/* * Set the antenna switch to control RX antenna diversity. * * If a fixed configuration is used, the LNA and div bias * settings are fixed and the antenna diversity scanning routine * is disabled. * * If a variable configuration is used, a default is programmed * in and sampling commences per RXed packet. * * Since this is called from ar9285SetBoardValues() to setup * diversity, it means that after a reset or scan, any current * software diversity combining settings will be lost and won't * re-appear until after the first successful sample run. * Please keep this in mind if you're seeing weird performance * that happens to relate to scan/diversity timing. */ HAL_BOOL ar9285SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings) { int regVal; const HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom; const MODAL_EEP4K_HEADER *pModal = &ee->ee_base.modalHeader; uint8_t ant_div_control1, ant_div_control2; if (pModal->version < 3) { HALDEBUG(ah, HAL_DEBUG_DIVERSITY, "%s: not supported\n", __func__); return AH_FALSE; /* Can't do diversity */ } /* Store settings */ AH5212(ah)->ah_antControl = settings; AH5212(ah)->ah_diversity = (settings == HAL_ANT_VARIABLE); /* XXX don't fiddle if the PHY is in sleep mode or ! chan */ /* Begin setting the relevant registers */ ant_div_control1 = pModal->antdiv_ctl1; ant_div_control2 = pModal->antdiv_ctl2; regVal = OS_REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL); regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL)); /* enable antenna diversity only if diversityControl == HAL_ANT_VARIABLE */ if (settings == HAL_ANT_VARIABLE) regVal |= SM(ant_div_control1, AR_PHY_9285_ANT_DIV_CTL); if (settings == HAL_ANT_VARIABLE) { HALDEBUG(ah, HAL_DEBUG_DIVERSITY, "%s: HAL_ANT_VARIABLE\n", __func__); regVal |= SM(ant_div_control2, AR_PHY_9285_ANT_DIV_ALT_LNACONF); regVal |= SM((ant_div_control2 >> 2), AR_PHY_9285_ANT_DIV_MAIN_LNACONF); regVal |= SM((ant_div_control1 >> 1), AR_PHY_9285_ANT_DIV_ALT_GAINTB); regVal |= SM((ant_div_control1 >> 2), AR_PHY_9285_ANT_DIV_MAIN_GAINTB); } else {
/* * Read the NF and check it against the noise floor threshhold */ static int16_t ar5416GetNf(struct ath_hal *ah, struct ieee80211_channel *chan) { int16_t nf, nfThresh; if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: NF didn't complete in calibration window\n", __func__); nf = 0; } else { /* Finished NF cal, check against threshold */ int16_t nfarray[NUM_NOISEFLOOR_READINGS] = { 0 }; HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan); /* TODO - enhance for multiple chains and ext ch */ ath_hal_getNoiseFloor(ah, nfarray); nf = nfarray[0]; if (ar5416GetEepromNoiseFloorThresh(ah, chan, &nfThresh)) { if (nf > nfThresh) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: noise floor failed detected; " "detected %d, threshold %d\n", __func__, nf, nfThresh); /* * NB: Don't discriminate 2.4 vs 5Ghz, if this * happens it indicates a problem regardless * of the band. */ chan->ic_state |= IEEE80211_CHANSTATE_CWINT; nf = 0; } } else { nf = 0; } ar5416UpdateNFHistBuff(AH5416(ah)->ah_cal.nfCalHist, nfarray); ichan->rawNoiseFloor = nf; } return nf; }
/* * This is like Merlin but without ADC disable */ HAL_BOOL ar9287InitCalHardware(struct ath_hal *ah, const struct ieee80211_channel *chan) { OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL); /* Calibrate the AGC */ OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL, OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL); /* Poll for offset calibration complete */ if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) { HALDEBUG(ah, HAL_DEBUG_RESET, "%s: offset calibration failed to complete in 1ms; " "noisy environment?\n", __func__); return AH_FALSE; } OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL); return AH_TRUE; }
/* * Set the RX abort bit. */ HAL_BOOL ar9300SetRxAbort(struct ath_hal *ah, HAL_BOOL set) { if (set) { /* Set the ForceRXAbort bit */ OS_REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); if ( AH_PRIVATE(ah)->ah_reset_reason == HAL_RESET_BBPANIC ){ /* depending upon the BB panic status, rx state may not return to 0, * so skipping the wait for BB panic reset */ OS_REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); return AH_FALSE; } else { HAL_BOOL okay; okay = ath_hal_wait( ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE, 0, AH_WAIT_TIMEOUT); /* Wait for Rx state to return to 0 */ if (!okay) { u_int32_t reg; /* abort: chip rx failed to go idle in 10 ms */ OS_REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); reg = OS_REG_READ(ah, AR_OBS_BUS_1); HDPRINTF(ah, HAL_DBG_RX, "%s: rx failed to go idle in 10 ms RXSM=0x%x\n", __func__, reg); return AH_FALSE; // Indicate failure } } } else { OS_REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); } return AH_TRUE; // Function completed successfully }
void ar9300GetSpectralParams(struct ath_hal *ah, HAL_SPECTRAL_PARAM *ss) { u_int32_t val; struct ath_hal_9300 *ahp = AH9300(ah); HAL_POWER_MODE pwrmode = ahp->ah_powerMode; if (AR_SREV_WASP(ah) && (pwrmode == HAL_PM_FULL_SLEEP)) { ar9300SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE); } val = OS_REG_READ(ah, AR_PHY_SPECTRAL_SCAN); ss->ss_fft_period = MS(val, AR_PHY_SPECTRAL_SCAN_FFT_PERIOD); ss->ss_period = MS(val, AR_PHY_SPECTRAL_SCAN_PERIOD); ss->ss_count = MS(val, AR_PHY_SPECTRAL_SCAN_COUNT); ss->ss_short_report = MS(val, AR_PHY_SPECTRAL_SCAN_SHORT_REPEAT); if (AR_SREV_WASP(ah) && (pwrmode == HAL_PM_FULL_SLEEP)) { ar9300SetPowerMode(ah, HAL_PM_FULL_SLEEP, AH_TRUE); } }
static void ar9285WriteIni(struct ath_hal *ah, const struct ieee80211_channel *chan) { u_int modesIndex, freqIndex; int regWrites = 0; /* Setup the indices for the next set of register array writes */ /* XXX Ignore 11n dynamic mode on the AR5416 for the moment */ freqIndex = 2; if (IEEE80211_IS_CHAN_HT40(chan)) modesIndex = 3; else if (IEEE80211_IS_CHAN_108G(chan)) modesIndex = 5; else modesIndex = 4; /* Set correct Baseband to analog shift setting to access analog chips. */ OS_REG_WRITE(ah, AR_PHY(0), 0x00000007); OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC); regWrites = ath_hal_ini_write(ah, &AH5212(ah)->ah_ini_modes, modesIndex, regWrites); if (AR_SREV_KITE_12_OR_LATER(ah)) { regWrites = ath_hal_ini_write(ah, &AH9285(ah)->ah_ini_txgain, modesIndex, regWrites); } regWrites = ath_hal_ini_write(ah, &AH5212(ah)->ah_ini_common, 1, regWrites); OS_REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); if (AR_SREV_MERLIN_10_OR_LATER(ah)) { uint32_t val; val = OS_REG_READ(ah, AR_PCU_MISC_MODE2) & (~AR_PCU_MISC_MODE2_HWWAR1); OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, val); OS_REG_WRITE(ah, 0x9800 + (651 << 2), 0x11); } }
/* * Reads the Interrupt Status Register value from the NIC, thus deasserting * the interrupt line, and returns both the masked and unmasked mapped ISR * values. The value returned is mapped to abstract the hw-specific bit * locations in the Interrupt Status Register. * * Returns: A hardware-abstracted bitmap of all non-masked-out * interrupts pending, as well as an unmasked value */ HAL_BOOL ar5211GetPendingInterrupts(struct ath_hal *ah, HAL_INT *masked) { uint32_t isr; isr = OS_REG_READ(ah, AR_ISR_RAC); if (isr == 0xffffffff) { *masked = 0; return AH_FALSE; } *masked = isr & HAL_INT_COMMON; if (isr & AR_ISR_HIUERR) *masked |= HAL_INT_FATAL; if (isr & (AR_ISR_RXOK | AR_ISR_RXERR)) *masked |= HAL_INT_RX; if (isr & (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR | AR_ISR_TXEOL)) *masked |= HAL_INT_TX; /* * Receive overrun is usually non-fatal on Oahu/Spirit. * BUT on some parts rx could fail and the chip must be reset. * So we force a hardware reset in all cases. */ if ((isr & AR_ISR_RXORN) && AH_PRIVATE(ah)->ah_rxornIsFatal) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: receive FIFO overrun interrupt\n", __func__); *masked |= HAL_INT_FATAL; } /* * On fatal errors collect ISR state for debugging. */ if (*masked & HAL_INT_FATAL) { AH_PRIVATE(ah)->ah_fatalState[0] = isr; AH_PRIVATE(ah)->ah_fatalState[1] = OS_REG_READ(ah, AR_ISR_S0_S); AH_PRIVATE(ah)->ah_fatalState[2] = OS_REG_READ(ah, AR_ISR_S1_S); AH_PRIVATE(ah)->ah_fatalState[3] = OS_REG_READ(ah, AR_ISR_S2_S); AH_PRIVATE(ah)->ah_fatalState[4] = OS_REG_READ(ah, AR_ISR_S3_S); AH_PRIVATE(ah)->ah_fatalState[5] = OS_REG_READ(ah, AR_ISR_S4_S); HALDEBUG(ah, HAL_DEBUG_ANY, "%s: fatal error, ISR_RAC=0x%x ISR_S2_S=0x%x\n", __func__, isr, AH_PRIVATE(ah)->ah_fatalState[3]); } return AH_TRUE; }
/* * Write 16 bits of data from data to the specified EEPROM offset. */ HAL_BOOL ar5416EepromWrite(struct ath_hal *ah, u_int off, u_int16_t data) { u_int32_t status; u_int32_t write_to = 50000; /* write timeout */ u_int32_t eepromValue; eepromValue = (u_int32_t)data & 0xffff; /* Setup EEPROM device to write */ OS_REG_RMW(ah, AR_GPIO_OUTPUT_MUX1, 0, 0x1f << 15); /* Mux GPIO-3 as GPIO */ OS_DELAY(1); OS_REG_RMW(ah, AR_GPIO_OE_OUT, 0xc0, 0xc0); /* Configure GPIO-3 as output */ OS_DELAY(1); OS_REG_RMW(ah, AR_GPIO_IN_OUT, 0, 1 << 3); /* drive GPIO-3 low */ OS_DELAY(1); /* Send write data, as 32 bit data */ OS_REG_WRITE(ah, AR5416_EEPROM_OFFSET + (off << AR5416_EEPROM_S), eepromValue); /* check busy bit to see if eeprom write succeeded */ while (write_to > 0) { status = OS_REG_READ(ah, AR_EEPROM_STATUS_DATA) & (AR_EEPROM_STATUS_DATA_BUSY | AR_EEPROM_STATUS_DATA_BUSY_ACCESS | AR_EEPROM_STATUS_DATA_PROT_ACCESS | AR_EEPROM_STATUS_DATA_ABSENT_ACCESS); if (status == 0) { OS_REG_RMW(ah, AR_GPIO_IN_OUT, 1<<3, 1<<3); /* drive GPIO-3 hi */ return AH_TRUE; } OS_DELAY(1); write_to--; } OS_REG_RMW(ah, AR_GPIO_IN_OUT, 1<<3, 1<<3); /* drive GPIO-3 hi */ return AH_FALSE; }
