Exemple #1
0
int get_ref_window(struct Cell_head *cellhd)
{
    int i;
    int count;
    struct Cell_head win;

    /* from all the files in the group, get max extends and min resolutions */
    count = 0;
    for (i = 0; i < group.group_ref.nfiles; i++) {
	if (!ref_list[i])
	    continue;

	if (count++ == 0) {
	    Rast_get_cellhd(group.group_ref.file[i].name,
			 group.group_ref.file[i].mapset, cellhd);
	}
	else {
	    Rast_get_cellhd(group.group_ref.file[i].name,
			 group.group_ref.file[i].mapset, &win);
	    /* max extends */
	    if (cellhd->north < win.north)
		cellhd->north = win.north;
	    if (cellhd->south > win.south)
		cellhd->south = win.south;
	    if (cellhd->west > win.west)
		cellhd->west = win.west;
	    if (cellhd->east < win.east)
		cellhd->east = win.east;
	    /* min resolution */
	    if (cellhd->ns_res > win.ns_res)
		cellhd->ns_res = win.ns_res;
	    if (cellhd->ew_res > win.ew_res)
		cellhd->ew_res = win.ew_res;
	}
    }

    /* if the north-south is not multiple of the resolution,
     *    round the south downward
     */
    cellhd->rows = (cellhd->north - cellhd->south) /cellhd->ns_res + 0.5;
    cellhd->south = cellhd->north - cellhd->rows * cellhd->ns_res;

    /* do the same for the west */
    cellhd->cols = (cellhd->east - cellhd->west) / cellhd->ew_res + 0.5;
    cellhd->west = cellhd->east - cellhd->cols * cellhd->ew_res;

    return 1;
}
Exemple #2
0
int get_range(const char *name, long *min, long *max)
{
    struct Range range;
    int nrows, ncols, row, col;
    CELL *cell;
    int fd;
    CELL cmin, cmax;
    struct Cell_head cellhd;

    if (Rast_read_range(name, "", &range) < 0) {
	Rast_init_range(&range);	/* read the file to get the range */
	Rast_get_cellhd(name, "", &cellhd);
	Rast_set_window(&cellhd);
	cell = Rast_allocate_c_buf();
	fd = Rast_open_old(name, "");
	nrows = Rast_window_rows();
	ncols = Rast_window_cols();
	G_message(_("Reading %s ..."), name);
	for (row = 0; row < nrows; row++) {
	    G_percent(row, nrows, 2);
	    Rast_get_c_row_nomask(fd, cell, row);
	    for (col = 0; col < ncols; col++)
		Rast_update_range(cell[col], &range);
	}
	G_percent(row, nrows, 2);
	Rast_close(fd);
	G_free(cell);
    }

    Rast_get_range_min_max(&range, &cmin, &cmax);
    *min = cmin;
    *max = cmax;

    return 0;
}
Exemple #3
0
int open_map(MAPS* rast) {
	
	int row, col;
	int fd;
	char* mapset;
	struct Cell_head cellhd;
	int bufsize;
	void* tmp_buf;
	
    mapset = (char*)G_find_raster2(rast->elevname, "");	
	
	    if (mapset == NULL)
		G_fatal_error(_("Raster map <%s> not found"), rast->elevname);
	
		rast->fd = Rast_open_old(rast->elevname, mapset);
		Rast_get_cellhd(rast->elevname, mapset, &cellhd);
		rast->raster_type = Rast_map_type(rast->elevname, mapset);

    if (window.ew_res < cellhd.ew_res || window.ns_res < cellhd.ns_res)
	G_warning(_("Region resolution shoudn't be lesser than map %s resolution. Run g.region rast=%s to set proper resolution"),
		      rast->elevname, rast->elevname);

		tmp_buf=Rast_allocate_buf(rast->raster_type);
		rast->elev = (FCELL**) G_malloc((row_buffer_size+1) * sizeof(FCELL*));
	
	for (row = 0; row < row_buffer_size+1; ++row) {
		rast->elev[row] = Rast_allocate_buf(FCELL_TYPE);
		Rast_get_row(rast->fd, tmp_buf,row, rast->raster_type);
				for (col=0;col<ncols;++col)
			get_cell(col, rast->elev[row], tmp_buf, rast->raster_type);
  } /* end elev */

G_free(tmp_buf);
return 0;
}
Exemple #4
0
/* 
   Adjust the region to that of the input raster.
   Atmospheric corrections should be done on the whole
   satelite image, not just portions.
 */
static void adjust_region(const char *name)
{
    struct Cell_head iimg_head;	/* the input image header file */

    Rast_get_cellhd(name, "", &iimg_head);

    Rast_set_window(&iimg_head);
}
Exemple #5
0
/* check compatibility of map header and region header */
void check_header(char* cellname) {

  const char *mapset;
  mapset = G_find_raster(cellname, "");
  if (mapset == NULL) {
    G_fatal_error(_("Raster map <%s> not found"), cellname);
  }
  /* read cell header */
  struct Cell_head cell_hd;
  Rast_get_cellhd (cellname, mapset, &cell_hd);
  
  /* check compatibility with module region */
  if (!((region->ew_res == cell_hd.ew_res)
		&& (region->ns_res == cell_hd.ns_res))) {
    G_fatal_error(_("cell file %s resolution differs from current region"),
				  cellname);
  } else {
    if (opt->verbose) { 
      G_message(_("cell %s header compatible with region header"),
	      cellname);
      fflush(stderr);
    }
  }


  /* check type of input elevation raster and check if precision is lost */
    RASTER_MAP_TYPE data_type;
	data_type = Rast_map_type(opt->elev_grid, mapset);
#ifdef ELEV_SHORT
	G_verbose_message(_("Elevation stored as SHORT (%dB)"),
		sizeof(elevation_type));
	if (data_type == FCELL_TYPE) {
	  G_warning(_("raster %s is of type FCELL_TYPE "
			"--precision may be lost."), opt->elev_grid); 
	}
	if (data_type == DCELL_TYPE) {
	  G_warning(_("raster %s is of type DCELL_TYPE "
			"--precision may be lost."),  opt->elev_grid);
	}
#endif 
#ifdef ELEV_FLOAT
	G_verbose_message( _("Elevation stored as FLOAT (%dB)"), 
			sizeof(elevation_type));
	if (data_type == CELL_TYPE) {
	  G_warning(_("raster %s is of type CELL_TYPE "
		"--you should use r.terraflow.short"), opt->elev_grid); 
	}
	if (data_type == DCELL_TYPE) {
	  G_warning(_("raster %s is of type DCELL_TYPE "
		"--precision may be lost."),  opt->elev_grid);
	}
#endif
	



}
Exemple #6
0
int shape_index(int fd, char **par, area_des ad, double *result)
{


    double area;
    struct Cell_head hd;
    CELL complete_value;
    double EW_DIST1, EW_DIST2, NS_DIST1, NS_DIST2;
    int mask_fd = -1, null_count = 0;
    int i = 0, k = 0;
    int *mask_buf;

