void MulticopterPositionControl::reset_pos_sp() { if (_reset_pos_sp) { _reset_pos_sp = false; /* shift position setpoint to make attitude setpoint continuous */ _pos_sp(0) = _pos(0) + (_vel(0) - PX4_R(_att_sp.R_body, 0, 2) * _att_sp.thrust / _params.vel_p(0) - _params.vel_ff(0) * _sp_move_rate(0)) / _params.pos_p(0); _pos_sp(1) = _pos(1) + (_vel(1) - PX4_R(_att_sp.R_body, 1, 2) * _att_sp.thrust / _params.vel_p(1) - _params.vel_ff(1) * _sp_move_rate(1)) / _params.pos_p(1); mavlink_log_info(_mavlink_fd, "[mpc] reset pos sp: %d, %d", (int)_pos_sp(0), (int)_pos_sp(1)); } }
void AttitudePositionEstimatorEKF::publishAttitude() { // Output results math::Quaternion q(_ekf->states[0], _ekf->states[1], _ekf->states[2], _ekf->states[3]); math::Matrix<3, 3> R = q.to_dcm(); math::Vector<3> euler = R.to_euler(); for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { PX4_R(_att.R, i, j) = R(i, j); } } _att.timestamp = _last_sensor_timestamp; _att.q[0] = _ekf->states[0]; _att.q[1] = _ekf->states[1]; _att.q[2] = _ekf->states[2]; _att.q[3] = _ekf->states[3]; _att.q_valid = true; _att.R_valid = true; _att.timestamp = _last_sensor_timestamp; _att.roll = euler(0); _att.pitch = euler(1); _att.yaw = euler(2); _att.rollspeed = _ekf->angRate.x - _ekf->states[10] / _ekf->dtIMUfilt; _att.pitchspeed = _ekf->angRate.y - _ekf->states[11] / _ekf->dtIMUfilt; _att.yawspeed = _ekf->angRate.z - _ekf->states[12] / _ekf->dtIMUfilt; // gyro offsets _att.rate_offsets[0] = _ekf->states[10] / _ekf->dtIMUfilt; _att.rate_offsets[1] = _ekf->states[11] / _ekf->dtIMUfilt; _att.rate_offsets[2] = _ekf->states[12] / _ekf->dtIMUfilt; /* lazily publish the attitude only once available */ if (_att_pub != nullptr) { /* publish the attitude setpoint */ orb_publish(ORB_ID(vehicle_attitude), _att_pub, &_att); } else { /* advertise and publish */ _att_pub = orb_advertise(ORB_ID(vehicle_attitude), &_att); } }
/**************************************************************************** * main ****************************************************************************/ int position_estimator_inav_thread_main(int argc, char *argv[]) { int mavlink_fd; mavlink_fd = px4_open(MAVLINK_LOG_DEVICE, 0); float x_est[2] = { 0.0f, 0.0f }; // pos, vel float y_est[2] = { 0.0f, 0.0f }; // pos, vel float z_est[2] = { 0.0f, 0.0f }; // pos, vel float est_buf[EST_BUF_SIZE][3][2]; // estimated position buffer float R_buf[EST_BUF_SIZE][3][3]; // rotation matrix buffer float R_gps[3][3]; // rotation matrix for GPS correction moment memset(est_buf, 0, sizeof(est_buf)); memset(R_buf, 0, sizeof(R_buf)); memset(R_gps, 0, sizeof(R_gps)); int buf_ptr = 0; static const float min_eph_epv = 2.0f; // min EPH/EPV, used for weight calculation static const float max_eph_epv = 20.0f; // max EPH/EPV acceptable for estimation float eph = max_eph_epv; float epv = 1.0f; float eph_flow = 1.0f; float eph_vision = 0.2f; float epv_vision = 0.2f; float eph_mocap = 0.05f; float epv_mocap = 0.05f; float x_est_prev[2], y_est_prev[2], z_est_prev[2]; memset(x_est_prev, 0, sizeof(x_est_prev)); memset(y_est_prev, 0, sizeof(y_est_prev)); memset(z_est_prev, 0, sizeof(z_est_prev)); int baro_init_cnt = 0; int baro_init_num = 200; float baro_offset = 0.0f; // baro offset for reference altitude, initialized on start, then adjusted float surface_offset = 0.0f; // ground level offset from reference altitude float surface_offset_rate = 0.0f; // surface offset change rate hrt_abstime accel_timestamp = 0; hrt_abstime baro_timestamp = 0; bool ref_inited = false; hrt_abstime ref_init_start = 0; const hrt_abstime ref_init_delay = 1000000; // wait for 1s after 3D fix struct map_projection_reference_s ref; memset(&ref, 0, sizeof(ref)); hrt_abstime home_timestamp = 0; uint16_t accel_updates = 0; uint16_t baro_updates = 0; uint16_t gps_updates = 0; uint16_t attitude_updates = 0; uint16_t flow_updates = 0; uint16_t vision_updates = 0; uint16_t mocap_updates = 0; hrt_abstime updates_counter_start = hrt_absolute_time(); hrt_abstime pub_last = hrt_absolute_time(); hrt_abstime t_prev = 0; /* store error when sensor updates, but correct on each time step to avoid jumps in estimated value */ float acc[] = { 0.0f, 0.0f, 0.0f }; // N E D float acc_bias[] = { 0.0f, 0.0f, 0.0f }; // body frame float corr_baro = 0.0f; // D float corr_gps[3][2] = { { 0.0f, 0.0f }, // N (pos, vel) { 0.0f, 0.0f }, // E (pos, vel) { 0.0f, 0.0f }, // D (pos, vel) }; float w_gps_xy = 1.0f; float w_gps_z = 1.0f; float corr_vision[3][2] = { { 0.0f, 0.0f }, // N (pos, vel) { 0.0f, 0.0f }, // E (pos, vel) { 0.0f, 0.0f }, // D (pos, vel) }; float corr_mocap[3][1] = { { 0.0f }, // N (pos) { 0.0f }, // E (pos) { 0.0f }, // D (pos) }; float corr_sonar = 0.0f; float corr_sonar_filtered = 0.0f; float corr_flow[] = { 0.0f, 0.0f }; // N E float w_flow = 0.0f; float sonar_prev = 0.0f; //hrt_abstime flow_prev = 0; // time of last flow measurement hrt_abstime sonar_time = 0; // time of last sonar measurement (not filtered) hrt_abstime sonar_valid_time = 0; // time of last sonar measurement used for correction (filtered) bool gps_valid = false; // GPS is valid bool sonar_valid = false; // sonar is valid bool flow_valid = false; // flow is valid bool flow_accurate = false; // flow should be accurate (this flag not updated if flow_valid == false) bool vision_valid = false; // vision is valid bool mocap_valid = false; // mocap is valid /* declare and safely initialize all structs */ struct actuator_controls_s actuator; memset(&actuator, 0, sizeof(actuator)); struct actuator_armed_s armed; memset(&armed, 0, sizeof(armed)); struct sensor_combined_s sensor; memset(&sensor, 0, sizeof(sensor)); struct vehicle_gps_position_s gps; memset(&gps, 0, sizeof(gps)); struct home_position_s home; memset(&home, 0, sizeof(home)); struct vehicle_attitude_s att; memset(&att, 0, sizeof(att)); struct vehicle_local_position_s local_pos; memset(&local_pos, 0, sizeof(local_pos)); struct optical_flow_s flow; memset(&flow, 0, sizeof(flow)); struct vision_position_estimate_s vision; memset(&vision, 0, sizeof(vision)); struct att_pos_mocap_s mocap; memset(&mocap, 0, sizeof(mocap)); struct vehicle_global_position_s global_pos; memset(&global_pos, 0, sizeof(global_pos)); /* subscribe */ int parameter_update_sub = orb_subscribe(ORB_ID(parameter_update)); int actuator_sub = orb_subscribe(ORB_ID_VEHICLE_ATTITUDE_CONTROLS); int armed_sub = orb_subscribe(ORB_ID(actuator_armed)); int sensor_combined_sub = orb_subscribe(ORB_ID(sensor_combined)); int vehicle_attitude_sub = orb_subscribe(ORB_ID(vehicle_attitude)); int optical_flow_sub = orb_subscribe(ORB_ID(optical_flow)); int vehicle_gps_position_sub = orb_subscribe(ORB_ID(vehicle_gps_position)); int vision_position_estimate_sub = orb_subscribe(ORB_ID(vision_position_estimate)); int att_pos_mocap_sub = orb_subscribe(ORB_ID(att_pos_mocap)); int home_position_sub = orb_subscribe(ORB_ID(home_position)); /* advertise */ orb_advert_t vehicle_local_position_pub = orb_advertise(ORB_ID(vehicle_local_position), &local_pos); orb_advert_t vehicle_global_position_pub = NULL; struct position_estimator_inav_params params; struct position_estimator_inav_param_handles pos_inav_param_handles; /* initialize parameter handles */ inav_parameters_init(&pos_inav_param_handles); /* first parameters read at start up */ struct parameter_update_s param_update; orb_copy(ORB_ID(parameter_update), parameter_update_sub, ¶m_update); /* read from param topic to clear updated flag */ /* first parameters update */ inav_parameters_update(&pos_inav_param_handles, ¶ms); px4_pollfd_struct_t fds_init[1] = { { .fd = sensor_combined_sub, .events = POLLIN }, }; /* wait for initial baro value */ bool wait_baro = true; thread_running = true; while (wait_baro && !thread_should_exit) { int ret = px4_poll(fds_init, 1, 1000); if (ret < 0) { /* poll error */ mavlink_log_info(mavlink_fd, "[inav] poll error on init"); } else if (ret > 0) { if (fds_init[0].revents & POLLIN) { orb_copy(ORB_ID(sensor_combined), sensor_combined_sub, &sensor); if (wait_baro && sensor.baro_timestamp != baro_timestamp) { baro_timestamp = sensor.baro_timestamp; /* mean calculation over several measurements */ if (baro_init_cnt < baro_init_num) { if (PX4_ISFINITE(sensor.baro_alt_meter)) { baro_offset += sensor.baro_alt_meter; baro_init_cnt++; } } else { wait_baro = false; baro_offset /= (float) baro_init_cnt; warnx("baro offset: %d m", (int)baro_offset); mavlink_log_info(mavlink_fd, "[inav] baro offset: %d m", (int)baro_offset); local_pos.z_valid = true; local_pos.v_z_valid = true; } } } } } /* main loop */ px4_pollfd_struct_t fds[1] = { { .fd = vehicle_attitude_sub, .events = POLLIN }, }; while (!thread_should_exit) { int ret = px4_poll(fds, 1, 20); // wait maximal 20 ms = 50 Hz minimum rate hrt_abstime t = hrt_absolute_time(); if (ret < 0) { /* poll error */ mavlink_log_info(mavlink_fd, "[inav] poll error on init"); continue; } else if (ret > 0) { /* act on attitude updates */ /* vehicle attitude */ orb_copy(ORB_ID(vehicle_attitude), vehicle_attitude_sub, &att); attitude_updates++; bool updated; /* parameter update */ orb_check(parameter_update_sub, &updated); if (updated) { struct parameter_update_s update; orb_copy(ORB_ID(parameter_update), parameter_update_sub, &update); inav_parameters_update(&pos_inav_param_handles, ¶ms); } /* actuator */ orb_check(actuator_sub, &updated); if (updated) { orb_copy(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, actuator_sub, &actuator); } /* armed */ orb_check(armed_sub, &updated); if (updated) { orb_copy(ORB_ID(actuator_armed), armed_sub, &armed); } /* sensor combined */ orb_check(sensor_combined_sub, &updated); if (updated) { orb_copy(ORB_ID(sensor_combined), sensor_combined_sub, &sensor); if (sensor.accelerometer_timestamp != accel_timestamp) { if (att.R_valid) { /* correct accel bias */ sensor.accelerometer_m_s2[0] -= acc_bias[0]; sensor.accelerometer_m_s2[1] -= acc_bias[1]; sensor.accelerometer_m_s2[2] -= acc_bias[2]; /* transform acceleration vector from body frame to NED frame */ for (int i = 0; i < 3; i++) { acc[i] = 0.0f; for (int j = 0; j < 3; j++) { acc[i] += PX4_R(att.R, i, j) * sensor.accelerometer_m_s2[j]; } } acc[2] += CONSTANTS_ONE_G; } else { memset(acc, 0, sizeof(acc)); } accel_timestamp = sensor.accelerometer_timestamp; accel_updates++; } if (sensor.baro_timestamp != baro_timestamp) { corr_baro = baro_offset - sensor.baro_alt_meter - z_est[0]; baro_timestamp = sensor.baro_timestamp; baro_updates++; } } /* optical flow */ orb_check(optical_flow_sub, &updated); if (updated) { orb_copy(ORB_ID(optical_flow), optical_flow_sub, &flow); /* calculate time from previous update */ // float flow_dt = flow_prev > 0 ? (flow.flow_timestamp - flow_prev) * 1e-6f : 0.1f; // flow_prev = flow.flow_timestamp; if ((flow.ground_distance_m > 0.31f) && (flow.ground_distance_m < 4.0f) && (PX4_R(att.R, 2, 2) > 0.7f) && (fabsf(flow.ground_distance_m - sonar_prev) > FLT_EPSILON)) { sonar_time = t; sonar_prev = flow.ground_distance_m; corr_sonar = flow.ground_distance_m + surface_offset + z_est[0]; corr_sonar_filtered += (corr_sonar - corr_sonar_filtered) * params.sonar_filt; if (fabsf(corr_sonar) > params.sonar_err) { /* correction is too large: spike or new ground level? */ if (fabsf(corr_sonar - corr_sonar_filtered) > params.sonar_err) { /* spike detected, ignore */ corr_sonar = 0.0f; sonar_valid = false; } else { /* new ground level */ surface_offset -= corr_sonar; surface_offset_rate = 0.0f; corr_sonar = 0.0f; corr_sonar_filtered = 0.0f; sonar_valid_time = t; sonar_valid = true; local_pos.surface_bottom_timestamp = t; mavlink_log_info(mavlink_fd, "[inav] new surface level: %d", (int)surface_offset); } } else { /* correction is ok, use it */ sonar_valid_time = t; sonar_valid = true; } } float flow_q = flow.quality / 255.0f; float dist_bottom = - z_est[0] - surface_offset; if (dist_bottom > 0.3f && flow_q > params.flow_q_min && (t < sonar_valid_time + sonar_valid_timeout) && PX4_R(att.R, 2, 2) > 0.7f) { /* distance to surface */ float flow_dist = dist_bottom / PX4_R(att.R, 2, 2); /* check if flow if too large for accurate measurements */ /* calculate estimated velocity in body frame */ float body_v_est[2] = { 0.0f, 0.0f }; for (int i = 0; i < 2; i++) { body_v_est[i] = PX4_R(att.R, 0, i) * x_est[1] + PX4_R(att.R, 