void Rv2Rot(float Rv[3], float R[3][3]) { // Compute rotation matrix from a rotation vector // To save .text space, uses Quaternion2R() float q[4]; float angle = VectorMagnitude(Rv); if (angle <= 0.00048828125f) { // angle < sqrt(2*machine_epsilon(float)), so flush cos(x) to 1.0f q[0] = 1.0f; // and flush sin(x/2)/x to 0.5 q[1] = 0.5f*Rv[0]; q[2] = 0.5f*Rv[1]; q[3] = 0.5f*Rv[2]; // This prevents division by zero, while retaining full accuracy } else { q[0] = cosf(angle*0.5f); float scale = sinf(angle*0.5f) / angle; q[1] = scale*Rv[0]; q[2] = scale*Rv[1]; q[3] = scale*Rv[2]; } Quaternion2R(q, R); }
/* * Initialize function loads first data sets, and allocates memory for structure. */ void gps_airspeedInitialize() { // This method saves memory in case we don't use the GPS module. gps = (struct GPSGlobals *)pvPortMalloc(sizeof(struct GPSGlobals)); // GPS airspeed calculation variables VelocityStateInitialize(); VelocityStateData gpsVelData; VelocityStateGet(&gpsVelData); gps->gpsVelOld_N = gpsVelData.North; gps->gpsVelOld_E = gpsVelData.East; gps->gpsVelOld_D = gpsVelData.Down; gps->oldAirspeed = 0.0f; AttitudeStateData attData; AttitudeStateGet(&attData); float Rbe[3][3]; float q[4] = { attData.q1, attData.q2, attData.q3, attData.q4 }; // Calculate rotation matrix Quaternion2R(q, Rbe); gps->RbeCol1_old[0] = Rbe[0][0]; gps->RbeCol1_old[1] = Rbe[0][1]; gps->RbeCol1_old[2] = Rbe[0][2]; }
static void simulateModelAgnostic() { float Rbe[3][3]; float q[4]; // Simulate accels based on current attitude AttitudeActualData attitudeActual; AttitudeActualGet(&attitudeActual); q[0] = attitudeActual.q1; q[1] = attitudeActual.q2; q[2] = attitudeActual.q3; q[3] = attitudeActual.q4; Quaternion2R(q,Rbe); AccelsData accelsData; // Skip get as we set all the fields accelsData.x = -GRAVITY * Rbe[0][2]; accelsData.y = -GRAVITY * Rbe[1][2]; accelsData.z = -GRAVITY * Rbe[2][2]; accelsData.temperature = 30; AccelsSet(&accelsData); RateDesiredData rateDesired; RateDesiredGet(&rateDesired); GyrosData gyrosData; // Skip get as we set all the fields gyrosData.x = rateDesired.Roll + rand_gauss(); gyrosData.y = rateDesired.Pitch + rand_gauss(); gyrosData.z = rateDesired.Yaw + rand_gauss(); // Apply bias correction to the gyros GyrosBiasData gyrosBias; GyrosBiasGet(&gyrosBias); gyrosData.x += gyrosBias.x; gyrosData.y += gyrosBias.y; gyrosData.z += gyrosBias.z; GyrosSet(&gyrosData); BaroAltitudeData baroAltitude; BaroAltitudeGet(&baroAltitude); baroAltitude.Altitude = 1; BaroAltitudeSet(&baroAltitude); GPSPositionData gpsPosition; GPSPositionGet(&gpsPosition); gpsPosition.Latitude = 0; gpsPosition.Longitude = 0; gpsPosition.Altitude = 0; GPSPositionSet(&gpsPosition); // Because most crafts wont get enough information from gravity to zero yaw gyro, we try // and make it average zero (weakly) MagnetometerData mag; mag.x = 400; mag.y = 0; mag.z = 800; MagnetometerSet(&mag); }
/* * Calculate airspeed as a function of GPS groundspeed and vehicle attitude. * From "IMU Wind Estimation (Theory)", by William Premerlani. * The idea is that V_gps=V_air+V_wind. If we assume wind constant, => * V_gps_2-V_gps_1 = (V_air_2+V_wind_2) -(V_air_1+V_wind_1) = V_air_2 - V_air_1. * If we assume airspeed constant, => V_gps_2-V_gps_1 = |V|*(f_2 - f1), * where "f" is the fuselage vector in earth coordinates. * We then solve for |V| = |V_gps_2-V_gps_1|/ |f_2 - f1|. */ void gps_airspeedGet(AirspeedSensorData *airspeedData, AirspeedSettingsData *airspeedSettings) { float Rbe[3][3]; { // Scoping to save memory. We really just need Rbe. AttitudeStateData attData; AttitudeStateGet(&attData); float q[4] = { attData.q1, attData.q2, attData.q3, attData.q4 }; // Calculate rotation matrix Quaternion2R(q, Rbe); } // Calculate the cos(angle) between the two fuselage basis vectors float cosDiff = (Rbe[0][0] * gps->RbeCol1_old[0]) + (Rbe[0][1] * gps->RbeCol1_old[1]) + (Rbe[0][2] * gps->RbeCol1_old[2]); // If there's more than a 5 degree difference between two fuselage measurements, then we have sufficient delta to continue. if (fabsf(cosDiff) < cosf(DEG2RAD(5.0f))) { VelocityStateData gpsVelData; VelocityStateGet(&gpsVelData); if (gpsVelData.North * gpsVelData.North + gpsVelData.East * gpsVelData.East + gpsVelData.Down * gpsVelData.Down < 1.0f) { airspeedData->CalibratedAirspeed = 0; airspeedData->SensorConnected = AIRSPEEDSENSOR_SENSORCONNECTED_FALSE; return; // do not calculate if gps velocity is insufficient... } // Calculate the norm^2 of the difference between the two GPS vectors float normDiffGPS2 = powf(gpsVelData.North - gps->gpsVelOld_N, 2.0f) + powf(gpsVelData.East - gps->gpsVelOld_E, 2.0f) + powf(gpsVelData.Down - gps->gpsVelOld_D, 2.0f); // Calculate the norm^2 of the difference between the two fuselage vectors float normDiffAttitude2 = powf(Rbe[0][0] - gps->RbeCol1_old[0], 2.0f) + powf(Rbe[0][1] - gps->RbeCol1_old[1], 2.0f) + powf(Rbe[0][2] - gps->RbeCol1_old[2], 2.0f); // Airspeed magnitude is the ratio between the two difference norms float airspeed = sqrtf(normDiffGPS2 / normDiffAttitude2); if (!IS_REAL(airspeedData->CalibratedAirspeed)) { airspeedData->CalibratedAirspeed = 0; airspeedData->SensorConnected = AIRSPEEDSENSOR_SENSORCONNECTED_FALSE; } else { // need a low pass filter to filter out spikes in non coordinated maneuvers airspeedData->CalibratedAirspeed = (1.0f - airspeedSettings->GroundSpeedBasedEstimationLowPassAlpha) * gps->oldAirspeed + airspeedSettings->GroundSpeedBasedEstimationLowPassAlpha * airspeed; gps->oldAirspeed = airspeedData->CalibratedAirspeed; airspeedData->SensorConnected = AIRSPEEDSENSOR_SENSORCONNECTED_TRUE; } // Save old variables for next pass gps->gpsVelOld_N = gpsVelData.North; gps->gpsVelOld_E = gpsVelData.East; gps->gpsVelOld_D = gpsVelData.Down; gps->RbeCol1_old[0] = Rbe[0][0]; gps->RbeCol1_old[1] = Rbe[0][1]; gps->RbeCol1_old[2] = Rbe[0][2]; } }
