Exemple #1
0
inline void HermitianTridiagU( Matrix<R>& A )
{
#ifndef RELEASE
    PushCallStack("HermitianTridiagU");
    if( A.Height() != A.Width() )
        throw std::logic_error( "A must be square." );
#endif
    // Matrix views 
    Matrix<R>
        ATL, ATR,  A00, a01,     A02,  a01T,
        ABL, ABR,  a10, alpha11, a12,  alpha01B,
                   A20, a21,     A22;

    // Temporary matrices
    Matrix<R> w01;

    PushBlocksizeStack( 1 );
    PartitionUpDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    while( ABR.Height()+1 < A.Height() )
    {
        RepartitionUpDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );

        PartitionUp
        ( a01, a01T,
               alpha01B, 1 );

        w01.ResizeTo( a01.Height(), 1 );
        //--------------------------------------------------------------------//
        const R tau = Reflector( alpha01B, a01T );
        const R epsilon1 = alpha01B.Get(0,0);
        alpha01B.Set(0,0,R(1));

        Symv( UPPER, tau, A00, a01, R(0), w01 );
        const R alpha = -tau*Dot( w01, a01 )/R(2);
        Axpy( alpha, a01, w01 );
        Syr2( UPPER, R(-1), a01, w01, A00 );
        alpha01B.Set(0,0,epsilon1);
        //--------------------------------------------------------------------//

        SlidePartitionUpDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22 );
    }
    PopBlocksizeStack();
#ifndef RELEASE
    PopCallStack();
#endif
}
Exemple #2
0
inline void
PanelQR( Matrix<Real>& A )
{
#ifndef RELEASE
    PushCallStack("internal::PanelQR");
#endif
    Matrix<Real>
        ATL, ATR,  A00, a01,     A02,  aLeftCol, ARightPan,
        ABL, ABR,  a10, alpha11, a12,
                   A20, a21,     A22;

    Matrix<Real> z;

    PushBlocksizeStack( 1 );
    PartitionDownLeftDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    while( ATL.Height() < A.Height() && ATL.Width() < A.Width() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22 );

        aLeftCol.View2x1( alpha11,
                          a21 );

        ARightPan.View2x1( a12,
                           A22 );

        Zeros( ARightPan.Width(), 1, z );
        //--------------------------------------------------------------------//
        const Real tau = Reflector( alpha11, a21 );
        const Real alpha = alpha11.Get(0,0);
        alpha11.Set(0,0,1);

        Gemv( TRANSPOSE, Real(1), ARightPan, aLeftCol, Real(0), z );
        Ger( -tau, aLeftCol, z, ARightPan );

        alpha11.Set(0,0,alpha);
        //--------------------------------------------------------------------//

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );
    }
    PopBlocksizeStack();
#ifndef RELEASE
    PopCallStack();
#endif
}
Exemple #3
0
inline void
PanelLQ( Matrix<Real>& A )
{
#ifndef RELEASE
    PushCallStack("internal::PanelLQ");
#endif
    Matrix<Real>
        ATL, ATR,  A00, a01,     A02,  aTopRow, ABottomPan,
        ABL, ABR,  a10, alpha11, a12,
                   A20, a21,     A22;

    Matrix<Real> z;

    PushBlocksizeStack( 1 );
    PartitionDownLeftDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    while( ATL.Height() < A.Height() && ATL.Width() < A.Width() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22 );

        aTopRow.View1x2( alpha11, a12 );
        ABottomPan.View1x2( a21, A22 );

        Zeros( ABottomPan.Height(), 1, z );
        //--------------------------------------------------------------------//
        const Real tau = Reflector( alpha11, a12 );
        const Real alpha = alpha11.Get(0,0);
        alpha11.Set(0,0,1);

        Gemv( NORMAL, Real(1), ABottomPan, aTopRow, Real(0), z );
        Ger( -tau, z, aTopRow, ABottomPan );
        alpha11.Set(0,0,alpha);
        //--------------------------------------------------------------------//

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );
    }
    PopBlocksizeStack();
#ifndef RELEASE
    PopCallStack();
#endif
}
Exemple #4
0
inline void
LU( Matrix<F>& A )
{
#ifndef RELEASE
    PushCallStack("LU");
#endif
    // Matrix views 
    Matrix<F>
        ATL, ATR,  A00, a01,     A02,  alpha21T,
        ABL, ABR,  a10, alpha11, a12,  a21B,
                   A20, a21,     A22;

    PushBlocksizeStack( 1 );
    PartitionDownDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    while( ATL.Height() < A.Height() && ATL.Width() < A.Width() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22 );

        //--------------------------------------------------------------------//
        F alpha = alpha11.Get(0,0);
        if( alpha == static_cast<F>(0) )
            throw SingularMatrixException();
        Scal( static_cast<F>(1)/alpha, a21 );
        Geru( (F)-1, a21, a12, A22 );
        //--------------------------------------------------------------------//

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );
    }
    PopBlocksizeStack();
#ifndef RELEASE
    PopCallStack();
#endif
}
Exemple #5
0
inline void UnblockedBidiagU( DistMatrix<R>& A )
{
#ifndef RELEASE
    PushCallStack("bidiag::UnblockedBidiagU");
    if( A.Height() < A.Width() )
        throw std::logic_error("A must be at least as tall as it is wide");
#endif
    const Grid& g = A.Grid();

    // Matrix views 
    DistMatrix<R>
        ATL(g), ATR(g),  A00(g), a01(g),     A02(g),  alpha12L(g), a12R(g),
        ABL(g), ABR(g),  a10(g), alpha11(g), a12(g),  aB1(g), AB2(g),
                         A20(g), a21(g),     A22(g);

    // Temporary matrices
    DistMatrix<R,STAR,MR  > a12_STAR_MR(g);
    DistMatrix<R,MC,  STAR> aB1_MC_STAR(g);
    DistMatrix<R,MR,  STAR> x12Trans_MR_STAR(g);
    DistMatrix<R,MC,  STAR> w21_MC_STAR(g);

    PushBlocksizeStack( 1 );
    PartitionDownDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    while( ATL.Width() < A.Width() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22 );

        View2x1
        ( aB1, alpha11,
               a21 );
        View2x1
        ( AB2, a12,
               A22 );

        aB1_MC_STAR.AlignWith( aB1 );
        a12_STAR_MR.AlignWith( a12 );
        x12Trans_MR_STAR.AlignWith( AB2 );
        w21_MC_STAR.AlignWith( A22 );
        Zeros( a12.Width(), 1, x12Trans_MR_STAR );
        Zeros( a21.Height(), 1, w21_MC_STAR );
        const bool thisIsMyRow = ( g.Row() == alpha11.ColAlignment() );
        const bool thisIsMyCol = ( g.Col() == alpha11.RowAlignment() );
        const bool nextIsMyCol = ( g.Col() == a12.RowAlignment() );
        //--------------------------------------------------------------------//

        // Find tauQ, u, and epsilonQ such that
        //     I - tauQ | 1 | | 1, u^T | | alpha11 | = | epsilonQ |
        //              | u |            |   a21   | = |    0     |
        const R tauQ = Reflector( alpha11, a21 );
        R epsilonQ=0;
        if( thisIsMyCol && thisIsMyRow )
            epsilonQ = alpha11.GetLocal(0,0);

        // Set aB1 = | 1 | and form x12^T := (aB1^T AB2)^T = AB2^T aB1
        //           | u |
        alpha11.Set(0,0,R(1));
        aB1_MC_STAR = aB1;
        internal::LocalGemv
        ( TRANSPOSE, R(1), AB2, aB1_MC_STAR, R(0), x12Trans_MR_STAR );
        x12Trans_MR_STAR.SumOverCol();

        // Update AB2 := AB2 - tauQ aB1 x12
        //             = AB2 - tauQ aB1 aB1^T AB2
        //             = (I - tauQ aB1 aB1^T) AB2
        internal::LocalGer( -tauQ, aB1_MC_STAR, x12Trans_MR_STAR, AB2 );

        // Put epsilonQ back instead of the temporary value, 1
        if( thisIsMyCol && thisIsMyRow )
            alpha11.SetLocal(0,0,epsilonQ);

        if( A22.Width() != 0 )
        {
            // Expose the subvector we seek to zero, a12R
            PartitionRight( a12, alpha12L, a12R );

            // Find tauP, v, and epsilonP such that
            //     I - tauP | 1 | | 1, v^T | | alpha12L | = | epsilonP |
            //              | v |            |  a12R^T  | = |    0     |
            const R tauP = Reflector( alpha12L, a12R );
            R epsilonP=0;
            if( nextIsMyCol && thisIsMyRow )
                epsilonP = alpha12L.GetLocal(0,0);

            // Set a12^T = | 1 | and form w21 := A22 a12^T = A22 | 1 |
            //             | v |                                 | v |
            alpha12L.Set(0,0,R(1));
            a12_STAR_MR = a12;
            internal::LocalGemv
            ( NORMAL, R(1), A22, a12_STAR_MR, R(0), w21_MC_STAR );
            w21_MC_STAR.SumOverRow();

            // A22 := A22 - tauP w21 a12
            //      = A22 - tauP A22 a12^T a12
            //      = A22 (I - tauP a12^T a12)
            internal::LocalGer( -tauP, w21_MC_STAR, a12_STAR_MR, A22 );

            // Put epsilonP back instead of the temporary value, 1
            if( nextIsMyCol && thisIsMyRow )
                alpha12L.SetLocal(0,0,epsilonP);
        }
        //--------------------------------------------------------------------//
        aB1_MC_STAR.FreeAlignments();
        a12_STAR_MR.FreeAlignments();
        x12Trans_MR_STAR.FreeAlignments();
        w21_MC_STAR.FreeAlignments();

