)))
            s_IsFreqDividerSupported = NV_TRUE;

    s_hPwm->RefCount++;
exit:
    *phPwm = s_hPwm;
    NvOsMutexUnlock(s_hPwmMutex);
    return NvSuccess;

fail:
    NvOsMutexUnlock(s_hPwmMutex);
    return status;
}