    Rast_set_c_null_value(&complete_value, 1);
    Rast_get_cellhd(ad->raster, "", &hd);

    /* open mask if needed */
    if (ad->mask == 1) {
	if ((mask_fd = open(ad->mask_name, O_RDONLY, 0755)) < 0)
	    return 0;
	mask_buf = malloc(ad->cl * sizeof(int));
	for (i = 0; i < ad->rl; i++) {
	    if (read(mask_fd, mask_buf, (ad->cl * sizeof(int))) < 0)
		return 0;
	    for (k = 0; k < ad->cl; k++) {
		if (mask_buf[k] == 0) {
		    null_count++;
		}
	    }
	}
    }

    /*calculate distance */
    G_begin_distance_calculations();
    /* EW Dist at North edge */
    EW_DIST1 = G_distance(hd.east, hd.north, hd.west, hd.north);
    /* EW Dist at South Edge */
    EW_DIST2 = G_distance(hd.east, hd.south, hd.west, hd.south);
    /* NS Dist at East edge */
    NS_DIST1 = G_distance(hd.east, hd.north, hd.east, hd.south);
    /* NS Dist at West edge */
    NS_DIST2 = G_distance(hd.west, hd.north, hd.west, hd.south);


    area = (((EW_DIST1 + EW_DIST2) / 2) / hd.cols) *
	(((NS_DIST1 + NS_DIST2) / 2) / hd.rows) *
	(ad->rl * ad->cl - null_count);

    *result = area;
    return 1;
}
Exemple #7
0
static void write_support_files(int xtile, int ytile, int overlap)
{
    char name[GNAME_MAX];
    struct Cell_head cellhd;
    char title[64];
    struct History history;
    struct Colors colors;
    struct Categories cats;

    sprintf(name, "%s-%03d-%03d", parm.rastout->answer, ytile, xtile);

    Rast_get_cellhd(name, G_mapset(), &cellhd);

    cellhd.north = src_w.north - ytile * dst_w.rows * src_w.ns_res;
    cellhd.south = cellhd.north - (dst_w.rows + 2 * overlap) * src_w.ns_res;
    cellhd.west = src_w.west + xtile * dst_w.cols * src_w.ew_res;
    cellhd.east = cellhd.west + (dst_w.cols + 2 * overlap) * src_w.ew_res;

    Rast_put_cellhd(name, &cellhd);

    /* copy cats from source map */
    if (Rast_read_cats(parm.rastin->answer, "", &cats) < 0)
	G_fatal_error(_("Unable to read cats for %s"),
		      parm.rastin->answer);
    Rast_write_cats(name, &cats);

    /* record map metadata/history info */
    G_debug(1, "Tile %d,%d of %s: writing %s", xtile, ytile, parm.rastin->answer, name);
    sprintf(title, "Tile %d,%d of %s", xtile, ytile, parm.rastin->answer);
    Rast_put_cell_title(name, title);

    Rast_short_history(name, "raster", &history);
    Rast_set_history(&history, HIST_DATSRC_1, parm.rastin->answer);
    Rast_command_history(&history);
    Rast_write_history(name, &history);

    /* copy color table from source map */
    if (Rast_read_colors(parm.rastin->answer, "", &colors) < 0)
	G_fatal_error(_("Unable to read color table for %s"),
		      parm.rastin->answer);
    if (map_type != CELL_TYPE)
	Rast_mark_colors_as_fp(&colors);
    Rast_write_colors(name, G_mapset(), &colors);
}
void update_input_region(char* raster, char* region, struct Cell_head &window, double &offset, bool &region3D) {
    if (region){	/* region= */
        G_get_element_window(&window, "windows", region, "");
        offset = window.bottom;
        if (window.top != window.bottom)
            region3D = true;
    }
    else if (raster) {
        struct FPRange range;
        double zmin, zmax;
        Rast_get_cellhd(raster, "", &window);
        Rast_read_fp_range(raster, "", &range);
        Rast_get_fp_range_min_max(&range, &zmin, &zmax);
        offset = zmin;
    }
    else { // current region
        G_get_set_window(&window);
        offset = 0;
    }
}
Exemple #9
0
int renyi(int fd, char **par, area_des ad, double *result)
{

    int ris = RLI_OK;
    double indice = 0;
    struct Cell_head hd;

    Rast_get_cellhd(ad->raster, "", &hd);

    switch (ad->data_type) {
    case CELL_TYPE:
	{
	    ris = calculate(ad, fd, par, &indice);
	    break;
	}
    case DCELL_TYPE:
	{
	    ris = calculateD(ad, fd, par, &indice);
	    break;
	}
    case FCELL_TYPE:
	{
	    ris = calculateF(ad, fd, par, &indice);
	    break;
	}
    default:
	{
	    G_fatal_error("data type unknown");
	    return RLI_ERRORE;
	}

    }

    if (ris != RLI_OK)
	return RLI_ERRORE;

    *result = indice;

    return RLI_OK;

}
Exemple #10
0
int get_cats(const char *name, const char *mapset)
{
    int fd;
    int row, nrows, ncols;
    CELL *cell;
    struct Cell_head cellhd;

    /* set the window to the cell header */
    Rast_get_cellhd(name, mapset, &cellhd);

    Rast_set_window(&cellhd);

    /* open the raster map */
    fd = Rast_open_old(name, mapset);
    nrows = Rast_window_rows();
    ncols = Rast_window_cols();
    cell = Rast_allocate_c_buf();
    Rast_init_cell_stats(&statf);

    /* read the raster map */
    G_verbose_message(_("Reading <%s> in <%s>"), name, mapset);
    for (row = 0; row < nrows; row++) {
	if (G_verbose() > G_verbose_std())
	    G_percent(row, nrows, 2);
	Rast_get_c_row_nomask(fd, cell, row);
	Rast_update_cell_stats(cell, ncols, &statf);
    }
    /* done */
    if (G_verbose() > G_verbose_std())
	G_percent(row, nrows, 2);
    Rast_close(fd);
    G_free(cell);
    Rast_rewind_cell_stats(&statf);

    return 0;
}
Exemple #11
0
/* 
 * do_histogram() - Creates histogram for CELL
 *
 * RETURN: EXIT_SUCCESS / EXIT_FAILURE
 */
int do_histogram(const char *name)
{
    CELL *cell;
    struct Cell_head cellhd;
    struct Cell_stats statf;
    int nrows, ncols;
    int row;
    int fd;

    Rast_get_cellhd(name, "", &cellhd);

    Rast_set_window(&cellhd);
    fd = Rast_open_old(name, "");

    nrows = Rast_window_rows();
    ncols = Rast_window_cols();
    cell = Rast_allocate_c_buf();