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );
    }
    PopBlocksizeStack();
#ifndef RELEASE
    PopCallStack();
#endif
}
Exemple #6
0
inline void
PanelLU
( DistMatrix<F,  STAR,STAR>& A, 
  DistMatrix<F,  MC,  STAR>& B, 
  DistMatrix<int,STAR,STAR>& p, 
  int pivotOffset )
{
#ifndef RELEASE
    PushCallStack("internal::PanelLU");
    if( A.Grid() != p.Grid() || p.Grid() != B.Grid() )
        throw std::logic_error
        ("Matrices must be distributed over the same grid");
    if( A.Width() != B.Width() )
        throw std::logic_error("A and B must be the same width");
    if( A.Height() != p.Height() || p.Width() != 1 )
        throw std::logic_error("p must be a vector that conforms with A");
#endif
    const Grid& g = A.Grid();
    const int r = g.Height();
    const int colShift = B.ColShift();
    const int colAlignment = B.ColAlignment();

    // Matrix views
    DistMatrix<F,STAR,STAR> 
        ATL(g), ATR(g),  A00(g), a01(g),     A02(g),  
        ABL(g), ABR(g),  a10(g), alpha11(g), a12(g),  
                         A20(g), a21(g),     A22(g);

    DistMatrix<F,MC,STAR>
        BL(g), BR(g),
        B0(g), b1(g), B2(g);

    const int width = A.Width();
    const int numBytes = (width+1)*sizeof(F)+sizeof(int);
    std::vector<byte> sendData(numBytes);
    std::vector<byte> recvData(numBytes);

    // Extract pointers to send and recv data
    // TODO: Think of how to make this safer with respect to alignment issues
    F* sendBufFloat = (F*)&sendData[0];
    F* recvBufFloat = (F*)&recvData[0];
    int* sendBufInt = (int*)&sendData[(width+1)*sizeof(F)];
    int* recvBufInt = (int*)&recvData[(width+1)*sizeof(F)];

    // Start the algorithm
    PushBlocksizeStack( 1 );
    PartitionDownDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    PartitionRight( B, BL, BR, 0 );
    while( ATL.Height() < A.Height() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22 );

        RepartitionRight
        ( BL, /**/ BR,  
          B0, /**/ b1, B2 );

        //--------------------------------------------------------------------//
        const int currentRow = a01.Height();
        
        // Store the index/value of the pivot candidate in A
        F pivot = alpha11.GetLocal(0,0);
        int pivotRow = currentRow;
        for( int i=0; i<a21.Height(); ++i )
        {
            F value = a21.GetLocal(i,0);
            if( FastAbs(value) > FastAbs(pivot) )
            {
                pivot = value;
                pivotRow = currentRow + i + 1;
            }
        }

        // Update the pivot candidate to include local data from B
        for( int i=0; i<B.LocalHeight(); ++i )
        {
            F value = b1.GetLocal(i,0);
            if( FastAbs(value) > FastAbs(pivot) )
            {
                pivot = value;
                pivotRow = A.Height() + colShift + i*r;
            }
        }

        // Fill the send buffer with:
        // [ pivotValue | pivot row data | pivotRow ]
        if( pivotRow < A.Height() )
        {
            sendBufFloat[0] = A.GetLocal(pivotRow,a10.Width());

            const int ALDim = A.LocalLDim();
            const F* ABuffer = A.LocalBuffer(pivotRow,0);
            for( int j=0; j<width; ++j )
                sendBufFloat[j+1] = ABuffer[j*ALDim];
        }
        else
        {
            const int localRow = ((pivotRow-A.Height())-colShift)/r;
            sendBufFloat[0] = b1.GetLocal(localRow,0);

            const int BLDim = B.LocalLDim();
            const F* BBuffer = B.LocalBuffer(localRow,0);
            for( int j=0; j<width; ++j )
                sendBufFloat[j+1] = BBuffer[j*BLDim];
        }
        *sendBufInt = pivotRow;

        // Communicate to establish the pivot information
        mpi::AllReduce
        ( &sendData[0], &recvData[0], numBytes, PivotOp<F>(), g.ColComm() );

        // Update the pivot vector
        pivotRow = *recvBufInt;
        p.SetLocal(currentRow,0,pivotRow+pivotOffset);

        // Copy the current row into the pivot row
        if( pivotRow < A.Height() )
        {
            const int ALDim = A.LocalLDim();
            F* ASetBuffer = A.LocalBuffer(pivotRow,0);
            const F* AGetBuffer = A.LocalBuffer(currentRow,0);
            for( int j=0; j<width; ++j )
                ASetBuffer[j*ALDim] = AGetBuffer[j*ALDim];
        }
        else
        {
            const int ownerRank = (colAlignment+(pivotRow-A.Height())) % r;
            if( g.Row() == ownerRank )
            {
                const int localRow = ((pivotRow-A.Height())-colShift) / r;

                const int ALDim = A.LocalLDim();
                const int BLDim = B.LocalLDim();
                F* BBuffer = B.LocalBuffer(localRow,0);
                const F* ABuffer = A.LocalBuffer(currentRow,0);
                for( int j=0; j<width; ++j )
                    BBuffer[j*BLDim] = ABuffer[j*ALDim];
            }
        }

        // Copy the pivot row into the current row
        {
            F* ABuffer = A.LocalBuffer(currentRow,0);
            const int ALDim = A.LocalLDim();
            for( int j=0; j<width; ++j )
                ABuffer[j*ALDim] = recvBufFloat[j+1];
        }

        // Now we can perform the update of the current panel
        const F alpha = alpha11.GetLocal(0,0);
        if( alpha == F(0) )
            throw SingularMatrixException();
        const F alpha11Inv = F(1) / alpha;
        Scale( alpha11Inv, a21.LocalMatrix() );
        Scale( alpha11Inv, b1.LocalMatrix()  );
        Geru( F(-1), a21.LocalMatrix(), a12.LocalMatrix(), A22.LocalMatrix() );
        Geru( F(-1), b1.LocalMatrix(), a12.LocalMatrix(), B2.LocalMatrix() );
        //--------------------------------------------------------------------//

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );

        SlidePartitionRight
        ( BL,     /**/ BR,  
          B0, b1, /**/ B2 );
    }
    PopBlocksizeStack();

#ifndef RELEASE
    PopCallStack();
#endif
}
Exemple #7
0
inline void
PanelLU( Matrix<F>& A, Matrix<int>& p, int pivotOffset )
{
#ifndef RELEASE
    PushCallStack("internal::PanelLU");
    if( A.Width() != p.Height() || p.Width() != 1 )
        throw std::logic_error("p must be a vector that conforms with A");
#endif
    // Matrix views
    Matrix<F> 
        ATL, ATR,  A00, a01,     A02,  
        ABL, ABR,  a10, alpha11, a12,  
                   A20, a21,     A22;

    const int width = A.Width();
    std::vector<F> buffer( width );

    // Start the algorithm
    PushBlocksizeStack( 1 );
    PartitionDownDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    while( ATL.Height() < A.Height() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22 );

        //--------------------------------------------------------------------//
        const int currentRow = A00.Height();
        
        // Find the index and value of the pivot candidate
        F pivot = alpha11.Get(0,0);
        int pivotRow = currentRow;
        for( int i=0; i<a21.Height(); ++i )
        {
            const F value = a21.Get(i,0);
            if( FastAbs(value) > FastAbs(pivot) )
            {
                pivot = value;
                pivotRow = currentRow + i + 1;
            }
        }
        p.Set( currentRow, 0, pivotRow+pivotOffset );

        // Swap the pivot row and current row
        for( int j=0; j<width; ++j )
        {
            buffer[j] = A.Get(currentRow,j);
            A.Set(currentRow,j,A.Get(pivotRow,j)); 
            A.Set(pivotRow,j,buffer[j]);
        }

        // Now we can perform the update of the current panel
        const F alpha = alpha11.Get(0,0);
        if( alpha == F(0) )
            throw SingularMatrixException();
        const F alpha11Inv = F(1) / alpha;
        Scale( alpha11Inv, a21 );
        Geru( F(-1), a21, a12, A22 );
        //--------------------------------------------------------------------//

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );
    }
    PopBlocksizeStack();

#ifndef RELEASE
    PopCallStack();
#endif
}
Exemple #8
0
inline void
LocalTrmmAccumulateRUN
( Orientation orientation, UnitOrNonUnit diag, T alpha,
  const DistMatrix<T,MC,  MR  >& U,
  const DistMatrix<T,STAR,MC  >& X_STAR_MC,
        DistMatrix<T,MR,  STAR>& ZTrans_MR_STAR )
{
#ifndef RELEASE
    CallStackEntry entry("internal::LocalTrmmAccumulateRUN");
    if( U.Grid() != X_STAR_MC.Grid() ||
        X_STAR_MC.Grid() != ZTrans_MR_STAR.Grid() )
        throw std::logic_error
        ("{U,X,Z} must be distributed over the same grid");
    if( U.Height() != U.Width() ||
        U.Height() != X_STAR_MC.Width() ||
        U.Height() != ZTrans_MR_STAR.Height() )
    {
        std::ostringstream msg;
        msg << "Nonconformal LocalTrmmAccumulateRUN: \n"
            << "  U ~ " << U.Height() << " x " << U.Width() << "\n"
            << "  X[* ,MC] ~ " << X_STAR_MC.Height() << " x "
                               << X_STAR_MC.Width() << "\n"
            << "  Z^H/T[MR,* ] ~ " << ZTrans_MR_STAR.Height() << " x "
                                   << ZTrans_MR_STAR.Width() << "\n";
        throw std::logic_error( msg.str().c_str() );
    }
    if( X_STAR_MC.RowAlignment() != U.ColAlignment() ||
        ZTrans_MR_STAR.ColAlignment() != U.RowAlignment() )
        throw std::logic_error("Partial matrix distributions are misaligned");
#endif
    const Grid& g = U.Grid();

    // Matrix views
    DistMatrix<T>
        UTL(g), UTR(g),  U00(g), U01(g), U02(g),
        UBL(g), UBR(g),  U10(g), U11(g), U12(g),
                         U20(g), U21(g), U22(g);

    DistMatrix<T> D11(g);