static void settingsUpdatedCb(UAVObjEvent * objEv) { AttitudeSettingsData attitudeSettings; AttitudeSettingsGet(&attitudeSettings); accelKp = attitudeSettings.AccelKp; accelKi = attitudeSettings.AccelKi; yawBiasRate = attitudeSettings.YawBiasRate; gyroGain = attitudeSettings.GyroGain; zero_during_arming = attitudeSettings.ZeroDuringArming == ATTITUDESETTINGS_ZERODURINGARMING_TRUE; bias_correct_gyro = attitudeSettings.BiasCorrectGyro == ATTITUDESETTINGS_BIASCORRECTGYRO_TRUE; accelbias[0] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_X]; accelbias[1] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_Y]; accelbias[2] = attitudeSettings.AccelBias[ATTITUDESETTINGS_ACCELBIAS_Z]; gyro_correct_int[0] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_X] / 100.0f; gyro_correct_int[1] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_Y] / 100.0f; gyro_correct_int[2] = attitudeSettings.GyroBias[ATTITUDESETTINGS_GYROBIAS_Z] / 100.0f; // Indicates not to expend cycles on rotation if(attitudeSettings.BoardRotation[0] == 0 && attitudeSettings.BoardRotation[1] == 0 && attitudeSettings.BoardRotation[2] == 0) { rotate = 0; // Shouldn't be used but to be safe float rotationQuat[4] = {1,0,0,0}; Quaternion2R(rotationQuat, R); } else { float rotationQuat[4]; const float rpy[3] = {attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_ROLL], attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_PITCH], attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_YAW]}; RPY2Quaternion(rpy, rotationQuat); Quaternion2R(rotationQuat, R); rotate = 1; } }
/** * Locally cache some variables from the AtttitudeSettings object */ static void settingsUpdatedCb(UAVObjEvent * objEv) { RevoCalibrationGet(&cal); mag_bias[0] = cal.mag_bias[REVOCALIBRATION_MAG_BIAS_X]; mag_bias[1] = cal.mag_bias[REVOCALIBRATION_MAG_BIAS_Y]; mag_bias[2] = cal.mag_bias[REVOCALIBRATION_MAG_BIAS_Z]; mag_scale[0] = cal.mag_scale[REVOCALIBRATION_MAG_SCALE_X]; mag_scale[1] = cal.mag_scale[REVOCALIBRATION_MAG_SCALE_Y]; mag_scale[2] = cal.mag_scale[REVOCALIBRATION_MAG_SCALE_Z]; accel_bias[0] = cal.accel_bias[REVOCALIBRATION_ACCEL_BIAS_X]; accel_bias[1] = cal.accel_bias[REVOCALIBRATION_ACCEL_BIAS_Y]; accel_bias[2] = cal.accel_bias[REVOCALIBRATION_ACCEL_BIAS_Z]; accel_scale[0] = cal.accel_scale[REVOCALIBRATION_ACCEL_SCALE_X]; accel_scale[1] = cal.accel_scale[REVOCALIBRATION_ACCEL_SCALE_Y]; accel_scale[2] = cal.accel_scale[REVOCALIBRATION_ACCEL_SCALE_Z]; // Do not store gyros_bias here as that comes from the state estimator and should be // used from GyroBias directly // Zero out any adaptive tracking MagBiasData magBias; MagBiasGet(&magBias); magBias.x = 0; magBias.y = 0; magBias.z = 0; MagBiasSet(&magBias); AttitudeSettingsData attitudeSettings; AttitudeSettingsGet(&attitudeSettings); bias_correct_gyro = (cal.BiasCorrectedRaw == REVOCALIBRATION_BIASCORRECTEDRAW_TRUE); // Indicates not to expend cycles on rotation if(attitudeSettings.BoardRotation[0] == 0 && attitudeSettings.BoardRotation[1] == 0 && attitudeSettings.BoardRotation[2] == 0) { rotate = 0; } else { float rotationQuat[4]; const float rpy[3] = {attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_ROLL], attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_PITCH], attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_YAW]}; RPY2Quaternion(rpy, rotationQuat); Quaternion2R(rotationQuat, R); rotate = 1; } }
/** * Keep a running filtered version of the acceleration in the NED frame */ static void updateNedAccel() { float accel[3]; float q[4]; float Rbe[3][3]; float accel_ned[3]; // Collect downsampled attitude data AccelsData accels; AccelsGet(&accels); accel[0] = accels.x; accel[1] = accels.y; accel[2] = accels.z; //rotate avg accels into earth frame and store it AttitudeActualData attitudeActual; AttitudeActualGet(&attitudeActual); q[0]=attitudeActual.q1; q[1]=attitudeActual.q2; q[2]=attitudeActual.q3; q[3]=attitudeActual.q4; Quaternion2R(q, Rbe); for (uint8_t i=0; i<3; i++){ accel_ned[i]=0; for (uint8_t j=0; j<3; j++) accel_ned[i] += Rbe[j][i]*accel[j]; } accel_ned[2] += GRAVITY; NedAccelData accelData; NedAccelGet(&accelData); accelData.North = accel_ned[0]; accelData.East = accel_ned[1]; accelData.Down = accel_ned[2]; NedAccelSet(&accelData); }
/** * Module thread, should not return. */ static void guidanceTask(void *parameters) { SystemSettingsData systemSettings; GuidanceSettingsData guidanceSettings; ManualControlCommandData manualControl; portTickType thisTime; portTickType lastUpdateTime; UAVObjEvent ev; float accel[3] = {0,0,0}; uint32_t accel_accum = 0; float q[4]; float Rbe[3][3]; float accel_ned[3]; // Main task loop lastUpdateTime = xTaskGetTickCount(); while (1) { GuidanceSettingsGet(&guidanceSettings); // Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe if ( xQueueReceive(queue, &ev, guidanceSettings.UpdatePeriod / portTICK_RATE_MS) != pdTRUE ) { AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE,SYSTEMALARMS_ALARM_WARNING); } else { AlarmsClear(SYSTEMALARMS_ALARM_GUIDANCE); } // Collect downsampled attitude data AttitudeRawData attitudeRaw; AttitudeRawGet(&attitudeRaw); accel[0] += attitudeRaw.accels[0]; accel[1] += attitudeRaw.accels[1]; accel[2] += attitudeRaw.accels[2]; accel_accum++; // Continue collecting data if not enough time thisTime = xTaskGetTickCount(); if( (thisTime - lastUpdateTime) < (guidanceSettings.UpdatePeriod / portTICK_RATE_MS) ) continue; lastUpdateTime = xTaskGetTickCount(); accel[0] /= accel_accum; accel[1] /= accel_accum; accel[2] /= accel_accum; //rotate avg accels into earth frame and store it AttitudeActualData attitudeActual; AttitudeActualGet(&attitudeActual); q[0]=attitudeActual.q1; q[1]=attitudeActual.q2; q[2]=attitudeActual.q3; q[3]=attitudeActual.q4; Quaternion2R(q, Rbe); for (uint8_t i=0; i<3; i++){ accel_ned[i]=0; for (uint8_t j=0; j<3; j++) accel_ned[i] += Rbe[j][i]*accel[j]; } accel_ned[2] += 9.81; NedAccelData accelData; NedAccelGet(&accelData); // Convert from m/s to cm/s accelData.North = accel_ned[0] * 100; accelData.East = accel_ned[1] * 100; accelData.Down = accel_ned[2] * 100; NedAccelSet(&accelData); ManualControlCommandGet(&manualControl); SystemSettingsGet(&systemSettings); GuidanceSettingsGet(&guidanceSettings); if ((manualControl.FlightMode == MANUALCONTROLCOMMAND_FLIGHTMODE_AUTO) && ((systemSettings.AirframeType == SYSTEMSETTINGS_AIRFRAMETYPE_VTOL) || (systemSettings.AirframeType == SYSTEMSETTINGS_AIRFRAMETYPE_QUADP) || (systemSettings.AirframeType == SYSTEMSETTINGS_AIRFRAMETYPE_QUADX) || (systemSettings.AirframeType == SYSTEMSETTINGS_AIRFRAMETYPE_HEXA) )) { if(positionHoldLast == 0) { /* When enter position hold mode save current position */ PositionDesiredData positionDesired; PositionActualData positionActual; PositionDesiredGet(&positionDesired); PositionActualGet(&positionActual); positionDesired.North = positionActual.North; positionDesired.East = positionActual.East; PositionDesiredSet(&positionDesired); positionHoldLast = 1; } if(guidanceSettings.GuidanceMode == GUIDANCESETTINGS_GUIDANCEMODE_DUAL_LOOP) updateVtolDesiredVelocity(); else manualSetDesiredVelocity(); updateVtolDesiredAttitude(); } else { // Be cleaner and get rid of global variables northIntegral = 0; eastIntegral = 0; downIntegral = 0; positionHoldLast = 0; } accel[0] = accel[1] = accel[2] = 0; accel_accum = 0; } }
