Exemple #1
0
/*
 * Allocate a new page (either by recycling, or by extending the index file).
 *
 * The returned buffer is already pinned and exclusive-locked.
 * Caller is responsible for initializing the page by calling SpGistInitBuffer.
 */
Buffer
SpGistNewBuffer(Relation index)
{
	Buffer		buffer;
	bool		needLock;

	/* First, try to get a page from FSM */
	for (;;)
	{
		BlockNumber blkno = GetFreeIndexPage(index);

		if (blkno == InvalidBlockNumber)
			break;				/* nothing known to FSM */

		/*
		 * The fixed pages shouldn't ever be listed in FSM, but just in case
		 * one is, ignore it.
		 */
		if (SpGistBlockIsFixed(blkno))
			continue;

		buffer = ReadBuffer(index, blkno);

		/*
		 * We have to guard against the possibility that someone else already
		 * recycled this page; the buffer may be locked if so.
		 */
		if (ConditionalLockBuffer(buffer))
		{
			Page		page = BufferGetPage(buffer);

			if (PageIsNew(page))
				return buffer;	/* OK to use, if never initialized */

			if (SpGistPageIsDeleted(page) || PageIsEmpty(page))
				return buffer;	/* OK to use */

			LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
		}

		/* Can't use it, so release buffer and try again */
		ReleaseBuffer(buffer);
	}

	/* Must extend the file */
	needLock = !RELATION_IS_LOCAL(index);
	if (needLock)
		LockRelationForExtension(index, ExclusiveLock);

	buffer = ReadBuffer(index, P_NEW);
	LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);

	if (needLock)
		UnlockRelationForExtension(index, ExclusiveLock);

	return buffer;
}
Exemple #2
0
/*
 * Allocate a new page (either by recycling, or by extending the index file)
 *
 * The returned buffer is already pinned and exclusive-locked
 *
 * Caller is responsible for initializing the page by calling GISTInitBuffer
 */
Buffer
gistNewBuffer(Relation r)
{
	Buffer		buffer;
	bool		needLock;

	MIRROREDLOCK_BUFMGR_MUST_ALREADY_BE_HELD;

	/* First, try to get a page from FSM */
	for (;;)
	{
		BlockNumber blkno = GetFreeIndexPage(&r->rd_node);

		if (blkno == InvalidBlockNumber)
			break;				/* nothing left in FSM */

		buffer = ReadBuffer(r, blkno);

		/*
		 * We have to guard against the possibility that someone else already
		 * recycled this page; the buffer may be locked if so.
		 */
		if (ConditionalLockBuffer(buffer))
		{
			Page		page = BufferGetPage(buffer);

			if (PageIsNew(page))
				return buffer;	/* OK to use, if never initialized */

			gistcheckpage(r, buffer);

			if (GistPageIsDeleted(page))
				return buffer;	/* OK to use */

			LockBuffer(buffer, GIST_UNLOCK);
		}

		/* Can't use it, so release buffer and try again */
		ReleaseBuffer(buffer);
	}

	/* Must extend the file */
	needLock = !RELATION_IS_LOCAL(r);

	if (needLock)
		LockRelationForExtension(r, ExclusiveLock);

	buffer = ReadBuffer(r, P_NEW);
	LockBuffer(buffer, GIST_EXCLUSIVE);

	if (needLock)
		UnlockRelationForExtension(r, ExclusiveLock);

	return buffer;
}
Buffer
GinNewBuffer(Relation index)
{
	Buffer		buffer;
	bool		needLock;

	/* First, try to get a page from FSM */
	for (;;)
	{
		BlockNumber blkno = GetFreeIndexPage(index);

		if (blkno == InvalidBlockNumber)
			break;

		buffer = ReadBuffer(index, blkno);

		/*
		 * We have to guard against the possibility that someone else already
		 * recycled this page; the buffer may be locked if so.
		 */
		if (ConditionalLockBuffer(buffer))
		{
			Page		page = BufferGetPage(buffer);

			if (PageIsNew(page))
				return buffer;	/* OK to use, if never initialized */

			if (GinPageIsDeleted(page))
				return buffer;	/* OK to use */

			LockBuffer(buffer, GIN_UNLOCK);
		}

		/* Can't use it, so release buffer and try again */
		ReleaseBuffer(buffer);
	}

	/* Must extend the file */
	needLock = !RELATION_IS_LOCAL(index);
	if (needLock)
		LockRelationForExtension(index, ExclusiveLock);

	buffer = ReadBuffer(index, P_NEW);
	LockBuffer(buffer, GIN_EXCLUSIVE);

	if (needLock)
		UnlockRelationForExtension(index, ExclusiveLock);

	return buffer;
}
Exemple #4
0
/*
 * _bitmap_getbuf() -- return the buffer for the given block number and
 * 					   the access method.
 */
Buffer
_bitmap_getbuf(Relation rel, BlockNumber blkno, int access)
{
	Buffer buf;

	MIRROREDLOCK_BUFMGR_MUST_ALREADY_BE_HELD;

	if (blkno != P_NEW)
	{
		buf = ReadBuffer(rel, blkno);
		if (access != BM_NOLOCK)
			LockBuffer(buf, access);
	}

	else
	{
		bool		needLock;

		Assert(access == BM_WRITE);

		/*
		 * Extend the relation by one page.
		 *
		 * We have to use a lock to ensure no one else is extending the rel at
		 * the same time, else we will both try to initialize the same new
		 * page.  We can skip locking for new or temp relations, however,
		 * since no one else could be accessing them.
		 */
		needLock = !RELATION_IS_LOCAL(rel);

		if (needLock)
			LockRelationForExtension(rel, ExclusiveLock);

		buf = ReadBuffer(rel, P_NEW);

		/* Acquire buffer lock on new page */
		LockBuffer(buf, BM_WRITE);

		/*
		 * Release the file-extension lock; it's now OK for someone else to
		 * extend the relation some more.
		 */
		if (needLock)
			UnlockRelationForExtension(rel, ExclusiveLock);
	}

	return buf;
}
Exemple #5
0
/*
 * _bt_mergeload - Merge two streams of index tuples into new index files.
 */
static void
_bt_mergeload(Spooler *self, BTWriteState *wstate, BTSpool *btspool, BTReader *btspool2, Relation heapRel)
{
	BTPageState	   *state = NULL;
	IndexTuple		itup,
					itup2;
	bool			should_free = false;
	TupleDesc		tupdes = RelationGetDescr(wstate->index);
	int				keysz = RelationGetNumberOfAttributes(wstate->index);
	ScanKey			indexScanKey;
	ON_DUPLICATE	on_duplicate = self->on_duplicate;

	Assert(btspool != NULL);

	/* the preparation of merge */
	itup = BTSpoolGetNextItem(btspool, NULL, &should_free);
	itup2 = BTReaderGetNextItem(btspool2);
	indexScanKey = _bt_mkscankey_nodata(wstate->index);

	for (;;)
	{
		bool	load1 = true;		/* load BTSpool next ? */
		bool	hasnull;
		int32	compare;

		if (self->dup_old + self->dup_new > self->max_dup_errors)
			ereport(ERROR,
					(errcode(ERRCODE_INTERNAL_ERROR),
					 errmsg("Maximum duplicate error count exceeded")));

		if (itup2 == NULL)
		{
			if (itup == NULL)
				break;
		}
		else if (itup != NULL)
		{
			compare = compare_indextuple(itup, itup2, indexScanKey,
										 keysz, tupdes, &hasnull);

			if (compare == 0 && !hasnull && btspool->isunique)
			{
				ItemPointerData t_tid2;

				/*
				 * t_tid is update by heap_is_visible(), because use it for an
				 * index, t_tid backup
				 */
				ItemPointerCopy(&itup2->t_tid, &t_tid2);

				/* The tuple pointed by the old index should not be visible. */
				if (!heap_is_visible(heapRel, &itup->t_tid))
				{
					itup = BTSpoolGetNextItem(btspool, itup, &should_free);
				}
				else if (!heap_is_visible(heapRel, &itup2->t_tid))
				{
					itup2 = BTReaderGetNextItem(btspool2);
				}
				else
				{
					if (on_duplicate == ON_DUPLICATE_KEEP_NEW)
					{
						self->dup_old++;
						remove_duplicate(self, heapRel, itup2,
							RelationGetRelationName(wstate->index));
						itup2 = BTReaderGetNextItem(btspool2);
					}
					else
					{
						ItemPointerCopy(&t_tid2, &itup2->t_tid);
						self->dup_new++;
						remove_duplicate(self, heapRel, itup,
							RelationGetRelationName(wstate->index));
						itup = BTSpoolGetNextItem(btspool, itup, &should_free);
					}
				}

				continue;
			}
			else if (compare > 0)
				load1 = false;
		}
		else
			load1 = false;

		BULKLOAD_PROFILE(&prof_merge_unique);

		/* When we see first tuple, create first index page */
		if (state == NULL)
			state = _bt_pagestate(wstate, 0);

		if (load1)
		{
			IndexTuple	next_itup = NULL;
			bool		next_should_free = false;

			for (;;)
			{
				/* get next item */
				next_itup = BTSpoolGetNextItem(btspool, next_itup,
											   &next_should_free);

				if (!btspool->isunique || next_itup == NULL)
					break;

				compare = compare_indextuple(itup, next_itup, indexScanKey,
											 keysz, tupdes, &hasnull);
				if (compare < 0 || hasnull)
					break;

				if (compare > 0)
				{
					/* shouldn't happen */
					elog(ERROR, "faild in tuplesort_performsort");
				}

				/*
				 * If tupple is deleted by other unique indexes, not visible
				 */
				if (!heap_is_visible(heapRel, &next_itup->t_tid))
				{
					continue;
				}

				if (!heap_is_visible(heapRel, &itup->t_tid))
				{
					if (should_free)
						pfree(itup);

					itup = next_itup;
					should_free = next_should_free;
					next_should_free = false;
					continue;
				}

				/* not unique between input files */
				self->dup_new++;
				remove_duplicate(self, heapRel, next_itup,
								 RelationGetRelationName(wstate->index));

				if (self->dup_old + self->dup_new > self->max_dup_errors)
					ereport(ERROR,
							(errcode(ERRCODE_INTERNAL_ERROR),
							 errmsg("Maximum duplicate error count exceeded")));
			}

			_bt_buildadd(wstate, state, itup);

			if (should_free)
				pfree(itup);

			itup = next_itup;
			should_free = next_should_free;
		}
		else
		{
			_bt_buildadd(wstate, state, itup2);
			itup2 = BTReaderGetNextItem(btspool2);
		}
		BULKLOAD_PROFILE(&prof_merge_insert);
	}
	_bt_freeskey(indexScanKey);

	/* Close down final pages and write the metapage */
	_bt_uppershutdown(wstate, state);