/* * Configure GPIO Output Mux control */ static void ar5416GpioCfgOutputMux(struct ath_hal *ah, u_int32_t gpio, u_int32_t type) { int addr; u_int32_t gpio_shift, tmp; // each MUX controls 6 GPIO pins if (gpio > 11) { addr = AR_GPIO_OUTPUT_MUX3; } else if (gpio > 5) { addr = AR_GPIO_OUTPUT_MUX2; } else { addr = AR_GPIO_OUTPUT_MUX1; } // 5 bits per GPIO pin. Bits 0..4 for 1st pin in that mux, bits 5..9 for 2nd pin, etc. gpio_shift = (gpio % 6) * 5; /* * From Owl to Merlin 1.0, the value read from MUX1 bit 4 to bit 9 are wrong. * Here is hardware's coding: * PRDATA[4:0] <= gpio_output_mux[0]; * PRDATA[9:4] <= gpio_output_mux[1]; <==== Bit 4 is used by both gpio_output_mux[0] [1]. * Currently the max value for gpio_output_mux[] is 6. So bit 4 will never be used. * So it should be fine that bit 4 won't be able to recover. */ if (AR_SREV_MERLIN_20_OR_LATER(ah) || (addr != AR_GPIO_OUTPUT_MUX1)) { OS_REG_RMW(ah, addr, (type << gpio_shift), (0x1f << gpio_shift)); } else { tmp = OS_REG_READ(ah, addr); tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0); tmp &= ~(0x1f << gpio_shift); tmp |= (type << gpio_shift); OS_REG_WRITE(ah, addr, tmp); } }
/* * Run temperature compensation calibration. * * The TX gain table is adjusted depending upon the difference * between the initial PDADC value and the currently read * average TX power sample value. This value is only valid if * frames have been transmitted, so currPDADC will be 0 if * no frames have yet been transmitted. */ void ar9287olcTemperatureCompensation(struct ath_hal *ah) { uint32_t rddata; int32_t delta, currPDADC, slope; rddata = OS_REG_READ(ah, AR_PHY_TX_PWRCTRL4); currPDADC = MS(rddata, AR_PHY_TX_PWRCTRL_PD_AVG_OUT); HALDEBUG(ah, HAL_DEBUG_PERCAL, "%s: initPDADC=%d, currPDADC=%d\n", __func__, AH5416(ah)->initPDADC, currPDADC); if (AH5416(ah)->initPDADC == 0 || currPDADC == 0) { /* * Zero value indicates that no frames have been transmitted * yet, can't do temperature compensation until frames are * transmitted. */ return; } else { int8_t val; (void) (ath_hal_eepromGet(ah, AR_EEP_TEMPSENSE_SLOPE, &val)); slope = val; if (slope == 0) { /* to avoid divide by zero case */ delta = 0; } else { delta = ((currPDADC - AH5416(ah)->initPDADC)*4) / slope; } OS_REG_RMW_FIELD(ah, AR_PHY_CH0_TX_PWRCTRL11, AR_PHY_TX_PWRCTRL_OLPC_TEMP_COMP, delta); OS_REG_RMW_FIELD(ah, AR_PHY_CH1_TX_PWRCTRL11, AR_PHY_TX_PWRCTRL_OLPC_TEMP_COMP, delta); HALDEBUG(ah, HAL_DEBUG_PERCAL, "%s: delta=%d\n", __func__, delta); } }
/* * Configure GPIO Output Mux control */ static void cfgOutputMux(struct ath_hal *ah, uint32_t gpio, uint32_t type) { int addr; uint32_t gpio_shift, reg; /* each MUX controls 6 GPIO pins */ if (gpio > 11) addr = AR_GPIO_OUTPUT_MUX3; else if (gpio > 5) addr = AR_GPIO_OUTPUT_MUX2; else addr = AR_GPIO_OUTPUT_MUX1; /* * 5 bits per GPIO pin. Bits 0..4 for 1st pin in that mux, * bits 5..9 for 2nd pin, etc. */ gpio_shift = (gpio % 6) * 5; /* * From Owl to Merlin 1.0, the value read from MUX1 bit 4 to bit * 9 are wrong. Here is hardware's coding: * PRDATA[4:0] <= gpio_output_mux[0]; * PRDATA[9:4] <= gpio_output_mux[1]; * <==== Bit 4 is used by both gpio_output_mux[0] [1]. * Currently the max value for gpio_output_mux[] is 6. So bit 4 * will never be used. So it should be fine that bit 4 won't be * able to recover. */ reg = OS_REG_READ(ah, addr); if (addr == AR_GPIO_OUTPUT_MUX1 && !AR_SREV_MERLIN_20_OR_LATER(ah)) reg = ((reg & 0x1F0) << 1) | (reg & ~0x1F0); reg &= ~(0x1f << gpio_shift); reg |= type << gpio_shift; OS_REG_WRITE(ah, addr, reg); }
uint32_t ar5210NumTxPending(struct ath_hal *ah, u_int q) { struct ath_hal_5210 *ahp = AH5210(ah); HAL_TX_QUEUE_INFO *qi; uint32_t v; HALASSERT(q < HAL_NUM_TX_QUEUES); HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q); qi = &ahp->ah_txq[q]; switch (qi->tqi_type) { case HAL_TX_QUEUE_DATA: v = OS_REG_READ(ah, AR_CFG); return MS(v, AR_CFG_TXCNT); case HAL_TX_QUEUE_INACTIVE: HALDEBUG(ah, HAL_DEBUG_ANY, "%s: inactive queue %u\n", __func__, q); /* fall thru... */ default: break; } return 0; }
/* * Update Tx FIFO trigger level. * * Set bIncTrigLevel to TRUE to increase the trigger level. * Set bIncTrigLevel to FALSE to decrease the trigger level. * * Returns TRUE if the trigger level was updated */ HAL_BOOL ar5211UpdateTxTrigLevel(struct ath_hal *ah, HAL_BOOL bIncTrigLevel) { uint32_t curTrigLevel, txcfg; HAL_INT ints = ar5211GetInterrupts(ah); /* * Disable chip interrupts. This is because halUpdateTxTrigLevel * is called from both ISR and non-ISR contexts. */ ar5211SetInterrupts(ah, ints &~ HAL_INT_GLOBAL); txcfg = OS_REG_READ(ah, AR_TXCFG); curTrigLevel = (txcfg & AR_TXCFG_FTRIG_M) >> AR_TXCFG_FTRIG_S; if (bIncTrigLevel){ /* increase the trigger level */ curTrigLevel = curTrigLevel + ((MAX_TX_FIFO_THRESHOLD - curTrigLevel) / 2); } else { /* decrease the trigger level if not already at the minimum */ if (curTrigLevel > MIN_TX_FIFO_THRESHOLD) { /* decrease the trigger level */ curTrigLevel--; } else { /* no update to the trigger level */ /* re-enable chip interrupts */ ar5211SetInterrupts(ah, ints); return AH_FALSE; } } /* Update the trigger level */ OS_REG_WRITE(ah, AR_TXCFG, (txcfg &~ AR_TXCFG_FTRIG_M) | ((curTrigLevel << AR_TXCFG_FTRIG_S) & AR_TXCFG_FTRIG_M)); /* re-enable chip interrupts */ ar5211SetInterrupts(ah, ints); return AH_TRUE; }
/* * Attach for an AR9130 part. */ static struct ath_hal * ar9130Attach(uint16_t devid, HAL_SOFTC sc, HAL_BUS_TAG st, HAL_BUS_HANDLE sh, uint16_t *eepromdata, HAL_STATUS *status) { struct ath_hal_5416 *ahp5416; struct ath_hal_5212 *ahp; struct ath_hal *ah; uint32_t val; HAL_STATUS ecode; HAL_BOOL rfStatus; HALDEBUG(AH_NULL, HAL_DEBUG_ATTACH, "%s: sc %p st %p sh %p\n", __func__, sc, (void*) st, (void*) sh); /* NB: memory is returned zero'd */ ahp5416 = ath_hal_malloc(sizeof (struct ath_hal_5416)); if (ahp5416 == AH_NULL) { HALDEBUG(AH_NULL, HAL_DEBUG_ANY, "%s: cannot allocate memory for state block\n", __func__); *status = HAL_ENOMEM; return AH_NULL; } ar5416InitState(ahp5416, devid, sc, st, sh, status); ahp = &ahp5416->ah_5212; ah = &ahp->ah_priv.h; /* XXX override with 9100 specific state */ AH5416(ah)->ah_initPLL = ar9130InitPLL; /* XXX should force chainmasks to 0x7, as per ath9k calibration bugs */ /* override 5416 methods for our needs */ AH5416(ah)->ah_cal.iqCalData.calData = &ar9130_iq_cal; AH5416(ah)->ah_cal.adcGainCalData.calData = &ar9130_adc_gain_cal; AH5416(ah)->ah_cal.adcDcCalData.calData = &ar9130_adc_dc_cal; AH5416(ah)->ah_cal.adcDcCalInitData.calData = &ar9130_adc_init_dc_cal; AH5416(ah)->ah_cal.suppCals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL; /* * This was hard-set because the initial ath9k port of this * code kept their runtime conditional register #defines. * AR_SREV and the RTC registers have shifted for Howl; * they detected this and changed the values at runtime. * The current port doesn't yet do this; it may do at a * later stage, so this is set early so any routines which * manipulate the registers have ah_macVersion set to base * the above decision upon. */ AH_PRIVATE((ah))->ah_macVersion = AR_XSREV_VERSION_HOWL; /* * Use the "local" EEPROM data given to us by the higher layers. * This is a private copy out of system flash. The Linux ath9k * commit for the initial AR9130 support mentions MMIO flash * access is "unreliable." -adrian */ AH_PRIVATE((ah))->ah_eepromRead = ar9130EepromRead; AH_PRIVATE((ah))->ah_eepromWrite = NULL; ah->ah_eepromdata = eepromdata; if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) { /* reset chip */ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't reset chip\n", __func__); ecode = HAL_EIO; goto bad; } if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't wakeup chip\n", __func__); ecode = HAL_EIO; goto bad; } /* Read Revisions from Chips before taking out of reset */ val = OS_REG_READ(ah, AR_SREV_CHIP_HOWL) & AR_SREV_CHIP_HOWL_ID; /* XXX are these values even valid for the mac/radio revision? -adrian */ HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: ID 0x%x VERSION 0x%x TYPE 0x%x REVISION 0x%x\n", __func__, MS(val, AR_XSREV_ID), MS(val, AR_XSREV_VERSION), MS(val, AR_XSREV_TYPE), MS(val, AR_XSREV_REVISION)); AH_PRIVATE(ah)->ah_macRev = MS(val, AR_XSREV_REVISION); AH_PRIVATE(ah)->ah_ispcie = 0; /* setup common ini data; rf backends handle remainder */ HAL_INI_INIT(&ahp->ah_ini_modes, ar5416Modes_9100, 6); HAL_INI_INIT(&ahp->ah_ini_common, ar5416Common_9100, 2); HAL_INI_INIT(&AH5416(ah)->ah_ini_bb_rfgain, ar5416BB_RfGain_9100, 3); HAL_INI_INIT(&AH5416(ah)->ah_ini_bank0, ar5416Bank0_9100, 2); HAL_INI_INIT(&AH5416(ah)->ah_ini_bank1, ar5416Bank1_9100, 2); HAL_INI_INIT(&AH5416(ah)->ah_ini_bank2, ar5416Bank2_9100, 2); HAL_INI_INIT(&AH5416(ah)->ah_ini_bank3, ar5416Bank3_9100, 3); HAL_INI_INIT(&AH5416(ah)->ah_ini_bank6, ar5416Bank6TPC_9100, 3); HAL_INI_INIT(&AH5416(ah)->ah_ini_bank7, ar5416Bank7_9100, 2); HAL_INI_INIT(&AH5416(ah)->ah_ini_addac, ar5416Addac_9100, 2); ecode = ath_hal_v14EepromAttach(ah); if (ecode != HAL_OK) goto bad; if (!ar5416ChipReset(ah, AH_NULL)) { /* reset chip */ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__); ecode = HAL_EIO; goto bad; } AH_PRIVATE(ah)->ah_phyRev = OS_REG_READ(ah, AR_PHY_CHIP_ID); if (!ar5212ChipTest(ah)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: hardware self-test failed\n", __func__); ecode = HAL_ESELFTEST; goto bad; } /* * Set correct Baseband to analog shift * setting to access analog chips. */ OS_REG_WRITE(ah, AR_PHY(0), 0x00000007); /* Read Radio Chip Rev Extract */ AH_PRIVATE(ah)->ah_analog5GhzRev = ar5416GetRadioRev(ah); switch (AH_PRIVATE(ah)->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR) { case AR_RAD2133_SREV_MAJOR: /* Sowl: 2G/3x3 */ case AR_RAD5133_SREV_MAJOR: /* Sowl: 2+5G/3x3 */ break; default: if (AH_PRIVATE(ah)->ah_analog5GhzRev == 0) { AH_PRIVATE(ah)->ah_analog5GhzRev = AR_RAD5133_SREV_MAJOR; break; } #ifdef AH_DEBUG HALDEBUG(ah, HAL_DEBUG_ANY, "%s: 5G Radio Chip Rev 0x%02X is not supported by " "this driver\n", __func__, AH_PRIVATE(ah)->ah_analog5GhzRev); ecode = HAL_ENOTSUPP; goto bad; #endif } rfStatus = ar2133RfAttach(ah, &ecode); if (!rfStatus) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RF setup failed, status %u\n", __func__, ecode); goto bad; } /* * Got everything we need now to setup the capabilities. */ if (!ar9130FillCapabilityInfo(ah)) { ecode = HAL_EEREAD; goto bad; } ecode = ath_hal_eepromGet(ah, AR_EEP_MACADDR, ahp->ah_macaddr); if (ecode != HAL_OK) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: error getting mac address from EEPROM\n", __func__); goto bad; } /* XXX How about the serial number ? */ /* Read Reg Domain */ AH_PRIVATE(ah)->ah_currentRD = ath_hal_eepromGet(ah, AR_EEP_REGDMN_0, AH_NULL); AH_PRIVATE(ah)->ah_currentRDext = ath_hal_eepromGet(ah, AR_EEP_REGDMN_1, AH_NULL); /* * ah_miscMode is populated by ar5416FillCapabilityInfo() * starting from griffin. Set here to make sure that * AR_MISC_MODE_MIC_NEW_LOC_ENABLE is set before a GTK is * placed into hardware. */ if (ahp->ah_miscMode != 0) OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode); /* XXX no ANI for AR9130 */ AH5416(ah)->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_2GHZ; AH5416(ah)->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_2GHZ; AH5416(ah)->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_5416_2GHZ; AH5416(ah)->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_5GHZ; AH5416(ah)->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_5GHZ; AH5416(ah)->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_5416_5GHZ; ar5416InitNfHistBuff(AH5416(ah)->ah_cal.nfCalHist); HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: return\n", __func__); return ah; bad: if (ahp) ar5416Detach((struct ath_hal *) ahp); if (status) *status = ecode; return AH_NULL; }
/* * Take the MHz channel value and set the Channel value * * ASSUMES: Writes enabled to analog bus * * Actual Expression, * * For 2GHz channel, * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17) * (freq_ref = 40MHz) * * For 5GHz channel, * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10) * (freq_ref = 40MHz/(24>>amodeRefSel)) * * For 5GHz channels which are 5MHz spaced, * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17) * (freq_ref = 40MHz) */ static HAL_BOOL ar9287SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan) { uint16_t bMode, fracMode, aModeRefSel = 0; uint32_t freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0; CHAN_CENTERS centers; uint32_t refDivA = 24; OS_MARK(ah, AH_MARK_SETCHANNEL, chan->ic_freq); ar5416GetChannelCenters(ah, chan, ¢ers); freq = centers.synth_center; reg32 = OS_REG_READ(ah, AR_PHY_SYNTH_CONTROL); reg32 &= 0xc0000000; if (freq < 4800) { /* 2 GHz, fractional mode */ uint32_t txctl; int regWrites = 0; bMode = 1; fracMode = 1; aModeRefSel = 0; channelSel = (freq * 0x10000)/15; if (AR_SREV_KIWI_11_OR_LATER(ah)) { if (freq == 2484) { ath_hal_ini_write(ah, &AH9287(ah)->ah_ini_cckFirJapan2484, 1, regWrites); } else { ath_hal_ini_write(ah, &AH9287(ah)->ah_ini_cckFirNormal, 1, regWrites); } } txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); if (freq == 2484) { /* Enable channel spreading for channel 14 */ OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, txctl | AR_PHY_CCK_TX_CTRL_JAPAN); } else { OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); } } else { bMode = 0; fracMode = 0; if ((freq % 20) == 0) { aModeRefSel = 3; } else if ((freq % 10) == 0) { aModeRefSel = 2; } else { aModeRefSel = 0; /* * Enable 2G (fractional) mode for channels which * are 5MHz spaced */ fracMode = 1; refDivA = 1; channelSel = (freq * 0x8000)/15; /* RefDivA setting */ OS_A_REG_RMW_FIELD(ah, AR_AN_SYNTH9, AR_AN_SYNTH9_REFDIVA, refDivA); } if (!fracMode) { ndiv = (freq * (refDivA >> aModeRefSel))/60; channelSel = ndiv & 0x1ff; channelFrac = (ndiv & 0xfffffe00) * 2; channelSel = (channelSel << 17) | channelFrac; } }
/* * Reads the Interrupt Status Register value from the NIC, thus deasserting * the interrupt line, and returns both the masked and unmasked mapped ISR * values. The value returned is mapped to abstract the hw-specific bit * locations in the Interrupt Status Register. * * (*masked) is cleared on initial call. * * Returns: A hardware-abstracted bitmap of all non-masked-out * interrupts pending, as well as an unmasked value */ HAL_BOOL ar5416GetPendingInterrupts(struct ath_hal *ah, HAL_INT *masked) { uint32_t isr, isr0, isr1, sync_cause; /* * Verify there's a mac interrupt and the RTC is on. */ if ((OS_REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) && (OS_REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON) isr = OS_REG_READ(ah, AR_ISR); else isr = 0; sync_cause = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE); sync_cause &= AR_INTR_SYNC_DEFAULT; *masked = 0; if (isr == 0 && sync_cause == 0) return AH_FALSE; if (isr != 0) { struct ath_hal_5212 *ahp = AH5212(ah); uint32_t mask2; mask2 = 0; if (isr & AR_ISR_BCNMISC) { uint32_t isr2 = OS_REG_READ(ah, AR_ISR_S2); if (isr2 & AR_ISR_S2_TIM) mask2 |= HAL_INT_TIM; if (isr2 & AR_ISR_S2_DTIM) mask2 |= HAL_INT_DTIM; if (isr2 & AR_ISR_S2_DTIMSYNC) mask2 |= HAL_INT_DTIMSYNC; if (isr2 & (AR_ISR_S2_CABEND )) mask2 |= HAL_INT_CABEND; if (isr2 & AR_ISR_S2_GTT) mask2 |= HAL_INT_GTT; if (isr2 & AR_ISR_S2_CST) mask2 |= HAL_INT_CST; if (isr2 & AR_ISR_S2_TSFOOR) mask2 |= HAL_INT_TSFOOR; } isr = OS_REG_READ(ah, AR_ISR_RAC); if (isr == 0xffffffff) { *masked = 0; return AH_FALSE; } *masked = isr & HAL_INT_COMMON; if (isr & (AR_ISR_RXOK | AR_ISR_RXERR)) *masked |= HAL_INT_RX; if (isr & (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR | AR_ISR_TXEOL)) { *masked |= HAL_INT_TX; isr0 = OS_REG_READ(ah, AR_ISR_S0_S); ahp->ah_intrTxqs |= MS(isr0, AR_ISR_S0_QCU_TXOK); ahp->ah_intrTxqs |= MS(isr0, AR_ISR_S0_QCU_TXDESC); isr1 = OS_REG_READ(ah, AR_ISR_S1_S); ahp->ah_intrTxqs |= MS(isr1, AR_ISR_S1_QCU_TXERR); ahp->ah_intrTxqs |= MS(isr1, AR_ISR_S1_QCU_TXEOL); } if (AR_SREV_MERLIN(ah) || AR_SREV_KITE(ah)) { uint32_t isr5; isr5 = OS_REG_READ(ah, AR_ISR_S5_S); if (isr5 & AR_ISR_S5_TIM_TIMER) *masked |= HAL_INT_TIM_TIMER; } /* Interrupt Mitigation on AR5416 */ #ifdef AR5416_INT_MITIGATION if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM)) *masked |= HAL_INT_RX; if (isr & (AR_ISR_TXMINTR | AR_ISR_TXINTM)) *masked |= HAL_INT_TX; #endif *masked |= mask2; } if (sync_cause != 0) { if (sync_cause & (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR)) { *masked |= HAL_INT_FATAL; } if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RADM CPL timeout\n", __func__); OS_REG_WRITE(ah, AR_RC, AR_RC_HOSTIF); OS_REG_WRITE(ah, AR_RC, 0); *masked |= HAL_INT_FATAL; } /* * On fatal errors collect ISR state for debugging. */ if (*masked & HAL_INT_FATAL) { AH_PRIVATE(ah)->ah_fatalState[0] = isr; AH_PRIVATE(ah)->ah_fatalState[1] = sync_cause; HALDEBUG(ah, HAL_DEBUG_ANY, "%s: fatal error, ISR_RAC 0x%x SYNC_CAUSE 0x%x\n", __func__, isr, sync_cause); } OS_REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause); /* NB: flush write */ (void) OS_REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR); } return AH_TRUE; }
/* * Atomically enables NIC interrupts. Interrupts are passed in * via the enumerated bitmask in ints. */ HAL_INT ar5416SetInterrupts(struct ath_hal *ah, HAL_INT ints) { struct ath_hal_5212 *ahp = AH5212(ah); uint32_t omask = ahp->ah_maskReg; uint32_t mask, mask2; HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: 0x%x => 0x%x\n", __func__, omask, ints); if (omask & HAL_INT_GLOBAL) { HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: disable IER\n", __func__); OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE); (void) OS_REG_READ(ah, AR_IER); OS_REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0); (void) OS_REG_READ(ah, AR_INTR_ASYNC_ENABLE); OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); (void) OS_REG_READ(ah, AR_INTR_SYNC_ENABLE); } mask = ints & HAL_INT_COMMON; mask2 = 0; if (ints & HAL_INT_TX) { if (ahp->ah_txOkInterruptMask) mask |= AR_IMR_TXOK; if (ahp->ah_txErrInterruptMask) mask |= AR_IMR_TXERR; if (ahp->ah_txDescInterruptMask) mask |= AR_IMR_TXDESC; if (ahp->ah_txEolInterruptMask) mask |= AR_IMR_TXEOL; } if (ints & HAL_INT_RX) mask |= AR_IMR_RXOK | AR_IMR_RXERR | AR_IMR_RXDESC; #ifdef AR5416_INT_MITIGATION /* * Overwrite default mask if Interrupt mitigation * is specified for AR5416 */ mask = ints & HAL_INT_COMMON; if (ints & HAL_INT_TX) mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM; if (ints & HAL_INT_RX) mask |= AR_IMR_RXERR | AR_IMR_RXMINTR | AR_IMR_RXINTM; #endif if (ints & (HAL_INT_BMISC)) { mask |= AR_IMR_BCNMISC; if (ints & HAL_INT_TIM) mask2 |= AR_IMR_S2_TIM; if (ints & HAL_INT_DTIM) mask2 |= AR_IMR_S2_DTIM; if (ints & HAL_INT_DTIMSYNC) mask2 |= AR_IMR_S2_DTIMSYNC; if (ints & HAL_INT_CABEND) mask2 |= (AR_IMR_S2_CABEND ); if (ints & HAL_INT_GTT) mask2 |= AR_IMR_S2_GTT; if (ints & HAL_INT_CST) mask2 |= AR_IMR_S2_CST; if (ints & HAL_INT_TSFOOR) mask2 |= AR_IMR_S2_TSFOOR; } /* Write the new IMR and store off our SW copy. */ HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: new IMR 0x%x\n", __func__, mask); OS_REG_WRITE(ah, AR_IMR, mask); mask = OS_REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC | AR_IMR_S2_CABEND | AR_IMR_S2_CABTO | AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST); OS_REG_WRITE(ah, AR_IMR_S2, mask | mask2); ahp->ah_maskReg = ints; /* Re-enable interrupts if they were enabled before. */ if (ints & HAL_INT_GLOBAL) { HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: enable IER\n", __func__); OS_REG_WRITE(ah, AR_IER, AR_IER_ENABLE); OS_REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, AR_INTR_MAC_IRQ); OS_REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ); OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT); OS_REG_WRITE(ah, AR_INTR_SYNC_MASK, AR_INTR_SYNC_DEFAULT); } return omask; }