/** * Perform an update of the @ref MagBias based on * Magnetometer Offset Cancellation: Theory and Implementation, * revisited William Premerlani, October 14, 2011 */ static void magOffsetEstimation(MagnetometerData *mag) { #if 0 // Constants, to possibly go into a UAVO static const float MIN_NORM_DIFFERENCE = 50; static float B2[3] = {0, 0, 0}; MagBiasData magBias; MagBiasGet(&magBias); // Remove the current estimate of the bias mag->x -= magBias.x; mag->y -= magBias.y; mag->z -= magBias.z; // First call if (B2[0] == 0 && B2[1] == 0 && B2[2] == 0) { B2[0] = mag->x; B2[1] = mag->y; B2[2] = mag->z; return; } float B1[3] = {mag->x, mag->y, mag->z}; float norm_diff = sqrtf(powf(B2[0] - B1[0],2) + powf(B2[1] - B1[1],2) + powf(B2[2] - B1[2],2)); if (norm_diff > MIN_NORM_DIFFERENCE) { float norm_b1 = sqrtf(B1[0]*B1[0] + B1[1]*B1[1] + B1[2]*B1[2]); float norm_b2 = sqrtf(B2[0]*B2[0] + B2[1]*B2[1] + B2[2]*B2[2]); float scale = cal.MagBiasNullingRate * (norm_b2 - norm_b1) / norm_diff; float b_error[3] = {(B2[0] - B1[0]) * scale, (B2[1] - B1[1]) * scale, (B2[2] - B1[2]) * scale}; magBias.x += b_error[0]; magBias.y += b_error[1]; magBias.z += b_error[2]; MagBiasSet(&magBias); // Store this value to compare against next update B2[0] = B1[0]; B2[1] = B1[1]; B2[2] = B1[2]; } #else MagBiasData magBias; MagBiasGet(&magBias); // Remove the current estimate of the bias mag->x -= magBias.x; mag->y -= magBias.y; mag->z -= magBias.z; HomeLocationData homeLocation; HomeLocationGet(&homeLocation); AttitudeActualData attitude; AttitudeActualGet(&attitude); const float Rxy = sqrtf(homeLocation.Be[0]*homeLocation.Be[0] + homeLocation.Be[1]*homeLocation.Be[1]); const float Rz = homeLocation.Be[2]; const float rate = cal.MagBiasNullingRate; float R[3][3]; float B_e[3]; float xy[2]; float delta[3]; // Get the rotation matrix Quaternion2R(&attitude.q1, R); // Rotate the mag into the NED frame B_e[0] = R[0][0] * mag->x + R[1][0] * mag->y + R[2][0] * mag->z; B_e[1] = R[0][1] * mag->x + R[1][1] * mag->y + R[2][1] * mag->z; B_e[2] = R[0][2] * mag->x + R[1][2] * mag->y + R[2][2] * mag->z; float cy = cosf(attitude.Yaw * M_PI / 180.0f); float sy = sinf(attitude.Yaw * M_PI / 180.0f); xy[0] = cy * B_e[0] + sy * B_e[1]; xy[1] = -sy * B_e[0] + cy * B_e[1]; float xy_norm = sqrtf(xy[0]*xy[0] + xy[1]*xy[1]); delta[0] = -rate * (xy[0] / xy_norm * Rxy - xy[0]); delta[1] = -rate * (xy[1] / xy_norm * Rxy - xy[1]); delta[2] = -rate * (Rz - B_e[2]); if (delta[0] == delta[0] && delta[1] == delta[1] && delta[2] == delta[2]) { magBias.x += delta[0]; magBias.y += delta[1]; magBias.z += delta[2]; MagBiasSet(&magBias); } #endif }
static filterResult filter(stateFilter *self, stateEstimation *state) { struct data *this = (struct data *)self->localdata; if (reloadSettings) { reloadSettings = false; AltitudeFilterSettingsGet(&this->settings); } if (this->first_run) { // Initialize to current altitude reading at initial location if (IS_SET(state->updated, SENSORUPDATES_baro)) { this->first_run = 0; this->initTimer = xTaskGetTickCount(); } } else { // save existing position and velocity updates so GPS will still work if (IS_SET(state->updated, SENSORUPDATES_pos)) { this->pos[0] = state->pos[0]; this->pos[1] = state->pos[1]; this->pos[2] = state->pos[2]; state->pos[2] = -this->altitudeState; } if (IS_SET(state->updated, SENSORUPDATES_vel)) { this->vel[0] = state->vel[0]; this->vel[1] = state->vel[1]; this->vel[2] = state->vel[2]; state->vel[2] = -this->velocityState; } if (IS_SET(state->updated, SENSORUPDATES_accel)) { // rotate accels into global coordinate frame AttitudeStateData att; AttitudeStateGet(&att); float Rbe[3][3]; Quaternion2R(&att.q1, Rbe); float current = -(Rbe[0][2] * state->accel[0] + Rbe[1][2] * state->accel[1] + Rbe[2][2] * state->accel[2] + this->gravity); // low pass filter accelerometers this->accelState = (1.0f - this->settings.AccelLowPassKp) * this->accelState + this->settings.AccelLowPassKp * current; if (((xTaskGetTickCount() - this->initTimer) / portTICK_RATE_MS) < INITIALIZATION_DURATION_MS) { // allow the offset to reach quickly the target value in case of small AccelDriftKi this->accelBiasState = (1.0f - this->settings.InitializationAccelDriftKi) * this->accelBiasState + this->settings.InitializationAccelDriftKi * this->accelState; } else { // correct accel offset (low pass zeroing) this->accelBiasState = (1.0f - this->settings.AccelDriftKi) * this->accelBiasState + this->settings.AccelDriftKi * this->accelState; } // correct velocity and position state (integration) // low pass for average dT, compensate timing jitter from scheduler // float dT = PIOS_DELTATIME_GetAverageSeconds(&this->dt1config); float speedLast = this->velocityState; this->velocityState += 0.5f * (this->accelLast + (this->accelState - this->accelBiasState)) * dT; this->accelLast = this->accelState - this->accelBiasState; this->altitudeState += 0.5f * (speedLast + this->velocityState) * dT; state->pos[0] = this->pos[0]; state->pos[1] = this->pos[1]; state->pos[2] = -this->altitudeState; state->updated |= SENSORUPDATES_pos; state->vel[0] = this->vel[0]; state->vel[1] = this->vel[1]; state->vel[2] = -this->velocityState; state->updated |= SENSORUPDATES_vel; } if (IS_SET(state->updated, SENSORUPDATES_baro)) { // correct the altitude state (simple low pass) this->altitudeState = (1.0f - this->settings.BaroKp) * this->altitudeState + this->settings.BaroKp * state->baro[0]; // correct the velocity state (low pass differentiation) // low pass for average dT, compensate timing jitter from scheduler float dT = PIOS_DELTATIME_GetAverageSeconds(&this->dt2config); this->velocityState = (1.0f - (this->settings.BaroKp * this->settings.BaroKp)) * this->velocityState + (this->settings.BaroKp * this->settings.BaroKp) * (state->baro[0] - this->baroLast) / dT; this->baroLast = state->baro[0]; state->pos[0] = this->pos[0]; state->pos[1] = this->pos[1]; state->pos[2] = -this->altitudeState; state->updated |= SENSORUPDATES_pos; state->vel[0] = this->vel[0]; state->vel[1] = this->vel[1]; state->vel[2] = -this->velocityState; state->updated |= SENSORUPDATES_vel; } } return FILTERRESULT_OK; }