1, i) * y_est[1] + PX4_R(att.R, 2, i) * z_est[1]; } /* set this flag if flow should be accurate according to current velocity and attitude rate estimate */ flow_accurate = fabsf(body_v_est[1] / flow_dist - att.rollspeed) < max_flow && fabsf(body_v_est[0] / flow_dist + att.pitchspeed) < max_flow; /* convert raw flow to angular flow (rad/s) */ float flow_ang[2]; //todo check direction of x und y axis flow_ang[0] = flow.pixel_flow_x_integral/(float)flow.integration_timespan*1000000.0f;//flow.flow_raw_x * params.flow_k / 1000.0f / flow_dt; flow_ang[1] = flow.pixel_flow_y_integral/(float)flow.integration_timespan*1000000.0f;//flow.flow_raw_y * params.flow_k / 1000.0f / flow_dt; /* flow measurements vector */ float flow_m[3]; flow_m[0] = -flow_ang[0] * flow_dist; flow_m[1] = -flow_ang[1] * flow_dist; flow_m[2] = z_est[1]; /* velocity in NED */ float flow_v[2] = { 0.0f, 0.0f }; /* project measurements vector to NED basis, skip Z component */ for (int i = 0; i < 2; i++) { for (int j = 0; j < 3; j++) { flow_v[i] += PX4_R(att.R, i, j) * flow_m[j]; } } /* velocity correction */ corr_flow[0] = flow_v[0] - x_est[1]; corr_flow[1] = flow_v[1] - y_est[1]; /* adjust correction weight */ float flow_q_weight = (flow_q - params.flow_q_min) / (1.0f - params.flow_q_min); w_flow = PX4_R(att.R, 2, 2) * flow_q_weight / fmaxf(1.0f, flow_dist); /* if flow is not accurate, reduce weight for it */ // TODO make this more fuzzy if (!flow_accurate) { w_flow *= 0.05f; } /* under ideal conditions, on 1m distance assume EPH = 10cm */ eph_flow = 0.1f / w_flow; flow_valid = true; } else { w_flow = 0.0f; flow_valid = false; } flow_updates++; } /* home position */ orb_check(home_position_sub, &updated); if (updated) { orb_copy(ORB_ID(home_position), home_position_sub, &home); if (home.timestamp != home_timestamp) { home_timestamp = home.timestamp; double est_lat, est_lon; float est_alt; if (ref_inited) { /* calculate current estimated position in global frame */ est_alt = local_pos.ref_alt - local_pos.z; map_projection_reproject(&ref, local_pos.x, local_pos.y, &est_lat, &est_lon); } /* update reference */ map_projection_init(&ref, home.lat, home.lon); /* update baro offset */ baro_offset += home.alt - local_pos.ref_alt; local_pos.ref_lat = home.lat; local_pos.ref_lon = home.lon; local_pos.ref_alt = home.alt; local_pos.ref_timestamp = home.timestamp; if (ref_inited) { /* reproject position estimate with new reference */ map_projection_project(&ref, est_lat, est_lon, &x_est[0], &y_est[0]); z_est[0] = -(est_alt - local_pos.ref_alt); } ref_inited = true; } } /* check no vision circuit breaker is set */ if (params.no_vision != CBRK_NO_VISION_KEY) { /* vehicle vision position */ orb_check(vision_position_estimate_sub, &updated); if (updated) { orb_copy(ORB_ID(vision_position_estimate), vision_position_estimate_sub, &vision); static float last_vision_x = 0.0f; static float last_vision_y = 0.0f; static float last_vision_z = 0.0f; /* reset position estimate on first vision update */ if (!vision_valid) { x_est[0] = vision.x; x_est[1] = vision.vx; y_est[0] = vision.y; y_est[1] = vision.vy; /* only reset the z estimate if the z weight parameter is not zero */ if (params.w_z_vision_p > MIN_VALID_W) { z_est[0] = vision.z; z_est[1] = vision.vz; } vision_valid = true; last_vision_x = vision.x; last_vision_y = vision.y; last_vision_z = vision.z; warnx("VISION estimate valid"); mavlink_log_info(mavlink_fd, "[inav] VISION estimate valid"); } /* calculate correction for position */ corr_vision[0][0] = vision.x - x_est[0]; corr_vision[1][0] = vision.y - y_est[0]; corr_vision[2][0] = vision.z - z_est[0]; static hrt_abstime last_vision_time = 0; float vision_dt = (vision.timestamp_boot - last_vision_time) / 1e6f; last_vision_time = vision.timestamp_boot; if (vision_dt > 0.000001f && vision_dt < 0.2f) { vision.vx = (vision.x - last_vision_x) / vision_dt; vision.vy = (vision.y - last_vision_y) / vision_dt; vision.vz = (vision.z - last_vision_z) / vision_dt; last_vision_x = vision.x; last_vision_y = vision.y; last_vision_z = vision.z; /* calculate correction for velocity */ corr_vision[0][1] = vision.vx - x_est[1]; corr_vision[1][1] = vision.vy - y_est[1]; corr_vision[2][1] = vision.vz - z_est[1]; } else { /* assume zero motion */ corr_vision[0][1] = 0.0f - x_est[1]; corr_vision[1][1] = 0.0f - y_est[1]; corr_vision[2][1] = 0.0f - z_est[1]; } vision_updates++; } } /* vehicle mocap position */ orb_check(att_pos_mocap_sub, &updated); if (updated) { orb_copy(ORB_ID(att_pos_mocap), att_pos_mocap_sub, &mocap); /* reset position estimate on first mocap update */ if (!mocap_valid) { x_est[0] = mocap.x; y_est[0] = mocap.y; z_est[0] = mocap.z; mocap_valid = true; warnx("MOCAP data valid"); mavlink_log_info(mavlink_fd, "[inav] MOCAP data valid"); } /* calculate correction for position */ corr_mocap[0][0] = mocap.x - x_est[0]; corr_mocap[1][0] = mocap.y - y_est[0]; corr_mocap[2][0] = mocap.z - z_est[0]; mocap_updates++; } /* vehicle GPS position */ orb_check(vehicle_gps_position_sub, &updated); if (updated) { orb_copy(ORB_ID(vehicle_gps_position), vehicle_gps_position_sub, &gps); bool reset_est = false; /* hysteresis for GPS quality */ if (gps_valid) { if (gps.eph > max_eph_epv || gps.epv > max_eph_epv || gps.fix_type < 3) { gps_valid = false; mavlink_log_info(mavlink_fd, "[inav] GPS signal lost"); } } else { if (gps.eph < max_eph_epv * 0.7f && gps.epv < max_eph_epv * 0.7f && gps.fix_type >= 3) { gps_valid = true; reset_est = true; mavlink_log_info(mavlink_fd, "[inav] GPS signal found"); } } if (gps_valid) { double lat = gps.lat * 1e-7; double lon = gps.lon * 1e-7; float alt = gps.alt * 1e-3; /* initialize reference position if needed */ if (!ref_inited) { if (ref_init_start == 0) { ref_init_start = t; } else if (t > ref_init_start + ref_init_delay) { ref_inited = true; /* set position estimate to (0, 0, 0), use GPS velocity for XY */ x_est[0] = 0.0f; x_est[1] = gps.vel_n_m_s; y_est[0] = 0.0f; y_est[1] = gps.vel_e_m_s; local_pos.ref_lat = lat; local_pos.ref_lon = lon; local_pos.ref_alt = alt + z_est[0]; local_pos.ref_timestamp = t; /* initialize projection */ map_projection_init(&ref, lat, lon); // XXX replace this print warnx("init ref: lat=%.7f, lon=%.7f, alt=%8.4f", (double)lat, (double)lon, (double)alt); mavlink_log_info(mavlink_fd, "[inav] init ref: %.7f, %.7f, %8.4f", (double)lat, (double)lon, (double)alt); } } if (ref_inited) { /* project GPS lat lon to plane */ float gps_proj[2]; map_projection_project(&ref, lat, lon, &(gps_proj[0]), &(gps_proj[1])); /* reset position estimate when GPS becomes good */ if (reset_est) { x_est[0] = gps_proj[0]; x_est[1] = gps.vel_n_m_s; y_est[0] = gps_proj[1]; y_est[1] = gps.vel_e_m_s; } /* calculate index of estimated values in buffer */ int est_i = buf_ptr - 1 - min(EST_BUF_SIZE - 1, max(0, (int)(params.delay_gps * 1000000.0f / PUB_INTERVAL))); if (est_i < 0) { est_i += EST_BUF_SIZE; } /* calculate correction for position */ corr_gps[0][0] = gps_proj[0] - est_buf[est_i][0][0]; corr_gps[1][0] = gps_proj[1] - est_buf[est_i][1][0]; corr_gps[2][0] = local_pos.ref_alt - alt - est_buf[est_i][2][0]; /* calculate correction for velocity */ if (gps.vel_ned_valid) { corr_gps[0][1] = gps.vel_n_m_s - est_buf[est_i][0][1]; corr_gps[1][1] = gps.vel_e_m_s - est_buf[est_i][1][1]; corr_gps[2][1] = gps.vel_d_m_s - est_buf[est_i][2][1]; } else { corr_gps[0][1] = 0.0f; corr_gps[1][1] = 0.0f; corr_gps[2][1] = 0.0f; } /* save rotation matrix at this moment */ memcpy(R_gps, R_buf[est_i], sizeof(R_gps)); w_gps_xy = min_eph_epv / fmaxf(min_eph_epv, gps.eph); w_gps_z = min_eph_epv / fmaxf(min_eph_epv, gps.epv); } } else { /* no GPS lock */ memset(corr_gps, 0, sizeof(corr_gps)); ref_init_start = 0; } gps_updates++; } } /* check for timeout on FLOW topic */ if ((flow_valid || sonar_valid) && t > flow.timestamp + flow_topic_timeout) { flow_valid = false; sonar_valid = false; warnx("FLOW timeout"); mavlink_log_info(mavlink_fd, "[inav] FLOW timeout"); } /* check for timeout on GPS topic */ if (gps_valid && (t > (gps.timestamp_position + gps_topic_timeout))) { gps_valid = false; warnx("GPS timeout"); mavlink_log_info(mavlink_fd, "[inav] GPS timeout"); } /* check for timeout on vision topic */ if (vision_valid && (t > (vision.timestamp_boot + vision_topic_timeout))) { vision_valid = false; warnx("VISION timeout"); mavlink_log_info(mavlink_fd, "[inav] VISION timeout"); } /* check for timeout on mocap topic */ if (mocap_valid && (t > (mocap.timestamp_boot + mocap_topic_timeout))) { mocap_valid = false; warnx("MOCAP timeout"); mavlink_log_info(mavlink_fd, "[inav] MOCAP timeout"); } /* check for sonar measurement timeout */ if (sonar_valid && (t > (sonar_time + sonar_timeout))) { corr_sonar = 0.0f; sonar_valid = false; } float dt = t_prev > 0 ? (t - t_prev) / 1000000.0f : 0.0f; dt = fmaxf(fminf(0.02, dt), 0.002); // constrain dt from 2 to 20 ms t_prev = t; /* increase EPH/EPV on each step */ if (eph < max_eph_epv) { eph *= 1.0f + dt; } if (epv < max_eph_epv) { epv += 0.005f * dt; // add 1m to EPV each 200s (baro drift) } /* use GPS if it's valid and reference position initialized */ bool use_gps_xy = ref_inited && gps_valid && params.w_xy_gps_p > MIN_VALID_W; bool use_gps_z = ref_inited && gps_valid && params.w_z_gps_p > MIN_VALID_W; /* use VISION if it's valid and has a valid weight parameter */ bool use_vision_xy = vision_valid && params.w_xy_vision_p > MIN_VALID_W; bool use_vision_z = vision_valid && params.w_z_vision_p > MIN_VALID_W; /* use MOCAP if it's valid and has a valid weight parameter */ bool use_mocap = mocap_valid && params.w_mocap_p > MIN_VALID_W; /* use flow if it's valid and (accurate or no GPS available) */ bool use_flow = flow_valid && (flow_accurate || !use_gps_xy); bool can_estimate_xy = (eph < max_eph_epv) || use_gps_xy || use_flow || use_vision_xy || use_mocap; bool dist_bottom_valid = (t < sonar_valid_time + sonar_valid_timeout); if (dist_bottom_valid) { /* surface distance prediction */ surface_offset += surface_offset_rate * dt; /* surface distance correction */ if (sonar_valid) { surface_offset_rate -= corr_sonar * 0.5f * params.w_z_sonar * params.w_z_sonar * dt; surface_offset -= corr_sonar * params.w_z_sonar * dt; } } float w_xy_gps_p = params.w_xy_gps_p * w_gps_xy; float w_xy_gps_v = params.w_xy_gps_v * w_gps_xy; float w_z_gps_p = params.w_z_gps_p * w_gps_z; float w_z_gps_v = params.w_z_gps_v * w_gps_z; float w_xy_vision_p = params.w_xy_vision_p; float w_xy_vision_v = params.w_xy_vision_v; float w_z_vision_p = params.w_z_vision_p; float w_mocap_p = params.w_mocap_p; /* reduce GPS weight if optical flow is good */ if (use_flow && flow_accurate) { w_xy_gps_p *= params.w_gps_flow; w_xy_gps_v *= params.w_gps_flow; } /* baro offset correction */ if (use_gps_z) { float offs_corr = corr_gps[2][0] * w_z_gps_p * dt; baro_offset += offs_corr; corr_baro += offs_corr; } /* accelerometer bias correction for GPS (use buffered rotation matrix) */ float accel_bias_corr[3] = { 0.0f, 0.0f, 0.0f }; if (use_gps_xy) { accel_bias_corr[0] -= corr_gps[0][0] * w_xy_gps_p * w_xy_gps_p; accel_bias_corr[0] -= corr_gps[0][1] * w_xy_gps_v; accel_bias_corr[1] -= corr_gps[1][0] * w_xy_gps_p * w_xy_gps_p; accel_bias_corr[1] -= corr_gps[1][1] * w_xy_gps_v; } if (use_gps_z) { accel_bias_corr[2] -= corr_gps[2][0] * w_z_gps_p * w_z_gps_p; accel_bias_corr[2] -= corr_gps[2][1] * w_z_gps_v; } /* transform error vector from NED frame to body frame */ for (int i = 0; i < 3; i++) { float c = 0.0f; for (int j = 0; j < 3; j++) { c += R_gps[j][i] * accel_bias_corr[j]; } if (isfinite(c)) { acc_bias[i] += c * params.w_acc_bias * dt; } } /* accelerometer bias correction for VISION (use buffered rotation matrix) */ accel_bias_corr[0] = 0.0f; accel_bias_corr[1] = 0.0f; accel_bias_corr[2] = 0.0f; if (use_vision_xy) { accel_bias_corr[0] -= corr_vision[0][0] * w_xy_vision_p * w_xy_vision_p; accel_bias_corr[0] -= corr_vision[0][1] * w_xy_vision_v; accel_bias_corr[1] -= corr_vision[1][0] * w_xy_vision_p * w_xy_vision_p; accel_bias_corr[1] -= corr_vision[1][1] * w_xy_vision_v; } if (use_vision_z) { accel_bias_corr[2] -= corr_vision[2][0] * w_z_vision_p * w_z_vision_p; } /* accelerometer bias correction for MOCAP (use buffered rotation matrix) */ accel_bias_corr[0] = 0.0f; accel_bias_corr[1] = 0.0f; accel_bias_corr[2] = 0.0f; if (use_mocap) { accel_bias_corr[0] -= corr_mocap[0][0] * w_mocap_p * w_mocap_p; accel_bias_corr[1] -= corr_mocap[1][0] * w_mocap_p * w_mocap_p; accel_bias_corr[2] -= corr_mocap[2][0] * w_mocap_p * w_mocap_p; } /* transform error vector from NED frame to body frame */ for (int i = 0; i < 3; i++) { float c = 0.0f; for (int j = 0; j < 3; j++) { c += PX4_R(att.R, j, i) * accel_bias_corr[j]; } if (isfinite(c)) { acc_bias[i] += c * params.w_acc_bias * dt; } } /* accelerometer bias correction for flow and baro (assume that there is no delay) */ accel_bias_corr[0] = 0.0f; accel_bias_corr[1] = 0.0f; accel_bias_corr[2] = 0.0f; if (use_flow) { accel_bias_corr[0] -= corr_flow[0] * params.w_xy_flow; accel_bias_corr[1] -= corr_flow[1] * params.w_xy_flow; } accel_bias_corr[2] -= corr_baro * params.w_z_baro * params.w_z_baro; /* transform error vector from NED frame to body frame */ for (int i = 0; i < 3; i++) { float c = 0.0f; for (int j = 0; j < 3; j++) { c += PX4_R(att.R, j, i) * accel_bias_corr[j]; } if (isfinite(c)) { acc_bias[i] += c * params.w_acc_bias * dt; } } /* inertial filter prediction for altitude */ inertial_filter_predict(dt, z_est, acc[2]); if (!