Exemple #1
0
/**
 * cik_sdma_get_rptr - get the current read pointer
 *
 * @rdev: radeon_device pointer
 * @ring: radeon ring pointer
 *
 * Get the current rptr from the hardware (CIK+).
 */
uint32_t cik_sdma_get_rptr(struct radeon_device *rdev,
			   struct radeon_ring *ring)
{
	u32 rptr, reg;

	if (rdev->wb.enabled) {
		rptr = rdev->wb.wb[ring->rptr_offs/4];
	} else {
		if (ring->idx == R600_RING_TYPE_DMA_INDEX)
			reg = SDMA0_GFX_RB_RPTR + SDMA0_REGISTER_OFFSET;
		else
			reg = SDMA0_GFX_RB_RPTR + SDMA1_REGISTER_OFFSET;

		rptr = RREG32(reg);
	}

	return (rptr & 0x3fffc) >> 2;
}
Exemple #2
0
static void gmc_v7_0_mc_stop(struct amdgpu_device *adev)
{
	u32 blackout;

	gmc_v7_0_wait_for_idle((void *)adev);

	blackout = RREG32(mmMC_SHARED_BLACKOUT_CNTL);
	if (REG_GET_FIELD(blackout, MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE) != 1) {
		/* Block CPU access */
		WREG32(mmBIF_FB_EN, 0);
		/* blackout the MC */
		blackout = REG_SET_FIELD(blackout,
					 MC_SHARED_BLACKOUT_CNTL, BLACKOUT_MODE, 0);
		WREG32(mmMC_SHARED_BLACKOUT_CNTL, blackout | 1);
	}
	/* wait for the MC to settle */
	udelay(100);
}
Exemple #3
0
static void si_dma_stop(struct amdgpu_device *adev)
{
	struct amdgpu_ring *ring;
	u32 rb_cntl;
	unsigned i;

	for (i = 0; i < adev->sdma.num_instances; i++) {
		ring = &adev->sdma.instance[i].ring;
		/* dma0 */
		rb_cntl = RREG32(DMA_RB_CNTL + sdma_offsets[i]);
		rb_cntl &= ~DMA_RB_ENABLE;
		WREG32(DMA_RB_CNTL + sdma_offsets[i], rb_cntl);

		if (adev->mman.buffer_funcs_ring == ring)
			amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
		ring->ready = false;
	}
}
static int mgag200_device_init(struct drm_device *dev,
			       uint32_t flags)
{
	struct mga_device *mdev = dev->dev_private;
	int ret, option;

	mdev->type = flags;

	/* Hardcode the number of CRTCs to 1 */
	mdev->num_crtc = 1;

	pci_read_config_dword(dev->pdev, PCI_MGA_OPTION, &option);
	mdev->has_sdram = !(option & (1 << 14));

	/* BAR 0 is the framebuffer, BAR 1 contains registers */
	mdev->rmmio_base = pci_resource_start(mdev->dev->pdev, 1);
	mdev->rmmio_size = pci_resource_len(mdev->dev->pdev, 1);

	if (!request_mem_region(mdev->rmmio_base, mdev->rmmio_size,
				"mgadrmfb_mmio")) {
		DRM_ERROR("can't reserve mmio registers\n");
		return -ENOMEM;
	}

	mdev->rmmio = pci_iomap(dev->pdev, 1, 0);
	if (mdev->rmmio == NULL)
		return -ENOMEM;

	/* stash G200 SE model number for later use */
	if (IS_G200_SE(mdev))
		mdev->reg_1e24 = RREG32(0x1e24);

	ret = mga_vram_init(mdev);
	if (ret) {
		release_mem_region(mdev->rmmio_base, mdev->rmmio_size);
		return ret;
	}

	mdev->bpp_shifts[0] = 0;
	mdev->bpp_shifts[1] = 1;
	mdev->bpp_shifts[2] = 0;
	mdev->bpp_shifts[3] = 2;
	return 0;
}
Exemple #5
0
/**
 * cik_sdma_enable - stop the async dma engines
 *
 * @adev: amdgpu_device pointer
 * @enable: enable/disable the DMA MEs.
 *
 * Halt or unhalt the async dma engines (CIK).
 */
static void cik_sdma_enable(struct amdgpu_device *adev, bool enable)
{
	u32 me_cntl;
	int i;

	if (!enable) {
		cik_sdma_gfx_stop(adev);
		cik_sdma_rlc_stop(adev);
	}

	for (i = 0; i < adev->sdma.num_instances; i++) {
		me_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
		if (enable)
			me_cntl &= ~SDMA0_F32_CNTL__HALT_MASK;
		else
			me_cntl |= SDMA0_F32_CNTL__HALT_MASK;
		WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], me_cntl);
	}
}
Exemple #6
0
void rs690_line_buffer_adjust(struct radeon_device *rdev,
			      struct drm_display_mode *mode1,
			      struct drm_display_mode *mode2)
{
	u32 tmp;

