Exemple #1
0
static void Test3(void)
{
    RTTestSub(g_hTest, "Negative");
    bool fSavedAssertQuiet    = RTAssertSetQuiet(true);
    bool fSavedAssertMayPanic = RTAssertSetMayPanic(false);
    bool fSavedLckValEnabled  = RTLockValidatorSetEnabled(false);

    RTSEMRW hSemRW;
    RTTEST_CHECK_RC_RETV(g_hTest, RTSemRWCreate(&hSemRW), VINF_SUCCESS);

    RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead(hSemRW), VERR_NOT_OWNER);
    RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(hSemRW), VERR_NOT_OWNER);

    RTTEST_CHECK_RC(g_hTest, RTSemRWRequestWrite(hSemRW, RT_INDEFINITE_WAIT), VINF_SUCCESS);
    RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead(hSemRW), VERR_NOT_OWNER);

    RTTEST_CHECK_RC(g_hTest, RTSemRWRequestRead(hSemRW, RT_INDEFINITE_WAIT), VINF_SUCCESS);
    RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(hSemRW), VERR_WRONG_ORDER); /* cannot release the final write before the reads. */
    RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead(hSemRW), VINF_SUCCESS);
    RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(hSemRW), VINF_SUCCESS);

    RTTEST_CHECK_RC(g_hTest, RTSemRWDestroy(hSemRW), VINF_SUCCESS);

    RTLockValidatorSetEnabled(fSavedLckValEnabled);
    RTAssertSetMayPanic(fSavedAssertMayPanic);
    RTAssertSetQuiet(fSavedAssertQuiet);
}
Exemple #2
0
/*virtual*/ RWLockHandle::~RWLockHandle()
{
#ifdef GLUE_USE_CRITSECTRW
    RTCritSectRwDelete(&m->CritSect);
#else
    RTSemRWDestroy(m->sem);
#endif
    delete m;
}
Exemple #3
0
/**
 * Initializes the thread database.
 *
 * @returns iprt status code.
 */
DECLHIDDEN(int) rtThreadInit(void)
{
#ifdef IN_RING3
    int rc = VINF_ALREADY_INITIALIZED;
    if (g_ThreadRWSem == NIL_RTSEMRW)
    {
        /*
         * We assume the caller is the 1st thread, which we'll call 'main'.
         * But first, we'll create the semaphore.
         */
        rc = RTSemRWCreateEx(&g_ThreadRWSem, RTSEMRW_FLAGS_NO_LOCK_VAL, NIL_RTLOCKVALCLASS, RTLOCKVAL_SUB_CLASS_NONE, NULL);
        if (RT_SUCCESS(rc))
        {
            rc = rtThreadNativeInit();
            if (RT_SUCCESS(rc))
                rc = rtThreadAdopt(RTTHREADTYPE_DEFAULT, 0, RTTHREADINT_FLAGS_MAIN, "main");
            if (RT_SUCCESS(rc))
                rc = rtSchedNativeCalcDefaultPriority(RTTHREADTYPE_DEFAULT);
            if (RT_SUCCESS(rc))
            {
                g_frtThreadInitialized = true;
                return VINF_SUCCESS;
            }

            /* failed, clear out */
            RTSemRWDestroy(g_ThreadRWSem);
            g_ThreadRWSem = NIL_RTSEMRW;
        }
    }

#elif defined(IN_RING0)
    int rc;
    /*
     * Create the spinlock and to native init.
     */
    Assert(g_ThreadSpinlock == NIL_RTSPINLOCK);
    rc = RTSpinlockCreate(&g_ThreadSpinlock, RTSPINLOCK_FLAGS_INTERRUPT_SAFE, "RTThread");
    if (RT_SUCCESS(rc))
    {
        rc = rtThreadNativeInit();
        if (RT_SUCCESS(rc))
        {
            g_frtThreadInitialized = true;
            return VINF_SUCCESS;
        }

        /* failed, clear out */
        RTSpinlockDestroy(g_ThreadSpinlock);
        g_ThreadSpinlock = NIL_RTSPINLOCK;
    }
#else
# error "!IN_RING0 && !IN_RING3"
#endif
    return rc;
}
/**
 * Terminates the address space parts of DBGF.
 *
 * @param   pUVM        The user mode VM handle.
 */
void dbgfR3AsTerm(PUVM pUVM)
{
    /*
     * Create the semaphore.
     */
    int rc = RTSemRWDestroy(pUVM->dbgf.s.hAsDbLock);
    AssertRC(rc);
    pUVM->dbgf.s.hAsDbLock = NIL_RTSEMRW;