	/*
	 * If the index isn't temp, we must fsync it down to disk before it's safe
	 * to commit the transaction.  (For a temp index we don't care since the
	 * index will be uninteresting after a crash anyway.)
	 *
	 * It's obvious that we must do this when not WAL-logging the build. It's
	 * less obvious that we have to do it even if we did WAL-log the index
	 * pages.  The reason is that since we're building outside shared buffers,
	 * a CHECKPOINT occurring during the build has no way to flush the
	 * previously written data to disk (indeed it won't know the index even
	 * exists).  A crash later on would replay WAL from the checkpoint,
	 * therefore it wouldn't replay our earlier WAL entries. If we do not
	 * fsync those pages here, they might still not be on disk when the crash
	 * occurs.
	 */
	if (!RELATION_IS_LOCAL(wstate->index))
	{
		RelationOpenSmgr(wstate->index);
		smgrimmedsync(wstate->index->rd_smgr, MAIN_FORKNUM);
	}
	BULKLOAD_PROFILE(&prof_merge_term);
}
Exemple #6
0
static void
_bt_mergebuild(Spooler *self, BTSpool *btspool)
{
	Relation heapRel = self->relinfo->ri_RelationDesc;
	BTWriteState	wstate;
	BTReader		reader;
	bool			merge;

	Assert(btspool->index->rd_index->indisvalid);

	tuplesort_performsort(btspool->sortstate);

	wstate.index = btspool->index;

	/*
	 * We need to log index creation in WAL iff WAL archiving is enabled AND
	 * it's not a temp index.
	 */
	wstate.btws_use_wal = self->use_wal &&
		XLogArchivingActive() && !RELATION_IS_LOCAL(wstate.index);

	/* reserve the metapage */
	wstate.btws_pages_alloced = BTREE_METAPAGE + 1;
	wstate.btws_pages_written = 0;
	wstate.btws_zeropage = NULL;	/* until needed */

	/*
	 * Flush dirty buffers so that we will read the index files directly
	 * in order to get pre-existing data. We must acquire AccessExclusiveLock
	 * for the target table for calling FlushRelationBuffer().
	 */
	LockRelation(wstate.index, AccessExclusiveLock);
	FlushRelationBuffers(wstate.index);
	BULKLOAD_PROFILE(&prof_flush);

	merge = BTReaderInit(&reader, wstate.index);

	elog(DEBUG1, "pg_bulkload: build \"%s\" %s merge (%s wal)",
		RelationGetRelationName(wstate.index),
		merge ? "with" : "without",
		wstate.btws_use_wal ? "with" : "without");

	/* Assign a new file node. */
	RelationSetNewRelfilenode(wstate.index, InvalidTransactionId);

	if (merge || (btspool->isunique && self->max_dup_errors > 0))
	{
		/* Merge two streams into the new file node that we assigned. */
		BULKLOAD_PROFILE_PUSH();
		_bt_mergeload(self, &wstate, btspool, &reader, heapRel);
		BULKLOAD_PROFILE_POP();
		BULKLOAD_PROFILE(&prof_merge);
	}
	else
	{
		/* Fast path for newly created index. */
		_bt_load(&wstate, btspool, NULL);
		BULKLOAD_PROFILE(&prof_index);
	}

	BTReaderTerm(&reader);
}
Exemple #7
0
/*
 * VACUUM cleanup: update FSM
 */
IndexBulkDeleteResult *
gistvacuumcleanup(IndexVacuumInfo *info, IndexBulkDeleteResult *stats)
{
	Relation	rel = info->index;
	BlockNumber npages,
				blkno;
	BlockNumber totFreePages;
	bool		needLock;

	/* No-op in ANALYZE ONLY mode */
	if (info->analyze_only)
		return stats;

	/* Set up all-zero stats if gistbulkdelete wasn't called */
	if (stats == NULL)
	{
		stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
		/* use heap's tuple count */
		stats->num_index_tuples = info->num_heap_tuples;
		stats->estimated_count = info->estimated_count;

		/*
		 * XXX the above is wrong if index is partial.  Would it be OK to just
		 * return NULL, or is there work we must do below?
		 */
	}

	/*
	 * Need lock unless it's local to this backend.
	 */
	needLock = !RELATION_IS_LOCAL(rel);

	/* try to find deleted pages */
	if (needLock)
		LockRelationForExtension(rel, ExclusiveLock);
	npages = RelationGetNumberOfBlocks(rel);
	if (needLock)
		UnlockRelationForExtension(rel, ExclusiveLock);

	totFreePages = 0;
	for (blkno = GIST_ROOT_BLKNO + 1; blkno < npages; blkno++)
	{
		Buffer		buffer;
		Page		page;

		vacuum_delay_point();

		buffer = ReadBufferExtended(rel, MAIN_FORKNUM, blkno, RBM_NORMAL,
									info->strategy);
		LockBuffer(buffer, GIST_SHARE);
		page = (Page) BufferGetPage(buffer);

		if (PageIsNew(page) || GistPageIsDeleted(page))
		{
			totFreePages++;
			RecordFreeIndexPage(rel, blkno);
		}
		UnlockReleaseBuffer(buffer);
	}

	/* Finally, vacuum the FSM */
	IndexFreeSpaceMapVacuum(info->index);

	/* return statistics */
	stats->pages_free = totFreePages;
	if (needLock)
		LockRelationForExtension(rel, ExclusiveLock);
	stats->num_pages = RelationGetNumberOfBlocks(rel);
	if (needLock)
		UnlockRelationForExtension(rel, ExclusiveLock);

	return stats;
}
Exemple #8
0
/*
 * Try to extend the revmap by one page.  This might not happen for a number of
 * reasons; caller is expected to retry until the expected outcome is obtained.
 */
static void
revmap_physical_extend(BrinRevmap *revmap)
{
	Buffer		buf;
	Page		page;
	Page		metapage;
	BrinMetaPageData *metadata;
	BlockNumber mapBlk;
	BlockNumber nblocks;
	Relation	irel = revmap->rm_irel;
	bool		needLock = !RELATION_IS_LOCAL(irel);

	/*
	 * Lock the metapage. This locks out concurrent extensions of the revmap,
	 * but note that we still need to grab the relation extension lock because
	 * another backend can extend the index with regular BRIN pages.
	 */
	LockBuffer(revmap->rm_metaBuf, BUFFER_LOCK_EXCLUSIVE);
	metapage = BufferGetPage(revmap->rm_metaBuf);
	metadata = (BrinMetaPageData *) PageGetContents(metapage);

	/*
	 * Check that our cached lastRevmapPage value was up-to-date; if it
	 * wasn't, update the cached copy and have caller start over.
	 */
	if (metadata->lastRevmapPage != revmap->rm_lastRevmapPage)
	{
		revmap->rm_lastRevmapPage = metadata->lastRevmapPage;
		LockBuffer(revmap->rm_metaBuf, BUFFER_LOCK_UNLOCK);
		return;
	}
	mapBlk = metadata->lastRevmapPage + 1;

	nblocks = RelationGetNumberOfBlocks(irel);
	if (mapBlk < nblocks)
	{
		buf = ReadBuffer(irel, mapBlk);
		LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
		page = BufferGetPage(buf);
	}
	else
	{
		if (needLock)
			LockRelationForExtension(irel, ExclusiveLock);

		buf = ReadBuffer(irel, P_NEW);
		if (BufferGetBlockNumber(buf) != mapBlk)
		{
			/*
			 * Very rare corner case: somebody extended the relation
			 * concurrently after we read its length.  If this happens, give
			 * up and have caller start over.  We will have to evacuate that
			 * page from under whoever is using it.
			 */
			if (needLock)
				UnlockRelationForExtension(irel, ExclusiveLock);
			LockBuffer(revmap->rm_metaBuf, BUFFER_LOCK_UNLOCK);
			return;
		}
		LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
		page = BufferGetPage(buf);

		if (needLock)
			UnlockRelationForExtension(irel, ExclusiveLock);
	}

	/* Check that it's a regular block (or an empty page) */
	if (!PageIsNew(page) && !BRIN_IS_REGULAR_PAGE(page))
		ereport(ERROR,
				(errcode(ERRCODE_INDEX_CORRUPTED),
				 errmsg("unexpected page type 0x%04X in BRIN index \"%s\" block %u",
						BRIN_PAGE_TYPE(page),
						RelationGetRelationName(irel),
						BufferGetBlockNumber(buf))));

	/* If the page is in use, evacuate it and restart */
	if (brin_start_evacuating_page(irel, buf))
	{
		LockBuffer(revmap->rm_metaBuf, BUFFER_LOCK_UNLOCK);
		brin_evacuate_page(irel, revmap->rm_pagesPerRange, revmap, buf);

		/* have caller start over */
		return;
	}

	/*
	 * Ok, we have now locked the metapage and the target block. Re-initialize
	 * it as a revmap page.
	 */
	START_CRIT_SECTION();

	/* the rm_tids array is initialized to all invalid by PageInit */
	brin_page_init(page, BRIN_PAGETYPE_REVMAP);
	MarkBufferDirty(buf);

	metadata->lastRevmapPage = mapBlk;
	MarkBufferDirty(revmap->rm_metaBuf);

	if (RelationNeedsWAL(revmap->rm_irel))
	{
		xl_brin_revmap_extend xlrec;
		XLogRecPtr	recptr;
		XLogRecData rdata[2];

		xlrec.node = revmap->rm_irel->rd_node;
		xlrec.targetBlk = mapBlk;
		rdata[0].data = (char *) &xlrec;
		rdata[0].len = SizeOfBrinRevmapExtend;
		rdata[0].buffer = InvalidBuffer;
		rdata[0].buffer_std = false;
		rdata[0].next = &(rdata[1]);

		rdata[1].data = (char *) NULL;
		rdata[1].len = 0;
		rdata[1].buffer = revmap->rm_metaBuf;
		rdata[1].buffer_std = false;
		rdata[1].next = NULL;

		recptr = XLogInsert(RM_BRIN_ID, XLOG_BRIN_REVMAP_EXTEND, rdata);
		PageSetLSN(metapage, recptr);
		PageSetLSN(page, recptr);
	}

	END_CRIT_SECTION();

	LockBuffer(revmap->rm_metaBuf, BUFFER_LOCK_UNLOCK);

	UnlockReleaseBuffer(buf);
}
Datum
gistvacuumcleanup(PG_FUNCTION_ARGS)
{
	IndexVacuumInfo *info = (IndexVacuumInfo *) PG_GETARG_POINTER(0);
	GistBulkDeleteResult *stats = (GistBulkDeleteResult *) PG_GETARG_POINTER(1);
	Relation	rel = info->index;
	BlockNumber npages,
				blkno;
	BlockNumber totFreePages,
				nFreePages,
			   *freePages,
				maxFreePages;
	BlockNumber lastBlock = GIST_ROOT_BLKNO,
				lastFilledBlock = GIST_ROOT_BLKNO;
	bool		needLock;

	/* Set up all-zero stats if gistbulkdelete wasn't called */
	if (stats == NULL)
	{
		stats = (GistBulkDeleteResult *) palloc0(sizeof(GistBulkDeleteResult));
		/* use heap's tuple count */
		Assert(info->num_heap_tuples >= 0);
		stats->std.num_index_tuples = info->num_heap_tuples;

		/*
		 * XXX the above is wrong if index is partial.	Would it be OK to just
		 * return NULL, or is there work we must do below?
		 */
	}

	/* gistVacuumUpdate may cause hard work */
	if (info->vacuum_full)
	{
		GistVacuum	gv;
		ArrayTuple	res;