	/*
	 * Line Buffer Setup
	 * There is a single line buffer shared by both display controllers.
	 * DC_LB_MEMORY_SPLIT controls how that line buffer is shared between
	 * the display controllers.  The paritioning can either be done
	 * manually or via one of four preset allocations specified in bits 1:0:
	 *  0 - line buffer is divided in half and shared between crtc
	 *  1 - D1 gets 3/4 of the line buffer, D2 gets 1/4
	 *  2 - D1 gets the whole buffer
	 *  3 - D1 gets 1/4 of the line buffer, D2 gets 3/4
	 * Setting bit 2 of DC_LB_MEMORY_SPLIT controls switches to manual
	 * allocation mode. In manual allocation mode, D1 always starts at 0,
	 * D1 end/2 is specified in bits 14:4; D2 allocation follows D1.
	 */
	tmp = RREG32(DC_LB_MEMORY_SPLIT) & ~DC_LB_MEMORY_SPLIT_MASK;
	tmp &= ~DC_LB_MEMORY_SPLIT_SHIFT_MODE;
	/* auto */
	if (mode1 && mode2) {
		if (mode1->hdisplay > mode2->hdisplay) {
			if (mode1->hdisplay > 2560)
				tmp |= DC_LB_MEMORY_SPLIT_D1_3Q_D2_1Q;
			else
				tmp |= DC_LB_MEMORY_SPLIT_D1HALF_D2HALF;
		} else if (mode2->hdisplay > mode1->hdisplay) {
			if (mode2->hdisplay > 2560)
				tmp |= DC_LB_MEMORY_SPLIT_D1_1Q_D2_3Q;
			else
				tmp |= DC_LB_MEMORY_SPLIT_D1HALF_D2HALF;
		} else
			tmp |= AVIVO_DC_LB_MEMORY_SPLIT_D1HALF_D2HALF;
	} else if (mode1) {
		tmp |= DC_LB_MEMORY_SPLIT_D1_ONLY;
	} else if (mode2) {
		tmp |= DC_LB_MEMORY_SPLIT_D1_1Q_D2_3Q;
	}
	WREG32(DC_LB_MEMORY_SPLIT, tmp);
}
void dce4_hdmi_audio_set_dto(struct radeon_device *rdev,
	struct radeon_crtc *crtc, unsigned int clock)
{
	unsigned int max_ratio = clock / 24000;
	u32 dto_phase;
	u32 wallclock_ratio;
	u32 value;

	if (max_ratio >= 8) {
		dto_phase = 192 * 1000;
		wallclock_ratio = 3;
	} else if (max_ratio >= 4) {
		dto_phase = 96 * 1000;
		wallclock_ratio = 2;
	} else if (max_ratio >= 2) {
		dto_phase = 48 * 1000;
		wallclock_ratio = 1;
	} else {
		dto_phase = 24 * 1000;
		wallclock_ratio = 0;
	}

	value = RREG32(DCCG_AUDIO_DTO0_CNTL) & ~DCCG_AUDIO_DTO_WALLCLOCK_RATIO_MASK;
	value |= DCCG_AUDIO_DTO_WALLCLOCK_RATIO(wallclock_ratio);
	value &= ~DCCG_AUDIO_DTO1_USE_512FBR_DTO;
	WREG32(DCCG_AUDIO_DTO0_CNTL, value);

	/* Two dtos; generally use dto0 for HDMI */
	value = 0;

	if (crtc)
		value |= DCCG_AUDIO_DTO0_SOURCE_SEL(crtc->crtc_id);

	WREG32(DCCG_AUDIO_DTO_SOURCE, value);

	/* Express [24MHz / target pixel clock] as an exact rational
	 * number (coefficient of two integer numbers.  DCCG_AUDIO_DTOx_PHASE
	 * is the numerator, DCCG_AUDIO_DTOx_MODULE is the denominator
	 */
	WREG32(DCCG_AUDIO_DTO0_PHASE, dto_phase);
	WREG32(DCCG_AUDIO_DTO0_MODULE, clock);
}
/**
 * cik_sdma_gfx_stop - stop the gfx async dma engines
 *
 * @rdev: radeon_device pointer
 *
 * Stop the gfx async dma ring buffers (CIK).
 */
static void cik_sdma_gfx_stop(struct radeon_device *rdev)
{
	u32 rb_cntl, reg_offset;
	int i;

	radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size);

	for (i = 0; i < 2; i++) {
		if (i == 0)
			reg_offset = SDMA0_REGISTER_OFFSET;
		else
			reg_offset = SDMA1_REGISTER_OFFSET;
		rb_cntl = RREG32(SDMA0_GFX_RB_CNTL + reg_offset);
		rb_cntl &= ~SDMA_RB_ENABLE;
		WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl);
		WREG32(SDMA0_GFX_IB_CNTL + reg_offset, 0);
	}
	rdev->ring[R600_RING_TYPE_DMA_INDEX].ready = false;
	rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX].ready = false;
}
Exemple #9
0
/**
 * cik_sdma_gfx_stop - stop the gfx async dma engines
 *
 * @adev: amdgpu_device pointer
 *
 * Stop the gfx async dma ring buffers (CIK).
 */
static void cik_sdma_gfx_stop(struct amdgpu_device *adev)
{
	struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
	struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
	u32 rb_cntl;
	int i;