    /*
     * Release all the address spaces.
     */
    RTAvlPVDestroy(&pUVM->dbgf.s.AsHandleTree, dbgfR3AsTermDestroyNode, NULL);
    for (size_t i = 0; i < RT_ELEMENTS(pUVM->dbgf.s.ahAsAliases); i++)
    {
        RTDbgAsRelease(pUVM->dbgf.s.ahAsAliases[i]);
        pUVM->dbgf.s.ahAsAliases[i] = NIL_RTDBGAS;
    }
}
Exemple #5
0
static void Test2(void)
{
    RTTestSub(g_hTest, "Timeout");

    RTSEMRW hSemRW = NIL_RTSEMRW;
    RTTEST_CHECK_RC_RETV(g_hTest, RTSemRWCreate(&hSemRW), VINF_SUCCESS);

    /* Lock it for writing and let the thread do the remainder of the test. */
    RTTEST_CHECK_RC_RETV(g_hTest, RTSemRWRequestWrite(hSemRW, RT_INDEFINITE_WAIT), VINF_SUCCESS);

    RTTHREAD hThread;
    RTTEST_CHECK_RC_RETV(g_hTest, RTThreadCreate(&hThread, Test2Thread, hSemRW, 0,
                                                 RTTHREADTYPE_DEFAULT, RTTHREADFLAGS_WAITABLE, "test2"),
                         VINF_SUCCESS);
    RTTEST_CHECK_RC(g_hTest, RTThreadWait(hThread, 15000, NULL), VINF_SUCCESS);
    RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(hSemRW), VINF_SUCCESS);

    RTTEST_CHECK_RC(g_hTest, RTSemRWDestroy(hSemRW), VINF_SUCCESS);
}
/**
 * Cleanup debug info interpreter globals.
 *
 * @param   enmReason           The cause of the termination.
 * @param   iStatus             The meaning of this depends on enmReason.
 * @param   pvUser              User argument, unused.
 */
static DECLCALLBACK(void) rtDbgModTermCallback(RTTERMREASON enmReason, int32_t iStatus, void *pvUser)
{
    if (enmReason == RTTERMREASON_UNLOAD)
    {
        RTSemRWDestroy(g_hDbgModRWSem);
        g_hDbgModRWSem = NIL_RTSEMRW;

        RTStrCacheDestroy(g_hDbgModStrCache);
        g_hDbgModStrCache = NIL_RTSTRCACHE;

        PRTDBGMODREGDBG pCur = g_pDbgHead;
        g_pDbgHead = NULL;
        while (pCur)
        {
            PRTDBGMODREGDBG pNext = pCur->pNext;
            AssertMsg(pCur->cUsers == 0, ("%#x %s\n", pCur->cUsers, pCur->pVt->pszName));
            RTMemFree(pCur);
            pCur = pNext;
        }

        Assert(!g_pImgHead);
    }
}
Exemple #7
0
static bool Test1(void)
{
    RTTestSub(g_hTest, "Basics");

    RTSEMRW hSemRW = NIL_RTSEMRW;
    RTTEST_CHECK_RC_RET(g_hTest, RTSemRWCreate(&hSemRW), VINF_SUCCESS, false);
    RTTEST_CHECK_RET(g_hTest, hSemRW != NIL_RTSEMRW, false);

    RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestRead(hSemRW, RT_INDEFINITE_WAIT), VINF_SUCCESS, false);
    RTTEST_CHECK_RC_RET(g_hTest, RTSemRWReleaseRead(hSemRW), VINF_SUCCESS, false);

    for (unsigned cMs = 0; cMs < 50; cMs++)
    {
        RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestRead(hSemRW, cMs), VINF_SUCCESS, false);
        RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestRead(hSemRW, cMs), VINF_SUCCESS, false);
        RTTEST_CHECK_RC_RET(g_hTest, RTSemRWReleaseRead(hSemRW), VINF_SUCCESS, false);
        RTTEST_CHECK_RC_RET(g_hTest, RTSemRWReleaseRead(hSemRW), VINF_SUCCESS, false);
    }

    RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestWrite(hSemRW, RT_INDEFINITE_WAIT), VINF_SUCCESS, false);
    RTTEST_CHECK_RC_RET(g_hTest, RTSemRWReleaseWrite(hSemRW), VINF_SUCCESS, false);

    RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestWrite(hSemRW, RT_INDEFINITE_WAIT), VINF_SUCCESS, false);
    RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestRead(hSemRW, RT_INDEFINITE_WAIT), VINF_SUCCESS, false);
    RTTEST_CHECK_RC_RET(g_hTest, RTSemRWReleaseRead(hSemRW), VINF_SUCCESS, false);
    RTTEST_CHECK_RC_RET(g_hTest, RTSemRWReleaseWrite(hSemRW), VINF_SUCCESS, false);

    for (unsigned cMs = 0; cMs < 50; cMs++)
    {
        RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestWrite(hSemRW, cMs), VINF_SUCCESS, false);
        RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriteRecursion(hSemRW) == 1, false);
        RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriterReadRecursion(hSemRW) == 0, false);
        RTTEST_CHECK_RET(g_hTest, RTSemRWIsWriteOwner(hSemRW) == true, false);

        RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestWrite(hSemRW, cMs), VINF_SUCCESS, false);
        RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriteRecursion(hSemRW) == 2, false);
        RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriterReadRecursion(hSemRW) == 0, false);
        RTTEST_CHECK_RET(g_hTest, RTSemRWIsWriteOwner(hSemRW) == true, false);

        RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestRead(hSemRW, cMs), VINF_SUCCESS, false);
        RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriteRecursion(hSemRW) == 2, false);
        RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriterReadRecursion(hSemRW) == 1, false);
        RTTEST_CHECK_RET(g_hTest, RTSemRWIsWriteOwner(hSemRW) == true, false);

        RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestWrite(hSemRW, cMs), VINF_SUCCESS, false);
        RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriteRecursion(hSemRW) == 3, false);
        RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriterReadRecursion(hSemRW) == 1, false);
        RTTEST_CHECK_RET(g_hTest, RTSemRWIsWriteOwner(hSemRW) == true, false);

        /*  midway  */

        RTTEST_CHECK_RC_RET(g_hTest, RTSemRWReleaseWrite(hSemRW), VINF_SUCCESS, false);
        RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriteRecursion(hSemRW) == 2, false);
        RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriterReadRecursion(hSemRW) == 1, false);
        RTTEST_CHECK_RET(g_hTest, RTSemRWIsWriteOwner(hSemRW) == true, false);

        RTTEST_CHECK_RC_RET(g_hTest, RTSemRWReleaseRead(hSemRW), VINF_SUCCESS, false);
        RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriteRecursion(hSemRW) == 2, false);
        RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriterReadRecursion(hSemRW) == 0, false);
        RTTEST_CHECK_RET(g_hTest, RTSemRWIsWriteOwner(hSemRW) == true, false);

        RTTEST_CHECK_RC_RET(g_hTest, RTSemRWReleaseWrite(hSemRW), VINF_SUCCESS, false);
        RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriteRecursion(hSemRW) == 1, false);
        RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriterReadRecursion(hSemRW) == 0, false);
        RTTEST_CHECK_RET(g_hTest, RTSemRWIsWriteOwner(hSemRW) == true, false);

        RTTEST_CHECK_RC_RET(g_hTest, RTSemRWReleaseWrite(hSemRW), VINF_SUCCESS, false);
        RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriteRecursion(hSemRW) == 0, false);
        RTTEST_CHECK_RET(g_hTest, RTSemRWGetWriterReadRecursion(hSemRW) == 0, false);
        RTTEST_CHECK_RET(g_hTest, RTSemRWIsWriteOwner(hSemRW) == false, false);
    }

    RTTEST_CHECK_RC_RET(g_hTest, RTSemRWDestroy(hSemRW), VINF_SUCCESS, false);
    RTTEST_CHECK_RC_RET(g_hTest, RTSemRWDestroy(NIL_RTSEMRW), VINF_SUCCESS, false);

    return true;
}
Exemple #8
0
static void Test4(unsigned cThreads, unsigned cSeconds, unsigned uWritePercent, bool fYield, bool fQuiet)
{
    unsigned i;
    uint64_t acIterations[32];
    RTTHREAD aThreads[RT_ELEMENTS(acIterations)];
    AssertRelease(cThreads <= RT_ELEMENTS(acIterations));

    RTTestSubF(g_hTest, "Test4 - %u threads, %u sec, %u%% writes, %syielding",
               cThreads, cSeconds, uWritePercent, fYield ? "" : "non-");

