Exemple #1
0
bool CxImageJPG::Encode(CxFile * hFile)
{
	if (EncodeSafeCheck(hFile)) return false;

	if (head.biClrUsed!=0 && !IsGrayScale()){
		strcpy(info.szLastError,"JPEG can save only RGB or GreyScale images");
		return false;
	}	

	/* This struct contains the JPEG compression parameters and pointers to
	* working space (which is allocated as needed by the JPEG library).
	* It is possible to have several such structures, representing multiple
	* compression/decompression processes, in existence at once.  We refer
	* to any one struct (and its associated working data) as a "JPEG object".
	*/
	struct jpeg_compress_struct cinfo;
	/* This struct represents a JPEG error handler.  It is declared separately
	* because applications often want to supply a specialized error handler
	* (see the second half of this file for an example).  But here we just
	* take the easy way out and use the standard error handler, which will
	* print a message on stderr and call exit() if compression fails.
	* Note that this struct must live as long as the main JPEG parameter
	* struct, to avoid dangling-pointer problems.
	*/
	//struct jpeg_error_mgr jerr;
	/* We use our private extension JPEG error handler. <CSC> */
	struct ima_error_mgr jerr;
	jerr.buffer=info.szLastError;
	/* More stuff */
	int row_stride;		/* physical row width in image buffer */
	JSAMPARRAY buffer;		/* Output row buffer */

	/* Step 1: allocate and initialize JPEG compression object */
	/* We have to set up the error handler first, in case the initialization
	* step fails.  (Unlikely, but it could happen if you are out of memory.)
	* This routine fills in the contents of struct jerr, and returns jerr's
	* address which we place into the link field in cinfo.
	*/
	//cinfo.err = jpeg_std_error(&jerr); <CSC>
	/* We set up the normal JPEG error routines, then override error_exit. */
	cinfo.err = jpeg_std_error(&jerr.pub);
	jerr.pub.error_exit = ima_jpeg_error_exit;

	/* Establish the setjmp return context for my_error_exit to use. */
	if (setjmp(jerr.setjmp_buffer)) {
		/* If we get here, the JPEG code has signaled an error.
		* We need to clean up the JPEG object, close the input file, and return.
		*/
		strcpy(info.szLastError, jerr.buffer); //<CSC>
		jpeg_destroy_compress(&cinfo);
		return 0;
	}
	
	/* Now we can initialize the JPEG compression object. */
	jpeg_create_compress(&cinfo);
	/* Step 2: specify data destination (eg, a file) */
	/* Note: steps 2 and 3 can be done in either order. */
	/* Here we use the library-supplied code to send compressed data to a
	* stdio stream.  You can also write your own code to do something else.
	* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
	* requires it in order to write binary files.
	*/

	//jpeg_stdio_dest(&cinfo, outfile);
	CxFileJpg dest(hFile);
    cinfo.dest = &dest;

	/* Step 3: set parameters for compression */
	/* First we supply a description of the input image.
	* Four fields of the cinfo struct must be filled in:
	*/
	cinfo.image_width = GetWidth(); 	// image width and height, in pixels
	cinfo.image_height = GetHeight();

	if (IsGrayScale()){
		cinfo.input_components = 1;			// # of color components per pixel
		cinfo.in_color_space = JCS_GRAYSCALE; /* colorspace of input image */
	} else {
		cinfo.input_components = 3; 	// # of color components per pixel
		cinfo.in_color_space = JCS_RGB; /* colorspace of input image */
	}