    Rast_init_cell_stats(&statf);
    for (row = 0; row < nrows; row++) {
	Rast_get_c_row_nomask(fd, cell, row);
	Rast_update_cell_stats(cell, ncols, &statf);
    }

    if (row == nrows)
	Rast_write_histogram_cs(name, &statf);

    Rast_free_cell_stats(&statf);
    Rast_close(fd);
    G_free(cell);

    if (row < nrows)
	return -1;

    return 0;
}
Exemple #12
0
int main(int argc, char *argv[])
{
    struct GModule *module;
    int infile;
    const char *mapset;
    size_t cell_size;
    int ytile, xtile, y, overlap;
    int *outfiles;
    void *inbuf;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("tiling"));
    module->description =
	_("Splits a raster map into tiles.");

    parm.rastin = G_define_standard_option(G_OPT_R_INPUT);

    parm.rastout = G_define_option();
    parm.rastout->key = "output";
    parm.rastout->type = TYPE_STRING;
    parm.rastout->required = YES;
    parm.rastout->multiple = NO;
    parm.rastout->description = _("Output base name");

    parm.width = G_define_option();
    parm.width->key = "width";
    parm.width->type = TYPE_INTEGER;
    parm.width->required = YES;
    parm.width->multiple = NO;
    parm.width->description = _("Width of tiles (columns)");

    parm.height = G_define_option();
    parm.height->key = "height";
    parm.height->type = TYPE_INTEGER;
    parm.height->required = YES;
    parm.height->multiple = NO;
    parm.height->description = _("Height of tiles (rows)");

    parm.overlap = G_define_option();
    parm.overlap->key = "overlap";
    parm.overlap->type = TYPE_INTEGER;
    parm.overlap->required = NO;
    parm.overlap->multiple = NO;
    parm.overlap->description = _("Overlap of tiles");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    G_get_set_window(&src_w);
    overlap = parm.overlap->answer ? atoi(parm.overlap->answer) : 0;

    mapset = G_find_raster2(parm.rastin->answer, "");
    if (mapset == NULL)
        G_fatal_error(_("Raster map <%s> not found"), parm.rastin->answer);

    /* set window to old map */
    Rast_get_cellhd(parm.rastin->answer, "", &src_w);
    dst_w = src_w;
    dst_w.cols = atoi(parm.width->answer);
    dst_w.rows = atoi(parm.height->answer);
    G_adjust_Cell_head(&dst_w, 1, 1);

    xtiles = (src_w.cols + dst_w.cols - 1) / dst_w.cols;
    ytiles = (src_w.rows + dst_w.rows - 1) / dst_w.rows;

    G_debug(1, "X: %d * %d, Y: %d * %d",
	    xtiles, dst_w.cols, ytiles, dst_w.rows);

    src_w.cols = xtiles * dst_w.cols + 2 * overlap;
    src_w.rows = ytiles * dst_w.rows + 2 * overlap;
    src_w.west = src_w.west - overlap * src_w.ew_res;
    src_w.east = src_w.west + (src_w.cols + 2 * overlap) * src_w.ew_res;
    src_w.north = src_w.north + overlap * src_w.ns_res;
    src_w.south = src_w.north - (src_w.rows + 2 * overlap) * src_w.ns_res;

    Rast_set_input_window(&src_w);

    /* set the output region */
    ovl_w = dst_w;
    ovl_w.cols = ovl_w.cols + 2 * overlap;
    ovl_w.rows = ovl_w.rows + 2 * overlap;

    G_adjust_Cell_head(&ovl_w, 1, 1);
    Rast_set_output_window(&ovl_w);

    infile = Rast_open_old(parm.rastin->answer, "");
    map_type = Rast_get_map_type(infile);
    cell_size = Rast_cell_size(map_type);

    inbuf = Rast_allocate_input_buf(map_type);

    outfiles = G_malloc(xtiles * sizeof(int));

    G_debug(1, "X: %d * %d, Y: %d * %d",
	    xtiles, dst_w.cols, ytiles, dst_w.rows);

    G_message(_("Generating %d x %d = %d tiles..."), xtiles, ytiles, xtiles * ytiles);
    for (ytile = 0; ytile < ytiles; ytile++) {
	G_debug(1, "reading y tile: %d", ytile);
	G_percent(ytile, ytiles, 2);
	for (xtile = 0; xtile < xtiles; xtile++) {
	    char name[GNAME_MAX];
	    sprintf(name, "%s-%03d-%03d", parm.rastout->answer, ytile, xtile);
	    outfiles[xtile] = Rast_open_new(name, map_type);
	}
	
	for (y = 0; y < ovl_w.rows; y++) {
	    int row = ytile * dst_w.rows + y;
	    G_debug(1, "reading row: %d", row);
	    Rast_get_row(infile, inbuf, row, map_type);
	    
	    for (xtile = 0; xtile < xtiles; xtile++) {
		int cells = xtile * dst_w.cols;
		void *ptr = G_incr_void_ptr(inbuf, cells * cell_size);
		Rast_put_row(outfiles[xtile], ptr, map_type);
	    }
	}

	for (xtile = 0; xtile < xtiles; xtile++) {
	    Rast_close(outfiles[xtile]);
	    write_support_files(xtile, ytile, overlap);
	}
    }

    Rast_close(infile);

    return EXIT_SUCCESS;
}
Exemple #13
0
int main(int argc, char **argv)
{
    struct Cell_head window;
    RASTER_MAP_TYPE raster_type, mag_raster_type = -1;
    int layer_fd;
    void *raster_row, *ptr;
    int nrows, ncols;
    int aspect_c = -1;
    float aspect_f = -1.0;

    double scale;
    int skip, no_arrow;
    char *mag_map = NULL;
    void *mag_raster_row = NULL, *mag_ptr = NULL;
    double length = -1;
    int mag_fd = -1;
    struct FPRange range;
    double mag_min, mag_max;

    struct GModule *module;
    struct Option *opt1, *opt2, *opt3, *opt4, *opt5,
	*opt6, *opt7, *opt8, *opt9;
    struct Flag *align;

    double t, b, l, r;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("display"));
    G_add_keyword(_("raster"));
    module->description =
	_("Draws arrows representing cell aspect direction "
	  "for a raster map containing aspect data.");

    opt1 = G_define_standard_option(G_OPT_R_MAP);
    opt1->description = _("Name of raster aspect map to be displayed");

    opt2 = G_define_option();
    opt2->key = "type";
    opt2->type = TYPE_STRING;
    opt2->required = NO;
    opt2->answer = "grass";
    opt2->options = "grass,compass,agnps,answers";
    opt2->description = _("Type of existing raster aspect map");

    opt3 = G_define_option();
    opt3->key = "arrow_color";
    opt3->type = TYPE_STRING;
    opt3->required = NO;
    opt3->answer = "green";
    opt3->gisprompt = "old_color,color,color";
    opt3->description = _("Color for drawing arrows");
    opt3->guisection = _("Colors");
    