(isfinite(z_est[0]) && isfinite(z_est[1]))) { write_debug_log("BAD ESTIMATE AFTER Z PREDICTION", dt, x_est, y_est, z_est, x_est_prev, y_est_prev, z_est_prev, acc, corr_gps, w_xy_gps_p, w_xy_gps_v, corr_mocap, w_mocap_p, corr_vision, w_xy_vision_p, w_z_vision_p, w_xy_vision_v); memcpy(z_est, z_est_prev, sizeof(z_est)); } /* inertial filter correction for altitude */ inertial_filter_correct(corr_baro, dt, z_est, 0, params.w_z_baro); if (use_gps_z) { epv = fminf(epv, gps.epv); inertial_filter_correct(corr_gps[2][0], dt, z_est, 0, w_z_gps_p); inertial_filter_correct(corr_gps[2][1], dt, z_est, 1, w_z_gps_v); } if (use_vision_z) { epv = fminf(epv, epv_vision); inertial_filter_correct(corr_vision[2][0], dt, z_est, 0, w_z_vision_p); } if (use_mocap) { epv = fminf(epv, epv_mocap); inertial_filter_correct(corr_mocap[2][0], dt, z_est, 0, w_mocap_p); } if (!(isfinite(z_est[0]) && isfinite(z_est[1]))) { write_debug_log("BAD ESTIMATE AFTER Z CORRECTION", dt, x_est, y_est, z_est, x_est_prev, y_est_prev, z_est_prev, acc, corr_gps, w_xy_gps_p, w_xy_gps_v, corr_mocap, w_mocap_p, corr_vision, w_xy_vision_p, w_z_vision_p, w_xy_vision_v); memcpy(z_est, z_est_prev, sizeof(z_est)); memset(corr_gps, 0, sizeof(corr_gps)); memset(corr_vision, 0, sizeof(corr_vision)); memset(corr_mocap, 0, sizeof(corr_mocap)); corr_baro = 0; } else { memcpy(z_est_prev, z_est, sizeof(z_est)); } if (can_estimate_xy) { /* inertial filter prediction for position */ inertial_filter_predict(dt, x_est, acc[0]); inertial_filter_predict(dt, y_est, acc[1]); if (!(isfinite(x_est[0]) && isfinite(x_est[1]) && isfinite(y_est[0]) && isfinite(y_est[1]))) { write_debug_log("BAD ESTIMATE AFTER PREDICTION", dt, x_est, y_est, z_est, x_est_prev, y_est_prev, z_est_prev, acc, corr_gps, w_xy_gps_p, w_xy_gps_v, corr_mocap, w_mocap_p, corr_vision, w_xy_vision_p, w_z_vision_p, w_xy_vision_v); memcpy(x_est, x_est_prev, sizeof(x_est)); memcpy(y_est, y_est_prev, sizeof(y_est)); } /* inertial filter correction for position */ if (use_flow) { eph = fminf(eph, eph_flow); inertial_filter_correct(corr_flow[0], dt, x_est, 1, params.w_xy_flow * w_flow); inertial_filter_correct(corr_flow[1], dt, y_est, 1, params.w_xy_flow * w_flow); } if (use_gps_xy) { eph = fminf(eph, gps.eph); inertial_filter_correct(corr_gps[0][0], dt, x_est, 0, w_xy_gps_p); inertial_filter_correct(corr_gps[1][0], dt, y_est, 0, w_xy_gps_p); if (gps.vel_ned_valid && t < gps.timestamp_velocity + gps_topic_timeout) { inertial_filter_correct(corr_gps[0][1], dt, x_est, 1, w_xy_gps_v); inertial_filter_correct(corr_gps[1][1], dt, y_est, 1, w_xy_gps_v); } } if (use_vision_xy) { eph = fminf(eph, eph_vision); inertial_filter_correct(corr_vision[0][0], dt, x_est, 0, w_xy_vision_p); inertial_filter_correct(corr_vision[1][0], dt, y_est, 0, w_xy_vision_p); if (w_xy_vision_v > MIN_VALID_W) { inertial_filter_correct(corr_vision[0][1], dt, x_est, 1, w_xy_vision_v); inertial_filter_correct(corr_vision[1][1], dt, y_est, 1, w_xy_vision_v); } } if (use_mocap) { eph = fminf(eph, eph_mocap); inertial_filter_correct(corr_mocap[0][0], dt, x_est, 0, w_mocap_p); inertial_filter_correct(corr_mocap[1][0], dt, y_est, 0, w_mocap_p); } if (!(isfinite(x_est[0]) && isfinite(x_est[1]) && isfinite(y_est[0]) && isfinite(y_est[1]))) { write_debug_log("BAD ESTIMATE AFTER CORRECTION", dt, x_est, y_est, z_est, x_est_prev, y_est_prev, z_est_prev, acc, corr_gps, w_xy_gps_p, w_xy_gps_v, corr_mocap, w_mocap_p, corr_vision, w_xy_vision_p, w_z_vision_p, w_xy_vision_v); memcpy(x_est, x_est_prev, sizeof(x_est)); memcpy(y_est, y_est_prev, sizeof(y_est)); memset(corr_gps, 0, sizeof(corr_gps)); memset(corr_vision, 0, sizeof(corr_vision)); memset(corr_mocap, 0, sizeof(corr_mocap)); memset(corr_flow, 0, sizeof(corr_flow)); } else { memcpy(x_est_prev, x_est, sizeof(x_est)); memcpy(y_est_prev, y_est, sizeof(y_est)); } } else { /* gradually reset xy velocity estimates */ inertial_filter_correct(-x_est[1], dt, x_est, 1, params.w_xy_res_v); inertial_filter_correct(-y_est[1], dt, y_est, 1, params.w_xy_res_v); } if (inav_verbose_mode) { /* print updates rate */ if (t > updates_counter_start + updates_counter_len) { float updates_dt = (t - updates_counter_start) * 0.000001f; warnx( "updates rate: accelerometer = %.1f/s, baro = %.1f/s, gps = %.1f/s, attitude = %.1f/s, flow = %.1f/s, vision = %.1f/s, mocap = %.1f/s", (double)(accel_updates / updates_dt), (double)(baro_updates / updates_dt), (double)(gps_updates / updates_dt), (double)(attitude_updates / updates_dt), (double)(flow_updates / updates_dt), (double)(vision_updates / updates_dt), (double)(mocap_updates / updates_dt)); updates_counter_start = t; accel_updates = 0; baro_updates = 0; gps_updates = 0; attitude_updates = 0; flow_updates = 0; vision_updates = 0; mocap_updates = 0; } } if (t > pub_last + PUB_INTERVAL) { pub_last = t; /* push current estimate to buffer */ est_buf[buf_ptr][0][0] = x_est[0]; est_buf[buf_ptr][0][1] = x_est[1]; est_buf[buf_ptr][1][0] = y_est[0]; est_buf[buf_ptr][1][1] = y_est[1]; est_buf[buf_ptr][2][0] = z_est[0]; est_buf[buf_ptr][2][1] = z_est[1]; /* push current rotation matrix to buffer */ memcpy(R_buf[buf_ptr], att.R, sizeof(att.R)); buf_ptr++; if (buf_ptr >= EST_BUF_SIZE) { buf_ptr = 0; } /* publish local position */ local_pos.xy_valid = can_estimate_xy; local_pos.v_xy_valid = can_estimate_xy; local_pos.xy_global = local_pos.xy_valid && use_gps_xy; local_pos.z_global = local_pos.z_valid && use_gps_z; local_pos.x = x_est[0]; local_pos.vx = x_est[1]; local_pos.y = y_est[0]; local_pos.vy = y_est[1]; local_pos.z = z_est[0]; local_pos.vz = z_est[1]; local_pos.yaw = att.yaw; local_pos.dist_bottom_valid = dist_bottom_valid; local_pos.eph = eph; local_pos.epv = epv; if (local_pos.dist_bottom_valid) { local_pos.dist_bottom = -z_est[0] - surface_offset; local_pos.dist_bottom_rate = -z_est[1] - surface_offset_rate; } local_pos.timestamp = t; orb_publish(ORB_ID(vehicle_local_position), vehicle_local_position_pub, &local_pos); if (local_pos.xy_global && local_pos.z_global) { /* publish global position */ global_pos.timestamp = t; global_pos.time_utc_usec = gps.time_utc_usec; double est_lat, est_lon; map_projection_reproject(&ref, local_pos.x, local_pos.y, &est_lat, &est_lon); global_pos.lat = est_lat; global_pos.lon = est_lon; global_pos.alt = local_pos.ref_alt - local_pos.z; global_pos.vel_n = local_pos.vx; global_pos.vel_e = local_pos.vy; global_pos.vel_d = local_pos.vz; global_pos.yaw = local_pos.yaw; global_pos.eph = eph; global_pos.epv = epv; if (vehicle_global_position_pub == NULL) { vehicle_global_position_pub = orb_advertise(ORB_ID(vehicle_global_position), &global_pos); } else { orb_publish(ORB_ID(vehicle_global_position), vehicle_global_position_pub, &global_pos); } } } } warnx("stopped"); mavlink_log_info(mavlink_fd, "[inav] stopped"); thread_running = false; return 0; }
void MulticopterPositionControl::task_main() { _mavlink_fd = open(MAVLINK_LOG_DEVICE, 0); /* * do subscriptions */ _att_sub = orb_subscribe(ORB_ID(vehicle_attitude)); _att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint)); _control_mode_sub = orb_subscribe(ORB_ID(vehicle_control_mode)); _params_sub = orb_subscribe(ORB_ID(parameter_update)); _manual_sub = orb_subscribe(ORB_ID(manual_control_setpoint)); _arming_sub = orb_subscribe(ORB_ID(actuator_armed)); _local_pos_sub = orb_subscribe(ORB_ID(vehicle_local_position)); _pos_sp_triplet_sub = orb_subscribe(ORB_ID(position_setpoint_triplet)); _local_pos_sp_sub = orb_subscribe(ORB_ID(vehicle_local_position_setpoint)); _global_vel_sp_sub = orb_subscribe(ORB_ID(vehicle_global_velocity_setpoint)); parameters_update(true); /* initialize values of critical structs until first regular update */ _arming.armed = false; /* get an initial update for all sensor and status data */ poll_subscriptions(); bool reset_int_z = true; bool reset_int_z_manual = false; bool reset_int_xy = true; bool reset_yaw_sp = true; bool was_armed = false; hrt_abstime t_prev = 0; _hover_time = 0.0; // miao: _mode_mission = 1; math::Vector<3> thrust_int; thrust_int.zero(); math::Matrix<3, 3> R; R.identity(); /* wakeup source */ struct pollfd fds[1]; fds[0].fd = _local_pos_sub; fds[0].events = POLLIN; while (!_task_should_exit) { /* wait for up to 500ms for data */ int pret = poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 500); /* timed out - periodic check for _task_should_exit */ if (pret == 0) { continue; } /* this is undesirable but not much we can do */ if (pret < 0) { warn("poll error %d, %d", pret, errno); continue; } poll_subscriptions(); parameters_update(false); hrt_abstime t = hrt_absolute_time(); float dt = t_prev != 0 ? (t - t_prev) * 0.000001f : 0.0f; t_prev = t; if (_control_mode.flag_armed && !was_armed) { /* reset setpoints and integrals on arming */ _reset_pos_sp = true; _reset_alt_sp = true; reset_int_z = true; reset_int_xy = true; reset_yaw_sp = true; _reset_mission = true;//miao: } //Update previous arming state was_armed = _control_mode.flag_armed; update_ref(); if (_control_mode.flag_control_altitude_enabled || _control_mode.flag_control_position_enabled || _control_mode.flag_control_climb_rate_enabled || _control_mode.flag_control_velocity_enabled) { _pos(0) = _local_pos.x; _pos(1) = _local_pos.y; _pos(2) = _local_pos.z; _vel(0) = _local_pos.vx; _vel(1) = _local_pos.vy; _vel(2) = _local_pos.vz; _vel_ff.zero(); _sp_move_rate.zero(); /* select control source */ if (_control_mode.flag_control_manual_enabled) { /* manual control */ control_manual(dt); _mode_auto = false; } else if (_control_mode.flag_control_offboard_enabled) { /* offboard control */ control_offboard(dt); _mode_auto = false; } else { /* AUTO */ control_auto(dt); } if (!_control_mode.flag_control_manual_enabled && _pos_sp_triplet.current.valid && _pos_sp_triplet.current.type == position_setpoint_s::SETPOINT_TYPE_IDLE) { /* idle state, don't run controller and set zero thrust */ R.identity(); memcpy(&_att_sp.R_body[0], R.data, sizeof(_att_sp.R_body)); _att_sp.R_valid = true; _att_sp.roll_body = 0.0f; _att_sp.pitch_body = 0.0f; _att_sp.yaw_body = _att.yaw; _att_sp.thrust = 0.0f; _att_sp.timestamp = hrt_absolute_time(); /* publish attitude setpoint */ if (_att_sp_pub > 0) { orb_publish(ORB_ID(vehicle_attitude_setpoint), _att_sp_pub, &_att_sp); } else { _att_sp_pub = orb_advertise(ORB_ID(vehicle_attitude_setpoint), &_att_sp); } } else { /* run position & altitude controllers, calculate velocity setpoint */ math::Vector<3> pos_err = _pos_sp - _pos; _vel_sp = pos_err.emult(_params.pos_p) + _vel_ff; if (!_control_mode.flag_control_altitude_enabled) { _reset_alt_sp = true; _vel_sp(2) = 0.0f; } if (!_control_mode.flag_control_position_enabled) { _reset_pos_sp = true; _vel_sp(0) = 0.0f; _vel_sp(1) = 0.0f; } /* use constant descend rate when landing, ignore altitude setpoint */ //if (!