/* * Set the GPIO Interrupt */ void ar5416GpioSetIntr(struct ath_hal *ah, u_int gpio, uint32_t ilevel) { uint32_t val, mask; HALASSERT(gpio < AH_PRIVATE(ah)->ah_caps.halNumGpioPins); if (ilevel == HAL_GPIO_INTR_DISABLE) { val = MS(OS_REG_READ(ah, AR_INTR_ASYNC_ENABLE), AR_INTR_ASYNC_ENABLE_GPIO) &~ AR_GPIO_BIT(gpio); OS_REG_RMW_FIELD(ah, AR_INTR_ASYNC_ENABLE, AR_INTR_ASYNC_ENABLE_GPIO, val); mask = MS(OS_REG_READ(ah, AR_INTR_ASYNC_MASK), AR_INTR_ASYNC_MASK_GPIO) &~ AR_GPIO_BIT(gpio); OS_REG_RMW_FIELD(ah, AR_INTR_ASYNC_MASK, AR_INTR_ASYNC_MASK_GPIO, mask); /* Clear synchronous GPIO interrupt registers and pending interrupt flag */ val = MS(OS_REG_READ(ah, AR_INTR_SYNC_ENABLE), AR_INTR_SYNC_ENABLE_GPIO) &~ AR_GPIO_BIT(gpio); OS_REG_RMW_FIELD(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_ENABLE_GPIO, val); mask = MS(OS_REG_READ(ah, AR_INTR_SYNC_MASK), AR_INTR_SYNC_MASK_GPIO) &~ AR_GPIO_BIT(gpio); OS_REG_RMW_FIELD(ah, AR_INTR_SYNC_MASK, AR_INTR_SYNC_MASK_GPIO, mask); val = MS(OS_REG_READ(ah, AR_INTR_SYNC_CAUSE), AR_INTR_SYNC_ENABLE_GPIO) | AR_GPIO_BIT(gpio); OS_REG_RMW_FIELD(ah, AR_INTR_SYNC_CAUSE, AR_INTR_SYNC_ENABLE_GPIO, val); } else { val = MS(OS_REG_READ(ah, AR_GPIO_INTR_POL), AR_GPIO_INTR_POL_VAL); if (ilevel == HAL_GPIO_INTR_HIGH) { /* 0 == interrupt on pin high */ val &= ~AR_GPIO_BIT(gpio); } else if (ilevel == HAL_GPIO_INTR_LOW) { /* 1 == interrupt on pin low */ val |= AR_GPIO_BIT(gpio); } OS_REG_RMW_FIELD(ah, AR_GPIO_INTR_POL, AR_GPIO_INTR_POL_VAL, val); /* Change the interrupt mask. */ val = MS(OS_REG_READ(ah, AR_INTR_ASYNC_ENABLE), AR_INTR_ASYNC_ENABLE_GPIO) | AR_GPIO_BIT(gpio); OS_REG_RMW_FIELD(ah, AR_INTR_ASYNC_ENABLE, AR_INTR_ASYNC_ENABLE_GPIO, val); mask = MS(OS_REG_READ(ah, AR_INTR_ASYNC_MASK), AR_INTR_ASYNC_MASK_GPIO) | AR_GPIO_BIT(gpio); OS_REG_RMW_FIELD(ah, AR_INTR_ASYNC_MASK, AR_INTR_ASYNC_MASK_GPIO, mask); /* Set synchronous GPIO interrupt registers as well */ val = MS(OS_REG_READ(ah, AR_INTR_SYNC_ENABLE), AR_INTR_SYNC_ENABLE_GPIO) | AR_GPIO_BIT(gpio); OS_REG_RMW_FIELD(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_ENABLE_GPIO, val); mask = MS(OS_REG_READ(ah, AR_INTR_SYNC_MASK), AR_INTR_SYNC_MASK_GPIO) | AR_GPIO_BIT(gpio); OS_REG_RMW_FIELD(ah, AR_INTR_SYNC_MASK, AR_INTR_SYNC_MASK_GPIO, mask); } AH5416(ah)->ah_gpioMask = mask; /* for ar5416SetInterrupts */ }
void ar9300_tx99_tgt_stop(struct ath_hal *ah) { OS_REG_WRITE(ah, AR_PHY_TEST, OS_REG_READ(ah, AR_PHY_TEST) &~ PHY_AGC_CLR); OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) &~ (AR_DIAG_FORCE_RX_CLEAR | AR_DIAG_IGNORE_VIRT_CS)); }
void ar9300_tx99_tgt_set_single_carrier(struct ath_hal *ah, int tx_chain_mask, int chtype) { OS_REG_WRITE(ah, AR_PHY_TST_DAC_CONST, OS_REG_READ(ah, AR_PHY_TST_DAC_CONST) | (0x7ff<<11) | 0x7ff); OS_REG_WRITE(ah, AR_PHY_TEST_CTL_STATUS, OS_REG_READ(ah, AR_PHY_TEST_CTL_STATUS) | (1<<7) | (1<<1)); OS_REG_WRITE(ah, AR_PHY_ADDAC_PARA_CTL, (OS_REG_READ(ah, AR_PHY_ADDAC_PARA_CTL) | (1<<31) | (1<<15)) & ~(1<<13)); /* 11G mode */ if (!chtype) { OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 3) | (0x1 << 2)); if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) { OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP, OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2, (OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2) | (0x1 << 26) | (0x7 << 24)) & ~(0x1 << 22)); } else { OS_REG_WRITE(ah, AR_HORNET_CH0_TOP, OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4)); OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2, (OS_REG_READ(ah, AR_HORNET_CH0_TOP2) | (0x1 << 26) | (0x7 << 24)) & ~(0x1 << 22)); } /* chain zero */ if((tx_chain_mask & 0x01) == 0x01) { OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1, (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1) | (0x1 << 31) | (0x5 << 15) | (0x3 << 9)) & ~(0x1 << 27) & ~(0x1 << 12)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2, (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 12) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 7)) & ~(0x1 << 11)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3, (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3) | (0x1 << 29) | (0x1 << 25) | (0x1 << 23) | (0x1 << 19) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 3)) & ~(0x1 << 28)& ~(0x1 << 24) & ~(0x1 << 22)& ~(0x1 << 7)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1, (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23))& ~(0x1 << 21)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1, OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1) | (0x1 << 12) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 6) | (0x1 << 5) | (0x1 << 4) | (0x1 << 3) | (0x1 << 2)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2, OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31)); } if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) { /* chain one */ if ((tx_chain_mask & 0x02) == 0x02 ) { OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1, (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1) | (0x1 << 31) | (0x5 << 15) | (0x3 << 9)) & ~(0x1 << 27) & ~(0x1 << 12)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2, (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2) | (0x1 << 12) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 7)) & ~(0x1 << 11)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3, (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3) | (0x1 << 29) | (0x1 << 25) | (0x1 << 23) | (0x1 << 19) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 3)) & ~(0x1 << 28)& ~(0x1 << 24) & ~(0x1 << 22)& ~(0x1 << 7)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1, (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23))& ~(0x1 << 21)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1, OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1) | (0x1 << 12) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 6) | (0x1 << 5) | (0x1 << 4) | (0x1 << 3) | (0x1 << 2)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2, OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31)); } } if (AR_SREV_OSPREY(ah)) { /* chain two */ if ((tx_chain_mask & 0x04) == 0x04 ) { OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1, (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1) | (0x1 << 31) | (0x5 << 15) | (0x3 << 9)) & ~(0x1 << 27) & ~(0x1 << 12)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2, (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2) | (0x1 << 12) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 7)) & ~(0x1 << 11)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3, (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3) | (0x1 << 29) | (0x1 << 25) | (0x1 << 23) | (0x1 << 19) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 3)) & ~(0x1 << 28)& ~(0x1 << 24) & ~(0x1 << 22)& ~(0x1 << 7)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1, (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23))& ~(0x1 << 21)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1, OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1) | (0x1 << 12) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 6) | (0x1 << 5) | (0x1 << 4) | (0x1 << 3) | (0x1 << 2)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2, OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31)); } } OS_REG_WRITE(ah, AR_PHY_SWITCH_COM_2, 0x11111); OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, 0x111); } else { /* chain zero */ if((tx_chain_mask & 0x01) == 0x01) { OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1, (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1) | (0x1 << 31) | (0x1 << 27) | (0x3 << 23) | (0x1 << 19) | (0x1 << 15) | (0x3 << 9)) & ~(0x1 << 12)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2, (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 12) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 7) | (0x1 << 3) | (0x1 << 2) | (0x1 << 1)) & ~(0x1 << 11)& ~(0x1 << 0)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3, (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3) | (0x1 << 29) | (0x1 << 25) | (0x1 << 23) | (0x1 << 19) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 3)) & ~(0x1 << 28)& ~(0x1 << 24) & ~(0x1 << 22)& ~(0x1 << 7)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1, (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23))& ~(0x1 << 21)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2, OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2) | (0x3 << 3) | (0x3 << 0)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF3, (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF3) | (0x3 << 29) | (0x3 << 26) | (0x2 << 23) | (0x2 << 20) | (0x2 << 17))& ~(0x1 << 14)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1, OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1) | (0x1 << 12) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 6) | (0x1 << 5) | (0x1 << 4) | (0x1 << 3) | (0x1 << 2)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2, OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31)); if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) { OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP, OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2, OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2) | (0x1 << 26) | (0x7 << 24) | (0x3 << 22)); } else { OS_REG_WRITE(ah, AR_HORNET_CH0_TOP, OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4)); OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2, OS_REG_READ(ah, AR_HORNET_CH0_TOP2) | (0x1 << 26) | (0x7 << 24) | (0x3 << 22)); } if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) { OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2, (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2) | (0x1 << 3) | (0x1 << 2) | (0x1 << 1)) & ~(0x1 << 0)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3, OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3) | (0x1 << 19) | (0x1 << 3)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1, OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23)); } if (AR_SREV_OSPREY(ah)) { OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2, (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2) | (0x1 << 3) | (0x1 << 2) | (0x1 << 1)) & ~(0x1 << 0)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3, OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3) | (0x1 << 19) | (0x1 << 3)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1, OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23)); } } if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) { /* chain one */ if ((tx_chain_mask & 0x02) == 0x02 ) { OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2, (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 3) | (0x1 << 2) | (0x1 << 1)) & ~(0x1 << 0)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3) | (0x1 << 19) | (0x1 << 3)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1, OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23)); if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) { OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP, OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2, OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2) | (0x1 << 26) | (0x7 << 24) | (0x3 << 22)); } else { OS_REG_WRITE(ah, AR_HORNET_CH0_TOP, OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4)); OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2, OS_REG_READ(ah, AR_HORNET_CH0_TOP2) | (0x1 << 26) | (0x7 << 24) | (0x3 << 22)); } OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1, (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1) | (0x1 << 31) | (0x1 << 27) | (0x3 << 23) | (0x1 << 19) | (0x1 << 15) | (0x3 << 9)) & ~(0x1 << 12)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2, (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2) | (0x1 << 12) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 7) | (0x1 << 3) | (0x1 << 2) | (0x1 << 1)) & ~(0x1 << 11)& ~(0x1 << 0)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3, (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3) | (0x1 << 29) | (0x1 << 25) | (0x1 << 23) | (0x1 << 19) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 3)) & ~(0x1 << 28)& ~(0x1 << 24) & ~(0x1 << 22)& ~(0x1 << 7)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1, (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23))& ~(0x1 << 21)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF2, OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF2) | (0x3 << 3) | (0x3 << 0)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF3, (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF3) | (0x3 << 29) | (0x3 << 26) | (0x2 << 23) | (0x2 << 20) | (0x2 << 17))& ~(0x1 << 14)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1, OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1) | (0x1 << 12) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 6) | (0x1 << 5) | (0x1 << 4) | (0x1 << 3) | (0x1 << 2)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2, OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31)); if (AR_SREV_OSPREY(ah)) { OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2, (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2) | (0x1 << 3) | (0x1 << 2) | (0x1 << 1)) & ~(0x1 << 0)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3, OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3) | (0x1 << 19) | (0x1 << 3)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1, OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23)); } } } if (AR_SREV_OSPREY(ah)) { /* chain two */ if ((tx_chain_mask & 0x04) == 0x04 ) { OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2, (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 3) | (0x1 << 2) | (0x1 << 1)) & ~(0x1 << 0)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3) | (0x1 << 19) | (0x1 << 3)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1, OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23)); if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) { OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP, OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4)); OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2, OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2) | (0x1 << 26) | (0x7 << 24) | (0x3 << 22)); } else { OS_REG_WRITE(ah, AR_HORNET_CH0_TOP, OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4)); OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2, OS_REG_READ(ah, AR_HORNET_CH0_TOP2) | (0x1 << 26) | (0x7 << 24) | (0x3 << 22)); } OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2, (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2) | (0x1 << 3) | (0x1 << 2) | (0x1 << 1)) & ~(0x1 << 0)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3, OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3) | (0x1 << 19) | (0x1 << 3)); OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1, OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1, (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1) | (0x1 << 31) | (0x1 << 27) | (0x3 << 23) | (0x1 << 19) | (0x1 << 15) | (0x3 << 9)) & ~(0x1 << 12)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2, (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2) | (0x1 << 12) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 7) | (0x1 << 3) | (0x1 << 2) | (0x1 << 1)) & ~(0x1 << 11)& ~(0x1 << 0)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3, (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3) | (0x1 << 29) | (0x1 << 25) | (0x1 << 23) | (0x1 << 19) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 3)) & ~(0x1 << 28)& ~(0x1 << 24) & ~(0x1 << 22)& ~(0x1 << 7)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1, (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23))& ~(0x1 << 21)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF2, OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF2) | (0x3 << 3) | (0x3 << 0)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF3, (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF3) | (0x3 << 29) | (0x3 << 26) | (0x2 << 23) | (0x2 << 20) | (0x2 << 17))& ~(0x1 << 14)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1, OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1) | (0x1 << 12) | (0x1 << 10) | (0x1 << 9) | (0x1 << 8) | (0x1 << 6) | (0x1 << 5) | (0x1 << 4) | (0x1 << 3) | (0x1 << 2)); OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2, OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31)); } } OS_REG_WRITE(ah, AR_PHY_SWITCH_COM_2, 0x22222); OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, 0x222); } }