    opt4 = G_define_option();
    opt4->key = "grid_color";
    opt4->type = TYPE_STRING;
    opt4->required = NO;
    opt4->answer = "gray";
    opt4->gisprompt = "old_color,color,color_none";
    opt4->description = _("Color for drawing grid or \"none\"");
    opt4->guisection = _("Colors");

    opt5 = G_define_option();
    opt5->key = "x_color";
    opt5->type = TYPE_STRING;
    opt5->required = NO;
    opt5->answer = DEFAULT_FG_COLOR;
    opt5->gisprompt = "old_color,color,color_none";
    opt5->description = _("Color for drawing X's (null values)");
    opt5->guisection = _("Colors");

    opt6 = G_define_option();
    opt6->key = "unknown_color";
    opt6->type = TYPE_STRING;
    opt6->required = NO;
    opt6->answer = "red";
    opt6->gisprompt = "old_color,color,color_none";
    opt6->description = _("Color for showing unknown information");
    opt6->guisection = _("Colors");

    opt9 = G_define_option();
    opt9->key = "skip";
    opt9->type = TYPE_INTEGER;
    opt9->required = NO;
    opt9->answer = "1";
    opt9->description = _("Draw arrow every Nth grid cell");

    opt7 = G_define_option();
    opt7->key = "magnitude_map";
    opt7->type = TYPE_STRING;
    opt7->required = NO;
    opt7->multiple = NO;
    opt7->gisprompt = "old,cell,raster";
    opt7->description =
	_("Raster map containing values used for arrow length");

    opt8 = G_define_option();
    opt8->key = "scale";
    opt8->type = TYPE_DOUBLE;
    opt8->required = NO;
    opt8->answer = "1.0";
    opt8->description = _("Scale factor for arrows (magnitude map)");

    align = G_define_flag();
    align->key = 'a';
    align->description = _("Align grids with raster cells");


    /* Check command line */
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);


    layer_name = opt1->answer;

    arrow_color = D_translate_color(opt3->answer);
    x_color = D_translate_color(opt5->answer);
    unknown_color = D_translate_color(opt6->answer);

    if (strcmp("none", opt4->answer) == 0)
	grid_color = -1;
    else
	grid_color = D_translate_color(opt4->answer);


    if (strcmp("grass", opt2->answer) == 0)
	map_type = 1;
    else if (strcmp("agnps", opt2->answer) == 0)
	map_type = 2;
    else if (strcmp("answers", opt2->answer) == 0)
	map_type = 3;
    else if (strcmp("compass", opt2->answer) == 0)
	map_type = 4;


    scale = atof(opt8->answer);
    if (scale <= 0.0)
	G_fatal_error(_("Illegal value for scale factor"));

    skip = atoi(opt9->answer);
    if (skip <= 0)
	G_fatal_error(_("Illegal value for skip factor"));


    if (opt7->answer) {
	if (map_type != 1 && map_type != 4)
	    G_fatal_error(_("Magnitude is only supported for GRASS and compass aspect maps."));

	mag_map = opt7->answer;
    }
    else if (scale != 1.0)
	G_warning(_("Scale option requires magnitude_map"));


    /* Setup driver and check important information */
    if (D_open_driver() != 0)
      	G_fatal_error(_("No graphics device selected. "
			"Use d.mon to select graphics device."));
    
    D_setup(0);

    /* Read in the map window associated with window */
    G_get_window(&window);

    if (align->answer) {
	struct Cell_head wind;

	Rast_get_cellhd(layer_name, "", &wind);

	/* expand window extent by one wind resolution */
	wind.west += wind.ew_res * ((int)((window.west - wind.west) / wind.ew_res) - (window.west < wind.west));
	wind.east += wind.ew_res * ((int)((window.east - wind.east) / wind.ew_res) + (window.east > wind.east));
	wind.south += wind.ns_res * ((int)((window.south - wind.south) / wind.ns_res) - (window.south < wind.south));
	wind.north += wind.ns_res * ((int)((window.north - wind.north) / wind.ns_res) + (window.north > wind.north));

	wind.rows = (wind.north - wind.south) / wind.ns_res;
	wind.cols = (wind.east - wind.west) / wind.ew_res;

	Rast_set_window(&wind);

	nrows = wind.rows;
	ncols = wind.cols;

	t = (wind.north - window.north) * nrows / (wind.north - wind.south);
	b = t + (window.north - window.south) * nrows / (wind.north - wind.south);
	l = (window.west - wind.west) * ncols / (wind.east - wind.west);
	r = l + (window.east - window.west) * ncols / (wind.east - wind.west);
    } else {
        nrows = window.rows;
        ncols = window.cols;

	t = 0;
	b = nrows;
	l = 0;
	r = ncols;
    }

    D_set_src(t, b, l, r);
    D_update_conversions();

    /* figure out arrow scaling if using a magnitude map */
    if (opt7->answer) {
	Rast_init_fp_range(&range);	/* really needed? */
	if (Rast_read_fp_range(mag_map, "", &range) != 1)
	    G_fatal_error(_("Problem reading range file"));
	Rast_get_fp_range_min_max(&range, &mag_min, &mag_max);

	scale *= 1.5 / fabs(mag_max);
	G_debug(3, "scaling=%.2f  rast_max=%.2f", scale, mag_max);
    }

    if (grid_color > 0) {	/* ie not "none" */
	/* Set color */
	D_use_color(grid_color);

	/* Draw vertical grids */
	for (col = 0; col < ncols; col++)
	    D_line_abs(col, 0, col, nrows);

	/* Draw horizontal grids */
	for (row = 0; row < nrows; row++)
	    D_line_abs(0, row, ncols, row);
    }

    /* open the raster map */
    layer_fd = Rast_open_old(layer_name, "");

    raster_type = Rast_get_map_type(layer_fd);

    /* allocate the cell array */
    raster_row = Rast_allocate_buf(raster_type);


    if (opt7->answer) {
	/* open the magnitude raster map */
	mag_fd = Rast_open_old(mag_map, "");

	mag_raster_type = Rast_get_map_type(mag_fd);

	/* allocate the cell array */
	mag_raster_row = Rast_allocate_buf(mag_raster_type);
    }


    /* loop through cells, find value, determine direction (n,s,e,w,ne,se,sw,nw),
       and call appropriate function to draw an arrow on the cell */

    for (row = 0; row < nrows; row++) {
	Rast_get_row(layer_fd, raster_row, row, raster_type);
	ptr = raster_row;

	if (opt7->answer) {
	    Rast_get_row(mag_fd, mag_raster_row, row, mag_raster_type);
	    mag_ptr = mag_raster_row;
	}

	for (col = 0; col < ncols; col++) {

	    if (row % skip != 0)
		no_arrow = TRUE;
	    else
		no_arrow = FALSE;

	    if (col % skip != 0)
		no_arrow = TRUE;

