void PCSPEAKER_SetType(Bitu mode) { if (!spkr.last_ticks) { if(spkr.chan) spkr.chan->Enable(true); spkr.last_index=0; } spkr.last_ticks=PIC_Ticks; float newindex=PIC_TickIndex(); ForwardPIT(newindex); switch (mode) { case 0: spkr.mode=SPKR_OFF; AddDelayEntry(newindex,-SPKR_VOLUME); break; case 1: spkr.mode=SPKR_PIT_OFF; AddDelayEntry(newindex,-SPKR_VOLUME); break; case 2: spkr.mode=SPKR_ON; AddDelayEntry(newindex,SPKR_VOLUME); break; case 3: if (spkr.mode!=SPKR_PIT_ON) { AddDelayEntry(newindex,spkr.pit_last); } spkr.mode=SPKR_PIT_ON; break; }; }
static void AddEntry(PICEntry * entry) { PICEntry * find_entry=pic_queue.next_entry; if (GCC_UNLIKELY(find_entry ==0)) { entry->next=0; pic_queue.next_entry=entry; } else if (find_entry->index>entry->index) { pic_queue.next_entry=entry; entry->next=find_entry; } else while (find_entry) { if (find_entry->next) { /* See if the next index comes later than this one */ if (find_entry->next->index > entry->index) { entry->next=find_entry->next; find_entry->next=entry; break; } else { find_entry=find_entry->next; } } else { entry->next=find_entry->next; find_entry->next=entry; break; } } Bits cycles=PIC_MakeCycles(pic_queue.next_entry->index-PIC_TickIndex()); if (cycles<CPU_Cycles) { CPU_CycleLeft+=CPU_Cycles; CPU_Cycles=0; } }
void PCSPEAKER_SetCounter(Bitu cntr,Bitu mode) { if (!spkr.last_ticks) { if(spkr.chan) spkr.chan->Enable(true); spkr.last_index=0; } spkr.last_ticks=PIC_Ticks; float newindex=PIC_TickIndex(); ForwardPIT(newindex); switch (mode) { case 0: /* Mode 0 one shot, used with realsound */ if (spkr.mode!=SPKR_PIT_ON) return; if (cntr>80) { cntr=80; } spkr.pit_last=((float)cntr-40)*(SPKR_VOLUME/40.0f); AddDelayEntry(newindex,spkr.pit_last); spkr.pit_index=0; break; case 1: if (spkr.mode!=SPKR_PIT_ON) return; spkr.pit_last=SPKR_VOLUME; AddDelayEntry(newindex,spkr.pit_last); break; case 2: /* Single cycle low, rest low high generator */ spkr.pit_index=0; spkr.pit_last=-SPKR_VOLUME; AddDelayEntry(newindex,spkr.pit_last); spkr.pit_half=(1000.0f/PIT_TICK_RATE)*1; spkr.pit_max=(1000.0f/PIT_TICK_RATE)*cntr; break; case 3: /* Square wave generator */ if (cntr<spkr.min_tr) { /* skip frequencies that can't be represented */ spkr.pit_last=0; spkr.pit_mode=0; return; } spkr.pit_new_max=(1000.0f/PIT_TICK_RATE)*cntr; spkr.pit_new_half=spkr.pit_new_max/2; break; case 4: /* Software triggered strobe */ spkr.pit_last=SPKR_VOLUME; AddDelayEntry(newindex,spkr.pit_last); spkr.pit_index=0; spkr.pit_max=(1000.0f/PIT_TICK_RATE)*cntr; break; default: #if C_DEBUG LOG_MSG("Unhandled speaker mode %d",mode); #endif return; } spkr.pit_mode=mode; }
void PIC_AddEvent(PIC_EventHandler handler,float delay,Bitu val) { if (GCC_UNLIKELY(!pic_queue.free_entry)) { LOG(LOG_PIC,LOG_ERROR)("Event queue full"); return; } PICEntry * entry=pic_queue.free_entry; if(InEventService) entry->index = delay + srv_lag; else entry->index = delay + PIC_TickIndex(); entry->pic_event=handler; entry->value=val; pic_queue.free_entry=pic_queue.free_entry->next; AddEntry(entry); }
static Bitu cmos_readreg(Bitu port,Bitu iolen) { if (cmos.reg>0x3f) { LOG(LOG_BIOS,LOG_ERROR)("CMOS:Read from illegal register %x",cmos.reg); return 0xff; } Bitu drive_a, drive_b; Bit8u hdparm; time_t curtime; struct tm *loctime; /* Get the current time. */ curtime = time (NULL); /* Convert it to local time representation. */ loctime = localtime (&curtime); switch (cmos.reg) { case 0x00: /* Seconds */ return MAKE_RETURN(loctime->tm_sec); case 0x02: /* Minutes */ return MAKE_RETURN(loctime->tm_min); case 0x04: /* Hours */ return MAKE_RETURN(loctime->tm_hour); case 0x06: /* Day of week */ return MAKE_RETURN(loctime->tm_wday + 1); case 0x07: /* Date of month */ return MAKE_RETURN(loctime->tm_mday); case 0x08: /* Month */ return MAKE_RETURN(loctime->tm_mon + 1); case 0x09: /* Year */ return MAKE_RETURN(loctime->tm_year % 100); case 0x32: /* Century */ return MAKE_RETURN(loctime->tm_year / 100 + 19); case 0x01: /* Seconds Alarm */ case 0x03: /* Minutes Alarm */ case 0x05: /* Hours Alarm */ return cmos.regs[cmos.reg]; case 0x0a: /* Status register A */ if (PIC_TickIndex()<0.002) { return (cmos.regs[0x0a]&0x7f) | 0x80; } else { return (cmos.regs[0x0a]&0x7f); } case 0x0c: /* Status register C */ if (cmos.timer.enabled) { /* In periodic interrupt mode only care for those flags */ Bit8u val=cmos.regs[0xc]; cmos.regs[0xc]=0; return val; } else { /* Give correct values at certain times */ Bit8u val=0; double index=PIC_FullIndex(); if (index>=(cmos.last.timer+cmos.timer.delay)) { cmos.last.timer=index; val|=0x40; } if (index>=(cmos.last.ended+1000)) { cmos.last.ended=index; val|=0x10; } return val; } case 0x10: /* Floppy size */ drive_a = 0; drive_b = 0; if(imageDiskList[0] != NULL) drive_a = imageDiskList[0]->GetBiosType(); if(imageDiskList[1] != NULL) drive_b = imageDiskList[1]->GetBiosType(); return ((drive_a << 4) | (drive_b)); /* First harddrive info */ case 0x12: hdparm = 0; if(imageDiskList[2] != NULL) hdparm |= 0xf; if(imageDiskList[3] != NULL) hdparm |= 0xf0; return hdparm; case 0x19: if(imageDiskList[2] != NULL) return 47; /* User defined type */ return 0; case 0x1b: if(imageDiskList[2] != NULL) return (imageDiskList[2]->cylinders & 0xff); return 0; case 0x1c: if(imageDiskList[2] != NULL) return ((imageDiskList[2]->cylinders & 0xff00)>>8); return 0; case 0x1d: if(imageDiskList[2] != NULL) return (imageDiskList[2]->heads); return 0; case 0x1e: if(imageDiskList[2] != NULL) return 0xff; return 0; case 0x1f: if(imageDiskList[2] != NULL) return 0xff; return 0; case 0x20: if(imageDiskList[2] != NULL) return (0xc0 | (((imageDiskList[2]->heads) > 8) << 3)); return 0; case 0x21: if(imageDiskList[2] != NULL) return (imageDiskList[2]->cylinders & 0xff); return 0; case 0x22: if(imageDiskList[2] != NULL) return ((imageDiskList[2]->cylinders & 0xff00)>>8); return 0; case 0x23: if(imageDiskList[2] != NULL) return (imageDiskList[2]->sectors); return 0; /* Second harddrive info */ case 0x1a: if(imageDiskList[3] != NULL) return 47; /* User defined type */ return 0; case 0x24: if(imageDiskList[3] != NULL) return (imageDiskList[3]->cylinders & 0xff); return 0; case 0x25: if(imageDiskList[3] != NULL) return ((imageDiskList[3]->cylinders & 0xff00)>>8); return 0; case 0x26: if(imageDiskList[3] != NULL) return (imageDiskList[3]->heads); return 0; case 0x27: if(imageDiskList[3] != NULL) return 0xff; return 0; case 0x28: if(imageDiskList[3] != NULL) return 0xff; return 0; case 0x29: if(imageDiskList[3] != NULL) return (0xc0 | (((imageDiskList[3]->heads) > 8) << 3)); return 0; case 0x2a: if(imageDiskList[3] != NULL) return (imageDiskList[3]->cylinders & 0xff); return 0; case 0x2b: if(imageDiskList[3] != NULL) return ((imageDiskList[3]->cylinders & 0xff00)>>8); return 0; case 0x2c: if(imageDiskList[3] != NULL) return (imageDiskList[3]->sectors); return 0; case 0x39: return 0; case 0x3a: return 0; case 0x0b: /* Status register B */ case 0x0d: /* Status register D */ case 0x0f: /* Shutdown status byte */ case 0x14: /* Equipment */ case 0x15: /* Base Memory KB Low Byte */ case 0x16: /* Base Memory KB High Byte */ case 0x17: /* Extended memory in KB Low Byte */ case 0x18: /* Extended memory in KB High Byte */ case 0x30: /* Extended memory in KB Low Byte */ case 0x31: /* Extended memory in KB High Byte */ // LOG(LOG_BIOS,LOG_NORMAL)("CMOS:Read from reg %X : %04X",cmos.reg,cmos.regs[cmos.reg]); return cmos.regs[cmos.reg]; default: LOG(LOG_BIOS,LOG_NORMAL)("CMOS:Read from reg %X",cmos.reg); return cmos.regs[cmos.reg]; } }