    DistMatrix<T,STAR,MC>
        XL_STAR_MC(g), XR_STAR_MC(g),
        X0_STAR_MC(g), X1_STAR_MC(g), X2_STAR_MC(g);

    DistMatrix<T,MR,STAR>
        ZTTrans_MR_STAR(g),  Z0Trans_MR_STAR(g),
        ZBTrans_MR_STAR(g),  Z1Trans_MR_STAR(g),
                             Z2Trans_MR_STAR(g);

    const int ratio = std::max( g.Height(), g.Width() );
    PushBlocksizeStack( ratio*Blocksize() );

    LockedPartitionDownDiagonal
    ( U, UTL, UTR,
         UBL, UBR, 0 );
    LockedPartitionRight( X_STAR_MC,  XL_STAR_MC, XR_STAR_MC, 0 );
    PartitionDown
    ( ZTrans_MR_STAR, ZTTrans_MR_STAR,
                      ZBTrans_MR_STAR, 0 );
    while( UTL.Height() < U.Height() )
    {
        LockedRepartitionDownDiagonal
        ( UTL, /**/ UTR,  U00, /**/ U01, U02,
         /*************/ /******************/
               /**/       U10, /**/ U11, U12,
          UBL, /**/ UBR,  U20, /**/ U21, U22 );

        LockedRepartitionRight
        ( XL_STAR_MC, /**/ XR_STAR_MC,
          X0_STAR_MC, /**/ X1_STAR_MC, X2_STAR_MC );

        RepartitionDown
        ( ZTTrans_MR_STAR,  Z0Trans_MR_STAR,
         /***************/ /***************/
                            Z1Trans_MR_STAR,
          ZBTrans_MR_STAR,  Z2Trans_MR_STAR );

        D11.AlignWith( U11 );
        //--------------------------------------------------------------------//
        D11 = U11;
        MakeTriangular( UPPER, D11 );
        if( diag == UNIT )
            SetDiagonal( D11, T(1) );
        LocalGemm
        ( orientation, orientation,
          alpha, D11, X1_STAR_MC, T(1), Z1Trans_MR_STAR );
        LocalGemm
        ( orientation, orientation,
          alpha, U01, X0_STAR_MC, T(1), Z1Trans_MR_STAR );
        //--------------------------------------------------------------------//
        D11.FreeAlignments();

        SlideLockedPartitionDownDiagonal
        ( UTL, /**/ UTR,  U00, U01, /**/ U02,
               /**/       U10, U11, /**/ U12,
         /*************/ /******************/
          UBL, /**/ UBR,  U20, U21, /**/ U22 );

        SlideLockedPartitionRight
        ( XL_STAR_MC,             /**/ XR_STAR_MC,
          X0_STAR_MC, X1_STAR_MC, /**/ X2_STAR_MC );

        SlidePartitionDown
        ( ZTTrans_MR_STAR,  Z0Trans_MR_STAR,
                            Z1Trans_MR_STAR,
         /***************/ /***************/
          ZBTrans_MR_STAR,  Z2Trans_MR_STAR );
    }
    PopBlocksizeStack();
}
Exemple #9
0
inline void
PanelLQ( DistMatrix<Real>& A )
{
#ifndef RELEASE
    PushCallStack("internal::PanelLQ");
#endif
    const Grid& g = A.Grid();

    // Matrix views
    DistMatrix<Real>
        ATL(g), ATR(g),  A00(g), a01(g),     A02(g),  aTopRow(g), ABottomPan(g),
        ABL(g), ABR(g),  a10(g), alpha11(g), a12(g),
                         A20(g), a21(g),     A22(g);

    // Temporary distributions
    DistMatrix<Real,STAR,MR> aTopRow_STAR_MR(g);
    DistMatrix<Real,MC,STAR> z_MC_STAR(g);

    PushBlocksizeStack( 1 );
    PartitionDownLeftDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    while( ATL.Height() < A.Height() && ATL.Width() < A.Width() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22 );

        aTopRow.View1x2( alpha11, a12 );
        ABottomPan.View1x2( a21, A22 );

        aTopRow_STAR_MR.AlignWith( ABottomPan );
        z_MC_STAR.AlignWith( ABottomPan );
        Zeros( ABottomPan.Height(), 1, z_MC_STAR );
        //--------------------------------------------------------------------//
        const Real tau = Reflector( alpha11, a12 );

        const bool myDiagonalEntry = ( g.Row() == alpha11.ColAlignment() &&
                                       g.Col() == alpha11.RowAlignment() );
        Real alpha = 0;
        if( myDiagonalEntry )
        {
            alpha = alpha11.GetLocal(0,0);
            alpha11.SetLocal(0,0,1);
        }

        aTopRow_STAR_MR = aTopRow;

        Gemv
        ( NORMAL,
          Real(1), ABottomPan.LockedLocalMatrix(),
                   aTopRow_STAR_MR.LockedLocalMatrix(),
          Real(0), z_MC_STAR.LocalMatrix() );
        z_MC_STAR.SumOverRow();

        Ger
        ( -tau,
          z_MC_STAR.LockedLocalMatrix(),
          aTopRow_STAR_MR.LockedLocalMatrix(),
          ABottomPan.LocalMatrix() );

        if( myDiagonalEntry )
            alpha11.SetLocal(0,0,alpha);
        //--------------------------------------------------------------------//
        aTopRow_STAR_MR.FreeAlignments();
        z_MC_STAR.FreeAlignments();

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );
    }
    PopBlocksizeStack();
#ifndef RELEASE
    PopCallStack();
#endif
}
Exemple #10
0
inline void
LocalSymmetricAccumulateLU
( Orientation orientation, T alpha,
  const DistMatrix<T>& A,
  const DistMatrix<T,MC,  STAR>& B_MC_STAR,
  const DistMatrix<T,STAR,MR  >& BAdjOrTrans_STAR_MR,
        DistMatrix<T,MC,  STAR>& Z_MC_STAR,
        DistMatrix<T,MR,  STAR>& Z_MR_STAR )
{
#ifndef RELEASE
    PushCallStack("internal::LocalSymmetricAccumulateLU");
    if( A.Grid() != B_MC_STAR.Grid() ||
        B_MC_STAR.Grid() != BAdjOrTrans_STAR_MR.Grid() ||
        BAdjOrTrans_STAR_MR.Grid() != Z_MC_STAR.Grid() ||
        Z_MC_STAR.Grid() != Z_MR_STAR.Grid() )
        throw std::logic_error
        ("{A,B,Z} must be distributed over the same grid");
    if( A.Height() != A.Width() ||
        A.Height() != B_MC_STAR.Height() ||
        A.Height() != BAdjOrTrans_STAR_MR.Width() ||
        A.Height() != Z_MC_STAR.Height() ||
        A.Height() != Z_MR_STAR.Height() ||
        B_MC_STAR.Width() != BAdjOrTrans_STAR_MR.Height() ||
        BAdjOrTrans_STAR_MR.Height() != Z_MC_STAR.Width() ||
        Z_MC_STAR.Width() != Z_MR_STAR.Width() )
    {
        std::ostringstream msg;
        msg << "Nonconformal LocalSymmetricAccumulateLU: \n"
            << "  A ~ " << A.Height() << " x " << A.Width() << "\n"
            << "  B[MC,* ] ~ " << B_MC_STAR.Height() << " x "
                               << B_MC_STAR.Width() << "\n"
            << "  B^H/T[* ,MR] ~ " << BAdjOrTrans_STAR_MR.Height() << " x "
                                   << BAdjOrTrans_STAR_MR.Width() << "\n"
            << "  Z[MC,* ] ~ " << Z_MC_STAR.Height() << " x "
                               << Z_MC_STAR.Width() << "\n"
            << "  Z[MR,* ] ` " << Z_MR_STAR.Height() << " x "
                               << Z_MR_STAR.Width() << "\n";
        throw std::logic_error( msg.str().c_str() );
    }
    if( B_MC_STAR.ColAlignment() != A.ColAlignment() ||
        BAdjOrTrans_STAR_MR.RowAlignment() != A.RowAlignment() ||
        Z_MC_STAR.ColAlignment() != A.ColAlignment() ||
        Z_MR_STAR.ColAlignment() != A.RowAlignment() )
        throw std::logic_error("Partial matrix distributions are misaligned");
#endif
    const Grid& g = A.Grid();

    DistMatrix<T>
        ATL(g), ATR(g),  A00(g), A01(g), A02(g),
        ABL(g), ABR(g),  A10(g), A11(g), A12(g),
                         A20(g), A21(g), A22(g);

    DistMatrix<T> D11(g);

    DistMatrix<T,MC,STAR>
        BT_MC_STAR(g),  B0_MC_STAR(g),
        BB_MC_STAR(g),  B1_MC_STAR(g),
                        B2_MC_STAR(g);

    DistMatrix<T,STAR,MR>
        BLAdjOrTrans_STAR_MR(g), BRAdjOrTrans_STAR_MR(g),
        B0AdjOrTrans_STAR_MR(g), B1AdjOrTrans_STAR_MR(g), 
        B2AdjOrTrans_STAR_MR(g);

    DistMatrix<T,MC,STAR>
        ZT_MC_STAR(g),  Z0_MC_STAR(g),
        ZB_MC_STAR(g),  Z1_MC_STAR(g),
                        Z2_MC_STAR(g);

    DistMatrix<T,MR,STAR>
        ZT_MR_STAR(g),  Z0_MR_STAR(g),
        ZB_MR_STAR(g),  Z1_MR_STAR(g),
                        Z2_MR_STAR(g);

    const int ratio = std::max( g.Height(), g.Width() );
    PushBlocksizeStack( ratio*Blocksize() );

    LockedPartitionDownDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    LockedPartitionDown
    ( B_MC_STAR, BT_MC_STAR,
                 BB_MC_STAR, 0 );
    LockedPartitionRight
    ( BAdjOrTrans_STAR_MR, BLAdjOrTrans_STAR_MR, BRAdjOrTrans_STAR_MR, 0 );
    PartitionDown
    ( Z_MC_STAR, ZT_MC_STAR,
                 ZB_MC_STAR, 0 );
    PartitionDown
    ( Z_MR_STAR, ZT_MR_STAR,
                 ZB_MR_STAR, 0 );
    while( ATL.Height() < A.Height() )
    {
        LockedRepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ A01, A02,
          /************/ /******************/
               /**/       A10, /**/ A11, A12,
          ABL, /**/ ABR,  A20, /**/ A21, A22 );

        LockedRepartitionDown
        ( BT_MC_STAR,  B0_MC_STAR,
         /**********/ /**********/
                       B1_MC_STAR,
          BB_MC_STAR,  B2_MC_STAR );

        LockedRepartitionRight
        ( BLAdjOrTrans_STAR_MR, /**/ BRAdjOrTrans_STAR_MR,
          B0AdjOrTrans_STAR_MR, /**/ B1AdjOrTrans_STAR_MR, 
                                     B2AdjOrTrans_STAR_MR );

        RepartitionDown
        ( ZT_MC_STAR,  Z0_MC_STAR,
         /**********/ /**********/
                       Z1_MC_STAR,
          ZB_MC_STAR,  Z2_MC_STAR );

        RepartitionDown
        ( ZT_MR_STAR,  Z0_MR_STAR,
         /**********/ /**********/
                       Z1_MR_STAR,
          ZB_MR_STAR,  Z2_MR_STAR );

        D11.AlignWith( A11 );
        //--------------------------------------------------------------------//
        D11 = A11;
        MakeTrapezoidal( LEFT, UPPER, 0, D11 );
        LocalGemm
        ( NORMAL, orientation, 
          alpha, D11, B1AdjOrTrans_STAR_MR, T(1), Z1_MC_STAR );
        MakeTrapezoidal( LEFT, UPPER, 1, D11 );

        LocalGemm
        ( orientation, NORMAL, alpha, D11, B1_MC_STAR, T(1), Z1_MR_STAR );

        LocalGemm
        ( NORMAL, orientation, 
          alpha, A12, B2AdjOrTrans_STAR_MR, T(1), Z1_MC_STAR );

        LocalGemm
        ( orientation, NORMAL, alpha, A12, B1_MC_STAR, T(1), Z2_MR_STAR );
        //--------------------------------------------------------------------//
        D11.FreeAlignments();

        SlideLockedPartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, A01, /**/ A02,
               /**/       A10, A11, /**/ A12,
         /*************/ /******************/
          ABL, /**/ ABR,  A20, A21, /**/ A22 );

        SlideLockedPartitionDown
        ( BT_MC_STAR,  B0_MC_STAR,
                       B1_MC_STAR,
         /**********/ /**********/
          BB_MC_STAR,  B2_MC_STAR );

        SlideLockedPartitionRight
        ( BLAdjOrTrans_STAR_MR,                       /**/ BRAdjOrTrans_STAR_MR,
          B0AdjOrTrans_STAR_MR, B1AdjOrTrans_STAR_MR, /**/ B2AdjOrTrans_STAR_MR         );

        SlidePartitionDown
        ( ZT_MC_STAR,  Z0_MC_STAR,
                       Z1_MC_STAR,
         /**********/ /**********/
          ZB_MC_STAR,  Z2_MC_STAR );

        SlidePartitionDown
        ( ZT_MR_STAR,  Z0_MR_STAR,
                       Z1_MR_STAR,
         /**********/ /**********/
          ZB_MR_STAR,  Z2_MR_STAR );
    }
    PopBlocksizeStack();
#ifndef RELEASE
    PopCallStack();
#endif
}
Exemple #11
0
inline void HermitianTridiagU
( Matrix<Complex<R> >& A, Matrix<Complex<R> >& t )
{
#ifndef RELEASE
    PushCallStack("HermitianTridiagU");
#endif
    const int tHeight = std::max(A.Height()-1,0);
#ifndef RELEASE
    if( A.Height() != A.Width() )
        throw std::logic_error("A must be square");
    if( t.Viewing() && (t.Height() != tHeight || t.Width() != 1) )
        throw std::logic_error("t is of the wrong size");
#endif
    typedef Complex<R> C;
    
    if( !t.Viewing() )
        t.ResizeTo( tHeight, 1 );

    // Matrix views 
    Matrix<C>
        ATL, ATR,  A00, a01,     A02,  a01T,
        ABL, ABR,  a10, alpha11, a12,  alpha01B,
                   A20, a21,     A22;

    // Temporary matrices
    Matrix<C> w01;

    PushBlocksizeStack( 1 );
    PartitionUpDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    while( ABR.Height()+1 < A.Height() )
    {
        RepartitionUpDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );

        PartitionUp
        ( a01, a01T,
               alpha01B, 1 );

        w01.ResizeTo( a01.Height(), 1 );
        //--------------------------------------------------------------------//
        const C tau = Reflector( alpha01B, a01T );
        const R epsilon1 = alpha01B.GetRealPart(0,0);
        t.Set(t.Height()-1-A22.Height(),0,tau);
        alpha01B.Set(0,0,C(1));

        Hemv( UPPER, tau, A00, a01, C(0), w01 );
        const C alpha = -tau*Dot( w01, a01 )/C(2);
        Axpy( alpha, a01, w01 );
        Her2( UPPER, C(-1), a01, w01, A00 );
        alpha01B.Set(0,0,epsilon1);
        //--------------------------------------------------------------------//

        SlidePartitionUpDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22 );
    }
    PopBlocksizeStack();
#ifndef RELEASE
    PopCallStack();
#endif
}
Exemple #12
0
inline void
LocalSymvRowAccumulateU
( T alpha, 
  const DistMatrix<T>& A,
  const DistMatrix<T,STAR,MC>& x_STAR_MC,
  const DistMatrix<T,STAR,MR>& x_STAR_MR,
        DistMatrix<T,STAR,MC>& z_STAR_MC,
        DistMatrix<T,STAR,MR>& z_STAR_MR )
{
#ifndef RELEASE
    PushCallStack("internal::LocalSymvRowAccumulateU");
    if( A.Grid() != x_STAR_MC.Grid() ||
        x_STAR_MC.Grid() != x_STAR_MR.Grid() ||
        x_STAR_MR.Grid() != z_STAR_MC.Grid() ||
        z_STAR_MC.Grid() != z_STAR_MR.Grid() )
        throw std::logic_error
        ("{A,x,z} must be distributed over the same grid");
    if( x_STAR_MC.Height() != 1 || x_STAR_MR.Height() != 1 ||
        z_STAR_MC.Height() != 1 || z_STAR_MR.Height() != 1 )
        throw std::logic_error("Expected x and z to be row vectors");
    if( A.Height() != A.Width() || 
        A.Height() != x_STAR_MC.Width() ||
        A.Height() != x_STAR_MR.Width() ||
        A.Height() != z_STAR_MC.Width() ||
        A.Height() != z_STAR_MR.Width() )
    {
        std::ostringstream msg;
        msg << "Nonconformal LocalSymvRowAccumulateU: \n"
            << "  A ~ " << A.Height() << " x " << A.Width() << "\n"
            << "  x[* ,MC] ~ " << x_STAR_MC.Height() << " x " 
                               << x_STAR_MC.Width() << "\n"
            << "  x[* ,MR] ~ " << x_STAR_MR.Height() << " x " 
                               << x_STAR_MR.Width() << "\n"
            << "  z[* ,MC] ~ " << z_STAR_MC.Height() << " x " 
                               << z_STAR_MC.Width() << "\n"
            << "  z[* ,MR] ~ " << z_STAR_MR.Height() << " x " 
                               << z_STAR_MR.Width() << "\n";
        throw std::logic_error( msg.str() );
    }
    if( x_STAR_MC.RowAlignment() != A.ColAlignment() ||
        x_STAR_MR.RowAlignment() != A.RowAlignment() ||
        z_STAR_MC.RowAlignment() != A.ColAlignment() ||
        z_STAR_MR.RowAlignment() != A.RowAlignment() )
        throw std::logic_error("Partial matrix distributions are misaligned");
#endif
    const Grid& g = A.Grid();

    // Matrix views
    DistMatrix<T> A11(g), A12(g);
    DistMatrix<T> D11(g);

    DistMatrix<T,STAR,MC> x1_STAR_MC(g);
    DistMatrix<T,STAR,MR> 
        xL_STAR_MR(g), xR_STAR_MR(g),
        x0_STAR_MR(g), x1_STAR_MR(g), x2_STAR_MR(g);
    DistMatrix<T,STAR,MC> z1_STAR_MC(g);
    DistMatrix<T,STAR,MR> z1_STAR_MR(g), z2_STAR_MR(g);

    // We want our local gemvs to be of width blocksize, so we will 
    // temporarily change to max(r,c) times the current blocksize
    const int ratio = std::max( g.Height(), g.Width() );
    PushBlocksizeStack( ratio*LocalSymvBlocksize<T>() );
                 
    LockedPartitionRight( x_STAR_MR,  xL_STAR_MR, xR_STAR_MR, 0 );
    while( xL_STAR_MR.Width() < x_STAR_MR.Width() )
    {
        LockedRepartitionRight
        ( xL_STAR_MR, /**/ xR_STAR_MR, 
          x0_STAR_MR, /**/ x1_STAR_MR, x2_STAR_MR );

        const int n0 = x0_STAR_MR.Width();
        const int n1 = x1_STAR_MR.Width();
        const int n2 = x2_STAR_MR.Width();
        LockedView( A11, A, n0, n0,    n1, n1 );
        LockedView( A12, A, n0, n0+n1, n1, n2 );
        LockedView( x1_STAR_MC, x_STAR_MC, 0, n0, 1, n1 );
        View( z1_STAR_MC, z_STAR_MC, 0, n0,    1, n1 );
        View( z1_STAR_MR, z_STAR_MR, 0, n0,    1, n1 );
        View( z2_STAR_MR, z_STAR_MR, 0, n0+n1, 1, n2 );