	    /* find aspect direction based on cell value */
	    if (raster_type == CELL_TYPE)
		aspect_f = *((CELL *) ptr);
	    else if (raster_type == FCELL_TYPE)
		aspect_f = *((FCELL *) ptr);
	    else if (raster_type == DCELL_TYPE)
		aspect_f = *((DCELL *) ptr);


	    if (opt7->answer) {

		if (mag_raster_type == CELL_TYPE)
		    length = *((CELL *) mag_ptr);
		else if (mag_raster_type == FCELL_TYPE)
		    length = *((FCELL *) mag_ptr);
		else if (mag_raster_type == DCELL_TYPE)
		    length = *((DCELL *) mag_ptr);

		length *= scale;

		if (Rast_is_null_value(mag_ptr, mag_raster_type)) {
		    G_debug(5, "Invalid arrow length [NULL]. Skipping.");
		    no_arrow = TRUE;
		}
		else if (length <= 0.0) {	/* use fabs() or theta+=180? */
		    G_debug(5, "Illegal arrow length [%.3f]. Skipping.",
			    length);
		    no_arrow = TRUE;
		}
	    }

	    if (no_arrow) {
		ptr = G_incr_void_ptr(ptr, Rast_cell_size(raster_type));
		if (opt7->answer)
		    mag_ptr =
			G_incr_void_ptr(mag_ptr,
					Rast_cell_size(mag_raster_type));
		no_arrow = FALSE;
		continue;
	    }

	    /* treat AGNPS and ANSWERS data like old zero-as-null CELL */
	    /*   TODO: update models */
	    if (map_type == 2 || map_type == 3) {
		if (Rast_is_null_value(ptr, raster_type))
		    aspect_c = 0;
		else
		    aspect_c = (int)(aspect_f + 0.5);
	    }


	    /** Now draw the arrows **/

	    /* case switch for standard GRASS aspect map 
	       measured in degrees counter-clockwise from east */
	    if (map_type == 1) {
		D_use_color(arrow_color);

		if (Rast_is_null_value(ptr, raster_type)) {
		    D_use_color(x_color);
		    draw_x();
		    D_use_color(arrow_color);
		}
		else if (aspect_f >= 0.0 && aspect_f <= 360.0) {
		    if (opt7->answer)
			arrow_mag(aspect_f, length);
		    else
			arrow_360(aspect_f);
		}
		else {
		    D_use_color(unknown_color);
		    unknown_();
		    D_use_color(arrow_color);
		}
	    }


	    /* case switch for AGNPS type aspect map */
	    else if (map_type == 2) {
		D_use_color(arrow_color);
		switch (aspect_c) {
		case 0:
		    D_use_color(x_color);
		    draw_x();
		    D_use_color(arrow_color);
		    break;
		case 1:
		    arrow_n();
		    break;
		case 2:
		    arrow_ne();
		    break;
		case 3:
		    arrow_e();
		    break;
		case 4:
		    arrow_se();
		    break;
		case 5:
		    arrow_s();
		    break;
		case 6:
		    arrow_sw();
		    break;
		case 7:
		    arrow_w();
		    break;
		case 8:
		    arrow_nw();
		    break;
		default:
		    D_use_color(unknown_color);
		    unknown_();
		    D_use_color(arrow_color);
		    break;
		}
	    }


	    /* case switch for ANSWERS type aspect map */
	    else if (map_type == 3) {
		D_use_color(arrow_color);
		if (aspect_c >= 15 && aspect_c <= 360)	/* start at zero? */
		    arrow_360((double)aspect_c);
		else if (aspect_c == 400) {
		    D_use_color(unknown_color);
		    unknown_();
		    D_use_color(arrow_color);
		}
		else {
		    D_use_color(x_color);
		    draw_x();
		    D_use_color(arrow_color);
		}
	    }

	    /* case switch for compass type aspect map
	       measured in degrees clockwise from north */
	    else if (map_type == 4) {
		D_use_color(arrow_color);

		if (Rast_is_null_value(ptr, raster_type)) {
		    D_use_color(x_color);
		    draw_x();
		    D_use_color(arrow_color);
		}
		else if (aspect_f >= 0.0 && aspect_f <= 360.0) {
		    if (opt7->answer)
			arrow_mag(90 - aspect_f, length);
		    else
			arrow_360(90 - aspect_f);
		}
		else {
		    D_use_color(unknown_color);
		    unknown_();
		    D_use_color(arrow_color);
		}
	    }

	    ptr = G_incr_void_ptr(ptr, Rast_cell_size(raster_type));
	    if (opt7->answer)
		mag_ptr =
		    G_incr_void_ptr(mag_ptr, Rast_cell_size(mag_raster_type));
	}
    }

    Rast_close(layer_fd);
    if (opt7->answer)
	Rast_close(mag_fd);

    D_save_command(G_recreate_command());
    D_close_driver();

    exit(EXIT_SUCCESS);
}
Exemple #14
0
int rectify(char *name, char *mapset, struct cache *ebuffer,
            double aver_z, char *result, char *interp_method)
{
    struct Cell_head cellhd;
    int ncols, nrows;
    int row, col;
    double row_idx, col_idx;
    int infd, outfd;
    RASTER_MAP_TYPE map_type;
    int cell_size;
    void *trast, *tptr;
    double n1, e1, z1;
    double nx, ex, nx1, ex1, zx1;
    struct cache *ibuffer;

    select_current_env();
    Rast_get_cellhd(name, mapset, &cellhd);

    /* open the file to be rectified
     * set window to cellhd first to be able to read file exactly
     */
    Rast_set_input_window(&cellhd);
    infd = Rast_open_old(name, mapset);
    map_type = Rast_get_map_type(infd);
    cell_size = Rast_cell_size(map_type);

    ibuffer = readcell(infd, seg_mb_img, 0);

    Rast_close(infd);		/* (pmx) 17 april 2000 */

    G_message(_("Rectify <%s@%s> (location <%s>)"),
	      name, mapset, G_location());
    select_target_env();
    G_set_window(&target_window);
    G_message(_("into  <%s@%s> (location <%s>) ..."),
	      result, G_mapset(), G_location());

    nrows = target_window.rows;
    ncols = target_window.cols;

    if (strcmp(interp_method, "nearest") != 0) {
	map_type = DCELL_TYPE;
	cell_size = Rast_cell_size(map_type);
    }

    /* open the result file into target window
     * this open must be first since we change the window later
     * raster maps open for writing are not affected by window changes
     * but those open for reading are
     */

    outfd = Rast_open_new(result, map_type);
    trast = Rast_allocate_output_buf(map_type);

    for (row = 0; row < nrows; row++) {
	n1 = target_window.north - (row + 0.5) * target_window.ns_res;