	/* Now use the library's routine to set default compression parameters.
	* (You must set at least cinfo.in_color_space before calling this,
	* since the defaults depend on the source color space.)
	*/
	jpeg_set_defaults(&cinfo);
	/* Now you can set any non-default parameters you wish to.
	* Here we just illustrate the use of quality (quantization table) scaling:
	*/
	//jpeg_set_quality(&cinfo, info.nQuality, TRUE /* limit to baseline-JPEG values */);
#ifdef C_ARITH_CODING_SUPPORTED
	if ((GetCodecOption() & ENCODE_ARITHMETIC) != 0)
		cinfo.arith_code = TRUE;
#endif
#ifdef ENTRPY_OPT_SUPPORTED
	if ((GetCodecOption() & ENCODE_OPTIMIZE) != 0)
		cinfo.optimize_coding = TRUE;
#endif
	if ((GetCodecOption() & ENCODE_GRAYSCALE) != 0)
		jpeg_set_colorspace(&cinfo, JCS_GRAYSCALE);
	if ((GetCodecOption() & ENCODE_SMOOTHING) != 0)
		cinfo.smoothing_factor = m_nSmoothing;
	jpeg_set_quality(&cinfo, GetJpegQuality(), (GetCodecOption() & ENCODE_BASELINE) != 0);
#ifdef C_PROGRESSIVE_SUPPORTED
	if ((GetCodecOption() & ENCODE_PROGRESSIVE) != 0)
		jpeg_simple_progression(&cinfo);
#endif
#ifdef C_LOSSLES_SUPPORTED
	if ((GetCodecOption() & ENCODE_LOSSLESS) != 0)
		jpeg_simple_lossless(&cinfo, m_nPredictor, m_nPointTransform);
#endif

	cinfo.density_unit=1;
	cinfo.X_density=(unsigned short)GetXDPI();
	cinfo.Y_density=(unsigned short)GetYDPI();

	/* Step 4: Start compressor */
	/* TRUE ensures that we will write a complete interchange-JPEG file.
	* Pass TRUE unless you are very sure of what you're doing.
	*/
	jpeg_start_compress(&cinfo, TRUE);

	/* Step 5: while (scan lines remain to be written) */
	/*           jpeg_write_scanlines(...); */
	/* Here we use the library's state variable cinfo.next_scanline as the
	* loop counter, so that we don't have to keep track ourselves.
	* To keep things simple, we pass one scanline per call; you can pass
	* more if you wish, though.
	*/
	row_stride = info.dwEffWidth;	/* JSAMPLEs per row in image_buffer */

	//<DP> "8+row_stride" fix heap deallocation problem during debug???
	buffer = (*cinfo.mem->alloc_sarray)
		((j_common_ptr) &cinfo, JPOOL_IMAGE, 8+row_stride, 1);

	CImageIterator iter(this);

	iter.Upset();
	while (cinfo.next_scanline < cinfo.image_height) {
		// info.nProgress = (long)(100*cinfo.next_scanline/cinfo.image_height);
		iter.GetRow(buffer[0], row_stride);
		// not necessary if swapped red and blue definition in jmorecfg.h;ln322 <W. Morrison>
		if (head.biClrUsed==0){				 // swap R & B for RGB images
			RGBtoBGR(buffer[0], row_stride); // Lance : 1998/09/01 : Bug ID: EXP-2.1.1-9
		}
		iter.PrevRow();
		(void) jpeg_write_scanlines(&cinfo, buffer, 1);
	}

	/* Step 6: Finish compression */
	jpeg_finish_compress(&cinfo);

	/* Step 7: release JPEG compression object */
	/* This is an important step since it will release a good deal of memory. */
	jpeg_destroy_compress(&cinfo);

	/* And we're done! */
	return true;
}
Exemple #2
0
bool CxImageJPG::Decode(CxFile * hFile)
{

	bool is_exif = false;
#if CXIMAGEJPG_SUPPORT_EXIF
	is_exif = DecodeExif(hFile);
#endif

	CImageIterator iter(this);
	/* This struct contains the JPEG decompression parameters and pointers to
	* working space (which is allocated as needed by the JPEG library).
	*/
	struct jpeg_decompress_struct cinfo;
	/* We use our private extension JPEG error handler. <CSC> */
	struct ima_error_mgr jerr;
	jerr.buffer=info.szLastError;
	/* More stuff */
	JSAMPARRAY buffer;	/* Output row buffer */
	int row_stride;		/* physical row width in output buffer */