		/* note: vacuum.c already acquired AccessExclusiveLock on index */

		gv.index = rel;
		initGISTstate(&(gv.giststate), rel);
		gv.opCtx = createTempGistContext();
		gv.result = stats;
		gv.strategy = info->strategy;

		/* walk through the entire index for update tuples */
		res = gistVacuumUpdate(&gv, GIST_ROOT_BLKNO, false);
		/* cleanup */
		if (res.itup)
		{
			int			i;

			for (i = 0; i < res.ituplen; i++)
				pfree(res.itup[i]);
			pfree(res.itup);
		}
		freeGISTstate(&(gv.giststate));
		MemoryContextDelete(gv.opCtx);
	}
	else if (stats->needFullVacuum)
		ereport(NOTICE,
				(errmsg("index \"%s\" needs VACUUM FULL or REINDEX to finish crash recovery",
						RelationGetRelationName(rel))));

	/*
	 * If vacuum full, we already have exclusive lock on the index. Otherwise,
	 * need lock unless it's local to this backend.
	 */
	if (info->vacuum_full)
		needLock = false;
	else
		needLock = !RELATION_IS_LOCAL(rel);

	/* try to find deleted pages */
	if (needLock)
		LockRelationForExtension(rel, ExclusiveLock);
	npages = RelationGetNumberOfBlocks(rel);
	if (needLock)
		UnlockRelationForExtension(rel, ExclusiveLock);

	maxFreePages = npages;
	if (maxFreePages > MaxFSMPages)
		maxFreePages = MaxFSMPages;

	totFreePages = nFreePages = 0;
	freePages = (BlockNumber *) palloc(sizeof(BlockNumber) * maxFreePages);

	for (blkno = GIST_ROOT_BLKNO + 1; blkno < npages; blkno++)
	{
		Buffer		buffer;
		Page		page;

		vacuum_delay_point();

		buffer = ReadBufferWithStrategy(rel, blkno, info->strategy);
		LockBuffer(buffer, GIST_SHARE);
		page = (Page) BufferGetPage(buffer);

		if (PageIsNew(page) || GistPageIsDeleted(page))
		{
			if (nFreePages < maxFreePages)
				freePages[nFreePages++] = blkno;
			totFreePages++;
		}
		else
			lastFilledBlock = blkno;
		UnlockReleaseBuffer(buffer);
	}
	lastBlock = npages - 1;

	if (info->vacuum_full && nFreePages > 0)
	{							/* try to truncate index */
		int			i;

		for (i = 0; i < nFreePages; i++)
			if (freePages[i] >= lastFilledBlock)
			{
				totFreePages = nFreePages = i;
				break;
			}

		if (lastBlock > lastFilledBlock)
			RelationTruncate(rel, lastFilledBlock + 1);
		stats->std.pages_removed = lastBlock - lastFilledBlock;
	}

	RecordIndexFreeSpace(&rel->rd_node, totFreePages, nFreePages, freePages);
	pfree(freePages);

	/* return statistics */
	stats->std.pages_free = totFreePages;
	if (needLock)
		LockRelationForExtension(rel, ExclusiveLock);
	stats->std.num_pages = RelationGetNumberOfBlocks(rel);
	if (needLock)
		UnlockRelationForExtension(rel, ExclusiveLock);

	PG_RETURN_POINTER(stats);
}
Exemple #10
0
/**
 * @brief Write block buffer contents.	Number of block buffer to be
 * written is specified by num argument.
 *
 * Flow:
 * <ol>
 *	 <li>If no more space is available in the data file, switch to a new one.</li>
 *	 <li>Compute block number which can be written to the current file.</li>
 *	 <li>Save the last block number in the load status file.</li>
 *	 <li>Write to the current file.</li>
 *	 <li>If there are other data, write them too.</li>
 * </ol>
 *
 * @param loader [in] Direct Writer.
 * @return File descriptor for the current data file.
 */
static void
flush_pages(DirectWriter *loader)
{
	int			i;
	int			num;
	LoadStatus *ls = &loader->ls;

	num = loader->curblk;
	if (!PageIsEmpty(GetCurrentPage(loader)))
		num += 1;

	if (num <= 0)
		return;		/* no work */

	/*
	 * Add WAL entry (only the first page) to ensure the current xid will
	 * be recorded in xlog. We must flush some xlog records with XLogFlush()
	 * before write any data blocks to follow the WAL protocol.
	 *
	 * If postgres process, such as loader and COPY, is killed by "kill -9",
	 * database will be rewound to the last checkpoint and recovery will
	 * be performed using WAL.
	 *
	 * After the recovery, if there are xid's which have not been recorded
	 * to WAL, such xid's will be reused.
	 *
	 * However, in the loader and COPY, data file is actually updated and
	 * xid must not be reused.
	 *
	 * WAL entry with such xid can be added using XLogInsert().  However,
	 * such entries are not really written to the disk immediately.
	 * WAL entries are flushed to the disk by XLogFlush(), typically
	 * when a transaction is commited.	COPY prevents xid reuse by
	 * this method.
	 */
#if PG_VERSION_NUM >= 90100
	if (ls->ls.create_cnt == 0 && !RELATION_IS_LOCAL(loader->base.rel)
			&& !(loader->base.rel->rd_rel->relpersistence == RELPERSISTENCE_UNLOGGED) )
	{
		XLogRecPtr	recptr;

		recptr = log_newpage(&ls->ls.rnode, MAIN_FORKNUM,
			ls->ls.exist_cnt, loader->blocks);
		XLogFlush(recptr);
	}
#else
	if (ls->ls.create_cnt == 0 && !RELATION_IS_LOCAL(loader->base.rel) )
	{
		XLogRecPtr	recptr;

		recptr = log_newpage(&ls->ls.rnode, MAIN_FORKNUM,
			ls->ls.exist_cnt, loader->blocks);
		XLogFlush(recptr);
	}
#endif
	/*
	 * Write blocks. We might need to write multiple files on boundary of
	 * relation segments.
	 */
	for (i = 0; i < num;)
	{
		char	   *buffer;
		int			total;
		int			written;
		int			flush_num;
		BlockNumber	relblks = LS_TOTAL_CNT(ls);

		/* Switch to the next file if the current file has been filled up. */
		if (relblks % RELSEG_SIZE == 0)
			close_data_file(loader);
		if (loader->datafd == -1)
			loader->datafd = open_data_file(ls->ls.rnode,
											RELATION_IS_LOCAL(loader->base.rel),
											relblks);

		/* Number of blocks to be added to the current file. */
		flush_num = Min(num - i, RELSEG_SIZE - relblks % RELSEG_SIZE);
		Assert(flush_num > 0);

		/* Write the last block number to the load status file. */
		UpdateLSF(loader, flush_num);

#if PG_VERSION_NUM >= 90300
		/* If we need a checksum, add it */
	        if (DataChecksumsEnabled()){
        		int j = 0;
			Page contained_page;
	        	for (  j=0; j<flush_num; j++ ) {
                		contained_page = GetTargetPage(loader,j);
		                ((PageHeader) contained_page)->pd_checksum = 
					pg_checksum_page((char *) contained_page, LS_TOTAL_CNT(ls) - 1 - j);
        		}
		}	
#endif

		/*
		 * Flush flush_num data block to the current file.
		 * Then the current file size becomes RELSEG_SIZE self->blocks.
		 */
		buffer = loader->blocks + BLCKSZ * i;
		total = BLCKSZ * flush_num;
		written = 0;
		while (total > 0)
		{
			int	len = write(loader->datafd, buffer + written, total);
			if (len == -1)
			{
				/* fatal error, do not want to write blocks anymore */
				ereport(ERROR, (errcode_for_file_access(),
								errmsg("could not write to data file: %m")));
			}
			written += len;
			total -= len;
		}

		i += flush_num;
	}

	/*
	 * NOTICE: Be sure reset curblk to 0 and reinitialize recycled page
	 * if you will continue to use blocks.
	 */
}
Exemple #11
0
/*
 * btvacuumscan --- scan the index for VACUUMing purposes
 *
 * This combines the functions of looking for leaf tuples that are deletable
 * according to the vacuum callback, looking for empty pages that can be
 * deleted, and looking for old deleted pages that can be recycled.  Both
 * btbulkdelete and btvacuumcleanup invoke this (the latter only if no
 * btbulkdelete call occurred).
 *
 * The caller is responsible for initially allocating/zeroing a stats struct
 * and for obtaining a vacuum cycle ID if necessary.
 */
static void
btvacuumscan(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
			 IndexBulkDeleteCallback callback, void *callback_state,
			 BTCycleId cycleid)
{
	MIRROREDLOCK_BUFMGR_VERIFY_NO_LOCK_LEAK_DECLARE;

	Relation	rel = info->index;
	BTVacState	vstate;
	BlockNumber num_pages;
	BlockNumber blkno;
	bool		needLock;

	MIRROREDLOCK_BUFMGR_VERIFY_NO_LOCK_LEAK_ENTER;

	/*
	 * Reset counts that will be incremented during the scan; needed in case
	 * of multiple scans during a single VACUUM command
	 */
	stats->num_index_tuples = 0;
	stats->pages_deleted = 0;

	/* Set up info to pass down to btvacuumpage */
	vstate.info = info;
	vstate.stats = stats;
	vstate.callback = callback;
	vstate.callback_state = callback_state;
	vstate.cycleid = cycleid;
	vstate.freePages = NULL;	/* temporarily */
	vstate.nFreePages = 0;
	vstate.maxFreePages = 0;
	vstate.totFreePages = 0;

	/* Create a temporary memory context to run _bt_pagedel in */
	vstate.pagedelcontext = AllocSetContextCreate(CurrentMemoryContext,
												  "_bt_pagedel",
												  ALLOCSET_DEFAULT_MINSIZE,
												  ALLOCSET_DEFAULT_INITSIZE,
												  ALLOCSET_DEFAULT_MAXSIZE);

	/*
	 * The outer loop iterates over all index pages except the metapage, in
	 * physical order (we hope the kernel will cooperate in providing
	 * read-ahead for speed).  It is critical that we visit all leaf pages,
	 * including ones added after we start the scan, else we might fail to
	 * delete some deletable tuples.  Hence, we must repeatedly check the
	 * relation length.  We must acquire the relation-extension lock while
	 * doing so to avoid a race condition: if someone else is extending the
	 * relation, there is a window where bufmgr/smgr have created a new
	 * all-zero page but it hasn't yet been write-locked by _bt_getbuf(). If
	 * we manage to scan such a page here, we'll improperly assume it can be
	 * recycled.  Taking the lock synchronizes things enough to prevent a
	 * problem: either num_pages won't include the new page, or _bt_getbuf
	 * already has write lock on the buffer and it will be fully initialized
	 * before we can examine it.  (See also vacuumlazy.c, which has the same
	 * issue.)	Also, we need not worry if a page is added immediately after
	 * we look; the page splitting code already has write-lock on the left
	 * page before it adds a right page, so we must already have processed any
	 * tuples due to be moved into such a page.
	 *
	 * We can skip locking for new or temp relations, however, since no one
	 * else could be accessing them.
	 */
	needLock = !RELATION_IS_LOCAL(rel);

	blkno = BTREE_METAPAGE + 1;
	for (;;)
	{
		/* Get the current relation length */
		if (needLock)
			LockRelationForExtension(rel, ExclusiveLock);
		num_pages = RelationGetNumberOfBlocks(rel);
		if (needLock)
			UnlockRelationForExtension(rel, ExclusiveLock);