	G_percent(row, nrows, 2);

	Rast_set_null_value(trast, ncols, map_type);
	tptr = trast;
	for (col = 0; col < ncols; col++) {
	    DCELL *zp = CPTR(ebuffer, row, col);

	    e1 = target_window.west + (col + 0.5) * target_window.ew_res;
	    
	    /* if target cell has no elevation, set to aver_z */
	    if (Rast_is_d_null_value(zp)) {
		G_warning(_("No elevation available at row = %d, col = %d"), row, col);
		z1 = aver_z;
	    }
	    else
		z1 = *zp;

	    /* target coordinates e1, n1 to photo coordinates ex1, nx1 */
	    I_ortho_ref(e1, n1, z1, &ex1, &nx1, &zx1, &group.camera_ref,
			group.XC, group.YC, group.ZC, group.M);

	    G_debug(5, "\t\tAfter ortho ref (photo cords): ex = %f \t nx =  %f",
		    ex1, nx1);

	    /* photo coordinates ex1, nx1 to image coordinates ex, nx */
	    I_georef(ex1, nx1, &ex, &nx, group.E21, group.N21, 1);

	    G_debug(5, "\t\tAfter geo ref: ex = %f \t nx =  %f", ex, nx);

	    /* convert to row/column indices of source raster */
	    row_idx = (cellhd.north - nx) / cellhd.ns_res;
	    col_idx = (ex - cellhd.west) / cellhd.ew_res;

	    /* resample data point */
	    interpolate(ibuffer, tptr, map_type, &row_idx, &col_idx, &cellhd);

	    tptr = G_incr_void_ptr(tptr, cell_size);
	}
	Rast_put_row(outfd, trast, map_type);
    }
    G_percent(1, 1, 1);

    Rast_close(outfd);		/* (pmx) 17 april 2000 */
    G_free(trast);

    close(ibuffer->fd);
    release_cache(ibuffer);

    Rast_get_cellhd(result, G_mapset(), &cellhd);

    if (cellhd.proj == 0) {	/* x,y imagery */
	cellhd.proj = target_window.proj;
	cellhd.zone = target_window.zone;
    }

    if (target_window.proj != cellhd.proj) {
	cellhd.proj = target_window.proj;
	G_warning(_("Raster map <%s@%s>: projection don't match current settings"),
		  name, mapset);
    }

    if (target_window.zone != cellhd.zone) {
	cellhd.zone = target_window.zone;
	G_warning(_("Raster map <%s@%s>: zone don't match current settings"),
		  name, mapset);
    }

    select_current_env();

    return 1;
}
Exemple #15
0
int main(int argc, char *argv[])
{
    struct GModule *module;
    struct Option *rastin, *rastout, *method;
    struct History history;
    char title[64];
    char buf_nsres[100], buf_ewres[100];
    struct Colors colors;
    int infile, outfile;
    DCELL *outbuf;
    int row, col;
    struct Cell_head dst_w, src_w;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("resample"));
    module->description =
	_("Resamples raster map layers to a finer grid using interpolation.");

    rastin = G_define_standard_option(G_OPT_R_INPUT);
    rastout = G_define_standard_option(G_OPT_R_OUTPUT);

    method = G_define_option();
    method->key = "method";
    method->type = TYPE_STRING;
    method->required = NO;
    method->description = _("Interpolation method");
    method->options = "nearest,bilinear,bicubic,lanczos";
    method->answer = "bilinear";

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    if (G_strcasecmp(method->answer, "nearest") == 0)
	neighbors = 1;
    else if (G_strcasecmp(method->answer, "bilinear") == 0)
	neighbors = 2;
    else if (G_strcasecmp(method->answer, "bicubic") == 0)
	neighbors = 4;
    else if (G_strcasecmp(method->answer, "lanczos") == 0)
	neighbors = 5;
    else
	G_fatal_error(_("Invalid method: %s"), method->answer);

    G_get_set_window(&dst_w);

    /* set window to old map */
    Rast_get_cellhd(rastin->answer, "", &src_w);

    /* enlarge source window */
    {
	double north = Rast_row_to_northing(0.5, &dst_w);
	double south = Rast_row_to_northing(dst_w.rows - 0.5, &dst_w);
	int r0 = (int)floor(Rast_northing_to_row(north, &src_w) - 0.5) - 2;
	int r1 = (int)floor(Rast_northing_to_row(south, &src_w) - 0.5) + 3;
	double west = Rast_col_to_easting(0.5, &dst_w);
	double east = Rast_col_to_easting(dst_w.cols - 0.5, &dst_w);
	int c0 = (int)floor(Rast_easting_to_col(west, &src_w) - 0.5) - 2;
	int c1 = (int)floor(Rast_easting_to_col(east, &src_w) - 0.5) + 3;

	src_w.south -= src_w.ns_res * (r1 - src_w.rows);
	src_w.north += src_w.ns_res * (-r0);
	src_w.west -= src_w.ew_res * (-c0);
	src_w.east += src_w.ew_res * (c1 - src_w.cols);
	src_w.rows = r1 - r0;
	src_w.cols = c1 - c0;
    }

    Rast_set_input_window(&src_w);

    /* allocate buffers for input rows */
    for (row = 0; row < neighbors; row++)
	bufs[row] = Rast_allocate_d_input_buf();

    cur_row = -100;

    /* open old map */
    infile = Rast_open_old(rastin->answer, "");

    /* reset window to current region */
    Rast_set_output_window(&dst_w);

    outbuf = Rast_allocate_d_output_buf();

    /* open new map */
    outfile = Rast_open_new(rastout->answer, DCELL_TYPE);

    switch (neighbors) {
    case 1:			/* nearest */
	for (row = 0; row < dst_w.rows; row++) {
	    double north = Rast_row_to_northing(row + 0.5, &dst_w);
	    double maprow_f = Rast_northing_to_row(north, &src_w) - 0.5;
	    int maprow0 = (int)floor(maprow_f + 0.5);

	    G_percent(row, dst_w.rows, 2);

	    read_rows(infile, maprow0);

	    for (col = 0; col < dst_w.cols; col++) {
		double east = Rast_col_to_easting(col + 0.5, &dst_w);
		double mapcol_f = Rast_easting_to_col(east, &src_w) - 0.5;
		int mapcol0 = (int)floor(mapcol_f + 0.5);

		double c = bufs[0][mapcol0];

		if (Rast_is_d_null_value(&c)) {
		    Rast_set_d_null_value(&outbuf[col], 1);
		}
		else {
		    outbuf[col] = c;
		}
	    }

	    Rast_put_d_row(outfile, outbuf);
	}
	break;

    case 2:			/* bilinear */
	for (row = 0; row < dst_w.rows; row++) {
	    double north = Rast_row_to_northing(row + 0.5, &dst_w);
	    double maprow_f = Rast_northing_to_row(north, &src_w) - 0.5;
	    int maprow0 = (int)floor(maprow_f);
	    double v = maprow_f - maprow0;