	/* In this example we want to open the input file before doing anything else,
	* so that the setjmp() error recovery below can assume the file is open.
	* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
	* requires it in order to read binary files.
	*/

	/* Step 1: allocate and initialize JPEG decompression object */
	/* We set up the normal JPEG error routines, then override error_exit. */
	cinfo.err = jpeg_std_error(&jerr.pub);
	jerr.pub.error_exit = ima_jpeg_error_exit;

	/* Establish the setjmp return context for my_error_exit to use. */
	if (setjmp(jerr.setjmp_buffer)) {
		/* If we get here, the JPEG code has signaled an error.
		* We need to clean up the JPEG object, close the input file, and return.
		*/
		jpeg_destroy_decompress(&cinfo);
		return 0;
	}
	/* Now we can initialize the JPEG decompression object. */
	jpeg_create_decompress(&cinfo);

	/* Step 2: specify data source (eg, a file) */
	//jpeg_stdio_src(&cinfo, infile);
	CxFileJpg src(hFile);
    cinfo.src = &src;

	/* Step 3: read file parameters with jpeg_read_header() */
	(void) jpeg_read_header(&cinfo, TRUE);

	/* Step 4 <chupeev> handle decoder options*/
	if ((GetCodecOption() & DECODE_GRAYSCALE) != 0)
		cinfo.out_color_space = JCS_GRAYSCALE;
	if ((GetCodecOption() & DECODE_QUANTIZE) != 0) {
		cinfo.quantize_colors = TRUE;
		cinfo.desired_number_of_colors = info.nQuality;
	}
	if ((GetCodecOption() & DECODE_DITHER) != 0)
		cinfo.dither_mode = m_nDither;
	if ((GetCodecOption() & DECODE_ONEPASS) != 0)
		cinfo.two_pass_quantize = FALSE;
	if ((GetCodecOption() & DECODE_NOSMOOTH) != 0)
		cinfo.do_fancy_upsampling = FALSE;

//<DP>: Load true color images as RGB (no quantize) 
/* Step 4: set parameters for decompression */
/*  if (cinfo.jpeg_color_space!=JCS_GRAYSCALE) {
 *	cinfo.quantize_colors = TRUE;
 *	cinfo.desired_number_of_colors = 128;
 *}
 */ //</DP>

	// Set the scale <ignacio>
	cinfo.scale_denom = info.nScale;

	// Borrowed the idea from GIF implementation <ignacio>
	if (info.nEscape == -1) {
		// Return output dimensions only
		jpeg_calc_output_dimensions(&cinfo);
		head.biWidth = cinfo.output_width;
		head.biHeight = cinfo.output_height;
		jpeg_destroy_decompress(&cinfo);
		return true;
	}

	/* Step 5: Start decompressor */
	jpeg_start_decompress(&cinfo);

	/* We may need to do some setup of our own at this point before reading
	* the data.  After jpeg_start_decompress() we have the correct scaled
	* output image dimensions available, as well as the output colormap
	* if we asked for color quantization.
	*/
	//Create the image using output dimensions <ignacio>
	//Create(cinfo.image_width, cinfo.image_height, 8*cinfo.output_components, CXIMAGE_FORMAT_JPG);
	Create(cinfo.output_width, cinfo.output_height, 8*cinfo.output_components, CXIMAGE_FORMAT_JPG);

	if (!pDib) longjmp(jerr.setjmp_buffer, 1);  //<DP> check if the image has been created

	if (is_exif){
#if CXIMAGEJPG_SUPPORT_EXIF
	if ((m_exifinfo.Xresolution != 0.0) && (m_exifinfo.ResolutionUnit != 0))
		SetXDPI((long)(m_exifinfo.Xresolution/m_exifinfo.ResolutionUnit));
	if ((m_exifinfo.Yresolution != 0.0) && (m_exifinfo.ResolutionUnit != 0))
		SetYDPI((long)(m_exifinfo.Yresolution/m_exifinfo.ResolutionUnit));
#endif
	} else {
		if (cinfo.density_unit==2){
			SetXDPI((long)floor(cinfo.X_density * 254.0 / 10000.0 + 0.5));
			SetYDPI((long)floor(cinfo.Y_density * 254.0 / 10000.0 + 0.5));
		} else {
			SetXDPI(cinfo.X_density);
			SetYDPI(cinfo.Y_density);
		}
	}

