Exemple #1
0
scs_int solveLinSys(const AMatrix * A, const Settings * stgs, Priv * p, scs_float * b, const scs_float * s, scs_int iter) {
	scs_int cgIts;
	scs_float cgTol = calcNorm(b, A->n)
			* (iter < 0 ? CG_BEST_TOL : CG_MIN_TOL / POWF((scs_float) iter + 1, stgs->cg_rate));

	tic(&linsysTimer);
	/* solves Mx = b, for x but stores result in b */
	/* s contains warm-start (if available) */
	accumByAtrans(A, p, &(b[A->n]), b);
	/* solves (I+A'A)x = b, s warm start, solution stored in b */
	cgIts = pcg(A, stgs, p, s, b, A->n, MAX(cgTol, CG_BEST_TOL));
	scaleArray(&(b[A->n]), -1, A->m);
	accumByA(A, p, b, &(b[A->n]));

	if (iter >= 0) {
		totCgIts += cgIts;
	}

	totalSolveTime += tocq(&linsysTimer);
#if EXTRAVERBOSE > 0
	scs_printf("linsys solve time: %1.2es\n", tocq(&linsysTimer) / 1e3);
#endif
	return 0;
}
Exemple #2
0
int main(int argc, char **argv) {
	scs_int n, m, col_nnz, nnz, i, q_total, q_num_rows, max_q;
	Cone * k;
	Data * d;
	Sol * sol, * opt_sol;
	Info info = { 0 };
	scs_float p_f, p_l;
	int seed = 0;

	/* default parameters */
	p_f = 0.1;
	p_l = 0.3;
	seed = time(SCS_NULL);

	switch (argc) {
	case 5:
		seed = atoi(argv[4]);
		/* no break */
	case 4:
		p_f = atof(argv[2]);
		p_l = atof(argv[3]);
		/* no break */
	case 2:
		n = atoi(argv[1]);
		break;
	default:
		scs_printf("usage:\t%s n p_f p_l s\n"
				"\tcreates an SOCP with n variables where p_f fraction of rows correspond\n"
				"\tto equality constraints, p_l fraction of rows correspond to LP constraints,\n"
				"\tand the remaining percentage of rows are involved in second-order\n"
				"\tcone constraints. the random number generator is seeded with s.\n"
				"\tnote that p_f + p_l should be less than or equal to 1, and that\n"
				"\tp_f should be less than .33, since that corresponds to as many equality\n"
				"\tconstraints as variables.\n", argv[0]);
		scs_printf("\nusage:\t%s n p_f p_l\n"
				"\tdefaults the seed to the system time\n", argv[0]);
		scs_printf("\nusage:\t%s n\n"
				"\tdefaults to using p_f = 0.1 and p_l = 0.3\n", argv[0]);
		return 0;
	}
	srand(seed);
	scs_printf("seed : %i\n", seed);

    k = scs_calloc(1, sizeof(Cone));
    d = scs_calloc(1, sizeof(Data));
    d->stgs = scs_calloc(1, sizeof(Settings));
    sol = scs_calloc(1, sizeof(Sol));
    opt_sol = scs_calloc(1, sizeof(Sol));

	m = 3 * n;
	col_nnz = (int) ceil(sqrt(n));
	nnz = n * col_nnz;

	max_q = (scs_int) ceil(3 * n / log(3 * n));

	if (p_f + p_l > 1.0) {
		printf("error: p_f + p_l > 1.0!\n");
		return 1;
	}

	k->f = (scs_int) floor(3 * n * p_f);
	k->l = (scs_int) floor(3 * n * p_l);

	k->qsize = 0;
	q_num_rows = 3 * n - k->f - k->l;
	k->q = scs_malloc(q_num_rows * sizeof(scs_int));

	while (q_num_rows > max_q) {
		int size;
		size = (rand() % max_q) + 1;
		k->q[k->qsize] = size;
		k->qsize++;
		q_num_rows -= size;
	}
	if (q_num_rows > 0) {
		k->q[k->qsize] = q_num_rows;
		k->qsize++;
	}

	q_total = 0;
	for (i = 0; i < k->qsize; i++) {
		q_total += k->q[i];
	}

	k->s = SCS_NULL;
	k->ssize = 0;
	k->ep = 0;
	k->ed = 0;

	scs_printf("\nA is %ld by %ld, with %ld nonzeros per column.\n", (long) m, (long) n, (long) col_nnz);
	scs_printf("A has %ld nonzeros (%f%% dense).\n", (long) nnz, 100 * (scs_float) col_nnz / m);
	scs_printf("Nonzeros of A take %f GB of storage.\n", ((scs_float) nnz * sizeof(scs_float)) / POWF(2, 30));
	scs_printf("Row idxs of A take %f GB of storage.\n", ((scs_float) nnz * sizeof(scs_int)) / POWF(2, 30));
	scs_printf("Col ptrs of A take %f GB of storage.\n\n", ((scs_float) n * sizeof(scs_int)) / POWF(2, 30));

	printf("Cone information:\n");
	printf("Zero cone rows: %ld\n", (long) k->f);
	printf("LP cone rows: %ld\n", (long) k->l);
	printf("Number of second-order cones: %ld, covering %ld rows, with sizes\n[", (long) k->qsize, (long) q_total);
	for (i = 0; i < k->qsize; i++) {
		printf("%ld, ", (long) k->q[i]);
	}
	printf("]\n");
	printf("Number of rows covered is %ld out of %ld.\n\n", (long) (q_total + k->f + k->l), (long) m);

	/* set up SCS structures */
	d->m = m;
	d->n = n;
	genRandomProbData(nnz, col_nnz, d, k, opt_sol);
	setDefaultSettings(d);

	scs_printf("true pri opt = %4f\n", innerProd(d->c, opt_sol->x, d->n));
	scs_printf("true dua opt = %4f\n", -innerProd(d->b, opt_sol->y, d->m));
    /* solve! */
	scs(d, k, sol, &info);
	scs_printf("true pri opt = %4f\n", innerProd(d->c, opt_sol->x, d->n));
	scs_printf("true dua opt = %4f\n", -innerProd(d->b, opt_sol->y, d->m));

    if (sol->x) { scs_printf("scs pri obj= %4f\n", innerProd(d->c, sol->x, d->n)); }
    if (sol->y) { scs_printf("scs dua obj = %4f\n", -innerProd(d->b, sol->y, d->m)); }

    freeData(d, k);
	freeSol(sol);
    freeSol(opt_sol);

    return 0;
}