_control_mode.flag_control_manual_enabled && _pos_sp_triplet.current.valid && _pos_sp_triplet.current.type == position_setpoint_s::SETPOINT_TYPE_LAND) { // miao: for auto landing test with manual mode if (_mode_mission==3) { _vel_sp(2) = _params.land_speed; } _global_vel_sp.vx = _vel_sp(0); _global_vel_sp.vy = _vel_sp(1); _global_vel_sp.vz = _vel_sp(2); /* publish velocity setpoint */ if (_global_vel_sp_pub > 0) { orb_publish(ORB_ID(vehicle_global_velocity_setpoint), _global_vel_sp_pub, &_global_vel_sp); } else { _global_vel_sp_pub = orb_advertise(ORB_ID(vehicle_global_velocity_setpoint), &_global_vel_sp); } if (_control_mode.flag_control_climb_rate_enabled || _control_mode.flag_control_velocity_enabled) { /* reset integrals if needed */ if (_control_mode.flag_control_climb_rate_enabled) { if (reset_int_z) { reset_int_z = false; float i = _params.thr_min; if (reset_int_z_manual) { i = _manual.z; if (i < _params.thr_min) { i = _params.thr_min; } else if (i > _params.thr_max) { i = _params.thr_max; } } thrust_int(2) = -i; } } else { reset_int_z = true; } if (_control_mode.flag_control_velocity_enabled) { if (reset_int_xy) { reset_int_xy = false; thrust_int(0) = 0.0f; thrust_int(1) = 0.0f; } } else { reset_int_xy = true; } /* velocity error */ math::Vector<3> vel_err = _vel_sp - _vel; /* derivative of velocity error, not includes setpoint acceleration */ math::Vector<3> vel_err_d = (_sp_move_rate - _vel).emult(_params.pos_p) - (_vel - _vel_prev) / dt; _vel_prev = _vel; /* thrust vector in NED frame */ math::Vector<3> thrust_sp = vel_err.emult(_params.vel_p) + vel_err_d.emult(_params.vel_d) + thrust_int; if (!_control_mode.flag_control_velocity_enabled) { thrust_sp(0) = 0.0f; thrust_sp(1) = 0.0f; } if (!_control_mode.flag_control_climb_rate_enabled) { thrust_sp(2) = 0.0f; } /* limit thrust vector and check for saturation */ bool saturation_xy = false; bool saturation_z = false; /* limit min lift */ float thr_min = _params.thr_min; if (!_control_mode.flag_control_velocity_enabled && thr_min < 0.0f) { /* don't allow downside thrust direction in manual attitude mode */ thr_min = 0.0f; } float tilt_max = _params.tilt_max_air; /* adjust limits for landing mode */ if (!_control_mode.flag_control_manual_enabled && _pos_sp_triplet.current.valid && _pos_sp_triplet.current.type == position_setpoint_s::SETPOINT_TYPE_LAND) { /* limit max tilt and min lift when landing */ tilt_max = _params.tilt_max_land; if (thr_min < 0.0f) { thr_min = 0.0f; } } /* limit min lift */ if (-thrust_sp(2) < thr_min) { thrust_sp(2) = -thr_min; saturation_z = true; } if (_control_mode.flag_control_velocity_enabled) { /* limit max tilt */ if (thr_min >= 0.0f && tilt_max < M_PI_F / 2 - 0.05f) { /* absolute horizontal thrust */ float thrust_sp_xy_len = math::Vector<2>(thrust_sp(0), thrust_sp(1)).length(); if (thrust_sp_xy_len > 0.01f) { /* max horizontal thrust for given vertical thrust*/ float thrust_xy_max = -thrust_sp(2) * tanf(tilt_max); if (thrust_sp_xy_len > thrust_xy_max) { float k = thrust_xy_max / thrust_sp_xy_len; thrust_sp(0) *= k; thrust_sp(1) *= k; saturation_xy = true; } } } } else { /* thrust compensation for altitude only control mode */ float att_comp; if (PX4_R(_att.R, 2, 2) > TILT_COS_MAX) { att_comp = 1.0f / PX4_R(_att.R, 2, 2); } else if (PX4_R(_att.R, 2, 2) > 0.0f) { att_comp = ((1.0f / TILT_COS_MAX - 1.0f) / TILT_COS_MAX) * PX4_R(_att.R, 2, 2) + 1.0f; saturation_z = true; } else { att_comp = 1.0f; saturation_z = true; } thrust_sp(2) *= att_comp; } /* limit max thrust */ float thrust_abs = thrust_sp.length(); if (thrust_abs > _params.thr_max) { if (thrust_sp(2) < 0.0f) { if (-thrust_sp(2) > _params.thr_max) { /* thrust Z component is too large, limit it */ thrust_sp(0) = 0.0f; thrust_sp(1) = 0.0f; thrust_sp(2) = -_params.thr_max; saturation_xy = true; saturation_z = true; } else { /* preserve thrust Z component and lower XY, keeping altitude is more important than position */ float thrust_xy_max = sqrtf(_params.thr_max * _params.thr_max - thrust_sp(2) * thrust_sp(2)); float thrust_xy_abs = math::Vector<2>(thrust_sp(0), thrust_sp(1)).length(); float k = thrust_xy_max / thrust_xy_abs; thrust_sp(0) *= k; thrust_sp(1) *= k; saturation_xy = true; } } else { /* Z component is negative, going down, simply limit thrust vector */ float k = _params.thr_max / thrust_abs; thrust_sp *= k; saturation_xy = true; saturation_z = true; } thrust_abs = _params.thr_max; } /* update integrals */ if (_control_mode.flag_control_velocity_enabled && !saturation_xy) { thrust_int(0) += vel_err(0) * _params.vel_i(0) * dt; thrust_int(1) += vel_err(1) * _params.vel_i(1) * dt; } if (_control_mode.flag_control_climb_rate_enabled && !saturation_z) { thrust_int(2) += vel_err(2) * _params.vel_i(2) * dt; /* protection against flipping on ground when landing */ if (thrust_int(2) > 0.0f) { thrust_int(2) = 0.0f; } } /* calculate attitude setpoint from thrust vector */ if (_control_mode.flag_control_velocity_enabled) { /* desired body_z axis = -normalize(thrust_vector) */ math::Vector<3> body_x; math::Vector<3> body_y; math::Vector<3> body_z; if (thrust_abs > SIGMA) { body_z = -thrust_sp / thrust_abs; } else { /* no thrust, set Z axis to safe value */ body_z.zero(); body_z(2) = 1.0f; } /* vector of desired yaw direction in XY plane, rotated by PI/2 */ math::Vector<3> y_C(-sinf(_att_sp.yaw_body), cosf(_att_sp.yaw_body), 0.0f); if (fabsf(body_z(2)) > SIGMA) { /* desired body_x axis, orthogonal to body_z */ body_x = y_C % body_z; /* keep nose to front while inverted upside down */ if (body_z(2) < 0.0f) { body_x = -body_x; } body_x.normalize(); } else { /* desired thrust is in XY plane, set X downside to construct correct matrix, * but yaw component will not be used actually */ body_x.zero(); body_x(2) = 1.0f; } /* desired body_y axis */ body_y = body_z % body_x; /* fill rotation matrix */ for (int i = 0; i < 3; i++) { R(i, 0) = body_x(i); R(i, 1) = body_y(i); R(i, 2) = body_z(i); } /* copy rotation matrix to attitude setpoint topic */ memcpy(&_att_sp.R_body[0], R.data, sizeof(_att_sp.R_body)); _att_sp.R_valid = true; /* calculate euler angles, for logging only, must not be used for control */ math::Vector<3> euler = R.to_euler(); _att_sp.roll_body = euler(0); _att_sp.pitch_body = euler(1); /* yaw already used to construct rot matrix, but actual rotation matrix can have different yaw near singularity */ } else if (!_control_mode.flag_control_manual_enabled) { /* autonomous altitude control without position control (failsafe landing), * force level attitude, don't change yaw */ R.from_euler(0.0f, 0.0f, _att_sp.yaw_body); /* copy rotation matrix to attitude setpoint topic */ memcpy(&_att_sp.R_body[0], R.data, sizeof(_att_sp.R_body)); _att_sp.R_valid = true; _att_sp.roll_body = 0.0f; _att_sp.pitch_body = 0.0f; } _att_sp.thrust = thrust_abs; /* save thrust setpoint for logging */ _local_pos_sp.acc_x = thrust_sp(0); _local_pos_sp.acc_x = thrust_sp(1); _local_pos_sp.acc_x = thrust_sp(2); _att_sp.timestamp = hrt_absolute_time(); } else { reset_int_z = true; } } /* fill local position, velocity and thrust setpoint */ _local_pos_sp.timestamp = hrt_absolute_time(); _local_pos_sp.x = _pos_sp(0); _local_pos_sp.y = _pos_sp(1); _local_pos_sp.z = _pos_sp(2); _local_pos_sp.yaw = _att_sp.yaw_body; _local_pos_sp.vx = _vel_sp(0); _local_pos_sp.vy = _vel_sp(1); _local_pos_sp.vz = _vel_sp(2); /* publish local position setpoint */ if (_local_pos_sp_pub > 0) { orb_publish(ORB_ID(vehicle_local_position_setpoint), _local_pos_sp_pub, &_local_pos_sp); } else { _local_pos_sp_pub = orb_advertise(ORB_ID(vehicle_local_position_setpoint), &_local_pos_sp); } } else { /* position controller disabled, reset setpoints */ _reset_alt_sp = true; _reset_pos_sp = true; _mode_auto = false; reset_int_z = true; reset_int_xy = true; } // generate attitude setpoint from manual controls if(_control_mode.flag_control_manual_enabled && _control_mode.flag_control_attitude_enabled) { // reset yaw setpoint to current position if needed if (reset_yaw_sp) { reset_yaw_sp = false; _att_sp.yaw_body = _att.yaw; } // do not move yaw while arming else if (_manual.z > 0.1f) { const float YAW_OFFSET_MAX = _params.man_yaw_max / _params.mc_att_yaw_p; _att_sp.yaw_sp_move_rate = _manual.r * _params.man_yaw_max; _att_sp.yaw_body = _wrap_pi(_att_sp.yaw_body + _att_sp.yaw_sp_move_rate * dt); float yaw_offs = _wrap_pi(_att_sp.yaw_body - _att.yaw); if (yaw_offs < - YAW_OFFSET_MAX) { _att_sp.yaw_body = _wrap_pi(_att.yaw - YAW_OFFSET_MAX); } else if (yaw_offs > YAW_OFFSET_MAX) { _att_sp.yaw_body = _wrap_pi(_att.yaw + YAW_OFFSET_MAX); } } //Control roll and pitch directly if we no aiding velocity controller is active if(!_control_mode.flag_control_velocity_enabled) { _att_sp.roll_body = _manual.y * _params.man_roll_max; _att_sp.pitch_body = -_manual.x * _params.man_pitch_max; } //Control climb rate directly if no aiding altitude controller is active if(!_control_mode.flag_control_climb_rate_enabled) { _att_sp.thrust = _manual.z; } //Construct attitude setpoint rotation matrix math::Matrix<3,3> R_sp; R_sp.from_euler(_att_sp.roll_body,_att_sp.pitch_body,_att_sp.yaw_body); memcpy(&_att_sp.R_body[0], R_sp.data, sizeof(_att_sp.R_body)); _att_sp.timestamp = hrt_absolute_time(); } else { reset_yaw_sp = true; } /* publish attitude setpoint * Do not publish if offboard is enabled but position/velocity control is disabled, * in this case the attitude setpoint is published by the mavlink app */ if (!(_control_mode.flag_control_offboard_enabled && !(_control_mode.flag_control_position_enabled || _control_mode.flag_control_velocity_enabled))) { if (_att_sp_pub > 0) { orb_publish(ORB_ID(vehicle_attitude_setpoint), _att_sp_pub, &_att_sp); } else { _att_sp_pub = orb_advertise(ORB_ID(vehicle_attitude_setpoint), &_att_sp); } } /* reset altitude controller integral (hovering throttle) to manual throttle after manual throttle control */ reset_int_z_manual = _control_mode.flag_armed && _control_mode.flag_control_manual_enabled && !_control_mode.flag_control_climb_rate_enabled; } warnx("stopped"); mavlink_log_info(_mavlink_fd, "[mpc] stopped"); _control_task = -1; _exit(0); }
/**************************************************************************** * main ****************************************************************************/ int position_estimator_inav_thread_main(int argc, char *argv[]) { orb_advert_t mavlink_log_pub = nullptr; float x_est[2] = { 0.0f, 0.0f }; // pos, vel float y_est[2] = { 0.0f, 0.0f }; // pos, vel float z_est[2] = { 0.0f, 0.0f }; // pos, vel float est_buf[EST_BUF_SIZE][3][2]; // estimated position buffer float R_buf[EST_BUF_SIZE][3][3]; // rotation matrix buffer float R_gps[3][3]; // rotation matrix for GPS correction moment memset(est_buf, 0, sizeof(est_buf)); memset(R_buf, 0, sizeof(R_buf)); memset(R_gps, 0, sizeof(R_gps)); int buf_ptr = 0; static const float min_eph_epv = 2.0f; // min EPH/EPV, used for weight calculation static const float max_eph_epv = 20.0f; // max EPH/EPV acceptable for estimation float eph = max_eph_epv; float epv = 1.0f; float eph_flow = 1.0f; float eph_vision = 0.2f; float epv_vision = 0.2f; float eph_mocap = 0.05f; float epv_mocap = 0.05f; float x_est_prev[2], y_est_prev[2], z_est_prev[2]; memset(x_est_prev, 0, sizeof(x_est_prev)); memset(y_est_prev, 0, sizeof(y_est_prev)); memset(z_est_prev, 0, sizeof(z_est_prev)); int baro_init_cnt = 0; int baro_init_num = 200; float baro_offset = 0.0f; // baro offset for reference altitude, initialized on start, then adjusted hrt_abstime accel_timestamp = 0; hrt_abstime baro_timestamp = 0; bool ref_inited = false; hrt_abstime ref_init_start = 0; const hrt_abstime ref_init_delay = 1000000; // wait for 1s after 3D fix struct map_projection_reference_s ref; memset(&ref, 0, sizeof(ref)); uint16_t accel_updates = 0; uint16_t baro_updates = 0; uint16_t gps_updates = 0; uint16_t attitude_updates = 0; uint16_t flow_updates = 0; uint16_t vision_updates = 0; uint16_t mocap_updates = 0; hrt_abstime updates_counter_start = hrt_absolute_time(); hrt_abstime pub_last = hrt_absolute_time(); hrt_abstime t_prev = 0; /* store error when sensor updates, but correct on each time step to avoid jumps in estimated value */ float acc[] = { 0.0f, 0.0f, 0.0f }; // N E D float acc_bias[] = { 0.0f, 0.0f, 0.0f }; // body frame float corr_baro = 0.0f; // D float corr_gps[3][2] = { { 0.0f, 0.0f }, // N (pos, vel) { 0.0f, 0.0f }, // E (pos, vel) { 0.0f, 0.0f }, // D (pos, vel) }; float w_gps_xy = 1.0f; float w_gps_z = 1.0f; float corr_vision[3][2] = { { 0.0f, 0.0f }, // N (pos, vel) { 