        D11.AlignWith( A11 );
        //--------------------------------------------------------------------//
        // TODO: These diagonal block updates can be greatly improved
        D11 = A11;
        MakeTrapezoidal( LEFT, UPPER, 0, D11 );
        Gemv
        ( NORMAL, 
          alpha, D11.LockedLocalMatrix(), 
                 x1_STAR_MR.LockedLocalMatrix(),
          T(1),  z1_STAR_MC.LocalMatrix() );
        MakeTrapezoidal( LEFT, UPPER, 1, D11 );
        Gemv
        ( TRANSPOSE,
          alpha, D11.LockedLocalMatrix(),
                 x1_STAR_MC.LockedLocalMatrix(),
          T(1),  z1_STAR_MR.LocalMatrix() );

        Gemv
        ( NORMAL,
          alpha, A12.LockedLocalMatrix(),
                 x2_STAR_MR.LockedLocalMatrix(),
          T(1),  z1_STAR_MC.LocalMatrix() );
        Gemv
        ( TRANSPOSE,
          alpha, A12.LockedLocalMatrix(),
                 x1_STAR_MC.LockedLocalMatrix(),
          T(1),  z2_STAR_MR.LocalMatrix() );
        //--------------------------------------------------------------------//
        D11.FreeAlignments();

        SlideLockedPartitionRight
        ( xL_STAR_MR,             /**/ xR_STAR_MR,
          x0_STAR_MR, x1_STAR_MR, /**/ x2_STAR_MR );
    }
    PopBlocksizeStack();
#ifndef RELEASE
    PopCallStack();
#endif
}
Exemple #13
0
inline void
internal::LocalTrmmAccumulateLUN
( Orientation orientation, UnitOrNonUnit diag, T alpha,
  const DistMatrix<T,MC,  MR  >& U,
  const DistMatrix<T,STAR,MR  >& XAdjOrTrans_STAR_MR,
        DistMatrix<T,MC,  STAR>& Z_MC_STAR )
{
#ifndef RELEASE
    PushCallStack("internal::LocalTrmmAccumulateLUN");
    if( U.Grid() != XAdjOrTrans_STAR_MR.Grid() ||
        XAdjOrTrans_STAR_MR.Grid() != Z_MC_STAR.Grid() )
        throw std::logic_error
        ("{U,X,Z} must be distributed over the same grid");
    if( U.Height() != U.Width() ||
        U.Height() != XAdjOrTrans_STAR_MR.Width() ||
        U.Height() != Z_MC_STAR.Height() ||
        XAdjOrTrans_STAR_MR.Height() != Z_MC_STAR.Width() )
    {
        std::ostringstream msg;
        msg << "Nonconformal LocalTrmmAccumulateLUN: \n"
            << "  U ~ " << U.Height() << " x " << U.Width() << "\n"
            << "  X^H/T[* ,MR] ~ " << XAdjOrTrans_STAR_MR.Height() << " x "
                                   << XAdjOrTrans_STAR_MR.Width() << "\n"
            << "  Z[MC,* ] ~ " << Z_MC_STAR.Height() << " x "
                               << Z_MC_STAR.Width() << "\n";
        throw std::logic_error( msg.str().c_str() );
    }
    if( XAdjOrTrans_STAR_MR.RowAlignment() != U.RowAlignment() ||
        Z_MC_STAR.ColAlignment() != U.ColAlignment() )
        throw std::logic_error("Partial matrix distributions are misaligned");
#endif
    const Grid& g = U.Grid();

    // Matrix views
    DistMatrix<T,MC,MR>
        UTL(g), UTR(g),  U00(g), U01(g), U02(g),
        UBL(g), UBR(g),  U10(g), U11(g), U12(g),
                         U20(g), U21(g), U22(g);

    DistMatrix<T,MC,MR> D11(g);

    DistMatrix<T,STAR,MR>
        XLAdjOrTrans_STAR_MR(g), XRAdjOrTrans_STAR_MR(g),
        X0AdjOrTrans_STAR_MR(g), X1AdjOrTrans_STAR_MR(g), 
        X2AdjOrTrans_STAR_MR(g);

    DistMatrix<T,MC,STAR>
        ZT_MC_STAR(g),  Z0_MC_STAR(g),
        ZB_MC_STAR(g),  Z1_MC_STAR(g),
                        Z2_MC_STAR(g);

    const int ratio = std::max( g.Height(), g.Width() );
    PushBlocksizeStack( ratio*Blocksize() );

    LockedPartitionDownDiagonal
    ( U, UTL, UTR,
         UBL, UBR, 0 );
    LockedPartitionRight
    ( XAdjOrTrans_STAR_MR, XLAdjOrTrans_STAR_MR, XRAdjOrTrans_STAR_MR, 0 );
    PartitionDown
    ( Z_MC_STAR, ZT_MC_STAR,
                 ZB_MC_STAR, 0 );
    while( UTL.Height() < U.Height() )
    {
        LockedRepartitionDownDiagonal
        ( UTL, /**/ UTR,  U00, /**/ U01, U02,
         /*************/ /******************/
               /**/       U10, /**/ U11, U12,
          UBL, /**/ UBR,  U20, /**/ U21, U22 );

        LockedRepartitionRight
        ( XLAdjOrTrans_STAR_MR, /**/ XRAdjOrTrans_STAR_MR,
          X0AdjOrTrans_STAR_MR, /**/ X1AdjOrTrans_STAR_MR, X2AdjOrTrans_STAR_MR 
        );

        RepartitionDown
        ( ZT_MC_STAR,  Z0_MC_STAR,
         /**********/ /**********/
                       Z1_MC_STAR,
          ZB_MC_STAR,  Z2_MC_STAR );

        D11.AlignWith( U11 );
        //--------------------------------------------------------------------//
        D11 = U11;
        MakeTrapezoidal( LEFT, UPPER, 0, D11 );
        if( diag == UNIT )
            SetDiagonalToOne( D11 );
        internal::LocalGemm
        ( NORMAL, orientation, alpha, D11, X1AdjOrTrans_STAR_MR,
          (T)1, Z1_MC_STAR );

        internal::LocalGemm
        ( NORMAL, orientation, alpha, U01, X1AdjOrTrans_STAR_MR,
          (T)1, Z0_MC_STAR );
        //--------------------------------------------------------------------//
        D11.FreeAlignments();

        SlideLockedPartitionDownDiagonal
        ( UTL, /**/ UTR,  U00, U01, /**/ U02,
               /**/       U10, U11, /**/ U12,
         /*************/ /******************/
          UBL, /**/ UBR,  U20, U21, /**/ U22 );

        SlideLockedPartitionRight
        ( XLAdjOrTrans_STAR_MR,                       /**/ XRAdjOrTrans_STAR_MR,
          X0AdjOrTrans_STAR_MR, X1AdjOrTrans_STAR_MR, /**/ X2AdjOrTrans_STAR_MR 
        );

        SlidePartitionDown
        ( ZT_MC_STAR,  Z0_MC_STAR,
                       Z1_MC_STAR,
         /**********/ /**********/
          ZB_MC_STAR,  Z2_MC_STAR );
    }
    PopBlocksizeStack();
#ifndef RELEASE
    PopCallStack();
#endif
}
Exemple #14
0
void Initialize( int& argc, char**& argv )
{
    if( ::numElemInits > 0 )
    {
        ++::numElemInits;
        return;
    }

    ::args = new Args( argc, argv );

    ::numElemInits = 1;
    if( !mpi::Initialized() )
    {
        if( mpi::Finalized() )
        {
            LogicError
            ("Cannot initialize elemental after finalizing MPI");
        }
#ifdef EL_HYBRID
        const Int provided =
            mpi::InitializeThread
            ( argc, argv, mpi::THREAD_MULTIPLE );
        const int commRank = mpi::Rank( mpi::COMM_WORLD );
        if( provided != mpi::THREAD_MULTIPLE && commRank == 0 )
        {
            cerr << "WARNING: Could not achieve THREAD_MULTIPLE support."
                 << endl;
        }
#else
        mpi::Initialize( argc, argv );
#endif
        ::elemInitializedMpi = true;
    }
    else
    {
#ifdef EL_HYBRID
        const Int provided = mpi::QueryThread();
        if( provided != mpi::THREAD_MULTIPLE )
        {
            throw std::runtime_error
            ("MPI initialized with inadequate thread support for Elemental");
        }
#endif
    }

#ifdef EL_HAVE_QT5
    InitializeQt5( argc, argv );
#endif

    // Queue a default algorithmic blocksize
    EmptyBlocksizeStack();
    PushBlocksizeStack( 128 );

    // Build the default grid
    Grid::InitializeDefault();

#ifdef EL_HAVE_QD
    InitializeQD();
#endif

    InitializeRandom();