/** * Correct attitude drift. Choose from any of the following algorithms */ void updateAttitudeDrift(AccelsData * accelsData, GyrosData * gyrosData, const float delT, GlobalAttitudeVariables *glblAtt, AttitudeSettingsData *attitudeSettings, SensorSettingsData *inertialSensorSettings) { float *gyros = &gyrosData->x; float *accels = &accelsData->x; float omegaCorrP[3]; if (attitudeSettings->FilterChoice == ATTITUDESETTINGS_FILTERCHOICE_CCC) { CottonComplementaryCorrection(accels, gyros, delT, glblAtt, omegaCorrP); } else if (attitudeSettings->FilterChoice == ATTITUDESETTINGS_FILTERCHOICE_PREMERLANI || attitudeSettings->FilterChoice == ATTITUDESETTINGS_FILTERCHOICE_PREMERLANI_GPS) { if (firstpass_flag) { uint8_t module_state[MODULESETTINGS_ADMINSTATE_NUMELEM]; ModuleSettingsAdminStateGet(module_state); //Allocate memory for DCM drift globals drft = (struct GlobalDcmDriftVariables *) pvPortMalloc(sizeof (struct GlobalDcmDriftVariables)); memset(drft->GPSV_old, 0, sizeof(drft->GPSV_old)); memset(drft->omegaCorrI, 0, sizeof(drft->omegaCorrI)); memset(drft->accels_e_integrator, 0, sizeof(drft->accels_e_integrator)); // TODO: Expose these settings through UAVO drft->accelsKp = 1; drft->rollPitchKp = 20; drft->rollPitchKi = 1; drft->yawKp = 0; drft->yawKi = 0; drft->gyroCalibTau = 100; // Set flags if (module_state[MODULESETTINGS_ADMINSTATE_GPS] == MODULESETTINGS_ADMINSTATE_ENABLED && PIOS_COM_GPS) { GPSVelocityConnectCallback(GPSVelocityUpdatedCb); drft->gpsPresent_flag = true; drft->gpsVelocityDataConsumption_flag = GPS_CONSUMED; } else { drft->gpsPresent_flag = false; } #if defined (PIOS_INCLUDE_MAGNETOMETER) MagnetometerConnectCallback(MagnetometerUpdatedCb); #endif drft->magNewData_flag = false; drft->delT_between_GPS = 0; firstpass_flag = false; } // Apply arbitrary scaling to get into effective units drft->rollPitchKp = glblAtt->accelKp * 1000.0f; drft->rollPitchKi = glblAtt->accelKi * 10000.0f; // Convert quaternions into rotation matrix float Rbe[3][3]; Quaternion2R(glblAtt->q, Rbe); #if defined (PIOS_INCLUDE_GPS) if (attitudeSettings->FilterChoice == ATTITUDESETTINGS_FILTERCHOICE_PREMERLANI_GPS) { Premerlani_GPS(accels, gyros, Rbe, delT, true, glblAtt, omegaCorrP); } else if (attitudeSettings->FilterChoice == ATTITUDESETTINGS_FILTERCHOICE_PREMERLANI) #endif { Premerlani_DCM(accels, gyros, Rbe, delT, false, glblAtt, omegaCorrP); //<-- GAWD, I HATE HOW FUNCTION ARGUMENTS JUST PILE UP. IT LOOKS UNPROFESSIONAL TO MIX INPUTS AND OUTPUTS } } //Calibrate the gyroscopes. //TODO: but only calibrate when system is armed. if (0) { //<-- CURRENTLY DISABLE UNTIL TESTING CAN BE DONE. float normOmegaScalar = VectorMagnitude(gyros); calibrate_gyros_high_speed(gyros, omegaCorrP, normOmegaScalar, delT, inertialSensorSettings); } }
/** * This method performs a simple simulation of a car * * It takes in the ActuatorDesired command to rotate the aircraft and performs * a simple kinetic model where the throttle increases the energy and drag decreases * it. Changing altitude moves energy from kinetic to potential. * * 1. Update attitude based on ActuatorDesired * 2. Update position based on velocity */ static void simulateModelCar() { static double pos[3] = {0,0,0}; static double vel[3] = {0,0,0}; static double ned_accel[3] = {0,0,0}; static float q[4] = {1,0,0,0}; static float rpy[3] = {0,0,0}; // Low pass filtered actuator static float baro_offset = 0.0f; float Rbe[3][3]; const float ACTUATOR_ALPHA = 0.8; const float MAX_THRUST = 9.81 * 0.5; const float K_FRICTION = 0.2; const float GPS_PERIOD = 0.1; const float MAG_PERIOD = 1.0 / 75.0; const float BARO_PERIOD = 1.0 / 20.0; static uint32_t last_time; float dT = (PIOS_DELAY_DiffuS(last_time) / 1e6); if(dT < 1e-3) dT = 2e-3; last_time = PIOS_DELAY_GetRaw(); FlightStatusData flightStatus; FlightStatusGet(&flightStatus); ActuatorDesiredData actuatorDesired; ActuatorDesiredGet(&actuatorDesired); float thrust = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) ? actuatorDesired.Throttle * MAX_THRUST : 0; if (thrust < 0) thrust = 0; if (thrust != thrust) thrust = 0; // float control_scaling = thrust * thrustToDegs; // // In rad/s // rpy[0] = control_scaling * actuatorDesired.Roll * (1 - ACTUATOR_ALPHA) + rpy[0] * ACTUATOR_ALPHA; // rpy[1] = control_scaling * actuatorDesired.Pitch * (1 - ACTUATOR_ALPHA) + rpy[1] * ACTUATOR_ALPHA; // rpy[2] = control_scaling * actuatorDesired.Yaw * (1 - ACTUATOR_ALPHA) + rpy[2] * ACTUATOR_ALPHA; // // GyrosData gyrosData; // Skip get as we set all the fields // gyrosData.x = rpy[0] * 180 / M_PI + rand_gauss(); // gyrosData.y = rpy[1] * 180 / M_PI + rand_gauss(); // gyrosData.z = rpy[2] * 180 / M_PI + rand_gauss(); /**** 1. Update attitude ****/ RateDesiredData rateDesired; RateDesiredGet(&rateDesired); // Need to get roll angle for easy cross coupling AttitudeActualData attitudeActual; AttitudeActualGet(&attitudeActual); rpy[0] = 0; // cannot roll rpy[1] = 0; // cannot pitch rpy[2] = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) * rateDesired.Yaw * (1 - ACTUATOR_ALPHA) + rpy[2] * ACTUATOR_ALPHA; GyrosData gyrosData; // Skip get as we set all the fields gyrosData.x = rpy[0] + rand_gauss(); gyrosData.y = rpy[1] + rand_gauss(); gyrosData.z = rpy[2] + rand_gauss(); GyrosSet(&gyrosData); // Predict the attitude forward in time float qdot[4]; qdot[0] = (-q[1] * rpy[0] - q[2] * rpy[1] - q[3] * rpy[2]) * dT * DEG2RAD / 2; qdot[1] = (q[0] * rpy[0] - q[3] * rpy[1] + q[2] * rpy[2]) * dT * DEG2RAD / 2; qdot[2] = (q[3] * rpy[0] + q[0] * rpy[1] - q[1] * rpy[2]) * dT * DEG2RAD / 2; qdot[3] = (-q[2] * rpy[0] + q[1] * rpy[1] + q[0] * rpy[2]) * dT * DEG2RAD / 2; // Take a time step q[0] = q[0] + qdot[0]; q[1] = q[1] + qdot[1]; q[2] = q[2] + qdot[2]; q[3] = q[3] + qdot[3]; float qmag = sqrtf(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]); q[0] = q[0] / qmag; q[1] = q[1] / qmag; q[2] = q[2] / qmag; q[3] = q[3] / qmag; if(overideAttitude){ AttitudeActualData attitudeActual; AttitudeActualGet(&attitudeActual); attitudeActual.q1 = q[0]; attitudeActual.q2 = q[1]; attitudeActual.q3 = q[2]; attitudeActual.q4 = q[3]; AttitudeActualSet(&attitudeActual); } /**** 2. Update position based on velocity ****/ // Rbe takes a vector from body to earth. If we take (1,0,0)^T through this and then dot with airspeed // we get forward airspeed Quaternion2R(q,Rbe); double groundspeed[3] = {vel[0], vel[1], vel[2] }; double forwardSpeed = Rbe[0][0] * groundspeed[0] + Rbe[0][1] * groundspeed[1] + Rbe[0][2] * groundspeed[2]; double sidewaysSpeed = Rbe[1][0] * groundspeed[0] + Rbe[1][1] * groundspeed[1] + Rbe[1][2] * groundspeed[2]; /* Compute aerodynamic forces in body referenced frame. Later use more sophisticated equations */ /* TODO: This should become more accurate. Use the force equations to calculate lift from the */ /* various surfaces based on AoA and airspeed. From that compute torques and forces. For later */ double forces[3]; // X, Y, Z forces[0] = thrust - forwardSpeed * K_FRICTION; // Friction is applied in all directions in NED forces[1] = 0 - sidewaysSpeed * K_FRICTION * 100; // No side slip forces[2] = 0; // Negate force[2] as NED defines down as possitive, aircraft convention is Z up is positive (?) ned_accel[0] = forces[0] * Rbe[0][0] + forces[1] * Rbe[1][0] - forces[2] * Rbe[2][0]; ned_accel[1] = forces[0] * Rbe[0][1] + forces[1] * Rbe[1][1] - forces[2] * Rbe[2][1]; ned_accel[2] = 0; // Apply acceleration based on velocity ned_accel[0] -= K_FRICTION * (vel[0]); ned_accel[1] -= K_FRICTION * (vel[1]); // Predict the velocity forward in time vel[0] = vel[0] + ned_accel[0] * dT; vel[1] = vel[1] + ned_accel[1] * dT; vel[2] = vel[2] + ned_accel[2] * dT; // Predict the position forward in time pos[0] = pos[0] + vel[0] * dT; pos[1] = pos[1] + vel[1] * dT; pos[2] = pos[2] + vel[2] * dT; // Simulate hitting ground if(pos[2] > 0) { pos[2] = 0; vel[2] = 0; ned_accel[2] = 0; } // Sensor feels gravity (when not acceleration in ned frame e.g. ned_accel[2] = 0) ned_accel[2] -= GRAVITY; // Transform the accels back in to body frame AccelsData accelsData; // Skip get as we set all the fields accelsData.x = ned_accel[0] * Rbe[0][0] + ned_accel[1] * Rbe[0][1] + ned_accel[2] * Rbe[0][2] + accel_bias[0]; accelsData.y = ned_accel[0] * Rbe[1][0] + ned_accel[1] * Rbe[1][1] + ned_accel[2] * Rbe[1][2] + accel_bias[1]; accelsData.z = ned_accel[0] * Rbe[2][0] + ned_accel[1] * Rbe[2][1] + ned_accel[2] * Rbe[2][2] + accel_bias[2]; accelsData.temperature = 30; AccelsSet(&accelsData); if(baro_offset == 0) { // Hacky initialization baro_offset = 50;// * rand_gauss(); } else { // Very small drift process baro_offset += rand_gauss() / 100; } // Update baro periodically static uint32_t last_baro_time = 0; if(PIOS_DELAY_DiffuS(last_baro_time) / 1.0e6 > BARO_PERIOD) { BaroAltitudeData baroAltitude; BaroAltitudeGet(&baroAltitude); baroAltitude.Altitude = -pos[2] + baro_offset; BaroAltitudeSet(&baroAltitude); last_baro_time = PIOS_DELAY_GetRaw(); } HomeLocationData homeLocation; HomeLocationGet(&homeLocation); static float gps_vel_drift[3] = {0,0,0}; gps_vel_drift[0] = gps_vel_drift[0] * 0.65 + rand_gauss() / 5.0; gps_vel_drift[1] = gps_vel_drift[1] * 0.65 + rand_gauss() / 5.0; gps_vel_drift[2] = gps_vel_drift[2] * 0.65 + rand_gauss() / 5.0; // Update GPS periodically static uint32_t last_gps_time = 0; if(PIOS_DELAY_DiffuS(last_gps_time) / 1.0e6 > GPS_PERIOD) { // Use double precision here as simulating what GPS produces double T[3]; T[0] = homeLocation.Altitude+6.378137E6f * DEG2RAD; T[1] = cosf(homeLocation.Latitude / 10e6 * DEG2RAD)*(homeLocation.Altitude+6.378137E6) * DEG2RAD; T[2] = -1.0; static float gps_drift[3] = {0,0,0}; gps_drift[0] = gps_drift[0] * 0.95 + rand_gauss() / 10.0; gps_drift[1] = gps_drift[1] * 0.95 + rand_gauss() / 10.0; gps_drift[2] = gps_drift[2] * 0.95 + rand_gauss() / 10.0; GPSPositionData gpsPosition; GPSPositionGet(&gpsPosition); gpsPosition.Latitude = homeLocation.Latitude + ((pos[0] + gps_drift[0]) / T[0] * 10.0e6); gpsPosition.Longitude = homeLocation.Longitude + ((pos[1] + gps_drift[1])/ T[1] * 10.0e6); gpsPosition.Altitude = homeLocation.Altitude + ((pos[2] + gps_drift[2]) / T[2]); gpsPosition.Groundspeed = sqrtf(pow(vel[0] + gps_vel_drift[0],2) + pow(vel[1] + gps_vel_drift[1],2)); gpsPosition.Heading = 180 / M_PI * atan2f(vel[1] + gps_vel_drift[1],vel[0] + gps_vel_drift[0]); gpsPosition.Satellites = 7; gpsPosition.PDOP = 1; GPSPositionSet(&gpsPosition); last_gps_time = PIOS_DELAY_GetRaw(); } // Update GPS Velocity measurements static uint32_t last_gps_vel_time = 1000; // Delay by a millisecond if(PIOS_DELAY_DiffuS(last_gps_vel_time) / 1.0e6 > GPS_PERIOD) { GPSVelocityData gpsVelocity; GPSVelocityGet(&gpsVelocity); gpsVelocity.North = vel[0] + gps_vel_drift[0]; gpsVelocity.East = vel[1] + gps_vel_drift[1]; gpsVelocity.Down = vel[2] + gps_vel_drift[2]; GPSVelocitySet(&gpsVelocity); last_gps_vel_time = PIOS_DELAY_GetRaw(); } // Update mag periodically static uint32_t last_mag_time = 0; if(PIOS_DELAY_DiffuS(last_mag_time) / 1.0e6 > MAG_PERIOD) { MagnetometerData mag; mag.x = 100+homeLocation.Be[0] * Rbe[0][0] + homeLocation.Be[1] * Rbe[0][1] + homeLocation.Be[2] * Rbe[0][2]; mag.y = 100+homeLocation.Be[0] * Rbe[1][0] + homeLocation.Be[1] * Rbe[1][1] + homeLocation.Be[2] * Rbe[1][2]; mag.z = 100+homeLocation.Be[0] * Rbe[2][0] + homeLocation.Be[1] * Rbe[2][1] + homeLocation.Be[2] * Rbe[2][2]; magOffsetEstimation(&mag); MagnetometerSet(&mag); last_mag_time = PIOS_DELAY_GetRaw(); } AttitudeSimulatedData attitudeSimulated; AttitudeSimulatedGet(&attitudeSimulated); attitudeSimulated.q1 = q[0]; attitudeSimulated.q2 = q[1]; attitudeSimulated.q3 = q[2]; attitudeSimulated.q4 = q[3]; Quaternion2RPY(q,&attitudeSimulated.Roll); attitudeSimulated.Position[0] = pos[0]; attitudeSimulated.Position[1] = pos[1]; attitudeSimulated.Position[2] = pos[2]; attitudeSimulated.Velocity[0] = vel[0]; attitudeSimulated.Velocity[1] = vel[1]; attitudeSimulated.Velocity[2] = vel[2]; AttitudeSimulatedSet(&attitudeSimulated); }