	if ((adev->mman.buffer_funcs_ring == sdma0) ||
	    (adev->mman.buffer_funcs_ring == sdma1))
		amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);

	for (i = 0; i < adev->sdma.num_instances; i++) {
		rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
		rb_cntl &= ~SDMA0_GFX_RB_CNTL__RB_ENABLE_MASK;
		WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
		WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], 0);
	}
	sdma0->ready = false;
	sdma1->ready = false;
}
Exemple #10
0
/**
 * gmc_v8_0_set_fault_enable_default - update VM fault handling
 *
 * @adev: amdgpu_device pointer
 * @value: true redirects VM faults to the default page
 */
static void gmc_v7_0_set_fault_enable_default(struct amdgpu_device *adev,
					      bool value)
{
	u32 tmp;

	tmp = RREG32(mmVM_CONTEXT1_CNTL);
	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
			    RANGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
			    DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
			    PDE0_PROTECTION_FAULT_ENABLE_DEFAULT, value);
	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
			    VALID_PROTECTION_FAULT_ENABLE_DEFAULT, value);
	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
			    READ_PROTECTION_FAULT_ENABLE_DEFAULT, value);
	tmp = REG_SET_FIELD(tmp, VM_CONTEXT1_CNTL,
			    WRITE_PROTECTION_FAULT_ENABLE_DEFAULT, value);
	WREG32(mmVM_CONTEXT1_CNTL, tmp);
}
Exemple #11
0
static void vi_detect_hw_virtualization(struct amdgpu_device *adev)
{
	uint32_t reg = 0;

	if (adev->asic_type == CHIP_TONGA ||
	    adev->asic_type == CHIP_FIJI) {
	       reg = RREG32(mmBIF_IOV_FUNC_IDENTIFIER);
	       /* bit0: 0 means pf and 1 means vf */
	       if (REG_GET_FIELD(reg, BIF_IOV_FUNC_IDENTIFIER, FUNC_IDENTIFIER))
		       adev->virt.caps |= AMDGPU_SRIOV_CAPS_IS_VF;
	       /* bit31: 0 means disable IOV and 1 means enable */
	       if (REG_GET_FIELD(reg, BIF_IOV_FUNC_IDENTIFIER, IOV_ENABLE))
		       adev->virt.caps |= AMDGPU_SRIOV_CAPS_ENABLE_IOV;
	}

	if (reg == 0) {
		if (is_virtual_machine()) /* passthrough mode exclus sr-iov mode */
			adev->virt.caps |= AMDGPU_PASSTHROUGH_MODE;
	}
}
Exemple #12
0
int rs600_mc_init(struct radeon_device *rdev)
{
	uint32_t tmp;
	int r;

	if (r100_debugfs_rbbm_init(rdev)) {
		DRM_ERROR("Failed to register debugfs file for RBBM !\n");
	}

	rs600_gpu_init(rdev);
	rs600_gart_disable(rdev);

	/* Setup GPU memory space */
	rdev->mc.vram_location = 0xFFFFFFFFUL;
	rdev->mc.gtt_location = 0xFFFFFFFFUL;
	r = radeon_mc_setup(rdev);
	if (r) {
		return r;
	}

	/* Program GPU memory space */
	/* Enable bus master */
	tmp = RREG32(RADEON_BUS_CNTL) & ~RS600_BUS_MASTER_DIS;
	WREG32(RADEON_BUS_CNTL, tmp);
	/* FIXME: What does AGP means for such chipset ? */
	WREG32_MC(RS600_MC_AGP_LOCATION, 0x0FFFFFFF);
	/* FIXME: are this AGP reg in indirect MC range ? */
	WREG32_MC(RS600_MC_AGP_BASE, 0);
	WREG32_MC(RS600_MC_AGP_BASE_2, 0);
	rs600_mc_disable_clients(rdev);
	if (rs600_mc_wait_for_idle(rdev)) {
		printk(KERN_WARNING "Failed to wait MC idle while "
		       "programming pipes. Bad things might happen.\n");
	}
	tmp = rdev->mc.vram_location + rdev->mc.mc_vram_size - 1;
	tmp = REG_SET(RS600_MC_FB_TOP, tmp >> 16);
	tmp |= REG_SET(RS600_MC_FB_START, rdev->mc.vram_location >> 16);
	WREG32_MC(RS600_MC_FB_LOCATION, tmp);
	WREG32(RS690_HDP_FB_LOCATION, rdev->mc.vram_location >> 16);
	return 0;
}
Exemple #13
0
static void uvd_v5_0_get_clockgating_state(void *handle, u32 *flags)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	int data;

	mutex_lock(&adev->pm.mutex);

	if (RREG32_SMC(ixCURRENT_PG_STATUS) &
				CURRENT_PG_STATUS__UVD_PG_STATUS_MASK) {
		DRM_INFO("Cannot get clockgating state when UVD is powergated.\n");
		goto out;
	}