    // Create the types and ops
    // NOTE: mpfr::SetPrecision created the BigFloat types
    mpi::CreateCustom();
}
Exemple #15
0
inline void
LocalSymvColAccumulateU
( T alpha, 
  const DistMatrix<T>& A,
  const DistMatrix<T,MC,STAR>& x_MC_STAR,
  const DistMatrix<T,MR,STAR>& x_MR_STAR,
        DistMatrix<T,MC,STAR>& z_MC_STAR,
        DistMatrix<T,MR,STAR>& z_MR_STAR,
  bool conjugate=false )
{
#ifndef RELEASE
    CallStackEntry entry("internal::LocalSymvColAccumulateU");
    if( A.Grid() != x_MC_STAR.Grid() ||
        x_MC_STAR.Grid() != x_MR_STAR.Grid() ||
        x_MR_STAR.Grid() != z_MC_STAR.Grid() ||
        z_MC_STAR.Grid() != z_MR_STAR.Grid() )
        LogicError
        ("{A,x,z} must be distributed over the same grid");
    if( x_MC_STAR.Width() != 1 || x_MR_STAR.Width() != 1 ||
        z_MC_STAR.Width() != 1 || z_MR_STAR.Width() != 1 )
        LogicError("Expected x and z to be column vectors");
    if( A.Height() != A.Width() || 
        A.Height() != x_MC_STAR.Height() ||
        A.Height() != x_MR_STAR.Height() ||
        A.Height() != z_MC_STAR.Height() ||
        A.Height() != z_MR_STAR.Height() )
    {
        std::ostringstream msg;
        msg << "Nonconformal LocalSymvColAccumulateU: \n"
            << "  A ~ " << A.Height() << " x " << A.Width() << "\n"
            << "  x[MC,* ] ~ " << x_MC_STAR.Height() << " x " 
                               << x_MC_STAR.Width() << "\n"
            << "  x[MR,* ] ~ " << x_MR_STAR.Height() << " x " 
                               << x_MR_STAR.Width() << "\n"
            << "  z[MC,* ] ~ " << z_MC_STAR.Height() << " x " 
                               << z_MC_STAR.Width() << "\n"
            << "  z[MR,* ] ~ " << z_MR_STAR.Height() << " x " 
                               << z_MR_STAR.Width() << "\n";
        LogicError( msg.str() );
    }
    if( x_MC_STAR.ColAlignment() != A.ColAlignment() ||
        x_MR_STAR.ColAlignment() != A.RowAlignment() ||
        z_MC_STAR.ColAlignment() != A.ColAlignment() ||
        z_MR_STAR.ColAlignment() != A.RowAlignment() )
        LogicError("Partial matrix distributions are misaligned");
#endif
    const Grid& g = A.Grid();
    const Orientation orientation = ( conjugate ? ADJOINT : TRANSPOSE );

    // Matrix views
    DistMatrix<T> A11(g), A12(g);
    DistMatrix<T> D11(g);

    DistMatrix<T,MC,STAR> x1_MC_STAR(g);
    DistMatrix<T,MR,STAR> 
        xT_MR_STAR(g),  x0_MR_STAR(g),
        xB_MR_STAR(g),  x1_MR_STAR(g),
                        x2_MR_STAR(g);
    DistMatrix<T,MC,STAR> z1_MC_STAR(g);
    DistMatrix<T,MR,STAR> z1_MR_STAR(g),
                          z2_MR_STAR(g);

    // We want our local gemvs to be of width blocksize, so we will 
    // temporarily change to max(r,c) times the current blocksize
    const Int ratio = Max( g.Height(), g.Width() );
    PushBlocksizeStack( ratio*LocalSymvBlocksize<T>() );
                 
    LockedPartitionDown
    ( x_MR_STAR, xT_MR_STAR,
                 xB_MR_STAR, 0 );
    while( xT_MR_STAR.Height() < x_MR_STAR.Height() )
    {
        LockedRepartitionDown
        ( xT_MR_STAR,  x0_MR_STAR,
         /**********/ /**********/
                       x1_MR_STAR,
          xB_MR_STAR,  x2_MR_STAR );

        const Int n0 = x0_MR_STAR.Height();
        const Int n1 = x1_MR_STAR.Height();
        const Int n2 = x2_MR_STAR.Height();
        LockedView( A11, A, n0, n0,    n1, n1 );
        LockedView( A12, A, n0, n0+n1, n1, n2 );
        LockedView( x1_MC_STAR, x_MC_STAR, n0, 0, n1, 1 );
        View( z1_MC_STAR, z_MC_STAR, n0,    0, n1, 1 );
        View( z1_MR_STAR, z_MR_STAR, n0,    0, n1, 1 );
        View( z2_MR_STAR, z_MR_STAR, n0+n1, 0, n2, 1 );

        D11.AlignWith( A11 );
        //--------------------------------------------------------------------//
        // TODO: These diagonal block updates can be greatly improved
        D11 = A11;
        MakeTriangular( UPPER, D11 );
        LocalGemv( NORMAL, alpha, D11, x1_MR_STAR, T(1), z1_MC_STAR );
        SetDiagonal( D11, T(0) );
        LocalGemv( orientation, alpha, D11, x1_MC_STAR, T(1), z1_MR_STAR );
        
        LocalGemv( NORMAL, alpha, A12, x2_MR_STAR, T(1), z1_MC_STAR );
        LocalGemv( orientation, alpha, A12, x1_MC_STAR, T(1), z2_MR_STAR );
        //--------------------------------------------------------------------//

        SlideLockedPartitionDown
        ( xT_MR_STAR,  x0_MR_STAR,
                       x1_MR_STAR,
         /**********/ /**********/
          xB_MR_STAR,  x2_MR_STAR );
    }
    PopBlocksizeStack();
}
Exemple #16
0
inline void UnblockedBidiagU
( DistMatrix<Complex<R> >& A, 
  DistMatrix<Complex<R>,MD,STAR>& tP,
  DistMatrix<Complex<R>,MD,STAR>& tQ )
{
#ifndef RELEASE
    PushCallStack("BidiagU");
#endif
    const int tPHeight = std::max(A.Width()-1,0);
    const int tQHeight = A.Width();
#ifndef RELEASE
    if( A.Grid() != tP.Grid() || tP.Grid() != tQ.Grid() )
        throw std::logic_error("Process grids do not match");
    if( A.Height() < A.Width() )
        throw std::logic_error("A must be at least as tall as it is wide");
    if( tP.Viewing() && (tP.Height() != tPHeight || tP.Width() != 1) )
        throw std::logic_error("tP is the wrong height");
    if( tQ.Viewing() && (tQ.Height() != tQHeight || tQ.Width() != 1) )
        throw std::logic_error("tQ is the wrong height");
#endif
    typedef Complex<R> C;
    const Grid& g = A.Grid();

    if( !tP.Viewing() )
        tP.ResizeTo( tPHeight, 1 );
    if( !tQ.Viewing() )
        tQ.ResizeTo( tQHeight, 1 );

    // Matrix views 
    DistMatrix<C>
        ATL(g), ATR(g),  A00(g), a01(g),     A02(g),  alpha12L(g), a12R(g),
        ABL(g), ABR(g),  a10(g), alpha11(g), a12(g),  aB1(g), AB2(g),
                         A20(g), a21(g),     A22(g);

    // Temporary matrices
    DistMatrix<C,STAR,MR  > a12_STAR_MR(g);
    DistMatrix<C,MC,  STAR> aB1_MC_STAR(g);
    DistMatrix<C,MR,  STAR> x12Adj_MR_STAR(g);
    DistMatrix<C,MC,  STAR> w21_MC_STAR(g);

    PushBlocksizeStack( 1 );
    PartitionDownDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    while( ATL.Width() < A.Width() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22 );

        View2x1
        ( aB1, alpha11,
               a21 );
        View2x1
        ( AB2, a12,
               A22 );

        aB1_MC_STAR.AlignWith( aB1 );
        a12_STAR_MR.AlignWith( a12 );
        x12Adj_MR_STAR.AlignWith( AB2 );
        w21_MC_STAR.AlignWith( A22 );
        Zeros( a12.Width(), 1, x12Adj_MR_STAR );
        Zeros( a21.Height(), 1, w21_MC_STAR );
        const bool thisIsMyRow = ( g.Row() == alpha11.ColAlignment() );
        const bool thisIsMyCol = ( g.Col() == alpha11.RowAlignment() );
        const bool nextIsMyCol = ( g.Col() == a12.RowAlignment() );
        //--------------------------------------------------------------------//

        // Find tauQ, u, and epsilonQ such that
        //     I - conj(tauQ) | 1 | | 1, u^H | | alpha11 | = | epsilonQ |
        //                    | u |            |    a21  |   |    0     |
        const C tauQ = Reflector( alpha11, a21 );
        tQ.Set(A00.Height(),0,tauQ );
        C epsilonQ=0;
        if( thisIsMyCol && thisIsMyRow )
            epsilonQ = alpha11.GetLocal(0,0);

        // Set aB1 = | 1 | and form x12^H := (aB1^H AB2)^H = AB2^H aB1
        //           | u |
        alpha11.Set(0,0,C(1));
        aB1_MC_STAR = aB1;
        internal::LocalGemv
        ( ADJOINT, C(1), AB2, aB1_MC_STAR, C(0), x12Adj_MR_STAR );
        x12Adj_MR_STAR.SumOverCol();

        // Update AB2 := AB2 - conj(tauQ) aB1 x12
        //             = AB2 - conj(tauQ) aB1 aB1^H AB2 
        //             = (I - conj(tauQ) aB1 aB1^H) AB2
        internal::LocalGer( -Conj(tauQ), aB1_MC_STAR, x12Adj_MR_STAR, AB2 );

        // Put epsilonQ back instead of the temporary value, 1
        if( thisIsMyCol && thisIsMyRow )
            alpha11.SetLocal(0,0,epsilonQ);

        if( A22.Width() != 0 )
        {
            // Due to the deficiencies in the BLAS ?gemv routines, this section
            // is easier if we temporarily conjugate a12
            Conjugate( a12 ); 

            // Expose the subvector we seek to zero, a12R
            PartitionRight( a12, alpha12L, a12R );

            // Find tauP, v, and epsilonP such that
            //     I - conj(tauP) | 1 | | 1, v^H | | alpha12L | = | epsilonP |
            //                    | v |            |  a12R^T  |   |    0     |
            const C tauP = Reflector( alpha12L, a12R );
            tP.Set(A00.Height(),0,tauP);
            C epsilonP=0;
            if( nextIsMyCol && thisIsMyRow )
                epsilonP = alpha12L.GetLocal(0,0);

            // Set a12^T = | 1 | and form w21 := A22 a12^T = A22 | 1 |
            //             | v |                                 | v |
            alpha12L.Set(0,0,C(1));
            a12_STAR_MR = a12;
            internal::LocalGemv
            ( NORMAL, C(1), A22, a12_STAR_MR, C(0), w21_MC_STAR );
            w21_MC_STAR.SumOverRow();

            // A22 := A22 - tauP w21 conj(a12)
            //      = A22 - tauP A22 a12^T conj(a12)
            //      = A22 (I - tauP a12^T conj(a12))
            //      = A22 conj(I - conj(tauP) a12^H a12)
            // which compensates for the fact that the reflector was generated
            // on the conjugated a12.
            internal::LocalGer( -tauP, w21_MC_STAR, a12_STAR_MR, A22 );