0.0f, 0.0f }, // E (pos, vel) { 0.0f, 0.0f }, // D (pos, vel) }; float corr_mocap[3][1] = { { 0.0f }, // N (pos) { 0.0f }, // E (pos) { 0.0f }, // D (pos) }; const int mocap_heading = 2; float dist_ground = 0.0f; //variables for lidar altitude estimation float corr_lidar = 0.0f; float lidar_offset = 0.0f; int lidar_offset_count = 0; bool lidar_first = true; bool use_lidar = false; bool use_lidar_prev = false; float corr_flow[] = { 0.0f, 0.0f }; // N E float w_flow = 0.0f; hrt_abstime lidar_time = 0; // time of last lidar measurement (not filtered) hrt_abstime lidar_valid_time = 0; // time of last lidar measurement used for correction (filtered) int n_flow = 0; float gyro_offset_filtered[] = { 0.0f, 0.0f, 0.0f }; float flow_gyrospeed[] = { 0.0f, 0.0f, 0.0f }; float flow_gyrospeed_filtered[] = { 0.0f, 0.0f, 0.0f }; float att_gyrospeed_filtered[] = { 0.0f, 0.0f, 0.0f }; float yaw_comp[] = { 0.0f, 0.0f }; hrt_abstime flow_time = 0; float flow_min_dist = 0.2f; bool gps_valid = false; // GPS is valid bool lidar_valid = false; // lidar is valid bool flow_valid = false; // flow is valid bool flow_accurate = false; // flow should be accurate (this flag not updated if flow_valid == false) bool vision_valid = false; // vision is valid bool mocap_valid = false; // mocap is valid /* declare and safely initialize all structs */ struct actuator_controls_s actuator; memset(&actuator, 0, sizeof(actuator)); struct actuator_armed_s armed; memset(&armed, 0, sizeof(armed)); struct sensor_combined_s sensor; memset(&sensor, 0, sizeof(sensor)); struct vehicle_gps_position_s gps; memset(&gps, 0, sizeof(gps)); struct vehicle_attitude_s att; memset(&att, 0, sizeof(att)); struct vehicle_local_position_s local_pos; memset(&local_pos, 0, sizeof(local_pos)); struct optical_flow_s flow; memset(&flow, 0, sizeof(flow)); struct vision_position_estimate_s vision; memset(&vision, 0, sizeof(vision)); struct att_pos_mocap_s mocap; memset(&mocap, 0, sizeof(mocap)); struct vehicle_global_position_s global_pos; memset(&global_pos, 0, sizeof(global_pos)); struct distance_sensor_s lidar; memset(&lidar, 0, sizeof(lidar)); struct vehicle_rates_setpoint_s rates_setpoint; memset(&rates_setpoint, 0, sizeof(rates_setpoint)); /* subscribe */ int parameter_update_sub = orb_subscribe(ORB_ID(parameter_update)); int actuator_sub = orb_subscribe(ORB_ID_VEHICLE_ATTITUDE_CONTROLS); int armed_sub = orb_subscribe(ORB_ID(actuator_armed)); int sensor_combined_sub = orb_subscribe(ORB_ID(sensor_combined)); int vehicle_attitude_sub = orb_subscribe(ORB_ID(vehicle_attitude)); int optical_flow_sub = orb_subscribe(ORB_ID(optical_flow)); int vehicle_gps_position_sub = orb_subscribe(ORB_ID(vehicle_gps_position)); int vision_position_estimate_sub = orb_subscribe(ORB_ID(vision_position_estimate)); int att_pos_mocap_sub = orb_subscribe(ORB_ID(att_pos_mocap)); int distance_sensor_sub = orb_subscribe(ORB_ID(distance_sensor)); int vehicle_rate_sp_sub = orb_subscribe(ORB_ID(vehicle_rates_setpoint)); /* advertise */ orb_advert_t vehicle_local_position_pub = orb_advertise(ORB_ID(vehicle_local_position), &local_pos); orb_advert_t vehicle_global_position_pub = NULL; struct position_estimator_inav_params params; memset(¶ms, 0, sizeof(params)); struct position_estimator_inav_param_handles pos_inav_param_handles; /* initialize parameter handles */ inav_parameters_init(&pos_inav_param_handles); /* first parameters read at start up */ struct parameter_update_s param_update; orb_copy(ORB_ID(parameter_update), parameter_update_sub, ¶m_update); /* read from param topic to clear updated flag */ /* first parameters update */ inav_parameters_update(&pos_inav_param_handles, ¶ms); px4_pollfd_struct_t fds_init[1] = {}; fds_init[0].fd = sensor_combined_sub; fds_init[0].events = POLLIN; /* wait for initial baro value */ bool wait_baro = true; TerrainEstimator *terrain_estimator = new TerrainEstimator(); thread_running = true; hrt_abstime baro_wait_for_sample_time = hrt_absolute_time(); while (wait_baro && !thread_should_exit) { int ret = px4_poll(&fds_init[0], 1, 1000); if (ret < 0) { /* poll error */ mavlink_log_info(&mavlink_log_pub, "[inav] poll error on init"); } else if (hrt_absolute_time() - baro_wait_for_sample_time > MAX_WAIT_FOR_BARO_SAMPLE) { wait_baro = false; mavlink_log_info(&mavlink_log_pub, "[inav] timed out waiting for a baro sample"); } else if (ret > 0) { if (fds_init[0].revents & POLLIN) { orb_copy(ORB_ID(sensor_combined), sensor_combined_sub, &sensor); if (wait_baro && sensor.baro_timestamp[0] != baro_timestamp) { baro_timestamp = sensor.baro_timestamp[0]; baro_wait_for_sample_time = hrt_absolute_time(); /* mean calculation over several measurements */ if (baro_init_cnt < baro_init_num) { if (PX4_ISFINITE(sensor.baro_alt_meter[0])) { baro_offset += sensor.baro_alt_meter[0]; baro_init_cnt++; } } else { wait_baro = false; baro_offset /= (float) baro_init_cnt; local_pos.z_valid = true; local_pos.v_z_valid = true; } } } } else { PX4_WARN("INAV poll timeout"); } } /* main loop */ px4_pollfd_struct_t fds[1]; fds[0].fd = vehicle_attitude_sub; fds[0].events = POLLIN; while (!thread_should_exit) { int ret = px4_poll(fds, 1, 20); // wait maximal 20 ms = 50 Hz minimum rate hrt_abstime t = hrt_absolute_time(); if (ret < 0) { /* poll error */ mavlink_log_info(&mavlink_log_pub, "[inav] poll error on init"); continue; } else if (ret > 0) { /* act on attitude updates */ /* vehicle attitude */ orb_copy(ORB_ID(vehicle_attitude), vehicle_attitude_sub, &att); attitude_updates++; bool updated; /* parameter update */ orb_check(parameter_update_sub, &updated); if (updated) { struct parameter_update_s update; orb_copy(ORB_ID(parameter_update), parameter_update_sub, &update); inav_parameters_update(&pos_inav_param_handles, ¶ms); } /* actuator */ orb_check(actuator_sub, &updated); if (updated) { orb_copy(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, actuator_sub, &actuator); } /* armed */ orb_check(armed_sub, &updated); if (updated) { orb_copy(ORB_ID(actuator_armed), armed_sub, &armed); } /* sensor combined */ orb_check(sensor_combined_sub, &updated); if (updated) { orb_copy(ORB_ID(sensor_combined), sensor_combined_sub, &sensor); if (sensor.accelerometer_timestamp[0] != accel_timestamp) { if (att.R_valid) { /* correct accel bias */ sensor.accelerometer_m_s2[0] -= acc_bias[0]; sensor.accelerometer_m_s2[1] -= acc_bias[1]; sensor.accelerometer_m_s2[2] -= acc_bias[2]; /* transform acceleration vector from body frame to NED frame */ for (int i = 0; i < 3; i++) { acc[i] = 0.0f; for (int j = 0; j < 3; j++) { acc[i] += PX4_R(att.R, i, j) * sensor.accelerometer_m_s2[j]; } } acc[2] += CONSTANTS_ONE_G; } else { memset(acc, 0, sizeof(acc)); } accel_timestamp = sensor.accelerometer_timestamp[0]; accel_updates++; } if (sensor.baro_timestamp[0] != baro_timestamp) { corr_baro = baro_offset - sensor.baro_alt_meter[0] - z_est[0]; baro_timestamp = sensor.baro_timestamp[0]; baro_updates++; } } /* lidar alt estimation */ orb_check(distance_sensor_sub, &updated); /* update lidar separately, needed by terrain estimator */ if (updated) { orb_copy(ORB_ID(distance_sensor), distance_sensor_sub, &lidar); lidar.current_distance += params.lidar_calibration_offset; } if (updated) { //check if altitude estimation for lidar is enabled and new sensor data if (params.enable_lidar_alt_est && lidar.current_distance > lidar.min_distance && lidar.current_distance < lidar.max_distance && (PX4_R(att.R, 2, 2) > 0.7f)) { if (!use_lidar_prev && use_lidar) { lidar_first = true; } use_lidar_prev = use_lidar; lidar_time = t; dist_ground = lidar.current_distance * PX4_R(att.R, 2, 2); //vertical distance if (lidar_first) { lidar_first = false; lidar_offset = dist_ground + z_est[0]; mavlink_log_info(&mavlink_log_pub, "[inav] LIDAR: new ground offset"); warnx("[inav] LIDAR: new ground offset"); } corr_lidar = lidar_offset - dist_ground - z_est[0]; if (fabsf(corr_lidar) > params.lidar_err) { //check for spike corr_lidar = 0; lidar_valid = false; lidar_offset_count++; if (lidar_offset_count > 3) { //if consecutive bigger/smaller measurements -> new ground offset -> reinit lidar_first = true; lidar_offset_count = 0; } } else { corr_lidar = lidar_offset - dist_ground - z_est[0]; lidar_valid = true; lidar_offset_count = 0; lidar_valid_time = t; } } else { lidar_valid = false; } } /* optical flow */ orb_check(optical_flow_sub, &updated); if (updated && lidar_valid) { orb_copy(ORB_ID(optical_flow), optical_flow_sub, &flow); flow_time = t; float flow_q = flow.quality / 255.0f; float dist_bottom = lidar.current_distance; if (dist_bottom > flow_min_dist && flow_q > params.flow_q_min && PX4_R(att.R, 2, 2) > 0.7f) { /* distance to surface */ //float flow_dist = dist_bottom / PX4_R(att.R, 2, 2); //use this if using sonar float flow_dist = dist_bottom; //use this if using lidar /* check if flow if too large for accurate measurements */ /* calculate estimated velocity in body frame */ float body_v_est[2] = { 0.0f, 0.0f }; for (int i = 0; i < 2; i++) { body_v_est[i] = PX4_R(att.R, 0, i) * x_est[1] + PX4_R(att.R, 1, i) * y_est[1] + PX4_R(att.R, 2, i) * z_est[1]; } /* set this flag if flow should be accurate according to current velocity and attitude rate estimate */ flow_accurate = fabsf(body_v_est[1] / flow_dist - att.rollspeed) < max_flow && fabsf(body_v_est[0] / flow_dist + att.pitchspeed) < max_flow; /*calculate offset of flow-gyro using already calibrated gyro from autopilot*/ flow_gyrospeed[0] = flow.gyro_x_rate_integral / (float)flow.integration_timespan * 1000000.0f; flow_gyrospeed[1] = flow.gyro_y_rate_integral / (float)flow.integration_timespan * 1000000.0f; flow_gyrospeed[2] = flow.gyro_z_rate_integral / (float)flow.integration_timespan * 1000000.0f; //moving average if (n_flow >= 100) { gyro_offset_filtered[0] = flow_gyrospeed_filtered[0] - att_gyrospeed_filtered[0]; gyro_offset_filtered[1] = flow_gyrospeed_filtered[1] - att_gyrospeed_filtered[1]; gyro_offset_filtered[2] = flow_gyrospeed_filtered[2] - att_gyrospeed_filtered[2]; n_flow = 0; flow_gyrospeed_filtered[0] = 0.0f; flow_gyrospeed_filtered[1] = 0.0f; flow_gyrospeed_filtered[2] = 0.0f; att_gyrospeed_filtered[0] = 0.0f; att_gyrospeed_filtered[1] = 0.0f; att_gyrospeed_filtered[2] = 0.0f; } else { flow_gyrospeed_filtered[0] = (flow_gyrospeed[0] + n_flow * flow_gyrospeed_filtered[0]) / (n_flow + 1); flow_gyrospeed_filtered[1] = (flow_gyrospeed[1] + n_flow * flow_gyrospeed_filtered[1]) / (n_flow + 1); flow_gyrospeed_filtered[2] = (flow_gyrospeed[2] + n_flow * flow_gyrospeed_filtered[2]) / (n_flow + 1); att_gyrospeed_filtered[0] = (att.pitchspeed + n_flow * att_gyrospeed_filtered[0]) / (n_flow + 1); att_gyrospeed_filtered[1] = (att.rollspeed + n_flow * att_gyrospeed_filtered[1]) / (n_flow + 1); att_gyrospeed_filtered[2] = (att.yawspeed + n_flow * att_gyrospeed_filtered[2]) / (n_flow + 1); n_flow++; } /*yaw compensation (flow sensor is not in center of rotation) -> params in QGC*/ yaw_comp[0] = - params.flow_module_offset_y * (flow_gyrospeed[2] - gyro_offset_filtered[2]); yaw_comp[1] = params.flow_module_offset_x * (flow_gyrospeed[2] - gyro_offset_filtered[2]); /* convert raw flow to angular flow (rad/s) */ float flow_ang[2]; /* check for vehicle rates setpoint - it below threshold -> dont subtract -> better hover */ orb_check(vehicle_rate_sp_sub, &updated); if (updated) orb_copy(ORB_ID(vehicle_rates_setpoint), vehicle_rate_sp_sub, &rates_setpoint); double rate_threshold = 0.15f; if (fabs(rates_setpoint.pitch) < rate_threshold) { //warnx("[inav] test ohne comp"); flow_ang[0] = (flow.pixel_flow_x_integral / (float)flow.integration_timespan * 1000000.0f) * params.flow_k;//for now the flow has to be scaled (to small) } else { //warnx("[inav] test mit comp"); //calculate flow [rad/s] and compensate for rotations (and offset of flow-gyro) flow_ang[0] = ((flow.pixel_flow_x_integral - flow.gyro_x_rate_integral) / (float)flow.integration_timespan * 1000000.0f + gyro_offset_filtered[0]) * params.flow_k;//for now the flow has to be scaled (to small) } if (fabs(rates_setpoint.roll) < rate_threshold) { flow_ang[1] = (flow.pixel_flow_y_integral / (float)flow.integration_timespan * 1000000.0f) * params.flow_k;//for now the flow has to be scaled (to small) } else { //calculate flow [rad/s] and compensate for rotations (and