static void simulateModelQuadcopter() { static double pos[3] = {0,0,0}; static double vel[3] = {0,0,0}; static double ned_accel[3] = {0,0,0}; static float q[4] = {1,0,0,0}; static float rpy[3] = {0,0,0}; // Low pass filtered actuator static float baro_offset = 0.0f; static float temperature = 20; float Rbe[3][3]; const float ACTUATOR_ALPHA = 0.8; const float MAX_THRUST = GRAVITY * 2; const float K_FRICTION = 1; const float GPS_PERIOD = 0.1; const float MAG_PERIOD = 1.0 / 75.0; const float BARO_PERIOD = 1.0 / 20.0; static uint32_t last_time; float dT = (PIOS_DELAY_DiffuS(last_time) / 1e6); if(dT < 1e-3) dT = 2e-3; last_time = PIOS_DELAY_GetRaw(); FlightStatusData flightStatus; FlightStatusGet(&flightStatus); ActuatorDesiredData actuatorDesired; ActuatorDesiredGet(&actuatorDesired); float thrust = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) ? actuatorDesired.Throttle * MAX_THRUST : 0; if (thrust < 0) thrust = 0; if (thrust != thrust) thrust = 0; // float control_scaling = thrust * thrustToDegs; // // In rad/s // rpy[0] = control_scaling * actuatorDesired.Roll * (1 - ACTUATOR_ALPHA) + rpy[0] * ACTUATOR_ALPHA; // rpy[1] = control_scaling * actuatorDesired.Pitch * (1 - ACTUATOR_ALPHA) + rpy[1] * ACTUATOR_ALPHA; // rpy[2] = control_scaling * actuatorDesired.Yaw * (1 - ACTUATOR_ALPHA) + rpy[2] * ACTUATOR_ALPHA; // // GyrosData gyrosData; // Skip get as we set all the fields // gyrosData.x = rpy[0] * 180 / M_PI + rand_gauss(); // gyrosData.y = rpy[1] * 180 / M_PI + rand_gauss(); // gyrosData.z = rpy[2] * 180 / M_PI + rand_gauss(); RateDesiredData rateDesired; RateDesiredGet(&rateDesired); rpy[0] = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) * rateDesired.Roll * (1 - ACTUATOR_ALPHA) + rpy[0] * ACTUATOR_ALPHA; rpy[1] = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) * rateDesired.Pitch * (1 - ACTUATOR_ALPHA) + rpy[1] * ACTUATOR_ALPHA; rpy[2] = (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMED) * rateDesired.Yaw * (1 - ACTUATOR_ALPHA) + rpy[2] * ACTUATOR_ALPHA; temperature = 20; GyrosData gyrosData; // Skip get as we set all the fields gyrosData.x = rpy[0] + rand_gauss() + (temperature - 20) * 1 + powf(temperature - 20,2) * 0.11; // - powf(temperature - 20,3) * 0.05;; gyrosData.y = rpy[1] + rand_gauss() + (temperature - 20) * 1 + powf(temperature - 20,2) * 0.11;; gyrosData.z = rpy[2] + rand_gauss() + (temperature - 20) * 1 + powf(temperature - 20,2) * 0.11;; gyrosData.temperature = temperature; GyrosSet(&gyrosData); // Predict the attitude forward in time float qdot[4]; qdot[0] = (-q[1] * rpy[0] - q[2] * rpy[1] - q[3] * rpy[2]) * dT * DEG2RAD / 2; qdot[1] = (q[0] * rpy[0] - q[3] * rpy[1] + q[2] * rpy[2]) * dT * DEG2RAD / 2; qdot[2] = (q[3] * rpy[0] + q[0] * rpy[1] - q[1] * rpy[2]) * dT * DEG2RAD / 2; qdot[3] = (-q[2] * rpy[0] + q[1] * rpy[1] + q[0] * rpy[2]) * dT * DEG2RAD / 2; // Take a time step q[0] = q[0] + qdot[0]; q[1] = q[1] + qdot[1]; q[2] = q[2] + qdot[2]; q[3] = q[3] + qdot[3]; float qmag = sqrtf(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]); q[0] = q[0] / qmag; q[1] = q[1] / qmag; q[2] = q[2] / qmag; q[3] = q[3] / qmag; if(overideAttitude){ AttitudeActualData attitudeActual; AttitudeActualGet(&attitudeActual); attitudeActual.q1 = q[0]; attitudeActual.q2 = q[1]; attitudeActual.q3 = q[2]; attitudeActual.q4 = q[3]; AttitudeActualSet(&attitudeActual); } static float wind[3] = {0,0,0}; wind[0] = wind[0] * 0.95 + rand_gauss() / 10.0; wind[1] = wind[1] * 0.95 + rand_gauss() / 10.0; wind[2] = wind[2] * 0.95 + rand_gauss() / 10.0; Quaternion2R(q,Rbe); // Make thrust negative as down is positive ned_accel[0] = -thrust * Rbe[2][0]; ned_accel[1] = -thrust * Rbe[2][1]; // Gravity causes acceleration of 9.81 in the down direction ned_accel[2] = -thrust * Rbe[2][2] + GRAVITY; // Apply acceleration based on velocity ned_accel[0] -= K_FRICTION * (vel[0] - wind[0]); ned_accel[1] -= K_FRICTION * (vel[1] - wind[1]); ned_accel[2] -= K_FRICTION * (vel[2] - wind[2]); // Predict the velocity forward in time vel[0] = vel[0] + ned_accel[0] * dT; vel[1] = vel[1] + ned_accel[1] * dT; vel[2] = vel[2] + ned_accel[2] * dT; // Predict the position forward in time pos[0] = pos[0] + vel[0] * dT; pos[1] = pos[1] + vel[1] * dT; pos[2] = pos[2] + vel[2] * dT; // Simulate hitting ground if(pos[2] > 0) { pos[2] = 0; vel[2] = 0; ned_accel[2] = 0; } // Sensor feels gravity (when not acceleration in ned frame e.g. ned_accel[2] = 0) ned_accel[2] -= 9.81; // Transform the accels back in to body frame AccelsData accelsData; // Skip get as we set all the fields accelsData.x = ned_accel[0] * Rbe[0][0] + ned_accel[1] * Rbe[0][1] + ned_accel[2] * Rbe[0][2] + accel_bias[0]; accelsData.y = ned_accel[0] * Rbe[1][0] + ned_accel[1] * Rbe[1][1] + ned_accel[2] * Rbe[1][2] + accel_bias[1]; accelsData.z = ned_accel[0] * Rbe[2][0] + ned_accel[1] * Rbe[2][1] + ned_accel[2] * Rbe[2][2] + accel_bias[2]; accelsData.temperature = 30; AccelsSet(&accelsData); if(baro_offset == 0) { // Hacky initialization baro_offset = 50;// * rand_gauss(); } else { // Very small drift process baro_offset += rand_gauss() / 100; } // Update baro periodically static uint32_t last_baro_time = 0; if(PIOS_DELAY_DiffuS(last_baro_time) / 1.0e6 > BARO_PERIOD) { BaroAltitudeData baroAltitude; BaroAltitudeGet(&baroAltitude); baroAltitude.Altitude = -pos[2] + baro_offset; BaroAltitudeSet(&baroAltitude); last_baro_time = PIOS_DELAY_GetRaw(); } HomeLocationData homeLocation; HomeLocationGet(&homeLocation); static float gps_vel_drift[3] = {0,0,0}; gps_vel_drift[0] = gps_vel_drift[0] * 0.65 + rand_gauss() / 5.0; gps_vel_drift[1] = gps_vel_drift[1] * 0.65 + rand_gauss() / 5.0; gps_vel_drift[2] = gps_vel_drift[2] * 0.65 + rand_gauss() / 5.0; // Update GPS periodically static uint32_t last_gps_time = 0; if(PIOS_DELAY_DiffuS(last_gps_time) / 1.0e6 > GPS_PERIOD) { // Use