static int check_object(PyObject *ob, int t, char *obname, char *tname, char *funname) { if (!PyArray_Check(ob)) { PyErr_Format(LapackError, "Expected an array for parameter %s in lapack_lite.%s", obname, funname); return 0; } else if (!PyArray_IS_C_CONTIGUOUS((PyArrayObject *)ob)) { PyErr_Format(LapackError, "Parameter %s is not contiguous in lapack_lite.%s", obname, funname); return 0; } else if (!(PyArray_TYPE((PyArrayObject *)ob) == t)) { PyErr_Format(LapackError, "Parameter %s is not of type %s in lapack_lite.%s", obname, tname, funname); return 0; } else if (PyArray_ISBYTESWAPPED((PyArrayObject *)ob)) { PyErr_Format(LapackError, "Parameter %s has non-native byte order in lapack_lite.%s", obname, funname); return 0; } else { return 1; } }
/*NUMPY_API * Clip */ NPY_NO_EXPORT PyObject * PyArray_Clip(PyArrayObject *self, PyObject *min, PyObject *max, PyArrayObject *out) { PyArray_FastClipFunc *func; int outgood = 0, ingood = 0; PyArrayObject *maxa = NULL; PyArrayObject *mina = NULL; PyArrayObject *newout = NULL, *newin = NULL; PyArray_Descr *indescr = NULL, *newdescr = NULL; char *max_data, *min_data; PyObject *zero; /* Treat None the same as NULL */ if (min == Py_None) { min = NULL; } if (max == Py_None) { max = NULL; } if ((max == NULL) && (min == NULL)) { PyErr_SetString(PyExc_ValueError, "array_clip: must set either max or min"); return NULL; } func = PyArray_DESCR(self)->f->fastclip; if (func == NULL || (min != NULL && !PyArray_CheckAnyScalar(min)) || (max != NULL && !PyArray_CheckAnyScalar(max)) || PyArray_ISBYTESWAPPED(self) || (out && PyArray_ISBYTESWAPPED(out))) { return _slow_array_clip(self, min, max, out); } /* Use the fast scalar clip function */ /* First we need to figure out the correct type */ if (min != NULL) { indescr = PyArray_DescrFromObject(min, NULL); if (indescr == NULL) { goto fail; } } if (max != NULL) { newdescr = PyArray_DescrFromObject(max, indescr); Py_XDECREF(indescr); indescr = NULL; if (newdescr == NULL) { goto fail; } } else { /* Steal the reference */ newdescr = indescr; indescr = NULL; } /* * Use the scalar descriptor only if it is of a bigger * KIND than the input array (and then find the * type that matches both). */ if (PyArray_ScalarKind(newdescr->type_num, NULL) > PyArray_ScalarKind(PyArray_DESCR(self)->type_num, NULL)) { indescr = PyArray_PromoteTypes(newdescr, PyArray_DESCR(self)); if (indescr == NULL) { goto fail; } func = indescr->f->fastclip; if (func == NULL) { Py_DECREF(indescr); return _slow_array_clip(self, min, max, out); } } else { indescr = PyArray_DESCR(self); Py_INCREF(indescr); } Py_DECREF(newdescr); newdescr = NULL; if (!PyDataType_ISNOTSWAPPED(indescr)) { PyArray_Descr *descr2; descr2 = PyArray_DescrNewByteorder(indescr, '='); Py_DECREF(indescr); indescr = NULL; if (descr2 == NULL) { goto fail; } indescr = descr2; } /* Convert max to an array */ if (max != NULL) { Py_INCREF(indescr); maxa = (PyArrayObject *)PyArray_FromAny(max, indescr, 0, 0, NPY_ARRAY_DEFAULT, NULL); if (maxa == NULL) { goto fail; } } /* * If we are unsigned, then make sure min is not < 0 * This is to match the behavior of _slow_array_clip * * We allow min and max to go beyond the limits * for other data-types in which case they * are interpreted as their modular counterparts. */ if (min != NULL) { if (PyArray_ISUNSIGNED(self)) { int cmp; zero = PyInt_FromLong(0); cmp = PyObject_RichCompareBool(min, zero, Py_LT); if (cmp == -1) { Py_DECREF(zero); goto fail; } if (cmp == 1) { min = zero; } else { Py_DECREF(zero); Py_INCREF(min); } } else { Py_INCREF(min); } /* Convert min to an array */ Py_INCREF(indescr); mina = (PyArrayObject *)PyArray_FromAny(min, indescr, 0, 0, NPY_ARRAY_DEFAULT, NULL); Py_DECREF(min); if (mina == NULL) { goto fail; } } /* * Check to see if input is single-segment, aligned, * and in native byteorder */ if (PyArray_ISONESEGMENT(self) && PyArray_CHKFLAGS(self, NPY_ARRAY_ALIGNED) && PyArray_ISNOTSWAPPED(self) && (PyArray_DESCR(self) == indescr)) { ingood = 1; } if (!ingood) { int flags; if (PyArray_ISFORTRAN(self)) { flags = NPY_ARRAY_FARRAY; } else { flags = NPY_ARRAY_CARRAY; } Py_INCREF(indescr); newin = (PyArrayObject *)PyArray_FromArray(self, indescr, flags); if (newin == NULL) { goto fail; } } else { newin = self; Py_INCREF(newin); } /* * At this point, newin is a single-segment, aligned, and correct * byte-order array of the correct type * * if ingood == 0, then it is a copy, otherwise, * it is the original input. */ /* * If we have already made a copy of the data, then use * that as the output array */ if (out == NULL && !ingood) { out = newin; } /* * Now, we know newin is a usable array for fastclip, * we need to make sure the output array is available * and usable */ if (out == NULL) { Py_INCREF(indescr); out = (PyArrayObject*)PyArray_NewFromDescr(Py_TYPE(self), indescr, PyArray_NDIM(self), PyArray_DIMS(self), NULL, NULL, PyArray_ISFORTRAN(self), (PyObject *)self); if (out == NULL) { goto fail; } outgood = 1; } else Py_INCREF(out); /* Input is good at this point */ if (out == newin) { outgood = 1; } /* make sure the shape of the output array is the same */ if (!PyArray_SAMESHAPE(newin, out)) { PyErr_SetString(PyExc_ValueError, "clip: Output array must have the" "same shape as the input."); goto fail; } if (!outgood && PyArray_EQUIVALENTLY_ITERABLE( self, out, PyArray_TRIVIALLY_ITERABLE_OP_READ, PyArray_TRIVIALLY_ITERABLE_OP_NOREAD) && PyArray_CHKFLAGS(out, NPY_ARRAY_ALIGNED) && PyArray_ISNOTSWAPPED(out) && PyArray_EquivTypes(PyArray_DESCR(out), indescr)) { outgood = 1; } /* * Do we still not have a suitable output array? * Create one, now. No matter why the array is not suitable a copy has * to be made. This may be just to avoid memory overlap though. */ if (!outgood) { int oflags; if (PyArray_ISFORTRAN(self)) { oflags = NPY_ARRAY_FARRAY; } else { oflags = NPY_ARRAY_CARRAY; } oflags |= (NPY_ARRAY_WRITEBACKIFCOPY | NPY_ARRAY_FORCECAST | NPY_ARRAY_ENSURECOPY); Py_INCREF(indescr); newout = (PyArrayObject*)PyArray_FromArray(out, indescr, oflags); if (newout == NULL) { goto fail; } } else { newout = out; Py_INCREF(newout); } /* Now we can call the fast-clip function */ min_data = max_data = NULL; if (mina != NULL) { min_data = PyArray_DATA(mina); } if (maxa != NULL) { max_data = PyArray_DATA(maxa); } func(PyArray_DATA(newin), PyArray_SIZE(newin), min_data, max_data, PyArray_DATA(newout)); /* Clean up temporary variables */ Py_XDECREF(indescr); Py_XDECREF(newdescr); Py_XDECREF(mina); Py_XDECREF(maxa); Py_DECREF(newin); /* Copy back into out if out was not already a nice array. */ PyArray_ResolveWritebackIfCopy(newout); Py_DECREF(newout); return (PyObject *)out; fail: Py_XDECREF(indescr); Py_XDECREF(newdescr); Py_XDECREF(maxa); Py_XDECREF(mina); Py_XDECREF(newin); PyArray_DiscardWritebackIfCopy(newout); Py_XDECREF(newout); return NULL; }