		/* Allocate freePages after we read num_pages the first time */
		if (vstate.freePages == NULL)
		{
			/* No point in remembering more than MaxFSMPages pages */
			vstate.maxFreePages = MaxFSMPages;
			if ((BlockNumber) vstate.maxFreePages > num_pages)
				vstate.maxFreePages = (int) num_pages;
			vstate.freePages = (BlockNumber *)
				palloc(vstate.maxFreePages * sizeof(BlockNumber));
		}

		/* Quit if we've scanned the whole relation */
		if (blkno >= num_pages)
			break;
		/* Iterate over pages, then loop back to recheck length */
		for (; blkno < num_pages; blkno++)
		{
			btvacuumpage(&vstate, blkno, blkno);
		}
	}

	/*
	 * During VACUUM FULL, we truncate off any recyclable pages at the end of
	 * the index.  In a normal vacuum it'd be unsafe to do this except by
	 * acquiring exclusive lock on the index and then rechecking all the
	 * pages; doesn't seem worth it.
	 */
	if (info->vacuum_full && vstate.nFreePages > 0)
	{
		BlockNumber new_pages = num_pages;

		while (vstate.nFreePages > 0 &&
			   vstate.freePages[vstate.nFreePages - 1] == new_pages - 1)
		{
			new_pages--;
			stats->pages_deleted--;
			vstate.nFreePages--;
			vstate.totFreePages = vstate.nFreePages;	/* can't be more */
		}
		if (new_pages != num_pages)
		{
			/*
			 * Okay to truncate.
			 */
			RelationTruncate(rel, new_pages,
							 /* markPersistentAsPhysicallyTruncated */ true);

			/* update statistics */
			stats->pages_removed += num_pages - new_pages;

			num_pages = new_pages;
		}
	}

	/*
	 * Update the shared Free Space Map with the info we now have about free
	 * pages in the index, discarding any old info the map may have. We do not
	 * need to sort the page numbers; they're in order already.
	 */
	RecordIndexFreeSpace(&rel->rd_node, vstate.totFreePages,
						 vstate.nFreePages, vstate.freePages);

	pfree(vstate.freePages);

	MemoryContextDelete(vstate.pagedelcontext);

	/* update statistics */
	stats->num_pages = num_pages;
	stats->pages_free = vstate.totFreePages;

	MIRROREDLOCK_BUFMGR_VERIFY_NO_LOCK_LEAK_EXIT;

}
Exemple #12
0
Datum
ginvacuumcleanup(PG_FUNCTION_ARGS)
{
	MIRROREDLOCK_BUFMGR_DECLARE;

	IndexVacuumInfo *info = (IndexVacuumInfo *) PG_GETARG_POINTER(0);
	IndexBulkDeleteResult *stats = (IndexBulkDeleteResult *) PG_GETARG_POINTER(1);
	Relation	index = info->index;
	bool		needLock;
	BlockNumber npages,
				blkno;
	BlockNumber totFreePages,
				nFreePages,
			   *freePages,
				maxFreePages;
	BlockNumber lastBlock = GIN_ROOT_BLKNO,
				lastFilledBlock = GIN_ROOT_BLKNO;

	/* Set up all-zero stats if ginbulkdelete wasn't called */
	if (stats == NULL)
		stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));

	/*
	 * XXX we always report the heap tuple count as the number of index
	 * entries.  This is bogus if the index is partial, but it's real hard to
	 * tell how many distinct heap entries are referenced by a GIN index.
	 */
	stats->num_index_tuples = info->num_heap_tuples;

	/*
	 * If vacuum full, we already have exclusive lock on the index. Otherwise,
	 * need lock unless it's local to this backend.
	 */
	if (info->vacuum_full)
		needLock = false;
	else
		needLock = !RELATION_IS_LOCAL(index);

	if (needLock)
		LockRelationForExtension(index, ExclusiveLock);
	npages = RelationGetNumberOfBlocks(index);
	if (needLock)
		UnlockRelationForExtension(index, ExclusiveLock);

	maxFreePages = npages;
	if (maxFreePages > MaxFSMPages)
		maxFreePages = MaxFSMPages;

	totFreePages = nFreePages = 0;
	freePages = (BlockNumber *) palloc(sizeof(BlockNumber) * maxFreePages);

	for (blkno = GIN_ROOT_BLKNO + 1; blkno < npages; blkno++)
	{
		Buffer		buffer;
		Page		page;

		vacuum_delay_point();
		
		// -------- MirroredLock ----------
		MIRROREDLOCK_BUFMGR_LOCK;
		
		buffer = ReadBuffer(index, blkno);
		LockBuffer(buffer, GIN_SHARE);
		page = (Page) BufferGetPage(buffer);

		if (GinPageIsDeleted(page))
		{
			if (nFreePages < maxFreePages)
				freePages[nFreePages++] = blkno;
			totFreePages++;
		}
		else
			lastFilledBlock = blkno;

		UnlockReleaseBuffer(buffer);
		
		MIRROREDLOCK_BUFMGR_UNLOCK;
		// -------- MirroredLock ----------
		
	}
	lastBlock = npages - 1;

	if (info->vacuum_full && nFreePages > 0)
	{
		/* try to truncate index */
		int			i;

		for (i = 0; i < nFreePages; i++)
			if (freePages[i] >= lastFilledBlock)
			{
				totFreePages = nFreePages = i;
				break;
			}

		if (lastBlock > lastFilledBlock)
			RelationTruncate(
					index, 
					lastFilledBlock + 1,
					/* markPersistentAsPhysicallyTruncated */ true);

		stats->pages_removed = lastBlock - lastFilledBlock;
	}

	RecordIndexFreeSpace(&index->rd_node, totFreePages, nFreePages, freePages);
	stats->pages_free = totFreePages;

	if (needLock)
		LockRelationForExtension(index, ExclusiveLock);
	stats->num_pages = RelationGetNumberOfBlocks(index);
	if (needLock)
		UnlockRelationForExtension(index, ExclusiveLock);

	PG_RETURN_POINTER(stats);
}
Exemple #13
0
/*
 * Return a pinned and exclusively locked buffer which can be used to insert an
 * index item of size itemsz (caller must ensure not to request sizes
 * impossible to fulfill).  If oldbuf is a valid buffer, it is also locked (in
 * an order determined to avoid deadlocks.)
 *
 * If we find that the old page is no longer a regular index page (because
 * of a revmap extension), the old buffer is unlocked and we return
 * InvalidBuffer.
 *
 * If there's no existing page with enough free space to accommodate the new
 * item, the relation is extended.  If this happens, *extended is set to true,
 * and it is the caller's responsibility to initialize the page (and WAL-log
 * that fact) prior to use.
 *
 * Note that in some corner cases it is possible for this routine to extend the
 * relation and then not return the buffer.  It is this routine's
 * responsibility to WAL-log the page initialization and to record the page in
 * FSM if that happens.  Such a buffer may later be reused by this routine.
 */
static Buffer
brin_getinsertbuffer(Relation irel, Buffer oldbuf, Size itemsz,
					 bool *extended)
{
	BlockNumber oldblk;
	BlockNumber newblk;
	Page		page;
	int			freespace;

	/* callers must have checked */
	Assert(itemsz <= BrinMaxItemSize);

	*extended = false;

	if (BufferIsValid(oldbuf))
		oldblk = BufferGetBlockNumber(oldbuf);
	else
		oldblk = InvalidBlockNumber;

	/*
	 * Loop until we find a page with sufficient free space.  By the time we
	 * return to caller out of this loop, both buffers are valid and locked;
	 * if we have to restart here, neither buffer is locked and buf is not a
	 * pinned buffer.
	 */
	newblk = RelationGetTargetBlock(irel);
	if (newblk == InvalidBlockNumber)
		newblk = GetPageWithFreeSpace(irel, itemsz);
	for (;;)
	{
		Buffer		buf;
		bool		extensionLockHeld = false;

		CHECK_FOR_INTERRUPTS();

		if (newblk == InvalidBlockNumber)
		{
			/*
			 * There's not enough free space in any existing index page,
			 * according to the FSM: extend the relation to obtain a shiny new
			 * page.
			 */
			if (!RELATION_IS_LOCAL(irel))
			{
				LockRelationForExtension(irel, ExclusiveLock);
				extensionLockHeld = true;
			}
			buf = ReadBuffer(irel, P_NEW);
			newblk = BufferGetBlockNumber(buf);
			*extended = true;

			BRIN_elog((DEBUG2, "brin_getinsertbuffer: extending to page %u",
					   BufferGetBlockNumber(buf)));
		}
		else if (newblk == oldblk)
		{
			/*
			 * There's an odd corner-case here where the FSM is out-of-date,
			 * and gave us the old page.
			 */
			buf = oldbuf;
		}
		else
		{
			buf = ReadBuffer(irel, newblk);
		}

		/*
		 * We lock the old buffer first, if it's earlier than the new one; but
		 * before we do, we need to check that it hasn't been turned into a
		 * revmap page concurrently; if we detect that it happened, give up
		 * and tell caller to start over.
		 */
		if (BufferIsValid(oldbuf) && oldblk < newblk)
		{
			LockBuffer(oldbuf, BUFFER_LOCK_EXCLUSIVE);
			if (!BRIN_IS_REGULAR_PAGE(BufferGetPage(oldbuf)))
			{
				LockBuffer(oldbuf, BUFFER_LOCK_UNLOCK);

				/*
				 * It is possible that the new page was obtained from
				 * extending the relation.  In that case, we must be sure to
				 * record it in the FSM before leaving, because otherwise the
				 * space would be lost forever.  However, we cannot let an
				 * uninitialized page get in the FSM, so we need to initialize
				 * it first.
				 */
				if (*extended)
				{
					brin_initialize_empty_new_buffer(irel, buf);
					/* shouldn't matter, but don't confuse caller */
					*extended = false;
				}

				if (extensionLockHeld)
					UnlockRelationForExtension(irel, ExclusiveLock);

				ReleaseBuffer(buf);
				return InvalidBuffer;
			}
		}

		LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);

		if (extensionLockHeld)
			UnlockRelationForExtension(irel, ExclusiveLock);

		page = BufferGetPage(buf);

		/*
		 * We have a new buffer to insert into.  Check that the new page has
		 * enough free space, and return it if it does; otherwise start over.
		 * Note that we allow for the FSM to be out of date here, and in that
		 * case we update it and move on.
		 *
		 * (br_page_get_freespace also checks that the FSM didn't hand us a
		 * page that has since been repurposed for the revmap.)
		 */
		freespace = *extended ?
			BrinMaxItemSize : br_page_get_freespace(page);
		if (freespace >= itemsz)
		{
			RelationSetTargetBlock(irel, BufferGetBlockNumber(buf));

			/*
			 * Since the target block specification can get lost on cache
			 * invalidations, make sure we update the more permanent FSM with
			 * data about it before going away.
			 */
			if (*extended)
				RecordPageWithFreeSpace(irel, BufferGetBlockNumber(buf),
										freespace);