double precision here as simulating what GPS produces double T[3]; T[0] = homeLocation.Altitude+6.378137E6f * DEG2RAD; T[1] = cosf(homeLocation.Latitude / 10e6 * DEG2RAD)*(homeLocation.Altitude+6.378137E6) * DEG2RAD; T[2] = -1.0; static float gps_drift[3] = {0,0,0}; gps_drift[0] = gps_drift[0] * 0.95 + rand_gauss() / 10.0; gps_drift[1] = gps_drift[1] * 0.95 + rand_gauss() / 10.0; gps_drift[2] = gps_drift[2] * 0.95 + rand_gauss() / 10.0; GPSPositionData gpsPosition; GPSPositionGet(&gpsPosition); gpsPosition.Latitude = homeLocation.Latitude + ((pos[0] + gps_drift[0]) / T[0] * 10.0e6); gpsPosition.Longitude = homeLocation.Longitude + ((pos[1] + gps_drift[1])/ T[1] * 10.0e6); gpsPosition.Altitude = homeLocation.Altitude + ((pos[2] + gps_drift[2]) / T[2]); gpsPosition.Groundspeed = sqrtf(pow(vel[0] + gps_vel_drift[0],2) + pow(vel[1] + gps_vel_drift[1],2)); gpsPosition.Heading = 180 / M_PI * atan2f(vel[1] + gps_vel_drift[1],vel[0] + gps_vel_drift[0]); gpsPosition.Satellites = 7; gpsPosition.PDOP = 1; gpsPosition.Status = GPSPOSITION_STATUS_FIX3D; GPSPositionSet(&gpsPosition); last_gps_time = PIOS_DELAY_GetRaw(); } // Update GPS Velocity measurements static uint32_t last_gps_vel_time = 1000; // Delay by a millisecond if(PIOS_DELAY_DiffuS(last_gps_vel_time) / 1.0e6 > GPS_PERIOD) { GPSVelocityData gpsVelocity; GPSVelocityGet(&gpsVelocity); gpsVelocity.North = vel[0] + gps_vel_drift[0]; gpsVelocity.East = vel[1] + gps_vel_drift[1]; gpsVelocity.Down = vel[2] + gps_vel_drift[2]; GPSVelocitySet(&gpsVelocity); last_gps_vel_time = PIOS_DELAY_GetRaw(); } // Update mag periodically static uint32_t last_mag_time = 0; if(PIOS_DELAY_DiffuS(last_mag_time) / 1.0e6 > MAG_PERIOD) { MagnetometerData mag; mag.x = homeLocation.Be[0] * Rbe[0][0] + homeLocation.Be[1] * Rbe[0][1] + homeLocation.Be[2] * Rbe[0][2]; mag.y = homeLocation.Be[0] * Rbe[1][0] + homeLocation.Be[1] * Rbe[1][1] + homeLocation.Be[2] * Rbe[1][2]; mag.z = homeLocation.Be[0] * Rbe[2][0] + homeLocation.Be[1] * Rbe[2][1] + homeLocation.Be[2] * Rbe[2][2]; // Run the offset compensation algorithm from the firmware magOffsetEstimation(&mag); MagnetometerSet(&mag); last_mag_time = PIOS_DELAY_GetRaw(); } AttitudeSimulatedData attitudeSimulated; AttitudeSimulatedGet(&attitudeSimulated); attitudeSimulated.q1 = q[0]; attitudeSimulated.q2 = q[1]; attitudeSimulated.q3 = q[2]; attitudeSimulated.q4 = q[3]; Quaternion2RPY(q,&attitudeSimulated.Roll); attitudeSimulated.Position[0] = pos[0]; attitudeSimulated.Position[1] = pos[1]; attitudeSimulated.Position[2] = pos[2]; attitudeSimulated.Velocity[0] = vel[0]; attitudeSimulated.Velocity[1] = vel[1]; attitudeSimulated.Velocity[2] = vel[2]; AttitudeSimulatedSet(&attitudeSimulated); }
static int32_t updateAttitudeComplementary(bool first_run) { UAVObjEvent ev; GyrosData gyrosData; AccelsData accelsData; static int32_t timeval; float dT; static uint8_t init = 0; // Wait until the AttitudeRaw object is updated, if a timeout then go to failsafe if ( xQueueReceive(gyroQueue, &ev, FAILSAFE_TIMEOUT_MS / portTICK_RATE_MS) != pdTRUE || xQueueReceive(accelQueue, &ev, 1 / portTICK_RATE_MS) != pdTRUE ) { // When one of these is updated so should the other // Do not set attitude timeout warnings in simulation mode if (!AttitudeActualReadOnly()){ AlarmsSet(SYSTEMALARMS_ALARM_ATTITUDE,SYSTEMALARMS_ALARM_WARNING); return -1; } } AccelsGet(&accelsData); // During initialization and FlightStatusData flightStatus; FlightStatusGet(&flightStatus); if(first_run) { #if defined(PIOS_INCLUDE_HMC5883) // To initialize we need a valid mag reading if ( xQueueReceive(magQueue, &ev, 0 / portTICK_RATE_MS) != pdTRUE ) return -1; MagnetometerData magData; MagnetometerGet(&magData); #else MagnetometerData magData; magData.x = 100; magData.y = 0; magData.z = 0; #endif AttitudeActualData attitudeActual; AttitudeActualGet(&attitudeActual); init = 0; attitudeActual.Roll = atan2f(-accelsData.y, -accelsData.z) * 180.0f / F_PI; attitudeActual.Pitch = atan2f(accelsData.x, -accelsData.z) * 180.0f / F_PI; attitudeActual.Yaw = atan2f(-magData.y, magData.x) * 180.0f / F_PI; RPY2Quaternion(&attitudeActual.Roll,&attitudeActual.q1); AttitudeActualSet(&attitudeActual); timeval = PIOS_DELAY_GetRaw(); return 0; } if((init == 0 && xTaskGetTickCount() < 7000) && (xTaskGetTickCount() > 1000)) { // For first 7 seconds use accels to get gyro bias attitudeSettings.AccelKp = 1; attitudeSettings.AccelKi = 0.9; attitudeSettings.YawBiasRate = 0.23; magKp = 1; } else if ((attitudeSettings.ZeroDuringArming == ATTITUDESETTINGS_ZERODURINGARMING_TRUE) && (flightStatus.Armed == FLIGHTSTATUS_ARMED_ARMING)) { attitudeSettings.AccelKp = 1; attitudeSettings.AccelKi = 0.9; attitudeSettings.YawBiasRate = 0.23; magKp = 1; init = 0; } else if (init == 0) { // Reload settings (all the rates) AttitudeSettingsGet(&attitudeSettings); magKp = 0.01f; init = 1; } GyrosGet(&gyrosData); // Compute the dT using the cpu clock dT = PIOS_DELAY_DiffuS(timeval) / 1000000.0f; timeval = PIOS_DELAY_GetRaw(); float q[4]; AttitudeActualData attitudeActual; AttitudeActualGet(&attitudeActual); float grot[3]; float accel_err[3]; // Get the current attitude estimate quat_copy(&attitudeActual.q1, q); // Rotate gravity to body frame and cross with accels grot[0] = -(2 * (q[1] * q[3] - q[0] * q[2])); grot[1] = -(2 * (q[2] * q[3] + q[0] * q[1])); grot[2] = -(q[0] * q[0] - q[1]*q[1] - q[2]*q[2] + q[3]*q[3]); CrossProduct((const float *) &accelsData.x, (const float *) grot, accel_err); // Account for accel magnitude accel_mag = accelsData.x*accelsData.x + accelsData.y*accelsData.y + accelsData.z*accelsData.z; accel_mag = sqrtf(accel_mag); accel_err[0] /= accel_mag; accel_err[1] /= accel_mag; accel_err[2] /= accel_mag; if ( xQueueReceive(magQueue, &ev, 0) != pdTRUE ) { // Rotate gravity to body frame and cross with accels float brot[3]; float Rbe[3][3]; MagnetometerData mag; Quaternion2R(q, Rbe); MagnetometerGet(&mag); // If the mag is producing bad data don't use it (normally bad calibration) if (mag.x == mag.x && mag.y == mag.y && mag.z == mag.z) { rot_mult(Rbe, homeLocation.Be, brot); float mag_len = sqrtf(mag.x * mag.x + mag.y * mag.y + mag.z * mag.z); mag.x /= mag_len; mag.y /= mag_len; mag.z /= mag_len; float bmag = sqrtf(brot[0] * brot[0] + brot[1] * brot[1] + brot[2] * brot[2]); brot[0] /= bmag; brot[1] /= bmag; brot[2] /= bmag; // Only compute if neither vector is null if (bmag < 1 || mag_len < 1) mag_err[0] = mag_err[1] = mag_err[2] = 0; else CrossProduct((const float *) &mag.x, (const float *) brot, mag_err); } } else { mag_err[0] = mag_err[1] = mag_err[2] = 0; } // Accumulate integral of error. Scale here so that units are (deg/s) but Ki has units of s GyrosBiasData gyrosBias; GyrosBiasGet(&gyrosBias); gyrosBias.x -= accel_err[0] * attitudeSettings.AccelKi; gyrosBias.y -= accel_err[1] * attitudeSettings.AccelKi; gyrosBias.z -= mag_err[2] * magKi; GyrosBiasSet(&gyrosBias); // Correct rates based on error, integral component dealt with in updateSensors gyrosData.x += accel_err[0] * attitudeSettings.AccelKp / dT; gyrosData.y += accel_err[1] * attitudeSettings.AccelKp / dT; gyrosData.z += accel_err[2] * attitudeSettings.AccelKp / dT + mag_err[2] * magKp / dT; // Work out time derivative from INSAlgo writeup // Also accounts for the fact that gyros are in deg/s float qdot[4]; qdot[0] = (-q[1] * gyrosData.x - q[2] * gyrosData.y - q[3] * gyrosData.z) * dT * F_PI / 180 / 2; qdot[1] = (q[0] * gyrosData.x - q[3] * gyrosData.y + q[2] * gyrosData.z) * dT * F_PI / 180 / 2; qdot[2] = (q[3] * gyrosData.x + q[0] * gyrosData.y - q[1] * gyrosData.z) * dT * F_PI / 180 / 2; qdot[3] = (-q[2] * gyrosData.x + q[1] * gyrosData.y + q[0] * gyrosData.z) * dT * F_PI / 180 / 2; // Take a time step q[0] = q[0] + qdot[0]; q[1] = q[1] + qdot[1]; q[2] = q[2] + qdot[2]; q[3] = q[3] + qdot[3]; if(q[0] < 0) { q[0] = -q[0]; q[1] = -q[1]; q[2] = -q[2]; q[3] = -q[3]; } // Renomalize qmag = sqrtf(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]); q[0] = q[0] / qmag; q[1] = q[1] / qmag; q[2] = q[2] / qmag; q[3] = q[3] / qmag; // If quaternion has become inappropriately short or is nan reinit. // THIS SHOULD NEVER ACTUALLY HAPPEN if((fabs(qmag) < 1.0e-3f) || (qmag != qmag)) { q[0] = 1; q[1] = 0; q[2] = 0; q[3] = 0; } quat_copy(q, &attitudeActual.q1); // Convert into eueler degrees (makes assumptions about RPY order) Quaternion2RPY(&attitudeActual.q1,&attitudeActual.Roll); AttitudeActualSet(&attitudeActual); // Flush these queues for avoid errors xQueueReceive(baroQueue, &ev, 0); if ( xQueueReceive(gpsQueue, &ev, 0) == pdTRUE && homeLocation.Set == HOMELOCATION_SET_TRUE ) { float NED[3]; // Transform the GPS position into NED coordinates GPSPositionData gpsPosition; GPSPositionGet(&gpsPosition); getNED(&gpsPosition, NED); PositionActualData positionActual; PositionActualGet(&positionActual); positionActual.North = NED[0]; positionActual.East = NED[1]; positionActual.Down = NED[2]; PositionActualSet(&positionActual); } if ( xQueueReceive(gpsVelQueue, &ev, 0) == pdTRUE ) { // Transform the GPS position into NED coordinates GPSVelocityData gpsVelocity; GPSVelocityGet(&gpsVelocity); VelocityActualData velocityActual; VelocityActualGet(&velocityActual); velocityActual.North = gpsVelocity.North; velocityActual.East = gpsVelocity.East; velocityActual.Down = gpsVelocity.Down; VelocityActualSet(&velocityActual); } AlarmsClear(SYSTEMALARMS_ALARM_ATTITUDE); return 0; }
static void settingsUpdatedCb(UAVObjEvent * objEv) { AttitudeSettingsData attitudeSettings; AttitudeSettingsGet(&attitudeSettings); SensorSettingsGet(&sensorSettings); accelKp = attitudeSettings.AccelKp; accelKi = attitudeSettings.AccelKi; yawBiasRate = attitudeSettings.YawBiasRate; // Calculate accel filter alpha, in the same way as for gyro data in stabilization module. const float fakeDt = 0.0025f; if(attitudeSettings.AccelTau < 0.0001f) { accel_alpha = 0; // not trusting this to resolve to 0 accel_filter_enabled = false; } else { accel_alpha = expf(-fakeDt / attitudeSettings.AccelTau); accel_filter_enabled = true; } zero_during_arming = attitudeSettings.ZeroDuringArming == ATTITUDESETTINGS_ZERODURINGARMING_TRUE; bias_correct_gyro = attitudeSettings.BiasCorrectGyro == ATTITUDESETTINGS_BIASCORRECTGYRO_TRUE; gyro_correct_int[0] = 0; gyro_correct_int[1] = 0; gyro_correct_int[2] = 0; // Indicates not to expend cycles on rotation if(attitudeSettings.BoardRotation[0] == 0 && attitudeSettings.BoardRotation[1] == 0 && attitudeSettings.BoardRotation[2] == 0) { rotate = 0; // Shouldn't be used but to be safe float rotationQuat[4] = {1,0,0,0}; Quaternion2R(rotationQuat, Rsb); } else { float rotationQuat[4]; const float rpy[3] = {attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_ROLL] / 100.0f, attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_PITCH] / 100.0f, attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_YAW] / 100.0f }; RPY2Quaternion(rpy, rotationQuat); Quaternion2R(rotationQuat, Rsb); rotate = 1; } if (attitudeSettings.TrimFlight == ATTITUDESETTINGS_TRIMFLIGHT_START) { trim_accels[0] = 0; trim_accels[1] = 0; trim_accels[2] = 0; trim_samples = 0; trim_requested = true; } else if (attitudeSettings.TrimFlight == ATTITUDESETTINGS_TRIMFLIGHT_LOAD) { trim_requested = false; // Get sensor data mean float a_body[3] = { trim_accels[0] / trim_samples, trim_accels[1] / trim_samples, trim_accels[2] / trim_samples }; // Inverse rotation of sensor data, from body frame into sensor frame float a_sensor[3]; rot_mult(Rsb, a_body, a_sensor, false); // Temporary variables float psi, theta, phi; psi = attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_YAW] * DEG2RAD / 100.0f; float cP = cosf(psi); float sP = sinf(psi); // In case psi is too small, we have to use a different equation to solve for theta if (fabsf(psi) > PI / 2) theta = atanf((a_sensor[1] + cP * (sP * a_sensor[0] - cP * a_sensor[1])) / (sP * a_sensor[2])); else theta = atanf((a_sensor[0] - sP * (sP * a_sensor[0] - cP * a_sensor[1])) / (cP * a_sensor[2])); phi = atan2f((sP * a_sensor[0] - cP * a_sensor[1]) / GRAVITY, (a_sensor[2] / cosf(theta) / GRAVITY)); attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_ROLL] = phi * RAD2DEG * 100.0f; attitudeSettings.BoardRotation[ATTITUDESETTINGS_BOARDROTATION_PITCH] = theta * RAD2DEG * 100.0f; attitudeSettings.TrimFlight = ATTITUDESETTINGS_TRIMFLIGHT_NORMAL; AttitudeSettingsSet(&attitudeSettings); } }