	/* AMD_CG_SUPPORT_UVD_MGCG */
	data = RREG32(mmUVD_CGC_CTRL);
	if (data & UVD_CGC_CTRL__DYN_CLOCK_MODE_MASK)
		*flags |= AMD_CG_SUPPORT_UVD_MGCG;

out:
	mutex_unlock(&adev->pm.mutex);
}
Exemple #14
0
int psp_wait_for(struct psp_context *psp, uint32_t reg_index,
		 uint32_t reg_val, uint32_t mask, bool check_changed)
{
	uint32_t val;
	int i;
	struct amdgpu_device *adev = psp->adev;

	for (i = 0; i < adev->usec_timeout; i++) {
		val = RREG32(reg_index);
		if (check_changed) {
			if (val != reg_val)
				return 0;
		} else {
			if ((val & mask) == reg_val)
				return 0;
		}
		udelay(1);
	}

	return -ETIME;
}
Exemple #15
0
/**
 * cik_ih_get_wptr - get the IH ring buffer wptr
 *
 * @adev: amdgpu_device pointer
 *
 * Get the IH ring buffer wptr from either the register
 * or the writeback memory buffer (CIK).  Also check for
 * ring buffer overflow and deal with it.
 * Used by cik_irq_process().
 * Returns the value of the wptr.
 */
static u32 cik_ih_get_wptr(struct amdgpu_device *adev)
{
	u32 wptr, tmp;

	wptr = le32_to_cpu(adev->wb.wb[adev->irq.ih.wptr_offs]);

	if (wptr & IH_RB_WPTR__RB_OVERFLOW_MASK) {
		wptr &= ~IH_RB_WPTR__RB_OVERFLOW_MASK;
		/* When a ring buffer overflow happen start parsing interrupt
		 * from the last not overwritten vector (wptr + 16). Hopefully
		 * this should allow us to catchup.
		 */
		dev_warn(adev->dev, "IH ring buffer overflow (0x%08X, 0x%08X, 0x%08X)\n",
			wptr, adev->irq.ih.rptr, (wptr + 16) & adev->irq.ih.ptr_mask);
		adev->irq.ih.rptr = (wptr + 16) & adev->irq.ih.ptr_mask;
		tmp = RREG32(mmIH_RB_CNTL);
		tmp |= IH_RB_CNTL__WPTR_OVERFLOW_CLEAR_MASK;
		WREG32(mmIH_RB_CNTL, tmp);
	}
	return (wptr & adev->irq.ih.ptr_mask);
}
Exemple #16
0
static void vi_gpu_pci_config_reset(struct amdgpu_device *adev)
{
	u32 i;

	dev_info(adev->dev, "GPU pci config reset\n");

	/* disable BM */
	pci_clear_master(adev->pdev);
	/* reset */
	amdgpu_pci_config_reset(adev);

	udelay(100);

	/* wait for asic to come out of reset */
	for (i = 0; i < adev->usec_timeout; i++) {
		if (RREG32(mmCONFIG_MEMSIZE) != 0xffffffff)
			break;
		udelay(1);
	}

}
Exemple #17
0
void r600_pcie_gart_tlb_flush(struct radeon_device *rdev)
{
	unsigned i;
	u32 tmp;

	WREG32(VM_CONTEXT0_INVALIDATION_LOW_ADDR, rdev->mc.gtt_start >> 12);
	WREG32(VM_CONTEXT0_INVALIDATION_HIGH_ADDR, (rdev->mc.gtt_end - 1) >> 12);
	WREG32(VM_CONTEXT0_REQUEST_RESPONSE, REQUEST_TYPE(1));
	for (i = 0; i < rdev->usec_timeout; i++) {
		
		tmp = RREG32(VM_CONTEXT0_REQUEST_RESPONSE);
		tmp = (tmp & RESPONSE_TYPE_MASK) >> RESPONSE_TYPE_SHIFT;
		if (tmp == 2) {
			printk(KERN_WARNING "[drm] r600 flush TLB failed\n");
			return;
		}
		if (tmp) {
			return;
		}
		udelay(1);
	}
}
Exemple #18
0
/**
 * gmc_v7_0_set_prt - set PRT VM fault
 *
 * @adev: amdgpu_device pointer
 * @enable: enable/disable VM fault handling for PRT
 */
static void gmc_v7_0_set_prt(struct amdgpu_device *adev, bool enable)
{
	uint32_t tmp;

	if (enable && !adev->mc.prt_warning) {
		dev_warn(adev->dev, "Disabling VM faults because of PRT request!\n");
		adev->mc.prt_warning = true;
	}

	tmp = RREG32(mmVM_PRT_CNTL);
	tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
			    CB_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
	tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
			    CB_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
	tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
			    TC_DISABLE_READ_FAULT_ON_UNMAPPED_ACCESS, enable);
	tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
			    TC_DISABLE_WRITE_FAULT_ON_UNMAPPED_ACCESS, enable);
	tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
			    L2_CACHE_STORE_INVALID_ENTRIES, enable);
	tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
			    L1_TLB_STORE_INVALID_ENTRIES, enable);
	tmp = REG_SET_FIELD(tmp, VM_PRT_CNTL,
			    MASK_PDE0_FAULT, enable);
	WREG32(mmVM_PRT_CNTL, tmp);

	if (enable) {
		uint32_t low = AMDGPU_VA_RESERVED_SIZE >> AMDGPU_GPU_PAGE_SHIFT;
		uint32_t high = adev->vm_manager.max_pfn;