			/*
			 * Lock the old buffer if not locked already.  Note that in this
			 * case we know for sure it's a regular page: it's later than the
			 * new page we just got, which is not a revmap page, and revmap
			 * pages are always consecutive.
			 */
			if (BufferIsValid(oldbuf) && oldblk > newblk)
			{
				LockBuffer(oldbuf, BUFFER_LOCK_EXCLUSIVE);
				Assert(BRIN_IS_REGULAR_PAGE(BufferGetPage(oldbuf)));
			}

			return buf;
		}

		/* This page is no good. */

		/*
		 * If an entirely new page does not contain enough free space for the
		 * new item, then surely that item is oversized.  Complain loudly; but
		 * first make sure we initialize the page and record it as free, for
		 * next time.
		 */
		if (*extended)
		{
			brin_initialize_empty_new_buffer(irel, buf);

			ereport(ERROR,
					(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
			errmsg("index row size %lu exceeds maximum %lu for index \"%s\"",
				   (unsigned long) itemsz,
				   (unsigned long) freespace,
				   RelationGetRelationName(irel))));
			return InvalidBuffer;		/* keep compiler quiet */
		}

		if (newblk != oldblk)
			UnlockReleaseBuffer(buf);
		if (BufferIsValid(oldbuf) && oldblk <= newblk)
			LockBuffer(oldbuf, BUFFER_LOCK_UNLOCK);

		newblk = RecordAndGetPageWithFreeSpace(irel, newblk, freespace, itemsz);
	}
}
Exemple #14
0
/*
 * RelationGetBufferForTuple
 *
 *	Returns pinned and exclusive-locked buffer of a page in given relation
 *	with free space >= given len.
 *
 *	If otherBuffer is not InvalidBuffer, then it references a previously
 *	pinned buffer of another page in the same relation; on return, this
 *	buffer will also be exclusive-locked.  (This case is used by heap_update;
 *	the otherBuffer contains the tuple being updated.)
 *
 *	The reason for passing otherBuffer is that if two backends are doing
 *	concurrent heap_update operations, a deadlock could occur if they try
 *	to lock the same two buffers in opposite orders.  To ensure that this
 *	can't happen, we impose the rule that buffers of a relation must be
 *	locked in increasing page number order.  This is most conveniently done
 *	by having RelationGetBufferForTuple lock them both, with suitable care
 *	for ordering.
 *
 *	NOTE: it is unlikely, but not quite impossible, for otherBuffer to be the
 *	same buffer we select for insertion of the new tuple (this could only
 *	happen if space is freed in that page after heap_update finds there's not
 *	enough there).	In that case, the page will be pinned and locked only once.
 *
 *	If use_fsm is true (the normal case), we use FSM to help us find free
 *	space.	If use_fsm is false, we always append a new empty page to the
 *	end of the relation if the tuple won't fit on the current target page.
 *	This can save some cycles when we know the relation is new and doesn't
 *	contain useful amounts of free space.
 *
 *	The use_fsm = false case is also useful for non-WAL-logged additions to a
 *	relation, if the caller holds exclusive lock and is careful to invalidate
 *	relation->rd_targblock before the first insertion --- that ensures that
 *	all insertions will occur into newly added pages and not be intermixed
 *	with tuples from other transactions.  That way, a crash can't risk losing
 *	any committed data of other transactions.  (See heap_insert's comments
 *	for additional constraints needed for safe usage of this behavior.)
 *
 *	We always try to avoid filling existing pages further than the fillfactor.
 *	This is OK since this routine is not consulted when updating a tuple and
 *	keeping it on the same page, which is the scenario fillfactor is meant
 *	to reserve space for.
 *
 *	ereport(ERROR) is allowed here, so this routine *must* be called
 *	before any (unlogged) changes are made in buffer pool.
 */
Buffer
RelationGetBufferForTuple(Relation relation, Size len,
						  Buffer otherBuffer, bool use_fsm)
{
	Buffer		buffer = InvalidBuffer;
	Page		pageHeader;
	Size		pageFreeSpace,
				saveFreeSpace;
	BlockNumber targetBlock,
				otherBlock;
	bool		needLock;

	MIRROREDLOCK_BUFMGR_MUST_ALREADY_BE_HELD;

	len = MAXALIGN(len);		/* be conservative */

	/*
	 * If we're gonna fail for oversize tuple, do it right away
	 */
	if (len > MaxHeapTupleSize)
		ereport(ERROR,
				(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
				 errmsg("row is too big: size %lu, maximum size %lu",
						(unsigned long) len,
						(unsigned long) MaxHeapTupleSize)));

	/* Compute desired extra freespace due to fillfactor option */
	saveFreeSpace = RelationGetTargetPageFreeSpace(relation,
												   HEAP_DEFAULT_FILLFACTOR);

	if (otherBuffer != InvalidBuffer)
		otherBlock = BufferGetBlockNumber(otherBuffer);
	else
		otherBlock = InvalidBlockNumber;		/* just to keep compiler quiet */

	/*
	 * We first try to put the tuple on the same page we last inserted a tuple
	 * on, as cached in the relcache entry.  If that doesn't work, we ask the
	 * shared Free Space Map to locate a suitable page.  Since the FSM's info
	 * might be out of date, we have to be prepared to loop around and retry
	 * multiple times.	(To insure this isn't an infinite loop, we must update
	 * the FSM with the correct amount of free space on each page that proves
	 * not to be suitable.)  If the FSM has no record of a page with enough
	 * free space, we give up and extend the relation.
	 *
	 * When use_fsm is false, we either put the tuple onto the existing target
	 * page or extend the relation.
	 */
	if (len + saveFreeSpace <= MaxHeapTupleSize)
		targetBlock = relation->rd_targblock;
	else
	{
		/* can't fit, don't screw up FSM request tracking by trying */
		targetBlock = InvalidBlockNumber;
		use_fsm = false;
	}

	if (targetBlock == InvalidBlockNumber && use_fsm)
	{
		/*
		 * We have no cached target page, so ask the FSM for an initial
		 * target.
		 */
		targetBlock = GetPageWithFreeSpace(&relation->rd_node,
										   len + saveFreeSpace);

		/*
		 * If the FSM knows nothing of the rel, try the last page before we
		 * give up and extend.	This avoids one-tuple-per-page syndrome during
		 * bootstrapping or in a recently-started system.
		 */
		if (targetBlock == InvalidBlockNumber)
		{
			BlockNumber nblocks = RelationGetNumberOfBlocks(relation);

			if (nblocks > 0)
				targetBlock = nblocks - 1;
		}
	}

	while (targetBlock != InvalidBlockNumber)
	{
		/*
		 * Read and exclusive-lock the target block, as well as the other
		 * block if one was given, taking suitable care with lock ordering and
		 * the possibility they are the same block.
		 */
		if (otherBuffer == InvalidBuffer)
		{
			/* easy case */
			buffer = ReadBuffer(relation, targetBlock);
			LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
		}
		else if (otherBlock == targetBlock)
		{
			/* also easy case */
			buffer = otherBuffer;
			LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
		}
		else if (otherBlock < targetBlock)
		{
			/* lock other buffer first */
			buffer = ReadBuffer(relation, targetBlock);
			LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);
			LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
		}
		else
		{
			/* lock target buffer first */
			buffer = ReadBuffer(relation, targetBlock);
			LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
			LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);
		}

		/*
		 * Now we can check to see if there's enough free space here. If so,
		 * we're done.
		 */
		pageHeader = (Page) BufferGetPage(buffer);
		pageFreeSpace = PageGetFreeSpace(pageHeader);
		if (len + saveFreeSpace <= pageFreeSpace)
		{
			/* use this page as future insert target, too */
			relation->rd_targblock = targetBlock;
			return buffer;
		}

		/*
		 * Not enough space, so we must give up our page locks and pin (if
		 * any) and prepare to look elsewhere.	We don't care which order we
		 * unlock the two buffers in, so this can be slightly simpler than the
		 * code above.
		 */
		LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
		if (otherBuffer == InvalidBuffer)
			ReleaseBuffer(buffer);
		else if (otherBlock != targetBlock)
		{
			LockBuffer(otherBuffer, BUFFER_LOCK_UNLOCK);
			ReleaseBuffer(buffer);
		}

		/* Without FSM, always fall out of the loop and extend */
		if (!use_fsm)
			break;

		/*
		 * Update FSM as to condition of this page, and ask for another page
		 * to try.
		 */
		targetBlock = RecordAndGetPageWithFreeSpace(&relation->rd_node,
													targetBlock,
													pageFreeSpace,
													len + saveFreeSpace);
	}

	/*
	 * Have to extend the relation.
	 *
	 * We have to use a lock to ensure no one else is extending the rel at the
	 * same time, else we will both try to initialize the same new page.  We
	 * can skip locking for new or temp relations, however, since no one else
	 * could be accessing them.
	 */
	needLock = !RELATION_IS_LOCAL(relation);

	if (needLock)
		LockRelationForExtension(relation, ExclusiveLock);

	/*
	 * XXX This does an lseek - rather expensive - but at the moment it is the
	 * only way to accurately determine how many blocks are in a relation.	Is
	 * it worth keeping an accurate file length in shared memory someplace,
	 * rather than relying on the kernel to do it for us?
	 */
	buffer = ReadBuffer(relation, P_NEW);

	/*
	 * We can be certain that locking the otherBuffer first is OK, since it
	 * must have a lower page number.
	 */
	if (otherBuffer != InvalidBuffer)
		LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);

	/*
	 * Now acquire lock on the new page.
	 */
	LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);

	/*
	 * Release the file-extension lock; it's now OK for someone else to extend
	 * the relation some more.	Note that we cannot release this lock before
	 * we have buffer lock on the new page, or we risk a race condition
	 * against vacuumlazy.c --- see comments therein.
	 */
	if (needLock)
		UnlockRelationForExtension(relation, ExclusiveLock);

	/*
	 * We need to initialize the empty new page.  Double-check that it really
	 * is empty (this should never happen, but if it does we don't want to
	 * risk wiping out valid data).
	 */
	pageHeader = (Page) BufferGetPage(buffer);

	if (!PageIsNew((PageHeader) pageHeader))
		elog(ERROR, "page %u of relation \"%s\" should be empty but is not",
			 BufferGetBlockNumber(buffer),
			 RelationGetRelationName(relation));

	PageInit(pageHeader, BufferGetPageSize(buffer), 0);

	if (len > PageGetFreeSpace(pageHeader))
	{
		/* We should not get here given the test at the top */
		elog(PANIC, "tuple is too big: size %lu", (unsigned long) len);
	}