offset of flow-gyro) flow_ang[1] = ((flow.pixel_flow_y_integral - flow.gyro_y_rate_integral) / (float)flow.integration_timespan * 1000000.0f + gyro_offset_filtered[1]) * params.flow_k;//for now the flow has to be scaled (to small) } /* flow measurements vector */ float flow_m[3]; if (fabs(rates_setpoint.yaw) < rate_threshold) { flow_m[0] = -flow_ang[0] * flow_dist; flow_m[1] = -flow_ang[1] * flow_dist; } else { flow_m[0] = -flow_ang[0] * flow_dist - yaw_comp[0] * params.flow_k; flow_m[1] = -flow_ang[1] * flow_dist - yaw_comp[1] * params.flow_k; } flow_m[2] = z_est[1]; /* velocity in NED */ float flow_v[2] = { 0.0f, 0.0f }; /* project measurements vector to NED basis, skip Z component */ for (int i = 0; i < 2; i++) { for (int j = 0; j < 3; j++) { flow_v[i] += PX4_R(att.R, i, j) * flow_m[j]; } } /* velocity correction */ corr_flow[0] = flow_v[0] - x_est[1]; corr_flow[1] = flow_v[1] - y_est[1]; /* adjust correction weight */ float flow_q_weight = (flow_q - params.flow_q_min) / (1.0f - params.flow_q_min); w_flow = PX4_R(att.R, 2, 2) * flow_q_weight / fmaxf(1.0f, flow_dist); /* if flow is not accurate, reduce weight for it */ // TODO make this more fuzzy if (!flow_accurate) { w_flow *= 0.05f; } /* under ideal conditions, on 1m distance assume EPH = 10cm */ eph_flow = 0.1f / w_flow; flow_valid = true; } else { w_flow = 0.0f; flow_valid = false; } flow_updates++; } /* check no vision circuit breaker is set */ if (params.no_vision != CBRK_NO_VISION_KEY) { /* vehicle vision position */ orb_check(vision_position_estimate_sub, &updated); if (updated) { orb_copy(ORB_ID(vision_position_estimate), vision_position_estimate_sub, &vision); static float last_vision_x = 0.0f; static float last_vision_y = 0.0f; static float last_vision_z = 0.0f; /* reset position estimate on first vision update */ if (!vision_valid) { x_est[0] = vision.x; x_est[1] = vision.vx; y_est[0] = vision.y; y_est[1] = vision.vy; /* only reset the z estimate if the z weight parameter is not zero */ if (params.w_z_vision_p > MIN_VALID_W) { z_est[0] = vision.z; z_est[1] = vision.vz; } vision_valid = true; last_vision_x = vision.x; last_vision_y = vision.y; last_vision_z = vision.z; warnx("VISION estimate valid"); mavlink_log_info(&mavlink_log_pub, "[inav] VISION estimate valid"); } /* calculate correction for position */ corr_vision[0][0] = vision.x - x_est[0]; corr_vision[1][0] = vision.y - y_est[0]; corr_vision[2][0] = vision.z - z_est[0]; static hrt_abstime last_vision_time = 0; float vision_dt = (vision.timestamp_boot - last_vision_time) / 1e6f; last_vision_time = vision.timestamp_boot; if (vision_dt > 0.000001f && vision_dt < 0.2f) { vision.vx = (vision.x - last_vision_x) / vision_dt; vision.vy = (vision.y - last_vision_y) / vision_dt; vision.vz = (vision.z - last_vision_z) / vision_dt; last_vision_x = vision.x; last_vision_y = vision.y; last_vision_z = vision.z; /* calculate correction for velocity */ corr_vision[0][1] = vision.vx - x_est[1]; corr_vision[1][1] = vision.vy - y_est[1]; corr_vision[2][1] = vision.vz - z_est[1]; } else { /* assume zero motion */ corr_vision[0][1] = 0.0f - x_est[1]; corr_vision[1][1] = 0.0f - y_est[1]; corr_vision[2][1] = 0.0f - z_est[1]; } vision_updates++; } } /* vehicle mocap position */ orb_check(att_pos_mocap_sub, &updated); if (updated) { orb_copy(ORB_ID(att_pos_mocap), att_pos_mocap_sub, &mocap); if (!params.disable_mocap) { /* reset position estimate on first mocap update */ if (!mocap_valid) { x_est[0] = mocap.x; y_est[0] = mocap.y; z_est[0] = mocap.z; mocap_valid = true; warnx("MOCAP data valid"); mavlink_log_info(&mavlink_log_pub, "[inav] MOCAP data valid"); } /* calculate correction for position */ corr_mocap[0][0] = mocap.x - x_est[0]; corr_mocap[1][0] = mocap.y - y_est[0]; corr_mocap[2][0] = mocap.z - z_est[0]; mocap_updates++; } } /* vehicle GPS position */ orb_check(vehicle_gps_position_sub, &updated); if (updated) { orb_copy(ORB_ID(vehicle_gps_position), vehicle_gps_position_sub, &gps); bool reset_est = false; /* hysteresis for GPS quality */ if (gps_valid) { if (gps.eph > max_eph_epv || gps.epv > max_eph_epv || gps.fix_type < 3) { gps_valid = false; mavlink_log_info(&mavlink_log_pub, "[inav] GPS signal lost"); warnx("[inav] GPS signal lost"); } } else { if (gps.eph < max_eph_epv * 0.7f && gps.epv < max_eph_epv * 0.7f && gps.fix_type >= 3) { gps_valid = true; reset_est = true; mavlink_log_info(&mavlink_log_pub, "[inav] GPS signal found"); warnx("[inav] GPS signal found"); } } if (gps_valid) { double lat = gps.lat * 1e-7; double lon = gps.lon * 1e-7; float alt = gps.alt * 1e-3; /* initialize reference position if needed */ if (!ref_inited) { if (ref_init_start == 0) { ref_init_start = t; } else if (t > ref_init_start + ref_init_delay) { ref_inited = true; /* set position estimate to (0, 0, 0), use GPS velocity for XY */ x_est[0] = 0.0f; x_est[1] = gps.vel_n_m_s; y_est[0] = 0.0f; y_est[1] = gps.vel_e_m_s; local_pos.ref_lat = lat; local_pos.ref_lon = lon; local_pos.ref_alt = alt + z_est[0]; local_pos.ref_timestamp = t; /* initialize projection */ map_projection_init(&ref, lat, lon); // XXX replace this print warnx("init ref: lat=%.7f, lon=%.7f, alt=%8.4f", (double)lat, (double)lon, (double)alt); mavlink_log_info(&mavlink_log_pub, "[inav] init ref: %.7f, %.7f, %8.4f", (double)lat, (double)lon, (double)alt); } } if (ref_inited) { /* project GPS lat lon to plane */ float gps_proj[2]; map_projection_project(&ref, lat, lon, &(gps_proj[0]), &(gps_proj[1])); /* reset position estimate when GPS becomes good */ if (reset_est) { x_est[0] = gps_proj[0]; x_est[1] = gps.vel_n_m_s; y_est[0] = gps_proj[1]; y_est[1] = gps.vel_e_m_s; } /* calculate index of estimated values in buffer */ int est_i = buf_ptr - 1 - min(EST_BUF_SIZE - 1, max(0, (int)(params.delay_gps * 1000000.0f / PUB_INTERVAL))); if (est_i < 0) { est_i += EST_BUF_SIZE; } /* calculate correction for position */ corr_gps[0][0] = gps_proj[0] - est_buf[est_i][0][0]; corr_gps[1][0] = gps_proj[1] - est_buf[est_i][1][0]; corr_gps[2][0] = local_pos.ref_alt - alt - est_buf[est_i][2][0]; /* calculate correction for velocity */ if (gps.vel_ned_valid) { corr_gps[0][1] = gps.vel_n_m_s - est_buf[est_i][0][1]; corr_gps[1][1] = gps.vel_e_m_s - est_buf[est_i][1][1]; corr_gps[2][1] = gps.vel_d_m_s - est_buf[est_i][2][1]; } else { corr_gps[0][1] = 0.0f; corr_gps[1][1] = 0.0f; corr_gps[2][1] = 0.0f; } /* save rotation matrix at this moment */ memcpy(R_gps, R_buf[est_i], sizeof(R_gps)); w_gps_xy = min_eph_epv / fmaxf(min_eph_epv, gps.eph); w_gps_z = min_eph_epv / fmaxf(min_eph_epv, gps.epv); } } else { /* no GPS lock */ memset(corr_gps, 0, sizeof(corr_gps)); ref_init_start = 0; } gps_updates++; } } /* check for timeout on FLOW topic */ if ((flow_valid || lidar_valid) && t > (flow_time + flow_topic_timeout)) { flow_valid = false; warnx("FLOW timeout"); mavlink_log_info(&mavlink_log_pub, "[inav] FLOW timeout"); } /* check for timeout on GPS topic */ if (gps_valid && (t > (gps.timestamp_position + gps_topic_timeout))) { gps_valid = false; warnx("GPS timeout"); mavlink_log_info(&mavlink_log_pub, "[inav] GPS timeout"); } /* check for timeout on vision topic */ if (vision_valid && (t > (vision.timestamp_boot + vision_topic_timeout))) { vision_valid = false; warnx("VISION timeout"); mavlink_log_info(&mavlink_log_pub, "[inav] VISION timeout"); } /* check for timeout on mocap topic */ if (mocap_valid && (t > (mocap.timestamp_boot + mocap_topic_timeout))) { mocap_valid = false; warnx("MOCAP timeout"); mavlink_log_info(&mavlink_log_pub, "[inav] MOCAP timeout"); } /* check for lidar measurement timeout */ if (lidar_valid && (t > (lidar_time + lidar_timeout))) { lidar_valid = false; warnx("LIDAR timeout"); mavlink_log_info(&mavlink_log_pub, "[inav] LIDAR timeout"); } float dt = t_prev > 0 ? (t - t_prev) / 1000000.0f : 0.0f; dt = fmaxf(fminf(0.02, dt), 0.0002); // constrain dt from 0.2 to 20 ms t_prev = t; /* increase EPH/EPV on each step */ if (eph < 0.000001f) { //get case where eph is 0 -> would stay 0 eph = 0.001; } if (eph < max_eph_epv) { eph *= 1.0f + dt; } if (epv < 0.000001f) { //get case where epv is 0 -> would stay 0 epv = 0.001; } if (epv < max_eph_epv) { epv += 0.005f * dt; // add 1m to EPV each 200s (baro drift) } /* use GPS if it's valid and reference position initialized */ //bool use_gps_xy = ref_inited && gps_valid && params.w_xy_gps_p > MIN_VALID_W; //bool use_gps_z = ref_inited && gps_valid && params.w_z_gps_p > MIN_VALID_W; bool use_gps_xy = false; bool use_gps_z = false; /* use VISION if it's valid and has a valid weight parameter */ bool use_vision_xy = vision_valid && params.w_xy_vision_p > MIN_VALID_W; bool use_vision_z = vision_valid && params.w_z_vision_p > MIN_VALID_W; /* use MOCAP if it's valid and has a valid weight parameter */ bool use_mocap = mocap_valid && params.w_mocap_p > MIN_VALID_W && params.att_ext_hdg_m == mocap_heading; //check if external heading is mocap if (params.disable_mocap) { //disable mocap if fake gps is used use_mocap = false; } /* use flow if it's valid and (accurate or no GPS available) */ bool use_flow = flow_valid && (flow_accurate || !use_gps_xy); /* use LIDAR if it's valid and lidar altitude estimation is enabled */ use_lidar = lidar_valid && params.enable_lidar_alt_est; bool can_estimate_xy = (eph < max_eph_epv) || use_gps_xy || use_flow || use_vision_xy || use_mocap; bool dist_bottom_valid = (t < lidar_valid_time + lidar_valid_timeout); float w_xy_gps_p = params.w_xy_gps_p * w_gps_xy; float w_xy_gps_v = params.w_xy_gps_v * w_gps_xy; float w_z_gps_p = params.w_z_gps_p * w_gps_z; float w_z_gps_v = params.w_z_gps_v * w_gps_z; float w_xy_vision_p = params.w_xy_vision_p; float w_xy_vision_v = params.w_xy_vision_v; float w_z_vision_p = params.w_z_vision_p; float w_mocap_p = params.w_mocap_p; /* reduce GPS weight if optical flow is good */ if (use_flow && flow_accurate) { w_xy_gps_p *= params.w_gps_flow; w_xy_gps_v *= params.w_gps_flow; } /* baro offset correction */ if (use_gps_z) { float offs_corr = corr_gps[2][0] * w_z_gps_p * dt; baro_offset += offs_corr; corr_baro += offs_corr; } /* accelerometer bias correction for GPS (use buffered rotation matrix) */ float accel_bias_corr[3] = { 0.0f, 0.0f, 0.0f }; if (use_gps_xy) { accel_bias_corr[0] -= corr_gps[0][0] * w_xy_gps_p * w_xy_gps_p; accel_bias_corr[0] -= corr_gps[0][1] * w_xy_gps_v; accel_bias_corr[1] -= corr_gps[1][0] * w_xy_gps_p * w_xy_gps_p; accel_bias_corr[1] -= corr_gps[1][1] * w_xy_gps_v; } if (use_gps_z) { accel_bias_corr[2] -= corr_gps[2][0] * w_z_gps_p * w_z_gps_p; accel_bias_corr[2] -= corr_gps[2][1] * w_z_gps_v; } /* transform error vector from NED frame to body frame */ for (int i = 0; i < 3; i++) { float c = 0.0f; for (int j = 0; j < 3; j++) { c += R_gps[j][i] * accel_bias_corr[j]; } if (PX4_ISFINITE(c)) { acc_bias[i] += c * params.w_acc_bias * dt; } } /* accelerometer bias correction for VISION (use buffered rotation matrix) */ accel_bias_corr[0] = 0.0f; accel_bias_corr[1] = 0.0f; accel_bias_corr[2] = 0.0f; if (use_vision_xy) { accel_bias_corr[0] -= corr_vision[0][0] * w_xy_vision_p * w_xy_vision_p; accel_bias_corr[0] -= corr_vision[0][1] * w_xy_vision_v; accel_bias_corr[1] -= corr_vision[1][0] * w_xy_vision_p * w_xy_vision_p; accel_bias_corr[1] -= corr_vision[1][1] * w_xy_vision_v; } if (use_vision_z) { accel_bias_corr[2] -= corr_vision[2][0] * w_z_vision_p * w_z_vision_p; } /* accelerometer bias correction for MOCAP (use buffered rotation matrix) */ accel_bias_corr[0] = 0.0f; accel_bias_corr[1] = 0.0f; accel_bias_corr[2] = 0.0f; if (use_mocap) { accel_bias_corr[0] -= corr_mocap[0][0] * w_mocap_p * w_mocap_p; accel_bias_corr[1] -= corr_mocap[1][0] * w_mocap_p * w_mocap_p; accel_bias_corr[2] -= corr_mocap[2][0] * w_mocap_p * w_mocap_p; } /* transform error vector from NED frame to body frame */ for (int i = 0; i < 3; i++) { float c = 0.0f; for (int j = 0; j < 3; j++) { c += PX4_R(att.R, j, i) * accel_bias_corr[j]; } if (PX4_ISFINITE(c)) { acc_bias[i] += c * params.w_acc_bias * dt; } } /* accelerometer bias correction for flow and baro (assume that there is no delay) */ accel_bias_corr[0] = 0.0f; accel_bias_corr[1] = 0.0f; accel_bias_corr[2] = 0.0f; if (use_flow) { accel_bias_corr[0] -= corr_flow[0] * params.w_xy_flow; accel_bias_corr[1] -= corr_flow[1] * params.w_xy_flow; } if (use_lidar) { accel_bias_corr[2] -= corr_lidar * params.w_z_lidar * params.w_z_lidar; } else { accel_bias_corr[2] -= corr_baro * params.w_z_baro * params.w_z_baro; } /* transform error vector from NED frame to body frame */ for (int i = 0; i < 3; i++) { float c = 0.0f; for (int j = 0; j < 3; j++) { c += PX4_R(att.R, j, i) * accel_bias_corr[j]; } if (PX4_ISFINITE(c)) { acc_bias[i] += c * params.w_acc_bias * dt; } } /* inertial filter prediction for altitude */ inertial_filter_predict(dt, z_est, acc[2]); if (!