		WREG32(mmVM_PRT_APERTURE0_LOW_ADDR, low);
		WREG32(mmVM_PRT_APERTURE1_LOW_ADDR, low);
		WREG32(mmVM_PRT_APERTURE2_LOW_ADDR, low);
		WREG32(mmVM_PRT_APERTURE3_LOW_ADDR, low);
		WREG32(mmVM_PRT_APERTURE0_HIGH_ADDR, high);
		WREG32(mmVM_PRT_APERTURE1_HIGH_ADDR, high);
		WREG32(mmVM_PRT_APERTURE2_HIGH_ADDR, high);
		WREG32(mmVM_PRT_APERTURE3_HIGH_ADDR, high);
	} else {
Exemple #19
0
/**
 * cik_sdma_enable - stop the async dma engines
 *
 * @rdev: radeon_device pointer
 * @enable: enable/disable the DMA MEs.
 *
 * Halt or unhalt the async dma engines (CIK).
 */
void cik_sdma_enable(struct radeon_device *rdev, bool enable)
{
	u32 me_cntl, reg_offset;
	int i;

	if (enable == false) {
		cik_sdma_gfx_stop(rdev);
		cik_sdma_rlc_stop(rdev);
	}

	for (i = 0; i < 2; i++) {
		if (i == 0)
			reg_offset = SDMA0_REGISTER_OFFSET;
		else
			reg_offset = SDMA1_REGISTER_OFFSET;
		me_cntl = RREG32(SDMA0_ME_CNTL + reg_offset);
		if (enable)
			me_cntl &= ~SDMA_HALT;
		else
			me_cntl |= SDMA_HALT;
		WREG32(SDMA0_ME_CNTL + reg_offset, me_cntl);
	}
}
Exemple #20
0
static int uvd_v6_0_set_clockgating_state(void *handle,
					  enum amd_clockgating_state state)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	bool enable = (state == AMD_CG_STATE_GATE) ? true : false;

	if (!(adev->cg_flags & AMD_CG_SUPPORT_UVD_MGCG))
		return 0;

	if (enable) {
		if (adev->flags & AMD_IS_APU)
			cz_set_uvd_clock_gating_branches(adev, enable);
		else
			tonga_set_uvd_clock_gating_branches(adev, enable);
		uvd_v6_0_set_uvd_dynamic_clock_mode(adev, true);
	} else {
		uint32_t data = RREG32(mmUVD_CGC_CTRL);
		data &= ~UVD_CGC_CTRL__DYN_CLOCK_MODE_MASK;
		WREG32(mmUVD_CGC_CTRL, data);
	}

	return 0;
}
Exemple #21
0
static void legacy_crtc_load_lut(struct drm_crtc *crtc)
{
	struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct radeon_device *rdev = dev->dev_private;
	int i;
	uint32_t dac2_cntl;

	dac2_cntl = RREG32(RADEON_DAC_CNTL2);
	if (radeon_crtc->crtc_id == 0)
		dac2_cntl &= (uint32_t)~RADEON_DAC2_PALETTE_ACC_CTL;
	else
		dac2_cntl |= RADEON_DAC2_PALETTE_ACC_CTL;
	WREG32(RADEON_DAC_CNTL2, dac2_cntl);

	WREG8(RADEON_PALETTE_INDEX, 0);
	for (i = 0; i < 256; i++) {
		WREG32(RADEON_PALETTE_30_DATA,
			     (radeon_crtc->lut_r[i] << 20) |
			     (radeon_crtc->lut_g[i] << 10) |
			     (radeon_crtc->lut_b[i] << 0));
	}
}
Exemple #22
0
/**
 * vega10_ih_irq_init - init and enable the interrupt ring
 *
 * @adev: amdgpu_device pointer
 *
 * Allocate a ring buffer for the interrupt controller,
 * enable the RLC, disable interrupts, enable the IH
 * ring buffer and enable it (VI).
 * Called at device load and reume.
 * Returns 0 for success, errors for failure.
 */
static int vega10_ih_irq_init(struct amdgpu_device *adev)
{
	int ret = 0;
	int rb_bufsz;
	u32 ih_rb_cntl, ih_doorbell_rtpr;
	u32 tmp;
	u64 wptr_off;

	/* disable irqs */
	vega10_ih_disable_interrupts(adev);

	if (adev->flags & AMD_IS_APU)
		nbio_v7_0_ih_control(adev);
	else
		nbio_v6_1_ih_control(adev);

	ih_rb_cntl = RREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_RB_CNTL));
	/* Ring Buffer base. [39:8] of 40-bit address of the beginning of the ring buffer*/
	if (adev->irq.ih.use_bus_addr) {
		WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_RB_BASE), adev->irq.ih.rb_dma_addr >> 8);
		WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_RB_BASE_HI), ((u64)adev->irq.ih.rb_dma_addr >> 40) & 0xff);
		ih_rb_cntl = REG_SET_FIELD(ih_rb_cntl, IH_RB_CNTL, MC_SPACE, 1);
	} else {
Exemple #23
0
void soc15_program_register_sequence(struct amdgpu_device *adev,
					     const struct soc15_reg_golden *regs,
					     const u32 array_size)
{
	const struct soc15_reg_golden *entry;
	u32 tmp, reg;
	int i;

	for (i = 0; i < array_size; ++i) {
		entry = &regs[i];
		reg =  adev->reg_offset[entry->hwip][entry->instance][entry->segment] + entry->reg;

		if (entry->and_mask == 0xffffffff) {
			tmp = entry->or_mask;
		} else {
			tmp = RREG32(reg);
			tmp &= ~(entry->and_mask);
			tmp |= entry->or_mask;
		}
		WREG32(reg, tmp);
	}