	if (cinfo.out_color_space==JCS_GRAYSCALE){
		SetGrayPalette();
		head.biClrUsed =256;
	} else {
		if (cinfo.quantize_colors==TRUE){
			SetPalette(cinfo.actual_number_of_colors, cinfo.colormap[0], cinfo.colormap[1], cinfo.colormap[2]);
			head.biClrUsed=cinfo.actual_number_of_colors;
		} else {
			head.biClrUsed=0;
		}
	}

	/* JSAMPLEs per row in output buffer */
	row_stride = cinfo.output_width * cinfo.output_components;

	/* Make a one-row-high sample array that will go away when done with image */
	buffer = (*cinfo.mem->alloc_sarray)
		((j_common_ptr) &cinfo, JPOOL_IMAGE, row_stride, 1);

	/* Step 6: while (scan lines remain to be read) */
	/*           jpeg_read_scanlines(...); */
	/* Here we use the library's state variable cinfo.output_scanline as the
	* loop counter, so that we don't have to keep track ourselves.
	*/
	iter.Upset();
	while (cinfo.output_scanline < cinfo.output_height) {

		if (info.nEscape) longjmp(jerr.setjmp_buffer, 1); // <vho> - cancel decoding
		
		(void) jpeg_read_scanlines(&cinfo, buffer, 1);
		// info.nProgress = (long)(100*cinfo.output_scanline/cinfo.output_height);
		//<DP> Step 6a: CMYK->RGB */ 
		if ((cinfo.num_components==4)&&(cinfo.quantize_colors==FALSE)){
			BYTE k,*dst,*src;
			dst=iter.GetRow();
			src=buffer[0];
			for(long x3=0,x4=0; x3<(long)info.dwEffWidth && x4<row_stride; x3+=3, x4+=4){
				k=src[x4+3];
				dst[x3]  =(BYTE)((k * src[x4+2])/255);
				dst[x3+1]=(BYTE)((k * src[x4+1])/255);
				dst[x3+2]=(BYTE)((k * src[x4+0])/255);
			}
		} else {
			/* Assume put_scanline_someplace wants a pointer and sample count. */
			iter.SetRow(buffer[0], row_stride);
		}
			iter.PrevRow();
	}

	/* Step 7: Finish decompression */
	(void) jpeg_finish_decompress(&cinfo);
	/* We can ignore the return value since suspension is not possible
	* with the stdio data source.
	*/

	//<DP> Step 7A: Swap red and blue components
	// not necessary if swapped red and blue definition in jmorecfg.h;ln322 <W. Morrison>
	if ((cinfo.num_components==3)&&(cinfo.quantize_colors==FALSE)){
		BYTE* r0=GetBits();
		for(long y=0;y<head.biHeight;y++){
			if (info.nEscape) longjmp(jerr.setjmp_buffer, 1); // <vho> - cancel decoding
			RGBtoBGR(r0,3*head.biWidth);
			r0+=info.dwEffWidth;
		}
	}

	/* Step 8: Release JPEG decompression object */
	/* This is an important step since it will release a good deal of memory. */
	jpeg_destroy_decompress(&cinfo);

	/* At this point you may want to check to see whether any corrupt-data
	* warnings occurred (test whether jerr.pub.num_warnings is nonzero).
	*/

	/* And we're done! */
	return true;
}
Exemple #3
0
bool CxImageRAW::Decode(CxFile *hFile)
{
return false;
#if 0
	if (hFile==NULL)
		return false;

	if (mutexInitialized == false)
	{
#ifdef _LINUX
		pthread_mutex_init(&rawMutex, 0);
#else
		rawMutex = ::CreateMutex(NULL, false, NULL);
#endif
		mutexInitialized = true;
	}