(PX4_ISFINITE(z_est[0]) && PX4_ISFINITE(z_est[1]))) { write_debug_log("BAD ESTIMATE AFTER Z PREDICTION", dt, x_est, y_est, z_est, x_est_prev, y_est_prev, z_est_prev, acc, corr_gps, w_xy_gps_p, w_xy_gps_v, corr_mocap, w_mocap_p, corr_vision, w_xy_vision_p, w_z_vision_p, w_xy_vision_v); memcpy(z_est, z_est_prev, sizeof(z_est)); } /* inertial filter correction for altitude */ if (use_lidar) { inertial_filter_correct(corr_lidar, dt, z_est, 0, params.w_z_lidar); } else { inertial_filter_correct(corr_baro, dt, z_est, 0, params.w_z_baro); } if (use_gps_z) { epv = fminf(epv, gps.epv); inertial_filter_correct(corr_gps[2][0], dt, z_est, 0, w_z_gps_p); inertial_filter_correct(corr_gps[2][1], dt, z_est, 1, w_z_gps_v); } if (use_vision_z) { epv = fminf(epv, epv_vision); inertial_filter_correct(corr_vision[2][0], dt, z_est, 0, w_z_vision_p); } if (use_mocap) { epv = fminf(epv, epv_mocap); inertial_filter_correct(corr_mocap[2][0], dt, z_est, 0, w_mocap_p); } if (!(PX4_ISFINITE(z_est[0]) && PX4_ISFINITE(z_est[1]))) { write_debug_log("BAD ESTIMATE AFTER Z CORRECTION", dt, x_est, y_est, z_est, x_est_prev, y_est_prev, z_est_prev, acc, corr_gps, w_xy_gps_p, w_xy_gps_v, corr_mocap, w_mocap_p, corr_vision, w_xy_vision_p, w_z_vision_p, w_xy_vision_v); memcpy(z_est, z_est_prev, sizeof(z_est)); memset(corr_gps, 0, sizeof(corr_gps)); memset(corr_vision, 0, sizeof(corr_vision)); memset(corr_mocap, 0, sizeof(corr_mocap)); corr_baro = 0; } else { memcpy(z_est_prev, z_est, sizeof(z_est)); } if (can_estimate_xy) { /* inertial filter prediction for position */ inertial_filter_predict(dt, x_est, acc[0]); inertial_filter_predict(dt, y_est, acc[1]); if (!(PX4_ISFINITE(x_est[0]) && PX4_ISFINITE(x_est[1]) && PX4_ISFINITE(y_est[0]) && PX4_ISFINITE(y_est[1]))) { write_debug_log("BAD ESTIMATE AFTER PREDICTION", dt, x_est, y_est, z_est, x_est_prev, y_est_prev, z_est_prev, acc, corr_gps, w_xy_gps_p, w_xy_gps_v, corr_mocap, w_mocap_p, corr_vision, w_xy_vision_p, w_z_vision_p, w_xy_vision_v); memcpy(x_est, x_est_prev, sizeof(x_est)); memcpy(y_est, y_est_prev, sizeof(y_est)); } /* inertial filter correction for position */ if (use_flow) { eph = fminf(eph, eph_flow); inertial_filter_correct(corr_flow[0], dt, x_est, 1, params.w_xy_flow * w_flow); inertial_filter_correct(corr_flow[1], dt, y_est, 1, params.w_xy_flow * w_flow); } if (use_gps_xy) { eph = fminf(eph, gps.eph); inertial_filter_correct(corr_gps[0][0], dt, x_est, 0, w_xy_gps_p); inertial_filter_correct(corr_gps[1][0], dt, y_est, 0, w_xy_gps_p); if (gps.vel_ned_valid && t < gps.timestamp_velocity + gps_topic_timeout) { inertial_filter_correct(corr_gps[0][1], dt, x_est, 1, w_xy_gps_v); inertial_filter_correct(corr_gps[1][1], dt, y_est, 1, w_xy_gps_v); } } if (use_vision_xy) { eph = fminf(eph, eph_vision); inertial_filter_correct(corr_vision[0][0], dt, x_est, 0, w_xy_vision_p); inertial_filter_correct(corr_vision[1][0], dt, y_est, 0, w_xy_vision_p); if (w_xy_vision_v > MIN_VALID_W) { inertial_filter_correct(corr_vision[0][1], dt, x_est, 1, w_xy_vision_v); inertial_filter_correct(corr_vision[1][1], dt, y_est, 1, w_xy_vision_v); } } if (use_mocap) { eph = fminf(eph, eph_mocap); inertial_filter_correct(corr_mocap[0][0], dt, x_est, 0, w_mocap_p); inertial_filter_correct(corr_mocap[1][0], dt, y_est, 0, w_mocap_p); } if (!(PX4_ISFINITE(x_est[0]) && PX4_ISFINITE(x_est[1]) && PX4_ISFINITE(y_est[0]) && PX4_ISFINITE(y_est[1]))) { write_debug_log("BAD ESTIMATE AFTER CORRECTION", dt, x_est, y_est, z_est, x_est_prev, y_est_prev, z_est_prev, acc, corr_gps, w_xy_gps_p, w_xy_gps_v, corr_mocap, w_mocap_p, corr_vision, w_xy_vision_p, w_z_vision_p, w_xy_vision_v); memcpy(x_est, x_est_prev, sizeof(x_est)); memcpy(y_est, y_est_prev, sizeof(y_est)); memset(corr_gps, 0, sizeof(corr_gps)); memset(corr_vision, 0, sizeof(corr_vision)); memset(corr_mocap, 0, sizeof(corr_mocap)); memset(corr_flow, 0, sizeof(corr_flow)); } else { memcpy(x_est_prev, x_est, sizeof(x_est)); memcpy(y_est_prev, y_est, sizeof(y_est)); } } else { /* gradually reset xy velocity estimates */ inertial_filter_correct(-x_est[1], dt, x_est, 1, params.w_xy_res_v); inertial_filter_correct(-y_est[1], dt, y_est, 1, params.w_xy_res_v); } /* run terrain estimator */ terrain_estimator->predict(dt, &att, &sensor, &lidar); terrain_estimator->measurement_update(hrt_absolute_time(), &gps, &lidar, &att); if (inav_verbose_mode) { /* print updates rate */ if (t > updates_counter_start + updates_counter_len) { float updates_dt = (t - updates_counter_start) * 0.000001f; warnx( "updates rate: accelerometer = %.1f/s, baro = %.1f/s, gps = %.1f/s, attitude = %.1f/s, flow = %.1f/s, vision = %.1f/s, mocap = %.1f/s", (double)(accel_updates / updates_dt), (double)(baro_updates / updates_dt), (double)(gps_updates / updates_dt), (double)(attitude_updates / updates_dt), (double)(flow_updates / updates_dt), (double)(vision_updates / updates_dt), (double)(mocap_updates / updates_dt)); updates_counter_start = t; accel_updates = 0; baro_updates = 0; gps_updates = 0; attitude_updates = 0; flow_updates = 0; vision_updates = 0; mocap_updates = 0; } } if (t > pub_last + PUB_INTERVAL) { pub_last = t; /* push current estimate to buffer */ est_buf[buf_ptr][0][0] = x_est[0]; est_buf[buf_ptr][0][1] = x_est[1]; est_buf[buf_ptr][1][0] = y_est[0]; est_buf[buf_ptr][1][1] = y_est[1]; est_buf[buf_ptr][2][0] = z_est[0]; est_buf[buf_ptr][2][1] = z_est[1]; /* push current rotation matrix to buffer */ memcpy(R_buf[buf_ptr], att.R, sizeof(att.R)); buf_ptr++; if (buf_ptr >= EST_BUF_SIZE) { buf_ptr = 0; } /* publish local position */ local_pos.xy_valid = can_estimate_xy; local_pos.v_xy_valid = can_estimate_xy; //local_pos.xy_global = local_pos.xy_valid && use_gps_xy; //local_pos.z_global = local_pos.z_valid && use_gps_z; local_pos.xy_global = true; local_pos.z_global = true; local_pos.x = x_est[0]; local_pos.vx = x_est[1]; local_pos.y = y_est[0]; local_pos.vy = y_est[1]; local_pos.z = z_est[0]; local_pos.vz = z_est[1]; local_pos.yaw = att.yaw; local_pos.dist_bottom_valid = dist_bottom_valid; local_pos.eph = eph; local_pos.epv = epv; if (local_pos.dist_bottom_valid) { local_pos.dist_bottom = dist_ground; local_pos.dist_bottom_rate = - z_est[1]; } local_pos.timestamp = t; orb_publish(ORB_ID(vehicle_local_position), vehicle_local_position_pub, &local_pos); if (local_pos.xy_global && local_pos.z_global) { /* publish global position */ global_pos.timestamp = t; global_pos.time_utc_usec = gps.time_utc_usec; double est_lat, est_lon; map_projection_reproject(&ref, local_pos.x, local_pos.y, &est_lat, &est_lon); global_pos.lat = est_lat; global_pos.lon = est_lon; global_pos.alt = local_pos.ref_alt - local_pos.z; global_pos.vel_n = local_pos.vx; global_pos.vel_e = local_pos.vy; global_pos.vel_d = local_pos.vz; global_pos.yaw = local_pos.yaw; global_pos.eph = eph; global_pos.epv = epv; if (terrain_estimator->is_valid()) { global_pos.terrain_alt = global_pos.alt - terrain_estimator->get_distance_to_ground(); global_pos.terrain_alt_valid = true; } else { global_pos.terrain_alt_valid = false; } global_pos.pressure_alt = sensor.baro_alt_meter[0]; if (vehicle_global_position_pub == NULL) { vehicle_global_position_pub = orb_advertise(ORB_ID(vehicle_global_position), &global_pos); } else { orb_publish(ORB_ID(vehicle_global_position), vehicle_global_position_pub, &global_pos); } } } } warnx("stopped"); mavlink_log_info(&mavlink_log_pub, "[inav] stopped"); thread_running = false; return 0; }
void FixedwingAttitudeControl::task_main() { /* * do subscriptions */ _att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint)); _att_sub = orb_subscribe(ORB_ID(vehicle_attitude)); _accel_sub = orb_subscribe_multi(ORB_ID(sensor_accel), 0); _airspeed_sub = orb_subscribe(ORB_ID(airspeed)); _vcontrol_mode_sub = orb_subscribe(ORB_ID(vehicle_control_mode)); _params_sub = orb_subscribe(ORB_ID(parameter_update)); _manual_sub = orb_subscribe(ORB_ID(manual_control_setpoint)); _global_pos_sub = orb_subscribe(ORB_ID(vehicle_global_position)); _vehicle_status_sub = orb_subscribe(ORB_ID(vehicle_status)); /* rate limit vehicle status updates to 5Hz */ orb_set_interval(_vcontrol_mode_sub, 200); /* do not limit the attitude updates in order to minimize latency. * actuator outputs are still limited by the individual drivers * properly to not saturate IO or physical limitations */ parameters_update(); /* get an initial update for all sensor and status data */ vehicle_airspeed_poll(); vehicle_setpoint_poll(); vehicle_accel_poll(); vehicle_control_mode_poll(); vehicle_manual_poll(); vehicle_status_poll(); /* wakeup source(s) */ struct pollfd fds[2]; /* Setup of loop */ fds[0].fd = _params_sub; fds[0].events = POLLIN; fds[1].fd = _att_sub; fds[1].events = POLLIN; _task_running = true; while (!_task_should_exit) { static int loop_counter = 0; /* wait for up to 500ms for data */ int pret = poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 100); /* timed out - periodic check for _task_should_exit, etc. */ if (pret == 0) continue; /* this is undesirable but not much we can do - might want to flag unhappy status */ if (pret < 0) { warn("poll error %d, %d", pret, errno); continue; } perf_begin(_loop_perf); /* only update parameters if they changed */ if (fds[0].revents & POLLIN) { /* read from param to clear updated flag */ struct parameter_update_s update; orb_copy(ORB_ID(parameter_update), _params_sub, &update); /* update parameters from storage */ parameters_update(); } /* only run controller if attitude changed */ if (fds[1].revents & POLLIN) { static uint64_t last_run = 0; float deltaT = (hrt_absolute_time() - last_run) / 1000000.0f; last_run = hrt_absolute_time(); /* guard against too large deltaT's */ if (deltaT > 1.0f) deltaT = 0.01f; /* load local copies */ orb_copy(ORB_ID(vehicle_attitude), _att_sub, &_att); if (_vehicle_status.is_vtol && _parameters.vtol_type == 0) { /* vehicle is a tailsitter, we need to modify the estimated attitude for fw mode * * Since the VTOL airframe is initialized as a multicopter we need to * modify the estimated attitude for the fixed wing operation. * Since the neutral position of the vehicle in fixed wing mode is -90 degrees rotated around * the pitch axis compared to the neutral position of the vehicle in multicopter mode * we need to swap the roll and the yaw axis (1st and 3rd column) in the rotation matrix. * Additionally, in order to get the correct sign of the pitch, we need to multiply * the new x axis of the rotation matrix with -1 * * original: modified: * * Rxx Ryx Rzx -Rzx Ryx Rxx * Rxy Ryy Rzy -Rzy Ryy Rxy * Rxz Ryz Rzz -Rzz Ryz Rxz * */ math::Matrix<3, 3> R; //original rotation matrix math::Matrix<3, 3> R_adapted; //modified rotation matrix R.set(_att.R); R_adapted.set(_att.R); /* move z to x */ R_adapted(0, 0) = R(0, 2); R_adapted(1, 0) = R(1, 2); R_adapted(2, 0) = R(2, 2); /* move x to z */ R_adapted(0, 2) = R(0, 0); R_adapted(1, 2) = R(1, 0); R_adapted(2, 2) = R(2, 0); /* change direction of pitch (convert to right handed system) */ R_adapted(0, 0) = -R_adapted(0, 0); R_adapted(1, 0) = -R_adapted(1, 0); R_adapted(2, 0) = -R_adapted(2, 0); math::Vector<3> euler_angles; //adapted euler angles for fixed wing operation euler_angles = R_adapted.to_euler(); /* fill in new attitude data */ _att.roll = euler_angles(0); _att.pitch = euler_angles(1); _att.yaw = euler_angles(2); PX4_R(_att.R, 0, 0) = R_adapted(0, 0); PX4_R(_att.R, 0, 1) = R_adapted(0, 1); PX4_R(_att.R, 0, 2) = R_adapted(0, 2); PX4_R(_att.R, 1, 0) = R_adapted(1, 0); PX4_R(_att.R, 1, 1) = R_adapted(1, 1); PX4_R(_att.R, 1, 2) = R_adapted(1, 2); PX4_R(_att.R, 2, 0) = R_adapted(2, 0); PX4_R(_att.R, 2, 1) = R_adapted(2, 1); PX4_R(_att.R, 2, 2) = R_adapted(2, 2); /* lastly, roll- and yawspeed have to be swaped */ float helper = _att.rollspeed; _att.rollspeed = -_att.yawspeed; _att.yawspeed = helper; } vehicle_airspeed_poll(); vehicle_setpoint_poll(); vehicle_accel_poll(); vehicle_control_mode_poll(); vehicle_manual_poll(); global_pos_poll(); vehicle_status_poll(); /* lock integrator until control is started */ bool lock_integrator; if (_vcontrol_mode.flag_control_attitude_enabled && !