}
Exemple #24
0
static int gmc_v9_0_process_interrupt(struct amdgpu_device *adev,
				struct amdgpu_irq_src *source,
				struct amdgpu_iv_entry *entry)
{
	struct amdgpu_vmhub *hub = &adev->vmhub[entry->vmid_src];
	uint32_t status = 0;
	u64 addr;

	addr = (u64)entry->src_data[0] << 12;
	addr |= ((u64)entry->src_data[1] & 0xf) << 44;

	if (!amdgpu_sriov_vf(adev)) {
		status = RREG32(hub->vm_l2_pro_fault_status);
		WREG32_P(hub->vm_l2_pro_fault_cntl, 1, ~1);
	}

	if (printk_ratelimit()) {
		struct amdgpu_task_info task_info = { 0 };

		amdgpu_vm_get_task_info(adev, entry->pasid, &task_info);

		dev_err(adev->dev,
			"[%s] VMC page fault (src_id:%u ring:%u vmid:%u pasid:%u, for process %s pid %d thread %s pid %d\n)\n",
			entry->vmid_src ? "mmhub" : "gfxhub",
			entry->src_id, entry->ring_id, entry->vmid,
			entry->pasid, task_info.process_name, task_info.tgid,
			task_info.task_name, task_info.pid);
		dev_err(adev->dev, "  at address 0x%016llx from %d\n",
			addr, entry->client_id);
		if (!amdgpu_sriov_vf(adev))
			dev_err(adev->dev,
				"VM_L2_PROTECTION_FAULT_STATUS:0x%08X\n",
				status);
	}

	return 0;
}
Exemple #25
0
static int cik_sdma_soft_reset(void *handle)
{
	u32 srbm_soft_reset = 0;
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;
	u32 tmp = RREG32(mmSRBM_STATUS2);

	if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
		/* sdma0 */
		tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
		tmp |= SDMA0_F32_CNTL__HALT_MASK;
		WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
	}
	if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
		/* sdma1 */
		tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
		tmp |= SDMA0_F32_CNTL__HALT_MASK;
		WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
		srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
	}

	if (srbm_soft_reset) {
		cik_sdma_print_status((void *)adev);

		tmp = RREG32(mmSRBM_SOFT_RESET);
		tmp |= srbm_soft_reset;
		dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
		WREG32(mmSRBM_SOFT_RESET, tmp);
		tmp = RREG32(mmSRBM_SOFT_RESET);

		udelay(50);

		tmp &= ~srbm_soft_reset;
		WREG32(mmSRBM_SOFT_RESET, tmp);
		tmp = RREG32(mmSRBM_SOFT_RESET);

		/* Wait a little for things to settle down */
		udelay(50);

		cik_sdma_print_status((void *)adev);
	}

	return 0;
}
Exemple #26
0
static int radeon_debugfs_ring_info(struct seq_file *m, void *data)
{
	struct drm_info_node *node = (struct drm_info_node *) m->private;
	struct drm_device *dev = node->minor->dev;
	struct radeon_device *rdev = dev->dev_private;
	int ridx = *(int*)node->info_ent->data;
	struct radeon_ring *ring = &rdev->ring[ridx];
	unsigned count, i, j;
	u32 tmp;

	radeon_ring_free_size(rdev, ring);
	count = (ring->ring_size / 4) - ring->ring_free_dw;
	tmp = radeon_ring_get_wptr(rdev, ring);
	seq_printf(m, "wptr(0x%04x): 0x%08x [%5d]\n", ring->wptr_reg, tmp, tmp);
	tmp = radeon_ring_get_rptr(rdev, ring);
	seq_printf(m, "rptr(0x%04x): 0x%08x [%5d]\n", ring->rptr_reg, tmp, tmp);
	if (ring->rptr_save_reg) {
		seq_printf(m, "rptr next(0x%04x): 0x%08x\n", ring->rptr_save_reg,
			   RREG32(ring->rptr_save_reg));
	}
	seq_printf(m, "driver's copy of the wptr: 0x%08x [%5d]\n", ring->wptr, ring->wptr);
	seq_printf(m, "driver's copy of the rptr: 0x%08x [%5d]\n", ring->rptr, ring->rptr);
	seq_printf(m, "last semaphore signal addr : 0x%016llx\n", ring->last_semaphore_signal_addr);
	seq_printf(m, "last semaphore wait addr   : 0x%016llx\n", ring->last_semaphore_wait_addr);
	seq_printf(m, "%u free dwords in ring\n", ring->ring_free_dw);
	seq_printf(m, "%u dwords in ring\n", count);
	/* print 8 dw before current rptr as often it's the last executed
	 * packet that is the root issue
	 */
	i = (ring->rptr + ring->ptr_mask + 1 - 32) & ring->ptr_mask;
	for (j = 0; j <= (count + 32); j++) {
		seq_printf(m, "r[%5d]=0x%08x\n", i, ring->ring[i]);
		i = (i + 1) & ring->ptr_mask;
	}
	return 0;
}
void dce4_hdmi_set_color_depth(struct drm_encoder *encoder, u32 offset, int bpc)
{
	struct drm_device *dev = encoder->dev;
	struct radeon_device *rdev = dev->dev_private;
	struct drm_connector *connector = radeon_get_connector_for_encoder(encoder);
	uint32_t val;