#ifdef _LINUX
	pthread_mutex_lock(&rawMutex);
#else
	::WaitForSingleObject(rawMutex, INFINITE);
#endif
 
	DCRAW  dcr;

  cx_try
  {
	// initialization
	dcr_init_dcraw(&dcr);

	dcr.opt.user_qual = GetCodecOption(CXIMAGE_FORMAT_RAW) & 0x03;

	// setup variables for debugging
	char szClass[] = "CxImageRAW";
	dcr.ifname = szClass;
	dcr.sz_error = info.szLastError;

	// setup library options, see dcr_print_manual for the available switches
	// call dcr_parse_command_line_options(&dcr,0,0,0) to set default options
	// if (dcr_parse_command_line_options(&dcr,argc,argv,&arg))
	if (dcr_parse_command_line_options(&dcr,0,0,0)){
		cx_throw("CxImageRAW: unknown option");
	}

	// set return point for error handling
	if (setjmp (dcr.failure)) {
		cx_throw("");
	}

	// install file manager
	CxFileRaw src(hFile,&dcr);

	// check file header
	dcr_identify(&dcr);
	
	if(!dcr.is_raw){
		cx_throw("CxImageRAW: not a raw image");
	}

	if (dcr.load_raw == NULL) {
		cx_throw("CxImageRAW: missing raw decoder");
	}

	// verify special case
	if (dcr.load_raw == dcr_kodak_ycbcr_load_raw) {
		dcr.height += dcr.height & 1;
		dcr.width  += dcr.width  & 1;
	}

	if (info.nEscape == -1){
		head.biWidth = dcr.width;
		head.biHeight= dcr.height;
		info.dwType = CXIMAGE_FORMAT_RAW;
		cx_throw("output dimensions returned");
	}

	// shrinked decoding available and requested?
	dcr.shrink = dcr.filters && (dcr.opt.half_size || dcr.opt.threshold || dcr.opt.aber[0] != 1 || dcr.opt.aber[2] != 1);
	dcr.iheight = (dcr.height + dcr.shrink) >> dcr.shrink;
	dcr.iwidth  = (dcr.width  + dcr.shrink) >> dcr.shrink;

	// install custom camera matrix
	if (dcr.opt.use_camera_matrix && dcr.cmatrix[0][0] > 0.25) {
		memcpy (dcr.rgb_cam, dcr.cmatrix, sizeof dcr.cmatrix);
		dcr.raw_color = 0;
	}
    else {
      dcr.opt.use_camera_wb = 1;
    }

	// allocate memory for the image
	dcr.image = (ushort (*)[4]) calloc (dcr.iheight*dcr.iwidth, sizeof *dcr.image);
	dcr_merror (&dcr, dcr.image, szClass);

	if (dcr.meta_length) {
		dcr.meta_data = (char *) malloc (dcr.meta_length);
		dcr_merror (&dcr, dcr.meta_data, szClass);
	}

	// start image decoder
	hFile->Seek(dcr.data_offset, SEEK_SET);
	(*dcr.load_raw)(&dcr);

	// post processing
	if (dcr.zero_is_bad) dcr_remove_zeroes(&dcr);

	dcr_bad_pixels(&dcr,NULL);

	if (dcr.opt.dark_frame) dcr_subtract (&dcr,dcr.opt.dark_frame);

	dcr.quality = 2 + !dcr.fuji_width;

	if (dcr.opt.user_qual >= 0) dcr.quality = dcr.opt.user_qual;

	if (dcr.opt.user_black >= 0) dcr.black = dcr.opt.user_black;

#ifdef COLORCHECK
	dcr_colorcheck(&dcr);
#endif

#if RESTRICTED
	if (dcr.is_foveon && !dcr.opt.document_mode) dcr_foveon_interpolate(&dcr);
#endif

	if (!dcr.is_foveon && dcr.opt.document_mode < 2) dcr_scale_colors(&dcr);