	/*
	 * Remember the new page as our target for future insertions.
	 *
	 * XXX should we enter the new page into the free space map immediately,
	 * or just keep it for this backend's exclusive use in the short run
	 * (until VACUUM sees it)?	Seems to depend on whether you expect the
	 * current backend to make more insertions or not, which is probably a
	 * good bet most of the time.  So for now, don't add it to FSM yet.
	 */
	relation->rd_targblock = BufferGetBlockNumber(buffer);

	return buffer;
}
Exemple #15
0
/*
 * VACUUM cleanup: update FSM
 */
Datum
gistvacuumcleanup(PG_FUNCTION_ARGS)
{
	IndexVacuumInfo *info = (IndexVacuumInfo *) PG_GETARG_POINTER(0);
	GistBulkDeleteResult *stats = (GistBulkDeleteResult *) PG_GETARG_POINTER(1);
	Relation	rel = info->index;
	BlockNumber npages,
				blkno;
	BlockNumber totFreePages;
	BlockNumber lastBlock = GIST_ROOT_BLKNO,
				lastFilledBlock = GIST_ROOT_BLKNO;
	bool		needLock;

	/* No-op in ANALYZE ONLY mode */
	if (info->analyze_only)
		PG_RETURN_POINTER(stats);

	/* Set up all-zero stats if gistbulkdelete wasn't called */
	if (stats == NULL)
	{
		stats = (GistBulkDeleteResult *) palloc0(sizeof(GistBulkDeleteResult));
		/* use heap's tuple count */
		stats->std.num_index_tuples = info->num_heap_tuples;
		stats->std.estimated_count = info->estimated_count;

		/*
		 * XXX the above is wrong if index is partial.	Would it be OK to just
		 * return NULL, or is there work we must do below?
		 */
	}

	if (stats->needReindex)
		ereport(NOTICE,
				(errmsg("index \"%s\" needs VACUUM FULL or REINDEX to finish crash recovery",
						RelationGetRelationName(rel))));

	/*
	 * Need lock unless it's local to this backend.
	 */
	needLock = !RELATION_IS_LOCAL(rel);

	/* try to find deleted pages */
	if (needLock)
		LockRelationForExtension(rel, ExclusiveLock);
	npages = RelationGetNumberOfBlocks(rel);
	if (needLock)
		UnlockRelationForExtension(rel, ExclusiveLock);

	totFreePages = 0;
	for (blkno = GIST_ROOT_BLKNO + 1; blkno < npages; blkno++)
	{
		Buffer		buffer;
		Page		page;

		vacuum_delay_point();

		buffer = ReadBufferExtended(rel, MAIN_FORKNUM, blkno, RBM_NORMAL,
									info->strategy);
		LockBuffer(buffer, GIST_SHARE);
		page = (Page) BufferGetPage(buffer);

		if (PageIsNew(page) || GistPageIsDeleted(page))
		{
			totFreePages++;
			RecordFreeIndexPage(rel, blkno);
		}
		else
			lastFilledBlock = blkno;
		UnlockReleaseBuffer(buffer);
	}
	lastBlock = npages - 1;

	/* Finally, vacuum the FSM */
	IndexFreeSpaceMapVacuum(info->index);

	/* return statistics */
	stats->std.pages_free = totFreePages;
	if (needLock)
		LockRelationForExtension(rel, ExclusiveLock);
	stats->std.num_pages = RelationGetNumberOfBlocks(rel);
	if (needLock)
		UnlockRelationForExtension(rel, ExclusiveLock);

	PG_RETURN_POINTER(stats);
}
Exemple #16
0
Datum
ginvacuumcleanup(PG_FUNCTION_ARGS)
{
	IndexVacuumInfo *info = (IndexVacuumInfo *) PG_GETARG_POINTER(0);
	IndexBulkDeleteResult *stats = (IndexBulkDeleteResult *) PG_GETARG_POINTER(1);
	Relation	index = info->index;
	bool		needLock;
	BlockNumber npages,
				blkno;
	BlockNumber totFreePages;
	GinState	ginstate;
	GinStatsData idxStat;

	/*
	 * In an autovacuum analyze, we want to clean up pending insertions.
	 * Otherwise, an ANALYZE-only call is a no-op.
	 */
	if (info->analyze_only)
	{
		if (IsAutoVacuumWorkerProcess())
		{
			initGinState(&ginstate, index);
			ginInsertCleanup(&ginstate, true, stats);
		}
		PG_RETURN_POINTER(stats);
	}

	/*
	 * Set up all-zero stats and cleanup pending inserts if ginbulkdelete
	 * wasn't called
	 */
	if (stats == NULL)
	{
		stats = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
		initGinState(&ginstate, index);
		ginInsertCleanup(&ginstate, true, stats);
	}

	memset(&idxStat, 0, sizeof(idxStat));

	/*
	 * XXX we always report the heap tuple count as the number of index
	 * entries.  This is bogus if the index is partial, but it's real hard to
	 * tell how many distinct heap entries are referenced by a GIN index.
	 */
	stats->num_index_tuples = info->num_heap_tuples;
	stats->estimated_count = info->estimated_count;

	/*
	 * Need lock unless it's local to this backend.
	 */
	needLock = !RELATION_IS_LOCAL(index);

	if (needLock)
		LockRelationForExtension(index, ExclusiveLock);
	npages = RelationGetNumberOfBlocks(index);
	if (needLock)
		UnlockRelationForExtension(index, ExclusiveLock);

	totFreePages = 0;

	for (blkno = GIN_ROOT_BLKNO; blkno < npages; blkno++)
	{
		Buffer		buffer;
		Page		page;

		vacuum_delay_point();

		buffer = ReadBufferExtended(index, MAIN_FORKNUM, blkno,
									RBM_NORMAL, info->strategy);
		LockBuffer(buffer, GIN_SHARE);
		page = (Page) BufferGetPage(buffer);

		if (GinPageIsDeleted(page))
		{
			Assert(blkno != GIN_ROOT_BLKNO);
			RecordFreeIndexPage(index, blkno);
			totFreePages++;
		}
		else if (GinPageIsData(page))
		{
			idxStat.nDataPages++;
		}
		else if (!GinPageIsList(page))
		{
			idxStat.nEntryPages++;

			if (GinPageIsLeaf(page))
				idxStat.nEntries += PageGetMaxOffsetNumber(page);
		}

		UnlockReleaseBuffer(buffer);
	}

	/* Update the metapage with accurate page and entry counts */
	idxStat.nTotalPages = npages;
	ginUpdateStats(info->index, &idxStat);

	/* Finally, vacuum the FSM */
	IndexFreeSpaceMapVacuum(info->index);

	stats->pages_free = totFreePages;

	if (needLock)
		LockRelationForExtension(index, ExclusiveLock);
	stats->num_pages = RelationGetNumberOfBlocks(index);
	if (needLock)
		UnlockRelationForExtension(index, ExclusiveLock);

	PG_RETURN_POINTER(stats);
}
Exemple #17
0
/*
 *	_bt_getbuf() -- Get a buffer by block number for read or write.
 *
 *		blkno == P_NEW means to get an unallocated index page.	The page
 *		will be initialized before returning it.
 *
 *		When this routine returns, the appropriate lock is set on the
 *		requested buffer and its reference count has been incremented
 *		(ie, the buffer is "locked and pinned").  Also, we apply
 *		_bt_checkpage to sanity-check the page (except in P_NEW case).
 */
Buffer
_bt_getbuf(Relation rel, BlockNumber blkno, int access)
{
	Buffer		buf;

	MIRROREDLOCK_BUFMGR_MUST_ALREADY_BE_HELD;

	if (blkno != P_NEW)
	{
		/* Read an existing block of the relation */
		buf = ReadBuffer(rel, blkno);
		LockBuffer(buf, access);
		_bt_checkpage(rel, buf);
	}
	else
	{
		bool		needLock;
		Page		page;

		Assert(access == BT_WRITE);

		/*
		 * First see if the FSM knows of any free pages.
		 *
		 * We can't trust the FSM's report unreservedly; we have to check that
		 * the page is still free.	(For example, an already-free page could
		 * have been re-used between the time the last VACUUM scanned it and
		 * the time the VACUUM made its FSM updates.)
		 *
		 * In fact, it's worse than that: we can't even assume that it's safe
		 * to take a lock on the reported page.  If somebody else has a lock
		 * on it, or even worse our own caller does, we could deadlock.  (The
		 * own-caller scenario is actually not improbable. Consider an index
		 * on a serial or timestamp column.  Nearly all splits will be at the
		 * rightmost page, so it's entirely likely that _bt_split will call us
		 * while holding a lock on the page most recently acquired from FSM. A
		 * VACUUM running concurrently with the previous split could well have
		 * placed that page back in FSM.)
		 *
		 * To get around that, we ask for only a conditional lock on the
		 * reported page.  If we fail, then someone else is using the page,
		 * and we may reasonably assume it's not free.  (If we happen to be
		 * wrong, the worst consequence is the page will be lost to use till
		 * the next VACUUM, which is no big problem.)
		 */
		for (;;)
		{
			blkno = GetFreeIndexPage(&rel->rd_node);
			if (blkno == InvalidBlockNumber)
				break;
			buf = ReadBuffer(rel, blkno);
			if (ConditionalLockBuffer(buf))
			{
				page = BufferGetPage(buf);
				if (_bt_page_recyclable(page))
				{
					/* Okay to use page.  Re-initialize and return it */
					_bt_pageinit(page, BufferGetPageSize(buf));
					return buf;
				}
				elog(DEBUG2, "FSM returned nonrecyclable page");
				_bt_relbuf(rel, buf);
			}
			else
			{
				elog(DEBUG2, "FSM returned nonlockable page");
				/* couldn't get lock, so just drop pin */
				ReleaseBuffer(buf);
			}
		}

		/*
		 * Extend the relation by one page.
		 *
		 * We have to use a lock to ensure no one else is extending the rel at
		 * the same time, else we will both try to initialize the same new
		 * page.  We can skip locking for new or temp relations, however,
		 * since no one else could be accessing them.
		 */
		needLock = !RELATION_IS_LOCAL(rel);

		if (needLock)
			LockRelationForExtension(rel, ExclusiveLock);

		buf = ReadBuffer(rel, P_NEW);

		/* Acquire buffer lock on new page */
		LockBuffer(buf, BT_WRITE);

		/*
		 * Release the file-extension lock; it's now OK for someone else to
		 * extend the relation some more.  Note that we cannot release this
		 * lock before we have buffer lock on the new page, or we risk a race
		 * condition against btvacuumscan --- see comments therein.
		 */
		if (needLock)
			UnlockRelationForExtension(rel, ExclusiveLock);

		/* Initialize the new page before returning it */
		page = BufferGetPage(buf);
		Assert(PageIsNew((PageHeader) page));
		_bt_pageinit(page, BufferGetPageSize(buf));
	}

	/* ref count and lock type are correct */
	return buf;
}
Exemple #18
0
/*
 * btvacuumscan --- scan the index for VACUUMing purposes
 *
 * This combines the functions of looking for leaf tuples that are deletable
 * according to the vacuum callback, looking for empty pages that can be
 * deleted, and looking for old deleted pages that can be recycled.  Both
 * btbulkdelete and btvacuumcleanup invoke this (the latter only if no
 * btbulkdelete call occurred).
 *
 * The caller is responsible for initially allocating/zeroing a stats struct
 * and for obtaining a vacuum cycle ID if necessary.
 */
static void
btvacuumscan(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
			 IndexBulkDeleteCallback callback, void *callback_state,
			 BTCycleId cycleid)
{
	Relation	rel = info->index;
	BTVacState	vstate;
	BlockNumber num_pages;
	BlockNumber blkno;
	bool		needLock;