	val = RREG32(HDMI_CONTROL + offset);
	val &= ~HDMI_DEEP_COLOR_ENABLE;
	val &= ~HDMI_DEEP_COLOR_DEPTH_MASK;

	switch (bpc) {
		case 0:
		case 6:
		case 8:
		case 16:
		default:
			DRM_DEBUG("%s: Disabling hdmi deep color for %d bpc.\n",
					 connector->name, bpc);
			break;
		case 10:
			val |= HDMI_DEEP_COLOR_ENABLE;
			val |= HDMI_DEEP_COLOR_DEPTH(HDMI_30BIT_DEEP_COLOR);
			DRM_DEBUG("%s: Enabling hdmi deep color 30 for 10 bpc.\n",
					 connector->name);
			break;
		case 12:
			val |= HDMI_DEEP_COLOR_ENABLE;
			val |= HDMI_DEEP_COLOR_DEPTH(HDMI_36BIT_DEEP_COLOR);
			DRM_DEBUG("%s: Enabling hdmi deep color 36 for 12 bpc.\n",
					 connector->name);
			break;
	}

	WREG32(HDMI_CONTROL + offset, val);
}
Exemple #28
0
static bool uvd_v6_0_is_idle(void *handle)
{
	struct amdgpu_device *adev = (struct amdgpu_device *)handle;

	return !(RREG32(mmSRBM_STATUS) & SRBM_STATUS__UVD_BUSY_MASK);
}
Exemple #29
0
/**
 * uvd_v6_0_ring_get_wptr - get write pointer
 *
 * @ring: amdgpu_ring pointer
 *
 * Returns the current hardware write pointer
 */
static uint32_t uvd_v6_0_ring_get_wptr(struct amdgpu_ring *ring)
{
	struct amdgpu_device *adev = ring->adev;

	return RREG32(mmUVD_RBC_RB_WPTR);
}
Exemple #30
0
/**
 * uvd_v6_0_start - start UVD block
 *
 * @adev: amdgpu_device pointer
 *
 * Setup and start the UVD block
 */
static int uvd_v6_0_start(struct amdgpu_device *adev)
{
	struct amdgpu_ring *ring = &adev->uvd.ring;
	uint32_t rb_bufsz, tmp;
	uint32_t lmi_swap_cntl;
	uint32_t mp_swap_cntl;
	int i, j, r;

	/* disable DPG */
	WREG32_P(mmUVD_POWER_STATUS, 0, ~UVD_POWER_STATUS__UVD_PG_MODE_MASK);

	/* disable byte swapping */
	lmi_swap_cntl = 0;
	mp_swap_cntl = 0;

	uvd_v6_0_mc_resume(adev);

	/* disable clock gating */
	WREG32_FIELD(UVD_CGC_CTRL, DYN_CLOCK_MODE, 0);

	/* disable interupt */
	WREG32_FIELD(UVD_MASTINT_EN, VCPU_EN, 0);

	/* stall UMC and register bus before resetting VCPU */
	WREG32_FIELD(UVD_LMI_CTRL2, STALL_ARB_UMC, 1);
	mdelay(1);

	/* put LMI, VCPU, RBC etc... into reset */
	WREG32(mmUVD_SOFT_RESET,
		UVD_SOFT_RESET__LMI_SOFT_RESET_MASK |
		UVD_SOFT_RESET__VCPU_SOFT_RESET_MASK |
		UVD_SOFT_RESET__LBSI_SOFT_RESET_MASK |
		UVD_SOFT_RESET__RBC_SOFT_RESET_MASK |
		UVD_SOFT_RESET__CSM_SOFT_RESET_MASK |
		UVD_SOFT_RESET__CXW_SOFT_RESET_MASK |
		UVD_SOFT_RESET__TAP_SOFT_RESET_MASK |
		UVD_SOFT_RESET__LMI_UMC_SOFT_RESET_MASK);
	mdelay(5);

	/* take UVD block out of reset */
	WREG32_FIELD(SRBM_SOFT_RESET, SOFT_RESET_UVD, 0);
	mdelay(5);

