Exemple #1
0
BBox NURBS::WorldBound() const {
	if (!isHomogeneous) {
		// Compute world-space bound of non-homogeneous NURBS
		float *pp = P;
		Point pt = ObjectToWorld(Point(pp[0], pp[1], pp[2]));
		BBox bound = pt;
		for (int i = 0; i < nu*nv; ++i, pp += 3) {
			pt = ObjectToWorld(Point(pp[0], pp[1], pp[2]));
			bound = Union(bound, pt);
		}
		return bound;
	} else {
		// Compute world-space bound of homogeneous NURBS
		float *pp = P;
		Point pt = ObjectToWorld(Point(pp[0]/pp[3],
			pp[1]/pp[3], pp[2]/pp[3]));
		BBox bound = pt;
		for (int i = 0; i < nu*nv; ++i, pp += 4) {
			pt = ObjectToWorld(Point(pp[0]/pp[3],
				pp[1]/pp[3], pp[2]/pp[3]));
			bound = Union(bound, pt);
		}
		return bound;
	}
}
Exemple #2
0
void csPortalContainer::CheckMovable ()
{
  Prepare ();
  const csMovable& cmovable = meshwrapper->GetCsMovable ();
  if (movable_nr == cmovable.GetUpdateNumber ()) return;
  const csReversibleTransform movtrans = cmovable.GetFullTransform ();
  ObjectToWorld (cmovable, movtrans);
}
Exemple #3
0
void SurfacePointsRenderer::Render(const Scene &scene) {
    // Declare shared variables for Poisson point generation
    BBox octBounds = scene.WorldBound();
    octBounds.Expand(.001f * powf(octBounds.Volume(), 1.f/3.f));
    Octree<SurfacePoint> pointOctree(octBounds);

    // Create scene bounding sphere to catch rays that leave the scene
    Point sceneCenter;
    float sceneRadius;
    scene.WorldBound().BoundingSphere(&sceneCenter, &sceneRadius);
    Transform ObjectToWorld(Translate(sceneCenter - Point(0,0,0)));
    Transform WorldToObject(Inverse(ObjectToWorld));
    Reference<Shape> sph = new Sphere(&ObjectToWorld, &WorldToObject,
        true, sceneRadius, -sceneRadius, sceneRadius, 360.f);
    //Reference<Material> nullMaterial = Reference<Material>(NULL);
    Material nullMaterial;
    GeometricPrimitive sphere(sph, nullMaterial, NULL);
    int maxFails = 2000, repeatedFails = 0, maxRepeatedFails = 0;
    if (PbrtOptions.quickRender) maxFails = max(10, maxFails / 10);
    int totalPathsTraced = 0, totalRaysTraced = 0, numPointsAdded = 0;
    ProgressReporter prog(maxFails, "Depositing samples");
    // Launch tasks to trace rays to find Poisson points
    PBRT_SUBSURFACE_STARTED_RAYS_FOR_POINTS();
    vector<Task *> tasks;
    RWMutex *mutex = RWMutex::Create();
    int nTasks = NumSystemCores();
    for (int i = 0; i < nTasks; ++i)
        tasks.push_back(new SurfacePointTask(scene, pCamera, time, i,
            minDist, maxFails, *mutex, repeatedFails, maxRepeatedFails,
            totalPathsTraced, totalRaysTraced, numPointsAdded, sphere, pointOctree,
            points, prog));
    EnqueueTasks(tasks);
    WaitForAllTasks();
    for (uint32_t i = 0; i < tasks.size(); ++i)
        delete tasks[i];
    RWMutex::Destroy(mutex);
    prog.Done();
    PBRT_SUBSURFACE_FINISHED_RAYS_FOR_POINTS(totalRaysTraced, numPointsAdded);
    if (filename != "") {
        // Write surface points to file
        FILE *f = fopen(filename.c_str(), "w");
        if (!f) {
            Error("Unable to open output file \"%s\" (%s)", filename.c_str(),
                  strerror(errno));
            return;
        }

        fprintf(f, "# points generated by SurfacePointsRenderer\n");
        fprintf(f, "# position (x,y,z), normal (x,y,z), area, rayEpsilon\n");
        for (u_int i = 0; i < points.size(); ++i) {
            const SurfacePoint &sp = points[i];
            fprintf(f, "%g %g %g %g %g %g %g %g\n", sp.p.x, sp.p.y, sp.p.z,
                sp.n.x, sp.n.y, sp.n.z, sp.area, sp.rayEpsilon);
        }
        fclose(f);
    }
}
Exemple #4
0
void csPortalContainer::GetBoundingSpheres (iRenderView* rview, 
                                            csReversibleTransform* tr_o2c,
					    csVector3* camera_origin, 
					    csSphere& world_sphere, 
					    csSphere& cam_sphere)
{
  iCamera* camera = rview->GetCamera ();
  const csReversibleTransform& camtrans = camera->GetTransform ();
  const csMovable& cmovable = meshwrapper->GetCsMovable ();
  if (movable_nr != cmovable.GetUpdateNumber ())
  {
    const csReversibleTransform movtrans = cmovable.GetFullTransform ();
    ObjectToWorld (cmovable, movtrans);
  }

  csSphere sphere;
  sphere.SetCenter (object_bbox.GetCenter ());
  sphere.SetRadius (object_radius);