	    G_percent(row, dst_w.rows, 2);

	    read_rows(infile, maprow0);

	    for (col = 0; col < dst_w.cols; col++) {
		double east = Rast_col_to_easting(col + 0.5, &dst_w);
		double mapcol_f = Rast_easting_to_col(east, &src_w) - 0.5;
		int mapcol0 = (int)floor(mapcol_f);
		int mapcol1 = mapcol0 + 1;
		double u = mapcol_f - mapcol0;

		double c00 = bufs[0][mapcol0];
		double c01 = bufs[0][mapcol1];
		double c10 = bufs[1][mapcol0];
		double c11 = bufs[1][mapcol1];

		if (Rast_is_d_null_value(&c00) ||
		    Rast_is_d_null_value(&c01) ||
		    Rast_is_d_null_value(&c10) || Rast_is_d_null_value(&c11)) {
		    Rast_set_d_null_value(&outbuf[col], 1);
		}
		else {
		    outbuf[col] = Rast_interp_bilinear(u, v, c00, c01, c10, c11);
		}
	    }

	    Rast_put_d_row(outfile, outbuf);
	}
	break;

    case 4:			/* bicubic */
	for (row = 0; row < dst_w.rows; row++) {
	    double north = Rast_row_to_northing(row + 0.5, &dst_w);
	    double maprow_f = Rast_northing_to_row(north, &src_w) - 0.5;
	    int maprow1 = (int)floor(maprow_f);
	    int maprow0 = maprow1 - 1;
	    double v = maprow_f - maprow1;

	    G_percent(row, dst_w.rows, 2);

	    read_rows(infile, maprow0);

	    for (col = 0; col < dst_w.cols; col++) {
		double east = Rast_col_to_easting(col + 0.5, &dst_w);
		double mapcol_f = Rast_easting_to_col(east, &src_w) - 0.5;
		int mapcol1 = (int)floor(mapcol_f);
		int mapcol0 = mapcol1 - 1;
		int mapcol2 = mapcol1 + 1;
		int mapcol3 = mapcol1 + 2;
		double u = mapcol_f - mapcol1;

		double c00 = bufs[0][mapcol0];
		double c01 = bufs[0][mapcol1];
		double c02 = bufs[0][mapcol2];
		double c03 = bufs[0][mapcol3];

		double c10 = bufs[1][mapcol0];
		double c11 = bufs[1][mapcol1];
		double c12 = bufs[1][mapcol2];
		double c13 = bufs[1][mapcol3];

		double c20 = bufs[2][mapcol0];
		double c21 = bufs[2][mapcol1];
		double c22 = bufs[2][mapcol2];
		double c23 = bufs[2][mapcol3];

		double c30 = bufs[3][mapcol0];
		double c31 = bufs[3][mapcol1];
		double c32 = bufs[3][mapcol2];
		double c33 = bufs[3][mapcol3];

		if (Rast_is_d_null_value(&c00) ||
		    Rast_is_d_null_value(&c01) ||
		    Rast_is_d_null_value(&c02) ||
		    Rast_is_d_null_value(&c03) ||
		    Rast_is_d_null_value(&c10) ||
		    Rast_is_d_null_value(&c11) ||
		    Rast_is_d_null_value(&c12) ||
		    Rast_is_d_null_value(&c13) ||
		    Rast_is_d_null_value(&c20) ||
		    Rast_is_d_null_value(&c21) ||
		    Rast_is_d_null_value(&c22) ||
		    Rast_is_d_null_value(&c23) ||
		    Rast_is_d_null_value(&c30) ||
		    Rast_is_d_null_value(&c31) ||
		    Rast_is_d_null_value(&c32) || Rast_is_d_null_value(&c33)) {
		    Rast_set_d_null_value(&outbuf[col], 1);
		}
		else {
		    outbuf[col] = Rast_interp_bicubic(u, v,
						   c00, c01, c02, c03,
						   c10, c11, c12, c13,
						   c20, c21, c22, c23,
						   c30, c31, c32, c33);
		}
	    }

	    Rast_put_d_row(outfile, outbuf);
	}
	break;

    case 5:			/* lanczos */
	for (row = 0; row < dst_w.rows; row++) {
	    double north = Rast_row_to_northing(row + 0.5, &dst_w);
	    double maprow_f = Rast_northing_to_row(north, &src_w) - 0.5;
	    int maprow1 = (int)floor(maprow_f + 0.5);
	    int maprow0 = maprow1 - 2;
	    double v = maprow_f - maprow1;

	    G_percent(row, dst_w.rows, 2);

	    read_rows(infile, maprow0);

	    for (col = 0; col < dst_w.cols; col++) {
		double east = Rast_col_to_easting(col + 0.5, &dst_w);
		double mapcol_f = Rast_easting_to_col(east, &src_w) - 0.5;
		int mapcol2 = (int)floor(mapcol_f + 0.5);
		int mapcol0 = mapcol2 - 2;
		int mapcol4 = mapcol2 + 2;
		double u = mapcol_f - mapcol2;
		double c[25];
		int ci = 0, i, j, do_lanczos = 1;

		for (i = 0; i < 5; i++) {
		    for (j = mapcol0; j <= mapcol4; j++) {
			c[ci] = bufs[i][j];
			if (Rast_is_d_null_value(&(c[ci]))) {
			    Rast_set_d_null_value(&outbuf[col], 1);
			    do_lanczos = 0;
			    break;
			}
			ci++;
		    }
		    if (!do_lanczos)
			break;
		}

		if (do_lanczos) {
		    outbuf[col] = Rast_interp_lanczos(u, v, c);
		}
	    }

	    Rast_put_d_row(outfile, outbuf);
	}
	break;
    }

    G_percent(dst_w.rows, dst_w.rows, 2);

    Rast_close(infile);
    Rast_close(outfile);


    /* record map metadata/history info */
    sprintf(title, "Resample by %s interpolation", method->answer);
    Rast_put_cell_title(rastout->answer, title);

    Rast_short_history(rastout->answer, "raster", &history);
    Rast_set_history(&history, HIST_DATSRC_1, rastin->answer);
    G_format_resolution(src_w.ns_res, buf_nsres, src_w.proj);
    G_format_resolution(src_w.ew_res, buf_ewres, src_w.proj);
    Rast_format_history(&history, HIST_DATSRC_2,
			"Source map NS res: %s   EW res: %s",
			buf_nsres, buf_ewres);
    Rast_command_history(&history);
    Rast_write_history(rastout->answer, &history);