/* * Attach for an AR3212 part. */ struct ath_hal * ar5312Attach(u_int16_t devid, HAL_SOFTC sc, HAL_BUS_TAG st, HAL_BUS_HANDLE sh, HAL_STATUS *status) { struct ath_hal_5212 *ahp = AH_NULL; struct ath_hal *ah; u_int i; u_int32_t sum, val, eepEndLoc; u_int16_t eeval, data16; HAL_STATUS ecode; HAL_BOOL rfStatus; HALDEBUG(AH_NULL, "%s: sc %p st %u sh %p\n", __func__, sc, st, (void*) sh); /* Setup the flash table so the EEPROM emulation works */ if (ar5312SetupFlash() == AH_FALSE) { HALDEBUG(AH_NULL, "%s: Cannot setup flash\n" , __func__); ecode = HAL_ENOTSUPP; goto bad; } /* NB: memory is returned zero'd */ ahp = ar5212NewState(devid, sc, st, sh, status); if (ahp == AH_NULL) return AH_NULL; ah = &ahp->ah_priv.h; /* override 5212 methods for our needs */ ah->ah_reset = ar5312Reset; ah->ah_phyDisable = ar5312PhyDisable; ah->ah_setLedState = ar5312SetLedState; ah->ah_gpioCfgInput = ar5312GpioCfgInput; ah->ah_gpioCfgOutput = ar5312GpioCfgOutput; ah->ah_gpioGet = ar5312GpioGet; ah->ah_gpioSet = ar5312GpioSet; ah->ah_gpioSetIntr = ar5312GpioSetIntr; ah->ah_detectCardPresent = ar5312DetectCardPresent; ah->ah_setPowerMode = ar5312SetPowerMode; ah->ah_getPowerMode = ar5312GetPowerMode; ah->ah_isInterruptPending = ar5312IsInterruptPending; ahp->ah_priv.ah_eepromRead = ar5312EepromRead; #ifdef AH_SUPPORT_WRITE_EEPROM ahp->ah_priv.ah_eepromWrite = ar5312EepromWrite; #endif ahp->ah_priv.ah_gpioCfgOutput = ar5312GpioCfgOutput; ahp->ah_priv.ah_gpioCfgInput = ar5312GpioCfgInput; ahp->ah_priv.ah_gpioGet = ar5312GpioGet; ahp->ah_priv.ah_gpioSet = ar5312GpioSet; ahp->ah_priv.ah_gpioSetIntr = ar5312GpioSetIntr; if (!ar5312ChipReset(ah, AH_NULL)) { /* reset chip */ HALDEBUG(ah, "%s: chip reset failed\n", __func__); ecode = HAL_EIO; goto bad; } #if AH_SUPPORT_2316 if ((devid == AR5212_AR2315_REV6) || (devid == AR5212_AR2315_REV7)) { val = ((OS_REG_READ(ah, (AR5315_RSTIMER_BASE -((u_int32_t) sh)) + AR5315_WREV)) >> AR5315_WREV_S) & AR5315_WREV_ID; AH_PRIVATE(ah)->ah_macVersion = val >> AR5315_WREV_ID_S; AH_PRIVATE(ah)->ah_macRev = val & AR5315_WREV_REVISION; }
static HAL_BOOL ar2133SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan) { u_int32_t channelSel = 0; u_int32_t bModeSynth = 0; u_int32_t aModeRefSel = 0; u_int32_t reg32 = 0; u_int16_t freq; CHAN_CENTERS centers; OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel); ar5416GetChannelCenters(ah, chan, ¢ers); freq = centers.synth_center; if (freq < 4800) { u_int32_t txctl; if (((freq - 2192) % 5) == 0) { channelSel = ((freq - 672) * 2 - 3040)/10; bModeSynth = 0; } else if (((freq - 2224) % 5) == 0) { channelSel = ((freq - 704) * 2 - 3040) / 10; bModeSynth = 1; } else { HDPRINTF(ah, HAL_DBG_CHANNEL, "%s: invalid channel %u MHz\n", __func__, freq); return AH_FALSE; } channelSel = (channelSel << 2) & 0xff; channelSel = ath_hal_reverseBits(channelSel, 8); txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); if (freq == 2484) { /* Enable channel spreading for channel 14 */ OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, txctl | AR_PHY_CCK_TX_CTRL_JAPAN); } else { OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); } } else if ((freq % 20) == 0 && freq >= 5120) { channelSel = ath_hal_reverseBits( ((freq - 4800) / 20 << 2), 8); if (AR_SREV_HOWL(ah) || AR_SREV_SOWL_10_OR_LATER(ah)) aModeRefSel = ath_hal_reverseBits(3, 2); else aModeRefSel = ath_hal_reverseBits(1, 2); } else if ((freq % 10) == 0) { channelSel = ath_hal_reverseBits( ((freq - 4800) / 10 << 1), 8); if (AR_SREV_HOWL(ah) || AR_SREV_SOWL_10_OR_LATER(ah)) aModeRefSel = ath_hal_reverseBits(2, 2); else aModeRefSel = ath_hal_reverseBits(1, 2); } else if ((freq % 5) == 0) { channelSel = ath_hal_reverseBits( (freq - 4800) / 5, 8); aModeRefSel = ath_hal_reverseBits(1, 2); } else { HDPRINTF(ah, HAL_DBG_CHANNEL, "%s: invalid channel %u MHz\n", __func__, freq); return AH_FALSE; } #ifdef ATH_FORCE_BIAS /* FOWL orientation sensitivity workaround */ ar5416ForceBiasCurrent(ah, freq); /* * Antenna Control with forceBias. * This function must be called after ar5416ForceBiasCurrent() and * ar5416SetRfRegs() and ar5416EepromSetBoardValues(). */ ar5416DecreaseChainPower(ah, (HAL_CHANNEL*)chan); #endif reg32 = (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) | (1 << 5) | 0x1; OS_REG_WRITE(ah, AR_PHY(0x37), reg32); AH_PRIVATE(ah)->ah_curchan = chan; #ifdef AH_SUPPORT_DFS if (chan->privFlags & CHANNEL_DFS) { struct ar5416RadarState *rs; u_int8_t index; rs = ar5416GetRadarChanState(ah, &index); if (rs != AH_NULL) { AH5416(ah)->ah_curchanRadIndex = (int16_t) index; } else { HDPRINTF(ah, HAL_DBG_DFS, "%s: Couldn't find radar state information\n", __func__); return AH_FALSE; } } else #endif AH5416(ah)->ah_curchanRadIndex = -1; return AH_TRUE; }
/* * Attach for an AR9285 part. */ static struct ath_hal * ar9285Attach(uint16_t devid, HAL_SOFTC sc, HAL_BUS_TAG st, HAL_BUS_HANDLE sh, HAL_STATUS *status) { struct ath_hal_9285 *ahp9285; struct ath_hal_5212 *ahp; struct ath_hal *ah; uint32_t val; HAL_STATUS ecode; HAL_BOOL rfStatus; HALDEBUG(AH_NULL, HAL_DEBUG_ATTACH, "%s: sc %p st %p sh %p\n", __func__, sc, (void*) st, (void*) sh); /* NB: memory is returned zero'd */ ahp9285 = ath_hal_malloc(sizeof (struct ath_hal_9285)); if (ahp9285 == AH_NULL) { HALDEBUG(AH_NULL, HAL_DEBUG_ANY, "%s: cannot allocate memory for state block\n", __func__); *status = HAL_ENOMEM; return AH_NULL; } ahp = AH5212(ahp9285); ah = &ahp->ah_priv.h; ar5416InitState(AH5416(ah), devid, sc, st, sh, status); /* XXX override with 9285 specific state */ /* override 5416 methods for our needs */ ah->ah_setAntennaSwitch = ar9285SetAntennaSwitch; ah->ah_configPCIE = ar9285ConfigPCIE; ah->ah_setTxPower = ar9285SetTransmitPower; ah->ah_setBoardValues = ar9285SetBoardValues; AH5416(ah)->ah_cal.iqCalData.calData = &ar9280_iq_cal; AH5416(ah)->ah_cal.adcGainCalData.calData = &ar9280_adc_gain_cal; AH5416(ah)->ah_cal.adcDcCalData.calData = &ar9280_adc_dc_cal; AH5416(ah)->ah_cal.adcDcCalInitData.calData = &ar9280_adc_init_dc_cal; AH5416(ah)->ah_cal.suppCals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL; AH5416(ah)->ah_spurMitigate = ar9280SpurMitigate; AH5416(ah)->ah_writeIni = ar9285WriteIni; AH5416(ah)->ah_rx_chainmask = AR9285_DEFAULT_RXCHAINMASK; AH5416(ah)->ah_tx_chainmask = AR9285_DEFAULT_TXCHAINMASK; ahp->ah_maxTxTrigLev = MAX_TX_FIFO_THRESHOLD >> 1; if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) { /* reset chip */ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't reset chip\n", __func__); ecode = HAL_EIO; goto bad; } if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't wakeup chip\n", __func__); ecode = HAL_EIO; goto bad; } /* Read Revisions from Chips before taking out of reset */ val = OS_REG_READ(ah, AR_SREV); HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: ID 0x%x VERSION 0x%x TYPE 0x%x REVISION 0x%x\n", __func__, MS(val, AR_XSREV_ID), MS(val, AR_XSREV_VERSION), MS(val, AR_XSREV_TYPE), MS(val, AR_XSREV_REVISION)); /* NB: include chip type to differentiate from pre-Sowl versions */ AH_PRIVATE(ah)->ah_macVersion = (val & AR_XSREV_VERSION) >> AR_XSREV_TYPE_S; AH_PRIVATE(ah)->ah_macRev = MS(val, AR_XSREV_REVISION); AH_PRIVATE(ah)->ah_ispcie = (val & AR_XSREV_TYPE_HOST_MODE) == 0; /* setup common ini data; rf backends handle remainder */ if (AR_SREV_KITE_12_OR_LATER(ah)) { HAL_INI_INIT(&ahp->ah_ini_modes, ar9285Modes_v2, 6); HAL_INI_INIT(&ahp->ah_ini_common, ar9285Common_v2, 2); HAL_INI_INIT(&AH5416(ah)->ah_ini_pcieserdes, ar9285PciePhy_clkreq_always_on_L1_v2, 2); } else { HAL_INI_INIT(&ahp->ah_ini_modes, ar9285Modes, 6); HAL_INI_INIT(&ahp->ah_ini_common, ar9285Common, 2); HAL_INI_INIT(&AH5416(ah)->ah_ini_pcieserdes, ar9285PciePhy_clkreq_always_on_L1, 2); } ar5416AttachPCIE(ah); ecode = ath_hal_v4kEepromAttach(ah); if (ecode != HAL_OK) goto bad; if (!ar5416ChipReset(ah, AH_NULL)) { /* reset chip */ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__); ecode = HAL_EIO; goto bad; } AH_PRIVATE(ah)->ah_phyRev = OS_REG_READ(ah, AR_PHY_CHIP_ID); if (!ar5212ChipTest(ah)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: hardware self-test failed\n", __func__); ecode = HAL_ESELFTEST; goto bad; } /* * Set correct Baseband to analog shift * setting to access analog chips. */ OS_REG_WRITE(ah, AR_PHY(0), 0x00000007); /* Read Radio Chip Rev Extract */ AH_PRIVATE(ah)->ah_analog5GhzRev = ar5416GetRadioRev(ah); switch (AH_PRIVATE(ah)->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR) { case AR_RAD2133_SREV_MAJOR: /* Sowl: 2G/3x3 */ case AR_RAD5133_SREV_MAJOR: /* Sowl: 2+5G/3x3 */ break; default: if (AH_PRIVATE(ah)->ah_analog5GhzRev == 0) { AH_PRIVATE(ah)->ah_analog5GhzRev = AR_RAD5133_SREV_MAJOR; break; } #ifdef AH_DEBUG HALDEBUG(ah, HAL_DEBUG_ANY, "%s: 5G Radio Chip Rev 0x%02X is not supported by " "this driver\n", __func__, AH_PRIVATE(ah)->ah_analog5GhzRev); ecode = HAL_ENOTSUPP; goto bad; #endif } rfStatus = ar9285RfAttach(ah, &ecode); if (!rfStatus) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RF setup failed, status %u\n", __func__, ecode); goto bad; } HAL_INI_INIT(&ahp9285->ah_ini_rxgain, ar9280Modes_original_rxgain_v2, 6); /* setup txgain table */ switch (ath_hal_eepromGet(ah, AR_EEP_TXGAIN_TYPE, AH_NULL)) { case AR5416_EEP_TXGAIN_HIGH_POWER: HAL_INI_INIT(&ahp9285->ah_ini_txgain, ar9285Modes_high_power_tx_gain_v2, 6); break; case AR5416_EEP_TXGAIN_ORIG: HAL_INI_INIT(&ahp9285->ah_ini_txgain, ar9285Modes_original_tx_gain_v2, 6); break; default: HALASSERT(AH_FALSE); goto bad; /* XXX ? try to continue */ } /* * Got everything we need now to setup the capabilities. */ if (!ar9285FillCapabilityInfo(ah)) { ecode = HAL_EEREAD; goto bad; } ecode = ath_hal_eepromGet(ah, AR_EEP_MACADDR, ahp->ah_macaddr); if (ecode != HAL_OK) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: error getting mac address from EEPROM\n", __func__); goto bad; } /* XXX How about the serial number ? */ /* Read Reg Domain */ AH_PRIVATE(ah)->ah_currentRD = ath_hal_eepromGet(ah, AR_EEP_REGDMN_0, AH_NULL); /* * ah_miscMode is populated by ar5416FillCapabilityInfo() * starting from griffin. Set here to make sure that * AR_MISC_MODE_MIC_NEW_LOC_ENABLE is set before a GTK is * placed into hardware. */ if (ahp->ah_miscMode != 0) OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode); ar9285AniSetup(ah); /* Anti Noise Immunity */ ar5416InitNfHistBuff(AH5416(ah)->ah_cal.nfCalHist); HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: return\n", __func__); return ah; bad: if (ah != AH_NULL) ah->ah_detach(ah); if (status) *status = ecode; return AH_NULL; }