            // Put epsilonP back instead of the temporary value, 1
            if( nextIsMyCol && thisIsMyRow )
                alpha12L.SetLocal(0,0,epsilonP);

            // Undue the temporary conjugation
            Conjugate( a12 );
        }
        //--------------------------------------------------------------------//
        aB1_MC_STAR.FreeAlignments();
        a12_STAR_MR.FreeAlignments();
        x12Adj_MR_STAR.FreeAlignments();
        w21_MC_STAR.FreeAlignments();

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );
    }
    PopBlocksizeStack();
#ifndef RELEASE
    PopCallStack();
#endif
}
Exemple #17
0
inline void
PanelLQ
( Matrix<Complex<Real> >& A,
  Matrix<Complex<Real> >& t )
{
#ifndef RELEASE
    PushCallStack("internal::PanelLQ");
    if( t.Height() != std::min(A.Height(),A.Width()) || t.Width() != 1 )
        throw std::logic_error
        ("t must be a vector of height equal to the minimum dimension of A");
#endif
    typedef Complex<Real> C;

    Matrix<C>
        ATL, ATR,  A00, a01,     A02,  aTopRow, ABottomPan,
        ABL, ABR,  a10, alpha11, a12,
                   A20, a21,     A22;
    Matrix<C>
        tT,  t0,
        tB,  tau1,
             t2;

    Matrix<C> z, aTopRowConj;

    PushBlocksizeStack( 1 );
    PartitionDownLeftDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    PartitionDown
    ( t, tT,
         tB, 0 );
    while( ATL.Height() < A.Height() && ATL.Width() < A.Width() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22 );

        RepartitionDown
        ( tT,  t0,
         /**/ /****/
               tau1,
          tB,  t2 );

        aTopRow.View1x2( alpha11, a12 );
        ABottomPan.View1x2( a21, A22 );

        Zeros( ABottomPan.Height(), 1, z );
        //--------------------------------------------------------------------//
        const C tau = Reflector( alpha11, a12 );
        tau1.Set( 0, 0, tau );
        const C alpha = alpha11.Get(0,0);
        alpha11.Set(0,0,1);

        Conjugate( aTopRow, aTopRowConj );
        Gemv( NORMAL, C(1), ABottomPan, aTopRowConj, C(0), z );
        Ger( -Conj(tau), z, aTopRowConj, ABottomPan );

        alpha11.Set(0,0,alpha);
        //--------------------------------------------------------------------//

        SlidePartitionDown
        ( tT,  t0,
               tau1,
         /**/ /****/
          tB,  t2 );

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );
    }
    PopBlocksizeStack();
#ifndef RELEASE
    PopCallStack();
#endif
}
Exemple #18
0
inline void
PanelLQ
( DistMatrix<Complex<Real> >& A,
  DistMatrix<Complex<Real>,MD,STAR>& t )
{
#ifndef RELEASE
    PushCallStack("internal::PanelLQ");
    if( A.Grid() != t.Grid() )
        throw std::logic_error("{A,t} must be distributed over the same grid");
    if( t.Height() != std::min(A.Height(),A.Width()) || t.Width() != 1 )
        throw std::logic_error
        ("t must be a vector of height equal to the minimum dimension of A");
    if( !t.AlignedWithDiagonal( A, 0 ) )
        throw std::logic_error("t must be aligned with A's main diagonal");
#endif
    typedef Complex<Real> C;
    const Grid& g = A.Grid();

    // Matrix views
    DistMatrix<C>
        ATL(g), ATR(g),  A00(g), a01(g),     A02(g),  aTopRow(g), ABottomPan(g),
        ABL(g), ABR(g),  a10(g), alpha11(g), a12(g),
                         A20(g), a21(g),     A22(g);
    DistMatrix<C,MD,STAR>
        tT(g),  t0(g),
        tB(g),  tau1(g),
                t2(g);

    // Temporary distributions
    DistMatrix<C> aTopRowConj(g);
    DistMatrix<C,STAR,MR  > aTopRowConj_STAR_MR(g);
    DistMatrix<C,MC,  STAR> z_MC_STAR(g);

    PushBlocksizeStack( 1 );
    PartitionDownLeftDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    PartitionDown
    ( t, tT,
         tB, 0 );
    while( ATL.Height() < A.Height() && ATL.Width() < A.Width() )
    {
        RepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ a01,     A02,
         /*************/ /**********************/
               /**/       a10, /**/ alpha11, a12,
          ABL, /**/ ABR,  A20, /**/ a21,     A22 );

        RepartitionDown
        ( tT,  t0,
         /**/ /****/
               tau1,
          tB,  t2 );

        aTopRow.View1x2( alpha11, a12 );
        ABottomPan.View1x2( a21, A22 );

        aTopRowConj_STAR_MR.AlignWith( ABottomPan );
        z_MC_STAR.AlignWith( ABottomPan );
        Zeros( ABottomPan.Height(), 1, z_MC_STAR );
        //--------------------------------------------------------------------//
        const C tau = Reflector( alpha11, a12 );
        tau1.Set( 0, 0, tau );

        const bool myDiagonalEntry = ( g.Row() == alpha11.ColAlignment() &&
                                       g.Col() == alpha11.RowAlignment() );
        C alpha = 0;
        if( myDiagonalEntry )
        {
            alpha = alpha11.GetLocal(0,0);
            alpha11.SetLocal(0,0,1);
        }

        Conjugate( aTopRow, aTopRowConj );
        aTopRowConj_STAR_MR = aTopRowConj;

        Gemv
        ( NORMAL,
          C(1), ABottomPan.LockedLocalMatrix(),
                aTopRowConj_STAR_MR.LockedLocalMatrix(),
          C(0), z_MC_STAR.LocalMatrix() );
        z_MC_STAR.SumOverRow();

        Ger
        ( -Conj(tau),
          z_MC_STAR.LockedLocalMatrix(),
          aTopRowConj_STAR_MR.LockedLocalMatrix(),
          ABottomPan.LocalMatrix() );

        if( myDiagonalEntry )
            alpha11.SetLocal(0,0,alpha);
        //--------------------------------------------------------------------//
        aTopRowConj_STAR_MR.FreeAlignments();
        z_MC_STAR.FreeAlignments();

        SlidePartitionDown
        ( tT,  t0,
               tau1,
         /**/ /****/
          tB,  t2 );

        SlidePartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, a01,     /**/ A02,
               /**/       a10, alpha11, /**/ a12,
         /*************/ /**********************/
          ABL, /**/ ABR,  A20, a21,     /**/ A22 );
    }
    PopBlocksizeStack();
#ifndef RELEASE
    PopCallStack();
#endif
}
Exemple #19
0
inline void
LocalTrmmAccumulateLLT
( Orientation orientation, UnitOrNonUnit diag, T alpha,
  const DistMatrix<T>& L,
  const DistMatrix<T,MC,STAR>& X_MC_STAR,
        DistMatrix<T,MR,STAR>& Z_MR_STAR )
{
#ifndef RELEASE
    PushCallStack("internal::LocalTrmmAccumulateLLT");
    if( L.Grid() != X_MC_STAR.Grid() ||
        X_MC_STAR.Grid() != Z_MR_STAR.Grid() )
        throw std::logic_error
        ("{L,X,Z} must be distributed over the same grid");
    if( L.Height() != L.Width() ||
        L.Height() != X_MC_STAR.Height() ||
        L.Height() != Z_MR_STAR.Height() )
    {
        std::ostringstream msg;
        msg << "Nonconformal LocalTrmmAccumulateLLT: " << "\n"
            << "  L ~ " << L.Height() << " x " << L.Width() << "\n"
            << "  X[MC,* ] ~ " << X_MC_STAR.Height() << " x "
                               << X_MC_STAR.Width() << "\n"
            << "  Z[MR,* ] ` " << Z_MR_STAR.Height() << " x "
                               << Z_MR_STAR.Width() << "\n";
        throw std::logic_error( msg.str().c_str() );
    }
    if( X_MC_STAR.ColAlignment() != L.ColAlignment() ||
        Z_MR_STAR.ColAlignment() != L.RowAlignment() )
        throw std::logic_error("Partial matrix distributions are misaligned");
#endif
    const Grid& g = L.Grid();
    
    // Matrix views
    DistMatrix<T>
        LTL(g), LTR(g),  L00(g), L01(g), L02(g),
        LBL(g), LBR(g),  L10(g), L11(g), L12(g),
                         L20(g), L21(g), L22(g);

    DistMatrix<T> D11(g);

    DistMatrix<T,MC,STAR>
        XT_MC_STAR(g),  X0_MC_STAR(g),
        XB_MC_STAR(g),  X1_MC_STAR(g),
                        X2_MC_STAR(g);

    DistMatrix<T,MR,STAR>
        ZT_MR_STAR(g),  Z0_MR_STAR(g),
        ZB_MR_STAR(g),  Z1_MR_STAR(g),
                        Z2_MR_STAR(g);

    const int ratio = std::max( g.Height(), g.Width() );
    PushBlocksizeStack( ratio*Blocksize() );

    LockedPartitionDownDiagonal
    ( L, LTL, LTR,
         LBL, LBR, 0 );
    LockedPartitionDown
    ( X_MC_STAR, XT_MC_STAR,
                 XB_MC_STAR, 0 );
    PartitionDown
    ( Z_MR_STAR, ZT_MR_STAR,
                 ZB_MR_STAR, 0 );
    while( LTL.Height() < L.Height() )
    {
        LockedRepartitionDownDiagonal
        ( LTL, /**/ LTR,  L00, /**/ L01, L02,
         /*************/ /******************/
               /**/       L10, /**/ L11, L12,
          LBL, /**/ LBR,  L20, /**/ L21, L22 );