static PyObject* mseed_store_traces (PyObject *m, PyObject *args) { char *filename; MSTrace *mst = NULL; PyObject *array = NULL; PyObject *in_traces = NULL; PyObject *in_trace = NULL; PyArrayObject *contiguous_array = NULL; int i; char *network, *station, *location, *channel; char mstype; int msdetype; int64_t psamples; int numpytype; int length; FILE *outfile; struct module_state *st = GETSTATE(m); if (!PyArg_ParseTuple(args, "Os", &in_traces, &filename)) { PyErr_SetString(st->error, "usage store_traces(traces, filename)" ); return NULL; } if (!PySequence_Check( in_traces )) { PyErr_SetString(st->error, "Traces is not of sequence type." ); return NULL; } outfile = fopen(filename, "w" ); if (outfile == NULL) { PyErr_SetString(st->error, "Error opening file."); return NULL; } for (i=0; i<PySequence_Length(in_traces); i++) { in_trace = PySequence_GetItem(in_traces, i); if (!PyTuple_Check(in_trace)) { PyErr_SetString(st->error, "Trace record must be a tuple of (network, station, location, channel, starttime, endtime, samprate, data)." ); Py_DECREF(in_trace); return NULL; } mst = mst_init (NULL); if (!PyArg_ParseTuple(in_trace, "ssssLLdO", &network, &station, &location, &channel, &(mst->starttime), &(mst->endtime), &(mst->samprate), &array )) { PyErr_SetString(st->error, "Trace record must be a tuple of (network, station, location, channel, starttime, endtime, samprate, data)." ); mst_free( &mst ); Py_DECREF(in_trace); return NULL; } strncpy( mst->network, network, 10); strncpy( mst->station, station, 10); strncpy( mst->location, location, 10); strncpy( mst->channel, channel, 10); mst->network[10] = '\0'; mst->station[10] = '\0'; mst->location[10] ='\0'; mst->channel[10] = '\0'; if (!PyArray_Check(array)) { PyErr_SetString(st->error, "Data must be given as NumPy array." ); mst_free( &mst ); Py_DECREF(in_trace); return NULL; } if (PyArray_ISBYTESWAPPED((PyArrayObject*)array)) { PyErr_SetString(st->error, "Data must be given in machine byte-order" ); mst_free( &mst ); Py_DECREF(in_trace); return NULL; } numpytype = PyArray_TYPE((PyArrayObject*)array); switch (numpytype) { case NPY_INT32: assert( ms_samplesize('i') == 4 ); mstype = 'i'; msdetype = DE_STEIM1; break; case NPY_INT8: assert( ms_samplesize('a') == 1 ); mstype = 'a'; msdetype = DE_ASCII; break; case NPY_FLOAT32: assert( ms_samplesize('f') == 4 ); mstype = 'f'; msdetype = DE_FLOAT32; break; case NPY_FLOAT64: assert( ms_samplesize('d') == 8 ); mstype = 'd'; msdetype = DE_FLOAT64; break; default: PyErr_SetString(st->error, "Data must be of type float64, float32, int32 or int8."); mst_free( &mst ); Py_DECREF(in_trace); return NULL; } mst->sampletype = mstype; contiguous_array = PyArray_GETCONTIGUOUS((PyArrayObject*)array); length = PyArray_SIZE(contiguous_array); mst->numsamples = length; mst->samplecnt = length; mst->datasamples = calloc(length,ms_samplesize(mstype)); memcpy(mst->datasamples, PyArray_DATA(contiguous_array), length*ms_samplesize(mstype)); Py_DECREF(contiguous_array); mst_pack (mst, &record_handler, outfile, 4096, msdetype, 1, &psamples, 1, 0, NULL); mst_free( &mst ); Py_DECREF(in_trace); } fclose( outfile ); Py_INCREF(Py_None); return Py_None; }