	/* initialize UVD memory controller */
	WREG32(mmUVD_LMI_CTRL,
		(0x40 << UVD_LMI_CTRL__WRITE_CLEAN_TIMER__SHIFT) |
		UVD_LMI_CTRL__WRITE_CLEAN_TIMER_EN_MASK |
		UVD_LMI_CTRL__DATA_COHERENCY_EN_MASK |
		UVD_LMI_CTRL__VCPU_DATA_COHERENCY_EN_MASK |
		UVD_LMI_CTRL__REQ_MODE_MASK |
		UVD_LMI_CTRL__DISABLE_ON_FWV_FAIL_MASK);

#ifdef __BIG_ENDIAN
	/* swap (8 in 32) RB and IB */
	lmi_swap_cntl = 0xa;
	mp_swap_cntl = 0;
#endif
	WREG32(mmUVD_LMI_SWAP_CNTL, lmi_swap_cntl);
	WREG32(mmUVD_MP_SWAP_CNTL, mp_swap_cntl);

	WREG32(mmUVD_MPC_SET_MUXA0, 0x40c2040);
	WREG32(mmUVD_MPC_SET_MUXA1, 0x0);
	WREG32(mmUVD_MPC_SET_MUXB0, 0x40c2040);
	WREG32(mmUVD_MPC_SET_MUXB1, 0x0);
	WREG32(mmUVD_MPC_SET_ALU, 0);
	WREG32(mmUVD_MPC_SET_MUX, 0x88);

	/* take all subblocks out of reset, except VCPU */
	WREG32(mmUVD_SOFT_RESET, UVD_SOFT_RESET__VCPU_SOFT_RESET_MASK);
	mdelay(5);

	/* enable VCPU clock */
	WREG32(mmUVD_VCPU_CNTL, UVD_VCPU_CNTL__CLK_EN_MASK);

	/* enable UMC */
	WREG32_FIELD(UVD_LMI_CTRL2, STALL_ARB_UMC, 0);

	/* boot up the VCPU */
	WREG32(mmUVD_SOFT_RESET, 0);
	mdelay(10);

	for (i = 0; i < 10; ++i) {
		uint32_t status;

		for (j = 0; j < 100; ++j) {
			status = RREG32(mmUVD_STATUS);
			if (status & 2)
				break;
			mdelay(10);
		}
		r = 0;
		if (status & 2)
			break;

		DRM_ERROR("UVD not responding, trying to reset the VCPU!!!\n");
		WREG32_FIELD(UVD_SOFT_RESET, VCPU_SOFT_RESET, 1);
		mdelay(10);
		WREG32_FIELD(UVD_SOFT_RESET, VCPU_SOFT_RESET, 0);
		mdelay(10);
		r = -1;
	}

	if (r) {
		DRM_ERROR("UVD not responding, giving up!!!\n");
		return r;
	}
	/* enable master interrupt */
	WREG32_P(mmUVD_MASTINT_EN,
		(UVD_MASTINT_EN__VCPU_EN_MASK|UVD_MASTINT_EN__SYS_EN_MASK),
		~(UVD_MASTINT_EN__VCPU_EN_MASK|UVD_MASTINT_EN__SYS_EN_MASK));

	/* clear the bit 4 of UVD_STATUS */
	WREG32_P(mmUVD_STATUS, 0, ~(2 << UVD_STATUS__VCPU_REPORT__SHIFT));

	/* force RBC into idle state */
	rb_bufsz = order_base_2(ring->ring_size);
	tmp = REG_SET_FIELD(0, UVD_RBC_RB_CNTL, RB_BUFSZ, rb_bufsz);
	tmp = REG_SET_FIELD(tmp, UVD_RBC_RB_CNTL, RB_BLKSZ, 1);
	tmp = REG_SET_FIELD(tmp, UVD_RBC_RB_CNTL, RB_NO_FETCH, 1);
	tmp = REG_SET_FIELD(tmp, UVD_RBC_RB_CNTL, RB_WPTR_POLL_EN, 0);
	tmp = REG_SET_FIELD(tmp, UVD_RBC_RB_CNTL, RB_NO_UPDATE, 1);
	tmp = REG_SET_FIELD(tmp, UVD_RBC_RB_CNTL, RB_RPTR_WR_EN, 1);
	WREG32(mmUVD_RBC_RB_CNTL, tmp);

	/* set the write pointer delay */
	WREG32(mmUVD_RBC_RB_WPTR_CNTL, 0);

	/* set the wb address */
	WREG32(mmUVD_RBC_RB_RPTR_ADDR, (upper_32_bits(ring->gpu_addr) >> 2));

	/* programm the RB_BASE for ring buffer */
	WREG32(mmUVD_LMI_RBC_RB_64BIT_BAR_LOW,
			lower_32_bits(ring->gpu_addr));
	WREG32(mmUVD_LMI_RBC_RB_64BIT_BAR_HIGH,
			upper_32_bits(ring->gpu_addr));

	/* Initialize the ring buffer's read and write pointers */
	WREG32(mmUVD_RBC_RB_RPTR, 0);

	ring->wptr = RREG32(mmUVD_RBC_RB_RPTR);
	WREG32(mmUVD_RBC_RB_WPTR, ring->wptr);

	WREG32_FIELD(UVD_RBC_RB_CNTL, RB_NO_FETCH, 0);

	return 0;
}