        LockedRepartitionDown
        ( XT_MC_STAR,  X0_MC_STAR,
         /**********/ /**********/
                       X1_MC_STAR,
          XB_MC_STAR,  X2_MC_STAR );

        RepartitionDown
        ( ZT_MR_STAR,  Z0_MR_STAR,
         /**********/ /**********/
                       Z1_MR_STAR,
          ZB_MR_STAR,  Z2_MR_STAR );

        D11.AlignWith( L11 );
        //--------------------------------------------------------------------//
        D11 = L11;
        MakeTrapezoidal( LEFT, LOWER, 0, D11 );
        if( diag == UNIT )
            SetDiagonalToOne( D11 );
        LocalGemm
        ( orientation, NORMAL, alpha, D11, X1_MC_STAR, T(1), Z1_MR_STAR );

        LocalGemm
        ( orientation, NORMAL, alpha, L21, X2_MC_STAR, T(1), Z1_MR_STAR );
        //--------------------------------------------------------------------//
        D11.FreeAlignments();

        SlideLockedPartitionDownDiagonal
        ( LTL, /**/ LTR,  L00, L01, /**/ L02,
               /**/       L10, L11, /**/ L12,
         /*************/ /******************/
          LBL, /**/ LBR,  L20, L21, /**/ L22 );

        SlideLockedPartitionDown
        ( XT_MC_STAR,  X0_MC_STAR,
                       X1_MC_STAR,
         /**********/ /**********/
          XB_MC_STAR,  X2_MC_STAR );

        SlidePartitionDown
        ( ZT_MR_STAR,  Z0_MR_STAR,
                       Z1_MR_STAR,
         /**********/ /**********/
          ZB_MR_STAR,  Z2_MR_STAR );
    }
    PopBlocksizeStack();
#ifndef RELEASE
    PopCallStack();
#endif
}
Exemple #20
0
inline void
LocalSymmetricAccumulateRU
( Orientation orientation, T alpha,
  const DistMatrix<T,MC,  MR  >& A,
  const DistMatrix<T,STAR,MC  >& B_STAR_MC,
  const DistMatrix<T,MR,  STAR>& BTrans_MR_STAR,
        DistMatrix<T,MC,  STAR>& ZTrans_MC_STAR,
        DistMatrix<T,MR,  STAR>& ZTrans_MR_STAR )
{
#ifndef RELEASE
    PushCallStack("internal::LocalSymmetricAccumulateRU");
    if( A.Grid() != B_STAR_MC.Grid() ||
        B_STAR_MC.Grid() != BTrans_MR_STAR.Grid() ||
        BTrans_MR_STAR.Grid() != ZTrans_MC_STAR.Grid() ||
        ZTrans_MC_STAR.Grid() != ZTrans_MR_STAR.Grid() )
        throw std::logic_error
        ("{A,B,C} must be distributed over the same grid");
    if( A.Height() != A.Width() ||
        A.Height() != B_STAR_MC.Width() ||
        A.Height() != BTrans_MR_STAR.Height() ||
        A.Height() != ZTrans_MC_STAR.Height() ||
        A.Height() != ZTrans_MR_STAR.Height() ||
        B_STAR_MC.Height() != BTrans_MR_STAR.Width() ||
        BTrans_MR_STAR.Width() != ZTrans_MC_STAR.Width() ||
        ZTrans_MC_STAR.Width() != ZTrans_MR_STAR.Width() )
    {
        std::ostringstream msg;
        msg << "Nonconformal LocalSymmetricAccumulateRU: \n"
            << "  A ~ " << A.Height() << " x " << A.Width() << "\n"
            << "  B[* ,MC] ~ " << B_STAR_MC.Height() << " x "
                               << B_STAR_MC.Width() << "\n"
            << "  B^H/T[MR,* ] ~ " << BTrans_MR_STAR.Height() << " x "
                                   << BTrans_MR_STAR.Width() << "\n"
            << "  Z^H/T[MC,* ] ~ " << ZTrans_MC_STAR.Height() << " x "
                                   << ZTrans_MC_STAR.Width() << "\n"
            << "  Z^H/T[MR,* ] ~ " << ZTrans_MR_STAR.Height() << " x "
                                   << ZTrans_MR_STAR.Width() << "\n";
        throw std::logic_error( msg.str().c_str() );
    }
    if( B_STAR_MC.RowAlignment() != A.ColAlignment() ||
        BTrans_MR_STAR.ColAlignment() != A.RowAlignment() ||
        ZTrans_MC_STAR.ColAlignment() != A.ColAlignment() ||
        ZTrans_MR_STAR.ColAlignment() != A.RowAlignment() )
        throw std::logic_error("Partial matrix distributions are misaligned");
#endif
    const Grid& g = A.Grid();

    // Matrix views
    DistMatrix<T>
        ATL(g), ATR(g),  A00(g), A01(g), A02(g),
        ABL(g), ABR(g),  A10(g), A11(g), A12(g),
                         A20(g), A21(g), A22(g);

    DistMatrix<T> D11(g);

    DistMatrix<T,STAR,MC>
        BL_STAR_MC(g), BR_STAR_MC(g),
        B0_STAR_MC(g), B1_STAR_MC(g), B2_STAR_MC(g);

    DistMatrix<T,MR,STAR>
        BTTrans_MR_STAR(g),  B0Trans_MR_STAR(g),
        BBTrans_MR_STAR(g),  B1Trans_MR_STAR(g),
                             B2Trans_MR_STAR(g);

    DistMatrix<T,MC,STAR>
        ZTTrans_MC_STAR(g),  Z0Trans_MC_STAR(g),
        ZBTrans_MC_STAR(g),  Z1Trans_MC_STAR(g),
                             Z2Trans_MC_STAR(g);

    DistMatrix<T,MR,STAR>
        ZBTrans_MR_STAR(g),  Z0Trans_MR_STAR(g),
        ZTTrans_MR_STAR(g),  Z1Trans_MR_STAR(g),
                             Z2Trans_MR_STAR(g);

    const int ratio = std::max( g.Height(), g.Width() );
    PushBlocksizeStack( ratio*Blocksize() );

    LockedPartitionDownDiagonal
    ( A, ATL, ATR,
         ABL, ABR, 0 );
    LockedPartitionRight( B_STAR_MC,  BL_STAR_MC, BR_STAR_MC, 0 );
    LockedPartitionDown
    ( BTrans_MR_STAR, BTTrans_MR_STAR,
                      BBTrans_MR_STAR, 0 );
    PartitionDown
    ( ZTrans_MC_STAR, ZTTrans_MC_STAR,
                      ZBTrans_MC_STAR, 0 );
    PartitionDown
    ( ZTrans_MR_STAR, ZTTrans_MR_STAR,
                      ZBTrans_MR_STAR, 0 );
    while( ATL.Height() < A.Height() )
    {
        LockedRepartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, /**/ A01, A02,
         /*************/ /******************/
               /**/       A10, /**/ A11, A12,
          ABL, /**/ ABR,  A20, /**/ A21, A22 );

        LockedRepartitionRight
        ( BL_STAR_MC, /**/ BR_STAR_MC,
          B0_STAR_MC, /**/ B1_STAR_MC, B2_STAR_MC );

        LockedRepartitionDown
        ( BTTrans_MR_STAR,  B0Trans_MR_STAR,
         /***************/ /***************/
                            B1Trans_MR_STAR,
          BBTrans_MR_STAR,  B2Trans_MR_STAR );

        RepartitionDown
        ( ZTTrans_MC_STAR,  Z0Trans_MC_STAR,
         /***************/ /***************/
                            Z1Trans_MC_STAR,
          ZBTrans_MC_STAR,  Z2Trans_MC_STAR );

        RepartitionDown
        ( ZTTrans_MR_STAR,  Z0Trans_MR_STAR,
         /***************/ /***************/
                            Z1Trans_MR_STAR,
          ZBTrans_MR_STAR,  Z2Trans_MR_STAR );

        D11.AlignWith( A11 );
        //--------------------------------------------------------------------//
        D11 = A11;
        MakeTriangular( UPPER, D11 );
        LocalGemm
        ( orientation, orientation,
          alpha, D11, B1_STAR_MC, T(1), Z1Trans_MR_STAR );
        SetDiagonal( D11, T(0) );

        LocalGemm
        ( NORMAL, NORMAL, alpha, D11, B1Trans_MR_STAR, T(1), Z1Trans_MC_STAR );

        LocalGemm
        ( orientation, orientation, 
          alpha, A12, B1_STAR_MC, T(1), Z2Trans_MR_STAR );

        LocalGemm
        ( NORMAL, NORMAL, alpha, A12, B2Trans_MR_STAR, T(1), Z1Trans_MC_STAR );
        //--------------------------------------------------------------------//
        D11.FreeAlignments();

        SlideLockedPartitionDownDiagonal
        ( ATL, /**/ ATR,  A00, A01, /**/ A02,
               /**/       A10, A11, /**/ A12,
         /*************/ /******************/
          ABL, /**/ ABR,  A20, A21, /**/ A22 );

        SlideLockedPartitionRight
        ( BL_STAR_MC,             /**/ BR_STAR_MC,
          B0_STAR_MC, B1_STAR_MC, /**/ B2_STAR_MC );

        SlideLockedPartitionDown
        ( BTTrans_MR_STAR,  B0Trans_MR_STAR,
                            B1Trans_MR_STAR,
         /***************/ /***************/
          BBTrans_MR_STAR,  B2Trans_MR_STAR );

        SlidePartitionDown
        ( ZTTrans_MC_STAR,  Z0Trans_MC_STAR,
                            Z1Trans_MC_STAR,
         /***************/ /***************/
          ZBTrans_MC_STAR,  Z2Trans_MC_STAR );

        SlidePartitionDown
        ( ZTTrans_MR_STAR,  Z0Trans_MR_STAR,
                            Z1Trans_MR_STAR,
         /***************/ /***************/
          ZBTrans_MR_STAR,  Z2Trans_MR_STAR );
    }
    PopBlocksizeStack();
#ifndef RELEASE
    PopCallStack();
#endif
}