    /*
     * Init globals.
     */
    g_fYield = fYield;
    g_fQuiet = fQuiet;
    g_fTerminate = false;
    g_uWritePercent = uWritePercent;
    g_cConcurrentWriters = 0;
    g_cConcurrentReaders = 0;

    RTTEST_CHECK_RC_RETV(g_hTest, RTSemRWCreate(&g_hSemRW), VINF_SUCCESS);

    /*
     * Create the threads and let them block on the semrw.
     */
    RTTEST_CHECK_RC_RETV(g_hTest, RTSemRWRequestWrite(g_hSemRW, RT_INDEFINITE_WAIT), VINF_SUCCESS);

    for (i = 0; i < cThreads; i++)
    {
        acIterations[i] = 0;
        RTTEST_CHECK_RC_RETV(g_hTest, RTThreadCreateF(&aThreads[i], Test4Thread, &acIterations[i], 0,
                                                      RTTHREADTYPE_DEFAULT, RTTHREADFLAGS_WAITABLE,
                                                      "test-%u", i), VINF_SUCCESS);
    }

    /*
     * Do the test run.
     */
    uint32_t cErrorsBefore = RTTestErrorCount(g_hTest);
    uint64_t u64StartTS = RTTimeNanoTS();
    RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_hSemRW), VINF_SUCCESS);
    RTThreadSleep(cSeconds * 1000);
    ASMAtomicWriteBool(&g_fTerminate, true);
    uint64_t ElapsedNS = RTTimeNanoTS() - u64StartTS;

    /*
     * Clean up the threads and semaphore.
     */
    for (i = 0; i < cThreads; i++)
        RTTEST_CHECK_RC(g_hTest, RTThreadWait(aThreads[i], 5000, NULL), VINF_SUCCESS);

    RTTEST_CHECK_MSG(g_hTest, g_cConcurrentWriters == 0, (g_hTest, "g_cConcurrentWriters=%u at end of test\n", g_cConcurrentWriters));
    RTTEST_CHECK_MSG(g_hTest, g_cConcurrentReaders == 0, (g_hTest, "g_cConcurrentReaders=%u at end of test\n", g_cConcurrentReaders));

    RTTEST_CHECK_RC(g_hTest, RTSemRWDestroy(g_hSemRW), VINF_SUCCESS);
    g_hSemRW = NIL_RTSEMRW;

    if (RTTestErrorCount(g_hTest) != cErrorsBefore)
        RTThreadSleep(100);

    /*
     * Collect and display the results.
     */
    uint64_t cItrTotal = acIterations[0];
    for (i = 1; i < cThreads; i++)
        cItrTotal += acIterations[i];

    uint64_t cItrNormal = cItrTotal / cThreads;
    uint64_t cItrMinOK = cItrNormal / 20; /* 5% */
    uint64_t cItrMaxDeviation = 0;
    for (i = 0; i < cThreads; i++)
    {
        uint64_t cItrDelta = RT_ABS((int64_t)(acIterations[i] - cItrNormal));
        if (acIterations[i] < cItrMinOK)
            RTTestFailed(g_hTest, "Thread %u did less than 5%% of the iterations - %llu (it) vs. %llu (5%%) - %llu%%\n",
                         i, acIterations[i], cItrMinOK, cItrDelta * 100 / cItrNormal);
        else if (cItrDelta > cItrNormal / 2)
            RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS,
                         "Warning! Thread %u deviates by more than 50%% - %llu (it) vs. %llu (avg) - %llu%%\n",
                         i, acIterations[i], cItrNormal, cItrDelta * 100 / cItrNormal);
        if (cItrDelta > cItrMaxDeviation)
            cItrMaxDeviation = cItrDelta;

    }

    //RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS,
    //             "Threads: %u  Total: %llu  Per Sec: %llu  Avg: %llu ns  Max dev: %llu%%\n",
    //             cThreads,
    //             cItrTotal,
    //             cItrTotal / cSeconds,
    //             ElapsedNS / cItrTotal,
    //             cItrMaxDeviation * 100 / cItrNormal
    //             );
    //
    RTTestValue(g_hTest, "Thruput", cItrTotal * UINT32_C(1000000000) / ElapsedNS, RTTESTUNIT_CALLS_PER_SEC);
    RTTestValue(g_hTest, "Max diviation", cItrMaxDeviation * 100 / cItrNormal, RTTESTUNIT_PCT);
}