/* * Take the MHz channel value and set the Channel value * * ASSUMES: Writes enabled to analog bus */ static HAL_BOOL ar2316SetChannel(struct ath_hal *ah, struct ieee80211_channel *chan) { uint16_t freq = ath_hal_gethwchannel(ah, chan); uint32_t channelSel = 0; uint32_t bModeSynth = 0; uint32_t aModeRefSel = 0; uint32_t reg32 = 0; OS_MARK(ah, AH_MARK_SETCHANNEL, freq); if (freq < 4800) { uint32_t txctl; if (((freq - 2192) % 5) == 0) { channelSel = ((freq - 672) * 2 - 3040)/10; bModeSynth = 0; } else if (((freq - 2224) % 5) == 0) { channelSel = ((freq - 704) * 2 - 3040) / 10; bModeSynth = 1; } else { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n", __func__, freq); return AH_FALSE; } channelSel = (channelSel << 2) & 0xff; channelSel = ath_hal_reverseBits(channelSel, 8); txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); if (freq == 2484) { /* Enable channel spreading for channel 14 */ OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, txctl | AR_PHY_CCK_TX_CTRL_JAPAN); } else { OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); } } else if ((freq % 20) == 0 && freq >= 5120) { channelSel = ath_hal_reverseBits( ((freq - 4800) / 20 << 2), 8); aModeRefSel = ath_hal_reverseBits(3, 2); } else if ((freq % 10) == 0) { channelSel = ath_hal_reverseBits( ((freq - 4800) / 10 << 1), 8); aModeRefSel = ath_hal_reverseBits(2, 2); } else if ((freq % 5) == 0) { channelSel = ath_hal_reverseBits( (freq - 4800) / 5, 8); aModeRefSel = ath_hal_reverseBits(1, 2); } else { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n", __func__, freq); return AH_FALSE; } reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) | (1 << 12) | 0x1; OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff); reg32 >>= 8; OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f); AH_PRIVATE(ah)->ah_curchan = chan; return AH_TRUE; }
static HAL_BOOL ar9280SetChannel(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan) { struct ath_hal_5416 *ahp = AH5416(ah); u_int16_t bMode, fracMode, aModeRefSel = 0; u_int32_t freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0; CHAN_CENTERS centers; u_int32_t refDivA = 24; OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel); ar5416GetChannelCenters(ah, chan, ¢ers); freq = centers.synth_center; reg32 = OS_REG_READ(ah, AR_PHY_SYNTH_CONTROL); reg32 &= 0xc0000000; if (freq < 4800) { /* 2 GHz, fractional mode */ u_int32_t txctl; int regWrites = 0; bMode = 1; fracMode = 1; aModeRefSel = 0; channelSel = (freq * 0x10000)/15; if (AR_SREV_KIWI_11_OR_LATER(ah)) { if (freq == 2484) { REG_WRITE_ARRAY(&ahp->ah_iniCckfirJapan2484, 1, regWrites); } else { REG_WRITE_ARRAY(&ahp->ah_iniCckfirNormal, 1, regWrites); } } else { txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL); if (freq == 2484) { /* Enable channel spreading for channel 14 */ OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, txctl | AR_PHY_CCK_TX_CTRL_JAPAN); } else { OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN); } } } else { bMode = 0; fracMode = 0; HALASSERT(aModeRefSel == 0); switch (ar5416EepromGet(ahp, EEP_FRAC_N_5G)) { case 0: if ((freq % 20) == 0) { aModeRefSel = 3; } else if ((freq % 10) == 0) { aModeRefSel = 2; } if (aModeRefSel) break; case 1: default: aModeRefSel = 0; /* Enable 2G (fractional) mode for channels which are 5MHz spaced */ fracMode = 1; refDivA = 1; channelSel = (freq * 0x8000)/15; /* RefDivA setting */ analogShiftRegRMW(ah, AR_AN_SYNTH9, AR_AN_SYNTH9_REFDIVA, AR_AN_SYNTH9_REFDIVA_S, refDivA); } if (!fracMode) { ndiv = (freq * (refDivA >> aModeRefSel))/60; channelSel = ndiv & 0x1ff; channelFrac = (ndiv & 0xfffffe00) * 2; channelSel = (channelSel << 17) | channelFrac; } }
static u_int ar9300GetSlotTime(struct ath_hal *ah) { u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SLOT) & 0xffff; return (ath_hal_mac_usec(ah, clks)); /* convert from system clocks */ }
/* * Set all the beacon related bits on the h/w for stations * i.e. initializes the corresponding h/w timers; * also tells the h/w whether to anticipate PCF beacons * * dtim_count and cfp_count from the current beacon - their current * values aren't necessarily maintained in the device struct */ void ar5210SetStaBeaconTimers(struct ath_hal *ah, const HAL_BEACON_STATE *bs) { struct ath_hal_5210 *ahp = AH5210(ah); HALDEBUG(ah, HAL_DEBUG_BEACON, "%s: setting beacon timers\n", __func__); HALASSERT(bs->bs_intval != 0); /* if the AP will do PCF */ if (bs->bs_cfpmaxduration != 0) { /* tell the h/w that the associated AP is PCF capable */ OS_REG_WRITE(ah, AR_STA_ID1, (OS_REG_READ(ah, AR_STA_ID1) &~ AR_STA_ID1_DEFAULT_ANTENNA) | AR_STA_ID1_PCF); /* set CFP_PERIOD(1.024ms) register */ OS_REG_WRITE(ah, AR_CFP_PERIOD, bs->bs_cfpperiod); /* set CFP_DUR(1.024ms) register to max cfp duration */ OS_REG_WRITE(ah, AR_CFP_DUR, bs->bs_cfpmaxduration); /* set TIMER2(128us) to anticipated time of next CFP */ OS_REG_WRITE(ah, AR_TIMER2, bs->bs_cfpnext << 3); } else { /* tell the h/w that the associated AP is not PCF capable */ OS_REG_WRITE(ah, AR_STA_ID1, OS_REG_READ(ah, AR_STA_ID1) &~ (AR_STA_ID1_DEFAULT_ANTENNA | AR_STA_ID1_PCF)); } /* * Set TIMER0(1.024ms) to the anticipated time of the next beacon. */ OS_REG_WRITE(ah, AR_TIMER0, bs->bs_nexttbtt); /* * Start the beacon timers by setting the BEACON register * to the beacon interval; also write the tim offset which * we should know by now. The code, in ar5211WriteAssocid, * also sets the tim offset once the AID is known which can * be left as such for now. */ OS_REG_WRITE(ah, AR_BEACON, (OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_PERIOD|AR_BEACON_TIM)) | SM(bs->bs_intval, AR_BEACON_PERIOD) | SM(bs->bs_timoffset ? bs->bs_timoffset + 4 : 0, AR_BEACON_TIM) ); /* * Configure the BMISS interrupt. Note that we * assume the caller blocks interrupts while enabling * the threshold. */ /* * Interrupt works only on Crete. */ if (AH_PRIVATE(ah)->ah_macRev < AR_SREV_CRETE) return; /* * Counter is only 3-bits. * Count of 0 with BMISS interrupt enabled will hang the system * with too many interrupts */ if (AH_PRIVATE(ah)->ah_macRev >= AR_SREV_CRETE && (bs->bs_bmissthreshold&7) == 0) { #ifdef AH_DEBUG ath_hal_printf(ah, "%s: invalid beacon miss threshold %u\n", __func__, bs->bs_bmissthreshold); #endif return; } #define BMISS_MAX (AR_RSSI_THR_BM_THR >> AR_RSSI_THR_BM_THR_S) /* * Configure the BMISS interrupt. Note that we * assume the caller blocks interrupts while enabling * the threshold. * * NB: the beacon miss count field is only 3 bits which * is much smaller than what's found on later parts; * clamp overflow values as a safeguard. */ ahp->ah_rssiThr = (ahp->ah_rssiThr &~ AR_RSSI_THR_BM_THR) | SM(bs->bs_bmissthreshold > BMISS_MAX ? BMISS_MAX : bs->bs_bmissthreshold, AR_RSSI_THR_BM_THR); OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr); #undef BMISS_MAX }
static uint64_t ar9300_get_next_tbtt(struct ath_hal *ah) { return (OS_REG_READ(ah, AR_NEXT_TBTT_TIMER)); }
static void ar9285AniSetup(struct ath_hal *ah) { /* * These are the parameters from the AR5416 ANI code; * they likely need quite a bit of adjustment for the * AR9285. */ static const struct ar5212AniParams aniparams = { .maxNoiseImmunityLevel = 4, /* levels 0..4 */ .totalSizeDesired = { -55, -55, -55, -55, -62 }, .coarseHigh = { -14, -14, -14, -14, -12 }, .coarseLow = { -64, -64, -64, -64, -70 }, .firpwr = { -78, -78, -78, -78, -80 }, .maxSpurImmunityLevel = 7, .cycPwrThr1 = { 2, 4, 6, 8, 10, 12, 14, 16 }, .maxFirstepLevel = 2, /* levels 0..2 */ .firstep = { 0, 4, 8 }, .ofdmTrigHigh = 500, .ofdmTrigLow = 200, .cckTrigHigh = 200, .cckTrigLow = 100, .rssiThrHigh = 40, .rssiThrLow = 7, .period = 100, }; /* NB: disable ANI noise immmunity for reliable RIFS rx */ AH5416(ah)->ah_ani_function &= ~(1 << HAL_ANI_NOISE_IMMUNITY_LEVEL); ar5416AniAttach(ah, &aniparams, &aniparams, AH_TRUE); } static const char * ar9285_lna_conf[] = { "LNA1-LNA2", "LNA2", "LNA1", "LNA1+LNA2", }; static void ar9285_eeprom_print_diversity_settings(struct ath_hal *ah) { const HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom; const MODAL_EEP4K_HEADER *pModal = &ee->ee_base.modalHeader; ath_hal_printf(ah, "[ath] AR9285 Main LNA config: %s\n", ar9285_lna_conf[(pModal->antdiv_ctl2 >> 2) & 0x3]); ath_hal_printf(ah, "[ath] AR9285 Alt LNA config: %s\n", ar9285_lna_conf[pModal->antdiv_ctl2 & 0x3]); ath_hal_printf(ah, "[ath] LNA diversity %s, Diversity %s\n", ((pModal->antdiv_ctl1 & 0x1) ? "enabled" : "disabled"), ((pModal->antdiv_ctl1 & 0x8) ? "enabled" : "disabled")); } /* * Attach for an AR9285 part. */ static struct ath_hal * ar9285Attach(uint16_t devid, HAL_SOFTC sc, HAL_BUS_TAG st, HAL_BUS_HANDLE sh, uint16_t *eepromdata, HAL_STATUS *status) { struct ath_hal_9285 *ahp9285; struct ath_hal_5212 *ahp; struct ath_hal *ah; uint32_t val; HAL_STATUS ecode; HAL_BOOL rfStatus; HALDEBUG(AH_NULL, HAL_DEBUG_ATTACH, "%s: sc %p st %p sh %p\n", __func__, sc, (void*) st, (void*) sh); /* NB: memory is returned zero'd */ ahp9285 = ath_hal_malloc(sizeof (struct ath_hal_9285)); if (ahp9285 == AH_NULL) { HALDEBUG(AH_NULL, HAL_DEBUG_ANY, "%s: cannot allocate memory for state block\n", __func__); *status = HAL_ENOMEM; return AH_NULL; } ahp = AH5212(ahp9285); ah = &ahp->ah_priv.h; ar5416InitState(AH5416(ah), devid, sc, st, sh, status); /* * Use the "local" EEPROM data given to us by the higher layers. * This is a private copy out of system flash. The Linux ath9k * commit for the initial AR9130 support mentions MMIO flash * access is "unreliable." -adrian */ if (eepromdata != AH_NULL) { AH_PRIVATE(ah)->ah_eepromRead = ath_hal_EepromDataRead; AH_PRIVATE(ah)->ah_eepromWrite = NULL; ah->ah_eepromdata = eepromdata; } /* override with 9285 specific state */ AH5416(ah)->ah_initPLL = ar9280InitPLL; AH5416(ah)->ah_btCoexSetDiversity = ar9285BTCoexAntennaDiversity; ah->ah_setAntennaSwitch = ar9285SetAntennaSwitch; ah->ah_configPCIE = ar9285ConfigPCIE; ah->ah_disablePCIE = ar9285DisablePCIE; ah->ah_setTxPower = ar9285SetTransmitPower; ah->ah_setBoardValues = ar9285SetBoardValues; ah->ah_btCoexSetParameter = ar9285BTCoexSetParameter; ah->ah_divLnaConfGet = ar9285_antdiv_comb_conf_get; ah->ah_divLnaConfSet = ar9285_antdiv_comb_conf_set; AH5416(ah)->ah_cal.iqCalData.calData = &ar9280_iq_cal; AH5416(ah)->ah_cal.adcGainCalData.calData = &ar9280_adc_gain_cal; AH5416(ah)->ah_cal.adcDcCalData.calData = &ar9280_adc_dc_cal; AH5416(ah)->ah_cal.adcDcCalInitData.calData = &ar9280_adc_init_dc_cal; AH5416(ah)->ah_cal.suppCals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL; AH5416(ah)->ah_spurMitigate = ar9280SpurMitigate; AH5416(ah)->ah_writeIni = ar9285WriteIni; AH5416(ah)->ah_rx_chainmask = AR9285_DEFAULT_RXCHAINMASK; AH5416(ah)->ah_tx_chainmask = AR9285_DEFAULT_TXCHAINMASK; ahp->ah_maxTxTrigLev = MAX_TX_FIFO_THRESHOLD >> 1; if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) { /* reset chip */ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't reset chip\n", __func__); ecode = HAL_EIO; goto bad; } if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't wakeup chip\n", __func__); ecode = HAL_EIO; goto bad; } /* Read Revisions from Chips before taking out of reset */ val = OS_REG_READ(ah, AR_SREV); HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: ID 0x%x VERSION 0x%x TYPE 0x%x REVISION 0x%x\n", __func__, MS(val, AR_XSREV_ID), MS(val, AR_XSREV_VERSION), MS(val, AR_XSREV_TYPE), MS(val, AR_XSREV_REVISION)); /* NB: include chip type to differentiate from pre-Sowl versions */ AH_PRIVATE(ah)->ah_macVersion = (val & AR_XSREV_VERSION) >> AR_XSREV_TYPE_S; AH_PRIVATE(ah)->ah_macRev = MS(val, AR_XSREV_REVISION); AH_PRIVATE(ah)->ah_ispcie = (val & AR_XSREV_TYPE_HOST_MODE) == 0; /* setup common ini data; rf backends handle remainder */ if (AR_SREV_KITE_12_OR_LATER(ah)) { HAL_INI_INIT(&ahp->ah_ini_modes, ar9285Modes_v2, 6); HAL_INI_INIT(&ahp->ah_ini_common, ar9285Common_v2, 2); HAL_INI_INIT(&AH5416(ah)->ah_ini_pcieserdes, ar9285PciePhy_clkreq_always_on_L1_v2, 2); } else { HAL_INI_INIT(&ahp->ah_ini_modes, ar9285Modes, 6); HAL_INI_INIT(&ahp->ah_ini_common, ar9285Common, 2); HAL_INI_INIT(&AH5416(ah)->ah_ini_pcieserdes, ar9285PciePhy_clkreq_always_on_L1, 2); } ar5416AttachPCIE(ah); /* Attach methods that require MAC version/revision info */ if (AR_SREV_KITE_12_OR_LATER(ah)) AH5416(ah)->ah_cal_initcal = ar9285InitCalHardware; if (AR_SREV_KITE_11_OR_LATER(ah)) AH5416(ah)->ah_cal_pacal = ar9002_hw_pa_cal; ecode = ath_hal_v4kEepromAttach(ah); if (ecode != HAL_OK) goto bad; if (!ar5416ChipReset(ah, AH_NULL)) { /* reset chip */ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__); ecode = HAL_EIO; goto bad; } AH_PRIVATE(ah)->ah_phyRev = OS_REG_READ(ah, AR_PHY_CHIP_ID); if (!ar5212ChipTest(ah)) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: hardware self-test failed\n", __func__); ecode = HAL_ESELFTEST; goto bad; } /* * Set correct Baseband to analog shift * setting to access analog chips. */ OS_REG_WRITE(ah, AR_PHY(0), 0x00000007); /* Read Radio Chip Rev Extract */ AH_PRIVATE(ah)->ah_analog5GhzRev = ar5416GetRadioRev(ah); switch (AH_PRIVATE(ah)->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR) { case AR_RAD2133_SREV_MAJOR: /* Sowl: 2G/3x3 */ case AR_RAD5133_SREV_MAJOR: /* Sowl: 2+5G/3x3 */ break; default: if (AH_PRIVATE(ah)->ah_analog5GhzRev == 0) { AH_PRIVATE(ah)->ah_analog5GhzRev = AR_RAD5133_SREV_MAJOR; break; } #ifdef AH_DEBUG HALDEBUG(ah, HAL_DEBUG_ANY, "%s: 5G Radio Chip Rev 0x%02X is not supported by " "this driver\n", __func__, AH_PRIVATE(ah)->ah_analog5GhzRev); ecode = HAL_ENOTSUPP; goto bad; #endif } rfStatus = ar9285RfAttach(ah, &ecode); if (!rfStatus) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RF setup failed, status %u\n", __func__, ecode); goto bad; } HAL_INI_INIT(&ahp9285->ah_ini_rxgain, ar9280Modes_original_rxgain_v2, 6); if (AR_SREV_9285E_20(ah)) ath_hal_printf(ah, "[ath] AR9285E_20 detected; using XE TX gain tables\n"); /* setup txgain table */ switch (ath_hal_eepromGet(ah, AR_EEP_TXGAIN_TYPE, AH_NULL)) { case AR5416_EEP_TXGAIN_HIGH_POWER: if (AR_SREV_9285E_20(ah)) HAL_INI_INIT(&ahp9285->ah_ini_txgain, ar9285Modes_XE2_0_high_power, 6); else HAL_INI_INIT(&ahp9285->ah_ini_txgain, ar9285Modes_high_power_tx_gain_v2, 6); break; case AR5416_EEP_TXGAIN_ORIG: if (AR_SREV_9285E_20(ah)) HAL_INI_INIT(&ahp9285->ah_ini_txgain, ar9285Modes_XE2_0_normal_power, 6); else HAL_INI_INIT(&ahp9285->ah_ini_txgain, ar9285Modes_original_tx_gain_v2, 6); break; default: HALASSERT(AH_FALSE); goto bad; /* XXX ? try to continue */ } /* * Got everything we need now to setup the capabilities. */ if (!ar9285FillCapabilityInfo(ah)) { ecode = HAL_EEREAD; goto bad; } /* * Print out the EEPROM antenna configuration mapping. * Some devices have a hard-coded LNA configuration profile; * others enable diversity. */ ar9285_eeprom_print_diversity_settings(ah); /* Print out whether the EEPROM settings enable AR9285 diversity */ if (ar9285_check_div_comb(ah)) { ath_hal_printf(ah, "[ath] Enabling diversity for Kite\n"); } /* Disable 11n for the AR2427 */ if (devid == AR2427_DEVID_PCIE) AH_PRIVATE(ah)->ah_caps.halHTSupport = AH_FALSE; ecode = ath_hal_eepromGet(ah, AR_EEP_MACADDR, ahp->ah_macaddr); if (ecode != HAL_OK) { HALDEBUG(ah, HAL_DEBUG_ANY, "%s: error getting mac address from EEPROM\n", __func__); goto bad; } /* XXX How about the serial number ? */ /* Read Reg Domain */ AH_PRIVATE(ah)->ah_currentRD = ath_hal_eepromGet(ah, AR_EEP_REGDMN_0, AH_NULL); /* * For Kite and later chipsets, the following bits are not * programmed in EEPROM and so are set as enabled always. */ AH_PRIVATE(ah)->ah_currentRDext = AR9285_RDEXT_DEFAULT; /* * ah_miscMode is populated by ar5416FillCapabilityInfo() * starting from griffin. Set here to make sure that * AR_MISC_MODE_MIC_NEW_LOC_ENABLE is set before a GTK is * placed into hardware. */ if (ahp->ah_miscMode != 0) OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE) | ahp->ah_miscMode); ar9285AniSetup(ah); /* Anti Noise Immunity */ /* Setup noise floor min/max/nominal values */ AH5416(ah)->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ; AH5416(ah)->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ; AH5416(ah)->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ; /* XXX no 5ghz values? */ ar5416InitNfHistBuff(AH5416(ah)->ah_cal.nfCalHist); HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: return\n", __func__); return ah; bad: if (ah != AH_NULL) ah->ah_detach(ah); if (status) *status = ecode; return AH_NULL; } static void ar9285ConfigPCIE(struct ath_hal *ah, HAL_BOOL restore, HAL_BOOL power_off) { uint32_t val; /* * This workaround needs some integration work with the HAL * config parameters and the if_ath_pci.c glue. * Specifically, read the value of the PCI register 0x70c * (4 byte PCI config space register) and store it in ath_hal_war70c. * Then if it's non-zero, the below WAR would override register * 0x570c upon suspend/resume. */ #if 0 if (AR_SREV_9285E_20(ah)) { val = AH_PRIVATE(ah)->ah_config.ath_hal_war70c; if (val) { val &= 0xffff00ff; val |= 0x6f00; OS_REG_WRITE(ah, 0x570c, val); } } #endif if (AH_PRIVATE(ah)->ah_ispcie && !restore) { ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_pcieserdes, 1, 0); OS_DELAY(1000); } /* * Set PCIe workaround bits * * NOTE: * * In Merlin and Kite, bit 14 in WA register (disable L1) should only * be set when device enters D3 and be cleared when device comes back * to D0. */ if (power_off) { /* Power-off */ OS_REG_CLR_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA); val = OS_REG_READ(ah, AR_WA); /* * Disable bit 6 and 7 before entering D3 to prevent * system hang. */ val &= ~(AR_WA_BIT6 | AR_WA_BIT7); /* * See above: set AR_WA_D3_L1_DISABLE when entering D3 state. * * XXX The reference HAL does it this way - it only sets * AR_WA_D3_L1_DISABLE if it's set in AR9280_WA_DEFAULT, * which it (currently) isn't. So the following statement * is currently a NOP. */ if (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE) val |= AR_WA_D3_L1_DISABLE; if (AR_SREV_9285E_20(ah)) val |= AR_WA_BIT23; OS_REG_WRITE(ah, AR_WA, val); } else { /* Power-on */ val = AR9285_WA_DEFAULT; /* * See note above: make sure L1_DISABLE is not set. */ val &= (~AR_WA_D3_L1_DISABLE); /* Software workaroud for ASPM system hang. */ val |= (AR_WA_BIT6 | AR_WA_BIT7); if (AR_SREV_9285E_20(ah)) val |= AR_WA_BIT23; OS_REG_WRITE(ah, AR_WA, val); /* set bit 19 to allow forcing of pcie core into L1 state */ OS_REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA); } }
static u_int ar9300_freebsd_get_cts_timeout(struct ath_hal *ah) { u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS); return ath_hal_mac_usec(ah, clks); /* convert from system clocks */ }