_vehicle_status.is_rotary_wing) { lock_integrator = false; } else { lock_integrator = true; } /* Simple handling of failsafe: deploy parachute if failsafe is on */ if (_vcontrol_mode.flag_control_termination_enabled) { _actuators_airframe.control[7] = 1.0f; //warnx("_actuators_airframe.control[1] = 1.0f;"); } else { _actuators_airframe.control[7] = 0.0f; //warnx("_actuators_airframe.control[1] = -1.0f;"); } /* default flaps to center */ float flaps_control = 0.0f; /* map flaps by default to manual if valid */ if (isfinite(_manual.flaps)) { flaps_control = _manual.flaps; } /* decide if in stabilized or full manual control */ if (_vcontrol_mode.flag_control_attitude_enabled) { /* scale around tuning airspeed */ float airspeed; /* if airspeed is not updating, we assume the normal average speed */ if (bool nonfinite = !isfinite(_airspeed.true_airspeed_m_s) || hrt_elapsed_time(&_airspeed.timestamp) > 1e6) { airspeed = _parameters.airspeed_trim; if (nonfinite) { perf_count(_nonfinite_input_perf); } } else { /* prevent numerical drama by requiring 0.5 m/s minimal speed */ airspeed = math::max(0.5f, _airspeed.true_airspeed_m_s); } /* * For scaling our actuators using anything less than the min (close to stall) * speed doesn't make any sense - its the strongest reasonable deflection we * want to do in flight and its the baseline a human pilot would choose. * * Forcing the scaling to this value allows reasonable handheld tests. */ float airspeed_scaling = _parameters.airspeed_trim / ((airspeed < _parameters.airspeed_min) ? _parameters.airspeed_min : airspeed); float roll_sp = _parameters.rollsp_offset_rad; float pitch_sp = _parameters.pitchsp_offset_rad; float yaw_manual = 0.0f; float throttle_sp = 0.0f; /* Read attitude setpoint from uorb if * - velocity control or position control is enabled (pos controller is running) * - manual control is disabled (another app may send the setpoint, but it should * for sure not be set from the remote control values) */ if (_vcontrol_mode.flag_control_auto_enabled || !_vcontrol_mode.flag_control_manual_enabled) { /* read in attitude setpoint from attitude setpoint uorb topic */ roll_sp = _att_sp.roll_body + _parameters.rollsp_offset_rad; pitch_sp = _att_sp.pitch_body + _parameters.pitchsp_offset_rad; throttle_sp = _att_sp.thrust; /* reset integrals where needed */ if (_att_sp.roll_reset_integral) { _roll_ctrl.reset_integrator(); } if (_att_sp.pitch_reset_integral) { _pitch_ctrl.reset_integrator(); } if (_att_sp.yaw_reset_integral) { _yaw_ctrl.reset_integrator(); } } else if (_vcontrol_mode.flag_control_velocity_enabled) { /* the pilot does not want to change direction, * take straight attitude setpoint from position controller */ if (fabsf(_manual.y) < 0.01f && fabsf(_att.roll) < 0.2f) { roll_sp = _att_sp.roll_body + _parameters.rollsp_offset_rad; } else { roll_sp = (_manual.y * _parameters.man_roll_max) + _parameters.rollsp_offset_rad; } pitch_sp = _att_sp.pitch_body + _parameters.pitchsp_offset_rad; throttle_sp = _att_sp.thrust; /* reset integrals where needed */ if (_att_sp.roll_reset_integral) { _roll_ctrl.reset_integrator(); } if (_att_sp.pitch_reset_integral) { _pitch_ctrl.reset_integrator(); } if (_att_sp.yaw_reset_integral) { _yaw_ctrl.reset_integrator(); } } else if (_vcontrol_mode.flag_control_altitude_enabled) { /* * Velocity should be controlled and manual is enabled. */ roll_sp = (_manual.y * _parameters.man_roll_max) + _parameters.rollsp_offset_rad; pitch_sp = _att_sp.pitch_body + _parameters.pitchsp_offset_rad; throttle_sp = _att_sp.thrust; /* reset integrals where needed */ if (_att_sp.roll_reset_integral) { _roll_ctrl.reset_integrator(); } if (_att_sp.pitch_reset_integral) { _pitch_ctrl.reset_integrator(); } if (_att_sp.yaw_reset_integral) { _yaw_ctrl.reset_integrator(); } } else { /* * Scale down roll and pitch as the setpoints are radians * and a typical remote can only do around 45 degrees, the mapping is * -1..+1 to -man_roll_max rad..+man_roll_max rad (equivalent for pitch) * * With this mapping the stick angle is a 1:1 representation of * the commanded attitude. * * The trim gets subtracted here from the manual setpoint to get * the intended attitude setpoint. Later, after the rate control step the * trim is added again to the control signal. */ roll_sp = (_manual.y * _parameters.man_roll_max) + _parameters.rollsp_offset_rad; pitch_sp = -(_manual.x * _parameters.man_pitch_max) + _parameters.pitchsp_offset_rad; /* allow manual control of rudder deflection */ yaw_manual = _manual.r; throttle_sp = _manual.z; /* * in manual mode no external source should / does emit attitude setpoints. * emit the manual setpoint here to allow attitude controller tuning * in attitude control mode. */ struct vehicle_attitude_setpoint_s att_sp; att_sp.timestamp = hrt_absolute_time(); att_sp.roll_body = roll_sp; att_sp.pitch_body = pitch_sp; att_sp.yaw_body = 0.0f - _parameters.trim_yaw; att_sp.thrust = throttle_sp; /* lazily publish the setpoint only once available */ if (_attitude_sp_pub > 0 && !_vehicle_status.is_rotary_wing) { /* publish the attitude setpoint */ orb_publish(ORB_ID(vehicle_attitude_setpoint), _attitude_sp_pub, &att_sp); } else if (_attitude_sp_pub < 0 && !_vehicle_status.is_rotary_wing) { /* advertise and publish */ _attitude_sp_pub = orb_advertise(ORB_ID(vehicle_attitude_setpoint), &att_sp); } } /* If the aircraft is on ground reset the integrators */ if (_vehicle_status.condition_landed || _vehicle_status.is_rotary_wing) { _roll_ctrl.reset_integrator(); _pitch_ctrl.reset_integrator(); _yaw_ctrl.reset_integrator(); } /* Prepare speed_body_u and speed_body_w */ float speed_body_u = 0.0f; float speed_body_v = 0.0f; float speed_body_w = 0.0f; if(_att.R_valid) { speed_body_u = PX4_R(_att.R, 0, 0) * _global_pos.vel_n + PX4_R(_att.R, 1, 0) * _global_pos.vel_e + PX4_R(_att.R, 2, 0) * _global_pos.vel_d; speed_body_v = PX4_R(_att.R, 0, 1) * _global_pos.vel_n + PX4_R(_att.R, 1, 1) * _global_pos.vel_e + PX4_R(_att.R, 2, 1) * _global_pos.vel_d; speed_body_w = PX4_R(_att.R, 0, 2) * _global_pos.vel_n + PX4_R(_att.R, 1, 2) * _global_pos.vel_e + PX4_R(_att.R, 2, 2) * _global_pos.vel_d; } else { if (_debug && loop_counter % 10 == 0) { warnx("Did not get a valid R\n"); } } /* Prepare data for attitude controllers */ struct ECL_ControlData control_input = {}; control_input.roll = _att.roll; control_input.pitch = _att.pitch; control_input.yaw = _att.yaw; control_input.roll_rate = _att.rollspeed; control_input.pitch_rate = _att.pitchspeed; control_input.yaw_rate = _att.yawspeed; control_input.speed_body_u = speed_body_u; control_input.speed_body_v = speed_body_v; control_input.speed_body_w = speed_body_w; control_input.acc_body_x = _accel.x; control_input.acc_body_y = _accel.y; control_input.acc_body_z = _accel.z; control_input.roll_setpoint = roll_sp; control_input.pitch_setpoint = pitch_sp; control_input.airspeed_min = _parameters.airspeed_min; control_input.airspeed_max = _parameters.airspeed_max; control_input.airspeed = airspeed; control_input.scaler = airspeed_scaling; control_input.lock_integrator = lock_integrator; /* Run attitude controllers */ if (isfinite(roll_sp) && isfinite(pitch_sp)) { _roll_ctrl.control_attitude(control_input); _pitch_ctrl.control_attitude(control_input); _yaw_ctrl.control_attitude(control_input); //runs last, because is depending on output of roll and pitch attitude /* Update input data for rate controllers */ control_input.roll_rate_setpoint = _roll_ctrl.get_desired_rate(); control_input.pitch_rate_setpoint = _pitch_ctrl.get_desired_rate(); control_input.yaw_rate_setpoint = _yaw_ctrl.get_desired_rate(); /* Run attitude RATE controllers which need the desired attitudes from above, add trim */ float roll_u = _roll_ctrl.control_bodyrate(control_input); _actuators.control[0] = (isfinite(roll_u)) ? roll_u + _parameters.trim_roll : _parameters.trim_roll; if (!isfinite(roll_u)) { _roll_ctrl.reset_integrator(); perf_count(_nonfinite_output_perf); if (_debug && loop_counter % 10 == 0) { warnx("roll_u %.4f", (double)roll_u); } } float pitch_u = _pitch_ctrl.control_bodyrate(control_input); _actuators.control[1] = (isfinite(pitch_u)) ? pitch_u + _parameters.trim_pitch : _parameters.trim_pitch; if (!isfinite(pitch_u)) { _pitch_ctrl.reset_integrator(); perf_count(_nonfinite_output_perf); if (_debug && loop_counter % 10 == 0) { warnx("pitch_u %.4f, _yaw_ctrl.get_desired_rate() %.4f," " airspeed %.4f, airspeed_scaling %.4f," " roll_sp %.4f, pitch_sp %.4f," " _roll_ctrl.get_desired_rate() %.4f," " _pitch_ctrl.get_desired_rate() %.4f" " att_sp.roll_body %.4f", (double)pitch_u, (double)_yaw_ctrl.get_desired_rate(), (double)airspeed, (double)airspeed_scaling, (double)roll_sp, (double)pitch_sp, (double)_roll_ctrl.get_desired_rate(), (double)_pitch_ctrl.get_desired_rate(), (double)_att_sp.roll_body); } } float yaw_u = _yaw_ctrl.control_bodyrate(control_input); _actuators.control[2] = (isfinite(yaw_u)) ? yaw_u + _parameters.trim_yaw : _parameters.trim_yaw; /* add in manual rudder control */ _actuators.control[2] += yaw_manual; if (!isfinite(yaw_u)) { _yaw_ctrl.reset_integrator(); perf_count(_nonfinite_output_perf); if (_debug && loop_counter % 10 == 0) { warnx("yaw_u %.4f", (double)yaw_u); } } /* throttle passed through if it is finite and if no engine failure was * detected */ _actuators.control[3] = (isfinite(throttle_sp) && !(_vehicle_status.engine_failure || _vehicle_status.engine_failure_cmd)) ? throttle_sp : 0.0f; if (!isfinite(throttle_sp)) { if (_debug && loop_counter % 10 == 0) { warnx("throttle_sp %.4f", (double)throttle_sp); } } } else { perf_count(_nonfinite_input_perf); if (_debug && loop_counter % 10 == 0) { warnx("Non-finite setpoint roll_sp: %.4f, pitch_sp %.4f", (double)roll_sp, (double)pitch_sp); } } /* * Lazily publish the rate setpoint (for analysis, the actuators are published below) * only once available */ _rates_sp.roll = _roll_ctrl.get_desired_rate(); _rates_sp.pitch = _pitch_ctrl.get_desired_rate(); _rates_sp.yaw = _yaw_ctrl.get_desired_rate(); _rates_sp.timestamp = hrt_absolute_time(); if (_rate_sp_pub > 0) { /* publish the attitude rates setpoint */ orb_publish(_rates_sp_id, _rate_sp_pub, &_rates_sp); } else if (_rates_sp_id) { /* advertise the attitude rates setpoint */ _rate_sp_pub = orb_advertise(_rates_sp_id, &_rates_sp); } } else { /* manual/direct control */ _actuators.control[actuator_controls_s::INDEX_ROLL] = _manual.y + _parameters.trim_roll; _actuators.control[actuator_controls_s::INDEX_PITCH] = -_manual.x + _parameters.trim_pitch; _actuators.control[actuator_controls_s::INDEX_YAW] = _manual.r + _parameters.trim_yaw; _actuators.control[actuator_controls_s::INDEX_THROTTLE] = _manual.z; } _actuators.control[actuator_controls_s::INDEX_FLAPS] = flaps_control; _actuators.control[5] = _manual.aux1; _actuators.control[6] = _manual.aux2; _actuators.control[7] = _manual.aux3; /* lazily publish the setpoint only once available */ _actuators.timestamp = hrt_absolute_time(); _actuators.timestamp_sample = _att.timestamp; _actuators_airframe.timestamp = hrt_absolute_time(); _actuators_airframe.timestamp_sample = _att.timestamp; /* Only publish if any of the proper modes are enabled */ if(_vcontrol_mode.flag_control_rates_enabled || _vcontrol_mode.flag_control_attitude_enabled || _vcontrol_mode.flag_control_manual_enabled) { /* publish the actuator controls */ if (_actuators_0_pub > 0) { orb_publish(_actuators_id, _actuators_0_pub, &_actuators); } else if (_actuators_id) { _actuators_0_pub= orb_advertise(_actuators_id, &_actuators); } if (_actuators_2_pub > 0) { /* publish the actuator controls*/ orb_publish(ORB_ID(actuator_controls_2), _actuators_2_pub, &_actuators_airframe); } else { /* advertise and publish */ _actuators_2_pub = orb_advertise(ORB_ID(actuator_controls_2), &_actuators_airframe); } } } loop_counter++; perf_end(_loop_perf); } warnx("exiting.\n"); _control_task = -1; _task_running = false; _exit(0); }