	/*
	 * Reset counts that will be incremented during the scan; needed in case
	 * of multiple scans during a single VACUUM command
	 */
	stats->estimated_count = false;
	stats->num_index_tuples = 0;
	stats->pages_deleted = 0;

	/* Set up info to pass down to btvacuumpage */
	vstate.info = info;
	vstate.stats = stats;
	vstate.callback = callback;
	vstate.callback_state = callback_state;
	vstate.cycleid = cycleid;
	vstate.lastBlockVacuumed = BTREE_METAPAGE;	/* Initialise at first block */
	vstate.lastUsedPage = BTREE_METAPAGE;
	vstate.totFreePages = 0;

	/* Create a temporary memory context to run _bt_pagedel in */
	vstate.pagedelcontext = AllocSetContextCreate(CurrentMemoryContext,
												  "_bt_pagedel",
												  ALLOCSET_DEFAULT_MINSIZE,
												  ALLOCSET_DEFAULT_INITSIZE,
												  ALLOCSET_DEFAULT_MAXSIZE);

	/*
	 * The outer loop iterates over all index pages except the metapage, in
	 * physical order (we hope the kernel will cooperate in providing
	 * read-ahead for speed).  It is critical that we visit all leaf pages,
	 * including ones added after we start the scan, else we might fail to
	 * delete some deletable tuples.  Hence, we must repeatedly check the
	 * relation length.  We must acquire the relation-extension lock while
	 * doing so to avoid a race condition: if someone else is extending the
	 * relation, there is a window where bufmgr/smgr have created a new
	 * all-zero page but it hasn't yet been write-locked by _bt_getbuf(). If
	 * we manage to scan such a page here, we'll improperly assume it can be
	 * recycled.  Taking the lock synchronizes things enough to prevent a
	 * problem: either num_pages won't include the new page, or _bt_getbuf
	 * already has write lock on the buffer and it will be fully initialized
	 * before we can examine it.  (See also vacuumlazy.c, which has the same
	 * issue.)	Also, we need not worry if a page is added immediately after
	 * we look; the page splitting code already has write-lock on the left
	 * page before it adds a right page, so we must already have processed any
	 * tuples due to be moved into such a page.
	 *
	 * We can skip locking for new or temp relations, however, since no one
	 * else could be accessing them.
	 */
	needLock = !RELATION_IS_LOCAL(rel);

	blkno = BTREE_METAPAGE + 1;
	for (;;)
	{
		/* Get the current relation length */
		if (needLock)
			LockRelationForExtension(rel, ExclusiveLock);
		num_pages = RelationGetNumberOfBlocks(rel);
		if (needLock)
			UnlockRelationForExtension(rel, ExclusiveLock);

		/* Quit if we've scanned the whole relation */
		if (blkno >= num_pages)
			break;
		/* Iterate over pages, then loop back to recheck length */
		for (; blkno < num_pages; blkno++)
		{
			btvacuumpage(&vstate, blkno, blkno);
		}
	}

	/*
	 * InHotStandby we need to scan right up to the end of the index for
	 * correct locking, so we may need to write a WAL record for the final
	 * block in the index if it was not vacuumed. It's possible that VACUUMing
	 * has actually removed zeroed pages at the end of the index so we need to
	 * take care to issue the record for last actual block and not for the
	 * last block that was scanned. Ignore empty indexes.
	 */
	if (XLogStandbyInfoActive() &&
		num_pages > 1 && vstate.lastBlockVacuumed < (num_pages - 1))
	{
		Buffer		buf;

		/*
		 * We can't use _bt_getbuf() here because it always applies
		 * _bt_checkpage(), which will barf on an all-zero page. We want to
		 * recycle all-zero pages, not fail.  Also, we want to use a
		 * nondefault buffer access strategy.
		 */
		buf = ReadBufferExtended(rel, MAIN_FORKNUM, num_pages - 1, RBM_NORMAL,
								 info->strategy);
		LockBufferForCleanup(buf);
		_bt_delitems_vacuum(rel, buf, NULL, 0, vstate.lastBlockVacuumed);
		_bt_relbuf(rel, buf);
	}

	MemoryContextDelete(vstate.pagedelcontext);

	/* update statistics */
	stats->num_pages = num_pages;
	stats->pages_free = vstate.totFreePages;
}
Exemple #19
0
/*
 * btvacuumscan --- scan the index for VACUUMing purposes
 *
 * This combines the functions of looking for leaf tuples that are deletable
 * according to the vacuum callback, looking for empty pages that can be
 * deleted, and looking for old deleted pages that can be recycled.  Both
 * btbulkdelete and btvacuumcleanup invoke this (the latter only if no
 * btbulkdelete call occurred).
 *
 * The caller is responsible for initially allocating/zeroing a stats struct
 * and for obtaining a vacuum cycle ID if necessary.
 */
static void
btvacuumscan(IndexVacuumInfo *info, IndexBulkDeleteResult *stats,
			 IndexBulkDeleteCallback callback, void *callback_state,
			 BTCycleId cycleid)
{
	Relation	rel = info->index;
	BTVacState	vstate;
	BlockNumber num_pages;
	BlockNumber blkno;
	bool		needLock;

	/*
	 * Reset counts that will be incremented during the scan; needed in case
	 * of multiple scans during a single VACUUM command
	 */
	stats->estimated_count = false;
	stats->num_index_tuples = 0;
	stats->pages_deleted = 0;

	/* Set up info to pass down to btvacuumpage */
	vstate.info = info;
	vstate.stats = stats;
	vstate.callback = callback;
	vstate.callback_state = callback_state;
	vstate.cycleid = cycleid;
	vstate.lastBlockVacuumed = BTREE_METAPAGE;	/* Initialise at first block */
	vstate.lastBlockLocked = BTREE_METAPAGE;
	vstate.totFreePages = 0;

	/* Create a temporary memory context to run _bt_pagedel in */
	vstate.pagedelcontext = AllocSetContextCreate(CurrentMemoryContext,
												  "_bt_pagedel",
												  ALLOCSET_DEFAULT_SIZES);

	/*
	 * The outer loop iterates over all index pages except the metapage, in
	 * physical order (we hope the kernel will cooperate in providing
	 * read-ahead for speed).  It is critical that we visit all leaf pages,
	 * including ones added after we start the scan, else we might fail to
	 * delete some deletable tuples.  Hence, we must repeatedly check the
	 * relation length.  We must acquire the relation-extension lock while
	 * doing so to avoid a race condition: if someone else is extending the
	 * relation, there is a window where bufmgr/smgr have created a new
	 * all-zero page but it hasn't yet been write-locked by _bt_getbuf(). If
	 * we manage to scan such a page here, we'll improperly assume it can be
	 * recycled.  Taking the lock synchronizes things enough to prevent a
	 * problem: either num_pages won't include the new page, or _bt_getbuf
	 * already has write lock on the buffer and it will be fully initialized
	 * before we can examine it.  (See also vacuumlazy.c, which has the same
	 * issue.)	Also, we need not worry if a page is added immediately after
	 * we look; the page splitting code already has write-lock on the left
	 * page before it adds a right page, so we must already have processed any
	 * tuples due to be moved into such a page.
	 *
	 * We can skip locking for new or temp relations, however, since no one
	 * else could be accessing them.
	 */
	needLock = !RELATION_IS_LOCAL(rel);

	blkno = BTREE_METAPAGE + 1;
	for (;;)
	{
		/* Get the current relation length */
		if (needLock)
			LockRelationForExtension(rel, ExclusiveLock);
		num_pages = RelationGetNumberOfBlocks(rel);
		if (needLock)
			UnlockRelationForExtension(rel, ExclusiveLock);

		/* Quit if we've scanned the whole relation */
		if (blkno >= num_pages)
			break;
		/* Iterate over pages, then loop back to recheck length */
		for (; blkno < num_pages; blkno++)
		{
			btvacuumpage(&vstate, blkno, blkno);
		}
	}

	/*
	 * Check to see if we need to issue one final WAL record for this index,
	 * which may be needed for correctness on a hot standby node when non-MVCC
	 * index scans could take place.
	 *
	 * If the WAL is replayed in hot standby, the replay process needs to get
	 * cleanup locks on all index leaf pages, just as we've been doing here.
	 * However, we won't issue any WAL records about pages that have no items
	 * to be deleted.  For pages between pages we've vacuumed, the replay code
	 * will take locks under the direction of the lastBlockVacuumed fields in
	 * the XLOG_BTREE_VACUUM WAL records.  To cover pages after the last one
	 * we vacuum, we need to issue a dummy XLOG_BTREE_VACUUM WAL record
	 * against the last leaf page in the index, if that one wasn't vacuumed.
	 */
	if (XLogStandbyInfoActive() &&
		vstate.lastBlockVacuumed < vstate.lastBlockLocked)
	{
		Buffer		buf;

		/*
		 * The page should be valid, but we can't use _bt_getbuf() because we
		 * want to use a nondefault buffer access strategy.  Since we aren't
		 * going to delete any items, getting cleanup lock again is probably
		 * overkill, but for consistency do that anyway.
		 */
		buf = ReadBufferExtended(rel, MAIN_FORKNUM, vstate.lastBlockLocked,
								 RBM_NORMAL, info->strategy);
		LockBufferForCleanup(buf);
		_bt_checkpage(rel, buf);
		_bt_delitems_vacuum(rel, buf, NULL, 0, vstate.lastBlockVacuumed);
		_bt_relbuf(rel, buf);
	}

	MemoryContextDelete(vstate.pagedelcontext);