	// pixel interpolation and filters
	dcr_pre_interpolate(&dcr);

	if (dcr.filters && !dcr.opt.document_mode) {
		if (dcr.quality == 0)
			dcr_lin_interpolate(&dcr);
		else if (dcr.quality == 1 || dcr.colors > 3)
			dcr_vng_interpolate(&dcr);
		else if (dcr.quality == 2)
			dcr_ppg_interpolate(&dcr);
		else
			dcr_ahd_interpolate(&dcr);
	}

	if (dcr.mix_green) {
		long i;
		for (dcr.colors=3, i=0; i < dcr.height*dcr.width; i++) {
			dcr.image[i][1] = (dcr.image[i][1] + dcr.image[i][3]) >> 1;
		}
	}

	if (!dcr.is_foveon && dcr.colors == 3) dcr_median_filter(&dcr);

	if (!dcr.is_foveon && dcr.opt.highlight == 2) dcr_blend_highlights(&dcr);

	if (!dcr.is_foveon && dcr.opt.highlight > 2) dcr_recover_highlights(&dcr);

	if (dcr.opt.use_fuji_rotate) dcr_fuji_rotate(&dcr);

#ifndef NO_LCMS
	if (dcr.opt.cam_profile) dcr_apply_profile (dcr.opt.cam_profile, dcr.opt.out_profile);
#endif

	// final conversion
	dcr_convert_to_rgb(&dcr);

	if (dcr.opt.use_fuji_rotate) dcr_stretch(&dcr);

	dcr.iheight = dcr.height;
	dcr.iwidth  = dcr.width;
	if (dcr.flip & 4) SWAP(dcr.height,dcr.width);

	// ready to transfer data from dcr.image
	if (!Create(dcr.width,dcr.height,24,CXIMAGE_FORMAT_RAW)){
		cx_throw("");
	}

	uchar  *ppm = (uchar *) calloc (dcr.width, dcr.colors*dcr.opt.output_bps/8);
	ushort *ppm2 = (ushort *) ppm;
	dcr_merror (&dcr, ppm, szClass);

	uchar lut[0x10000];
	if (dcr.opt.output_bps == 8) dcr_gamma_lut (&dcr, lut);

	long c, row, col, soff, rstep, cstep;
	soff  = dcr_flip_index (&dcr, 0, 0);
	cstep = dcr_flip_index (&dcr, 0, 1) - soff;
	rstep = dcr_flip_index (&dcr, 1, 0) - dcr_flip_index (&dcr, 0, dcr.width);
	for (row=0; row < dcr.height; row++, soff += rstep) {
		for (col=0; col < dcr.width; col++, soff += cstep) {
			if (dcr.opt.output_bps == 8)
				for (c=0; c < dcr.colors; c++) ppm [col*dcr.colors+c] = lut[dcr.image[soff][c]];
			else
				for (c=0; c < dcr.colors; c++) ppm2[col*dcr.colors+c] = dcr.image[soff][c];
		}
		if (dcr.opt.output_bps == 16 && !dcr.opt.output_tiff && htons(0x55aa) != 0x55aa)
#if defined(_LINUX) || defined(__APPLE__)
			swab ((char*)ppm2, (char*)ppm2, dcr.width*dcr.colors*2);
#else
			_swab ((char*)ppm2, (char*)ppm2, dcr.width*dcr.colors*2);
#endif

		DWORD size = dcr.width * (dcr.colors*dcr.opt.output_bps/8);
		RGBtoBGR(ppm,size);
		memcpy(GetBits(dcr.height - 1 - row), ppm, min(size,GetEffWidth()));
	}
	free (ppm);


	dcr_cleanup_dcraw(&dcr);
#ifdef _LINUX
	pthread_mutex_unlock(&rawMutex);
#else
	::ReleaseMutex(rawMutex);
#endif

  } cx_catch {