  uint8 local_t2c[sizeof(csReversibleTransform)];
  if (tr_o2c == 0) 
  {
#include "csutil/custom_new_disable.h"
    tr_o2c = new (local_t2c) csReversibleTransform;
#include "csutil/custom_new_enable.h"
  }
  *tr_o2c = camtrans;
  if (!movable_identity)
  {
    const csReversibleTransform movtrans = cmovable.GetFullTransform ();
    *tr_o2c /= movtrans;
    world_sphere = movtrans.This2Other (sphere);
  }
  else
  {
    world_sphere = sphere;
  }
  cam_sphere = tr_o2c->Other2This (sphere);
  if (camera_origin) *camera_origin = cam_sphere.GetCenter ();
}
void CreateRadianceProbes::Render(const Scene *scene) {
    // Compute scene bounds and initialize probe integrators
    if (bbox.pMin.x > bbox.pMax.x)
        bbox = scene->WorldBound();
    surfaceIntegrator->Preprocess(scene, camera, this);
    volumeIntegrator->Preprocess(scene, camera, this);
    Sample *origSample = new Sample(NULL, surfaceIntegrator, volumeIntegrator,
                                    scene);

    // Compute sampling rate in each dimension
    Vector delta = bbox.pMax - bbox.pMin;
    int nProbes[3];
    for (int i = 0; i < 3; ++i)
        nProbes[i] = max(1, Ceil2Int(delta[i] / probeSpacing));

    // Allocate SH coefficient vector pointers for sample points
    int count = nProbes[0] * nProbes[1] * nProbes[2];
    Spectrum **c_in = new Spectrum *[count];
    for (int i = 0; i < count; ++i)
        c_in[i] = new Spectrum[SHTerms(lmax)];

    // Compute random points on surfaces of scene

    // Create scene bounding sphere to catch rays that leave the scene
    Point sceneCenter;
    float sceneRadius;
    scene->WorldBound().BoundingSphere(&sceneCenter, &sceneRadius);
    Transform ObjectToWorld(Translate(sceneCenter - Point(0,0,0)));
    Transform WorldToObject(Inverse(ObjectToWorld));
    Reference<Shape> sph = new Sphere(&ObjectToWorld, &WorldToObject,
        true, sceneRadius, -sceneRadius, sceneRadius, 360.f);
    Reference<Material> nullMaterial = Reference<Material>(NULL);
    GeometricPrimitive sphere(sph, nullMaterial, NULL);
    vector<Point> surfacePoints;
    uint32_t nPoints = 32768, maxDepth = 32;
    surfacePoints.reserve(nPoints + maxDepth);
    Point pCamera = camera->CameraToWorld(camera->shutterOpen,
                                          Point(0, 0, 0));
    surfacePoints.push_back(pCamera);
    RNG rng;
    while (surfacePoints.size() < nPoints) {
        // Generate random path from camera and deposit surface points
        Point pray = pCamera;
        Vector dir = UniformSampleSphere(rng.RandomFloat(), rng.RandomFloat());
        float rayEpsilon = 0.f;
        for (uint32_t i = 0; i < maxDepth; ++i) {
            Ray ray(pray, dir, rayEpsilon, INFINITY, time);

            Intersection isect;
            if (!scene->Intersect(ray, &isect) &&
                !sphere.Intersect(ray, &isect))
                break;

            surfacePoints.push_back(ray(ray.maxt));

            DifferentialGeometry &hitGeometry = isect.dg;
            pray = isect.dg.p;
            rayEpsilon = isect.rayEpsilon;
            hitGeometry.nn = Faceforward(hitGeometry.nn, -ray.d);

            dir = UniformSampleSphere(rng.RandomFloat(), rng.RandomFloat());
            dir = Faceforward(dir, hitGeometry.nn);
        }
    }

    // Launch tasks to compute radiance probes at sample points
    vector<Task *> tasks;
    ProgressReporter prog(count, "Radiance Probes");
    for (int i = 0; i < count; ++i)
        tasks.push_back(new CreateRadProbeTask(i, nProbes, time,
                                   bbox, lmax, includeDirectInProbes,
                                   includeIndirectInProbes, nIndirSamples,
                                   prog, origSample, surfacePoints,
                                   scene, this, c_in[i]));
    EnqueueTasks(tasks);
    WaitForAllTasks();
    for (uint32_t i = 0; i < tasks.size(); ++i)
        delete tasks[i];
    prog.Done();

    // Write radiance probe coefficients to file
    FILE *f = fopen(filename.c_str(), "w");
    if (f) {
        if (fprintf(f, "%d %d %d\n", lmax, includeDirectInProbes?1:0, includeIndirectInProbes?1:0) < 0 ||
            fprintf(f, "%d %d %d\n", nProbes[0], nProbes[1], nProbes[2]) < 0 ||
            fprintf(f, "%f %f %f %f %f %f\n", bbox.pMin.x, bbox.pMin.y, bbox.pMin.z,
                    bbox.pMax.x, bbox.pMax.y, bbox.pMax.z) < 0) {
            Error("Error writing radiance file \"%s\" (%s)", filename.c_str(),
                  strerror(errno));
            exit(1);
        }

        for (int i = 0; i < nProbes[0] * nProbes[1] * nProbes[2]; ++i) {
            for (int j = 0; j < SHTerms(lmax); ++j) {
                fprintf(f, "  ");
                if (c_in[i][j].Write(f) == false) {
                    Error("Error writing radiance file \"%s\" (%s)", filename.c_str(),
                          strerror(errno));
                    exit(1);
                }
                fprintf(f, "\n");
            }
            fprintf(f, "\n");
        }
        fclose(f);
    }
    for (int i = 0; i < nProbes[0] * nProbes[1] * nProbes[2]; ++i)
        delete[] c_in[i];
    delete[] c_in;
    delete origSample;
}