	/* update statistics */
	stats->num_pages = num_pages;
	stats->pages_free = vstate.totFreePages;
}
Exemple #20
0
/*
 * RelationGetBufferForTuple
 *
 *	Returns pinned and exclusive-locked buffer of a page in given relation
 *	with free space >= given len.
 *
 *	If otherBuffer is not InvalidBuffer, then it references a previously
 *	pinned buffer of another page in the same relation; on return, this
 *	buffer will also be exclusive-locked.  (This case is used by heap_update;
 *	the otherBuffer contains the tuple being updated.)
 *
 *	The reason for passing otherBuffer is that if two backends are doing
 *	concurrent heap_update operations, a deadlock could occur if they try
 *	to lock the same two buffers in opposite orders.  To ensure that this
 *	can't happen, we impose the rule that buffers of a relation must be
 *	locked in increasing page number order.  This is most conveniently done
 *	by having RelationGetBufferForTuple lock them both, with suitable care
 *	for ordering.
 *
 *	NOTE: it is unlikely, but not quite impossible, for otherBuffer to be the
 *	same buffer we select for insertion of the new tuple (this could only
 *	happen if space is freed in that page after heap_update finds there's not
 *	enough there).	In that case, the page will be pinned and locked only once.
 *
 *	For the vmbuffer and vmbuffer_other arguments, we avoid deadlock by
 *	locking them only after locking the corresponding heap page, and taking
 *	no further lwlocks while they are locked.
 *
 *	We normally use FSM to help us find free space.  However,
 *	if HEAP_INSERT_SKIP_FSM is specified, we just append a new empty page to
 *	the end of the relation if the tuple won't fit on the current target page.
 *	This can save some cycles when we know the relation is new and doesn't
 *	contain useful amounts of free space.
 *
 *	HEAP_INSERT_SKIP_FSM is also useful for non-WAL-logged additions to a
 *	relation, if the caller holds exclusive lock and is careful to invalidate
 *	relation's smgr_targblock before the first insertion --- that ensures that
 *	all insertions will occur into newly added pages and not be intermixed
 *	with tuples from other transactions.  That way, a crash can't risk losing
 *	any committed data of other transactions.  (See heap_insert's comments
 *	for additional constraints needed for safe usage of this behavior.)
 *
 *	The caller can also provide a BulkInsertState object to optimize many
 *	insertions into the same relation.	This keeps a pin on the current
 *	insertion target page (to save pin/unpin cycles) and also passes a
 *	BULKWRITE buffer selection strategy object to the buffer manager.
 *	Passing NULL for bistate selects the default behavior.
 *
 *	We always try to avoid filling existing pages further than the fillfactor.
 *	This is OK since this routine is not consulted when updating a tuple and
 *	keeping it on the same page, which is the scenario fillfactor is meant
 *	to reserve space for.
 *
 *	ereport(ERROR) is allowed here, so this routine *must* be called
 *	before any (unlogged) changes are made in buffer pool.
 */
Buffer
RelationGetBufferForTuple(Relation relation, Size len,
						  Buffer otherBuffer, int options,
						  BulkInsertState bistate,
						  Buffer *vmbuffer, Buffer *vmbuffer_other)
{
	bool		use_fsm = !(options & HEAP_INSERT_SKIP_FSM);
	Buffer		buffer = InvalidBuffer;
	Page		page;
	Size		pageFreeSpace,
				saveFreeSpace;
	BlockNumber targetBlock,
				otherBlock;
	bool		needLock;

	len = MAXALIGN(len);		/* be conservative */

	/* Bulk insert is not supported for updates, only inserts. */
	Assert(otherBuffer == InvalidBuffer || !bistate);

	/*
	 * If we're gonna fail for oversize tuple, do it right away
	 */
	if (len > MaxHeapTupleSize)
		ereport(ERROR,
				(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
				 errmsg("row is too big: size %lu, maximum size %lu",
						(unsigned long) len,
						(unsigned long) MaxHeapTupleSize)));

	/* Compute desired extra freespace due to fillfactor option */
	saveFreeSpace = RelationGetTargetPageFreeSpace(relation,
												   HEAP_DEFAULT_FILLFACTOR);

	if (otherBuffer != InvalidBuffer)
		otherBlock = BufferGetBlockNumber(otherBuffer);
	else
		otherBlock = InvalidBlockNumber;		/* just to keep compiler quiet */

	/*
	 * We first try to put the tuple on the same page we last inserted a tuple
	 * on, as cached in the BulkInsertState or relcache entry.	If that
	 * doesn't work, we ask the Free Space Map to locate a suitable page.
	 * Since the FSM's info might be out of date, we have to be prepared to
	 * loop around and retry multiple times. (To insure this isn't an infinite
	 * loop, we must update the FSM with the correct amount of free space on
	 * each page that proves not to be suitable.)  If the FSM has no record of
	 * a page with enough free space, we give up and extend the relation.
	 *
	 * When use_fsm is false, we either put the tuple onto the existing target
	 * page or extend the relation.
	 */
	if (len + saveFreeSpace > MaxHeapTupleSize)
	{
		/* can't fit, don't bother asking FSM */
		targetBlock = InvalidBlockNumber;
		use_fsm = false;
	}
	else if (bistate && bistate->current_buf != InvalidBuffer)
		targetBlock = BufferGetBlockNumber(bistate->current_buf);
	else
		targetBlock = RelationGetTargetBlock(relation);

	if (targetBlock == InvalidBlockNumber && use_fsm)
	{
		/*
		 * We have no cached target page, so ask the FSM for an initial
		 * target.
		 */
		targetBlock = GetPageWithFreeSpace(relation, len + saveFreeSpace);

		/*
		 * If the FSM knows nothing of the rel, try the last page before we
		 * give up and extend.	This avoids one-tuple-per-page syndrome during
		 * bootstrapping or in a recently-started system.
		 */
		if (targetBlock == InvalidBlockNumber)
		{
			BlockNumber nblocks = RelationGetNumberOfBlocks(relation);

			if (nblocks > 0)
				targetBlock = nblocks - 1;
		}
	}

	while (targetBlock != InvalidBlockNumber)
	{
		/*
		 * Read and exclusive-lock the target block, as well as the other
		 * block if one was given, taking suitable care with lock ordering and
		 * the possibility they are the same block.
		 *
		 * If the page-level all-visible flag is set, caller will need to
		 * clear both that and the corresponding visibility map bit.  However,
		 * by the time we return, we'll have x-locked the buffer, and we don't
		 * want to do any I/O while in that state.	So we check the bit here
		 * before taking the lock, and pin the page if it appears necessary.
		 * Checking without the lock creates a risk of getting the wrong
		 * answer, so we'll have to recheck after acquiring the lock.
		 */
		if (otherBuffer == InvalidBuffer)
		{
			/* easy case */
			buffer = ReadBufferBI(relation, targetBlock, bistate);
			if (PageIsAllVisible(BufferGetPage(buffer)))
				visibilitymap_pin(relation, targetBlock, vmbuffer);
			LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
		}
		else if (otherBlock == targetBlock)
		{
			/* also easy case */
			buffer = otherBuffer;
			if (PageIsAllVisible(BufferGetPage(buffer)))
				visibilitymap_pin(relation, targetBlock, vmbuffer);
			LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
		}
		else if (otherBlock < targetBlock)
		{
			/* lock other buffer first */
			buffer = ReadBuffer(relation, targetBlock);
			if (PageIsAllVisible(BufferGetPage(buffer)))
				visibilitymap_pin(relation, targetBlock, vmbuffer);
			LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);
			LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
		}
		else
		{
			/* lock target buffer first */
			buffer = ReadBuffer(relation, targetBlock);
			if (PageIsAllVisible(BufferGetPage(buffer)))
				visibilitymap_pin(relation, targetBlock, vmbuffer);
			LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
			LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);
		}

		/*
		 * We now have the target page (and the other buffer, if any) pinned
		 * and locked.	However, since our initial PageIsAllVisible checks
		 * were performed before acquiring the lock, the results might now be
		 * out of date, either for the selected victim buffer, or for the
		 * other buffer passed by the caller.  In that case, we'll need to
		 * give up our locks, go get the pin(s) we failed to get earlier, and
		 * re-lock.  That's pretty painful, but hopefully shouldn't happen
		 * often.
		 *
		 * Note that there's a small possibility that we didn't pin the page
		 * above but still have the correct page pinned anyway, either because
		 * we've already made a previous pass through this loop, or because
		 * caller passed us the right page anyway.
		 *
		 * Note also that it's possible that by the time we get the pin and
		 * retake the buffer locks, the visibility map bit will have been
		 * cleared by some other backend anyway.  In that case, we'll have
		 * done a bit of extra work for no gain, but there's no real harm
		 * done.
		 */
		if (otherBuffer == InvalidBuffer || buffer <= otherBuffer)
			GetVisibilityMapPins(relation, buffer, otherBuffer,
								 targetBlock, otherBlock, vmbuffer,
								 vmbuffer_other);
		else
			GetVisibilityMapPins(relation, otherBuffer, buffer,
								 otherBlock, targetBlock, vmbuffer_other,
								 vmbuffer);

		/*
		 * Now we can check to see if there's enough free space here. If so,
		 * we're done.
		 */
		page = BufferGetPage(buffer);
		pageFreeSpace = PageGetHeapFreeSpace(page);
		if (len + saveFreeSpace <= pageFreeSpace)
		{
			/* use this page as future insert target, too */
			RelationSetTargetBlock(relation, targetBlock);
			return buffer;
		}

		/*
		 * Not enough space, so we must give up our page locks and pin (if
		 * any) and prepare to look elsewhere.	We don't care which order we
		 * unlock the two buffers in, so this can be slightly simpler than the
		 * code above.
		 */
		LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
		if (otherBuffer == InvalidBuffer)
			ReleaseBuffer(buffer);
		else if (otherBlock != targetBlock)
		{
			LockBuffer(otherBuffer, BUFFER_LOCK_UNLOCK);
			ReleaseBuffer(buffer);
		}

		/* Without FSM, always fall out of the loop and extend */
		if (!use_fsm)
			break;

		/*
		 * Update FSM as to condition of this page, and ask for another page
		 * to try.
		 */
		targetBlock = RecordAndGetPageWithFreeSpace(relation,
													targetBlock,
													pageFreeSpace,
													len + saveFreeSpace);
	}

	/*
	 * Have to extend the relation.
	 *
	 * We have to use a lock to ensure no one else is extending the rel at the
	 * same time, else we will both try to initialize the same new page.  We
	 * can skip locking for new or temp relations, however, since no one else
	 * could be accessing them.
	 */
	needLock = !RELATION_IS_LOCAL(relation);

	if (needLock)
		LockRelationForExtension(relation, ExclusiveLock);

	/*
	 * XXX This does an lseek - rather expensive - but at the moment it is the
	 * only way to accurately determine how many blocks are in a relation.	Is
	 * it worth keeping an accurate file length in shared memory someplace,
	 * rather than relying on the kernel to do it for us?
	 */
	buffer = ReadBufferBI(relation, P_NEW, bistate);

	/*
	 * We can be certain that locking the otherBuffer first is OK, since it
	 * must have a lower page number.
	 */
	if (otherBuffer != InvalidBuffer)
		LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);

	/*
	 * Now acquire lock on the new page.
	 */
	LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);

	/*
	 * Release the file-extension lock; it's now OK for someone else to extend
	 * the relation some more.	Note that we cannot release this lock before
	 * we have buffer lock on the new page, or we risk a race condition
	 * against vacuumlazy.c --- see comments therein.
	 */
	if (needLock)
		UnlockRelationForExtension(relation, ExclusiveLock);

	/*
	 * We need to initialize the empty new page.  Double-check that it really
	 * is empty (this should never happen, but if it does we don't want to
	 * risk wiping out valid data).
	 */
	page = BufferGetPage(buffer);

	if (!PageIsNew(page))
		elog(ERROR, "page %u of relation \"%s\" should be empty but is not",
			 BufferGetBlockNumber(buffer),
			 RelationGetRelationName(relation));

	PageInit(page, BufferGetPageSize(buffer), 0);

	if (len > PageGetHeapFreeSpace(page))
	{
		/* We should not get here given the test at the top */
		elog(PANIC, "tuple is too big: size %lu", (unsigned long) len);
	}

	/*
	 * Remember the new page as our target for future insertions.
	 *
	 * XXX should we enter the new page into the free space map immediately,
	 * or just keep it for this backend's exclusive use in the short run
	 * (until VACUUM sees it)?	Seems to depend on whether you expect the
	 * current backend to make more insertions or not, which is probably a
	 * good bet most of the time.  So for now, don't add it to FSM yet.
	 */
	RelationSetTargetBlock(relation, BufferGetBlockNumber(buffer));

	return buffer;
}