    /* copy color table from source map */
    if (Rast_read_colors(rastin->answer, "", &colors) < 0)
	G_fatal_error(_("Unable to read color table for %s"), rastin->answer);
    Rast_mark_colors_as_fp(&colors);
    Rast_write_colors(rastout->answer, G_mapset(), &colors);

    return (EXIT_SUCCESS);
}
Exemple #16
0
void* raster2array(const char* name, struct Cell_head* header, int* rows,
		int* cols, RASTER_MAP_TYPE out_type) {
	// Open the raster map and load the dem
	// for simplicity sake, the dem will be an array of
	// doubles, converted from any possible GRASS CELL type.
	//ORG char* mapset = G_find_cell2(name, "");
	char* mapset = G_find_raster(name, "");
	if (mapset == NULL)
		G_fatal_error("Raster map <%s> not found", name);

	// Find out the cell type of the DEM
	//ORG RASTER_MAP_TYPE type = G_raster_map_type(name, mapset);
        RASTER_MAP_TYPE type = Rast_map_type(name, mapset);

	// Get a file descriptor for the DEM raster map
	int infd;
	//ORG if ((infd = G_open_cell_old(name, mapset)) < 0)
	if ((infd = Rast_open_old(name, mapset)) < 0)
		G_fatal_error("Unable to open raster map <%s>", name);

	// Get header info for the DEM raster map
	struct Cell_head cellhd;
	//ORG if (G_get_cellhd(name, mapset, &cellhd) < 0)
	//ORG 	G_fatal_error("Unable to open raster map <%s>", name);
        Rast_get_cellhd(name, mapset, &cellhd);

	// Create a GRASS buffer for the DEM raster
	//ORG void* inrast = G_allocate_raster_buf(type);
        void* inrast =  Rast_allocate_buf(type);

	// Get the max rows and max cols from the window information, since the 
	// header gives the values for the full raster
	//ORG const int maxr = G_window_rows();
	//ORG const int maxc = G_window_cols();
	const int maxr = Rast_window_rows();
	const int maxc = Rast_window_cols();

	// Read in the raster line by line, copying it into the double array
	// rast for return.
	void* rast;
	switch (out_type) {
	case CELL_TYPE:
		rast = (int*) calloc(maxr * maxc, sizeof(int));
		break;
	case FCELL_TYPE:
		rast = (float*) calloc(maxr * maxc, sizeof(float));
		break;
	case DCELL_TYPE:
		rast = (double*) calloc(maxr * maxc, sizeof(double));
		break;

	}

	if (rast == NULL) {
		G_fatal_error("Unable to allocate memory for raster map <%s>", name);
	}

	int row, col;
	for (row = 0; row < maxr; ++row) {
		//ORG if (G_get_raster_row(infd, inrast, row, type) < 0)
		//ORG 	G_fatal_error("Unable to read raster map <%s> row %d", name, row);
                Rast_get_row(infd, inrast, row, type);
                
		for (col = 0; col < maxc; ++col) {
			int index = col + row * maxc;

			if (out_type == CELL_TYPE) {
				switch (type) {
				case CELL_TYPE:
					((int*) rast)[index] = ((int *) inrast)[col];
					break;
				case FCELL_TYPE:
					((int*) rast)[index] = (int) ((float *) inrast)[col];
					break;
				case DCELL_TYPE:
					((int*) rast)[index] = (int) ((double *) inrast)[col];
					break;
				default:
					G_fatal_error("Unknown cell type");
					break;
				}
			}

			if (out_type == FCELL_TYPE) {
				switch (type) {
				case CELL_TYPE:
					((float*) rast)[index] = (float) ((int *) inrast)[col];
					break;
				case FCELL_TYPE:
					((float*) rast)[index] = ((float *) inrast)[col];
					break;
				case DCELL_TYPE:
					((float*) rast)[index] = (float) ((double *) inrast)[col];
					break;
				default:
					G_fatal_error("Unknown cell type");
					break;
				}
			}

			if (out_type == DCELL_TYPE) {
				switch (type) {
				case CELL_TYPE:
					((double*) rast)[index] = (double) ((int *) inrast)[col];
					break;
				case FCELL_TYPE:
					((double*) rast)[index] = (double) ((float *) inrast)[col];
					break;
				case DCELL_TYPE:
					((double*) rast)[index] = ((double *) inrast)[col];
					break;
				default:
					G_fatal_error("Unknown cell type");
					break;
				}
			}
		}
	}

	// Return cellhd, maxr, and maxc by pointer
	if (header != NULL)
		*header = cellhd;
	if (rows != NULL)
		*rows = maxr;
	if (cols != NULL)
		*cols = maxc;

	return rast;
}
Exemple #17
0
int main(int argc, char *argv[])
{
    int m1;
    struct FPRange range;
    DCELL cellmin, cellmax;
    FCELL *cellrow, fcellmin;

    struct GModule *module;
    struct
    {
	struct Option *input, *elev, *slope, *aspect, *pcurv, *tcurv, *mcurv,
	    *smooth, *maskmap, *zmult, *fi, *segmax, *npmin, *res_ew, *res_ns,
	    *overlap, *theta, *scalex;
    } parm;
    struct
    {
	struct Flag *deriv, *cprght;
    } flag;


    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("resample"));
    module->description =
	_("Reinterpolates and optionally computes topographic analysis from "
	  "input raster map to a new raster map (possibly with "
	  "different resolution) using regularized spline with "
	  "tension and smoothing.");

    parm.input = G_define_standard_option(G_OPT_R_INPUT);

    parm.res_ew = G_define_option();
    parm.res_ew->key = "ew_res";
    parm.res_ew->type = TYPE_DOUBLE;
    parm.res_ew->required = YES;
    parm.res_ew->description = _("Desired east-west resolution");

    parm.res_ns = G_define_option();
    parm.res_ns->key = "ns_res";
    parm.res_ns->type = TYPE_DOUBLE;
    parm.res_ns->required = YES;
    parm.res_ns->description = _("Desired north-south resolution");

    parm.elev = G_define_option();
    parm.elev->key = "elev";
    parm.elev->type = TYPE_STRING;
    parm.elev->required = NO;
    parm.elev->gisprompt = "new,cell,raster";
    parm.elev->description = _("Output z-file (elevation) map");
    parm.elev->guisection = _("Output");

    parm.slope = G_define_option();
    parm.slope->key = "slope";
    parm.slope->type = TYPE_STRING;
    parm.slope->required = NO;
    parm.slope->gisprompt = "new,cell,raster";
    parm.slope->description = _("Output slope map (or fx)");
    parm.slope->guisection = _("Output");

    parm.aspect = G_define_option();
    parm.aspect->key = "aspect";
    parm.aspect->type = TYPE_STRING;
    parm.aspect->required = NO;
    parm.aspect->gisprompt = "new,cell,raster";
    parm.aspect->description = _("Output aspect map (or fy)");
    parm.aspect->guisection = _("Output");

    parm.pcurv = G_define_option();
    parm.pcurv->key = "pcurv";
    parm.pcurv->type = TYPE_STRING;
    parm.pcurv->required = NO;
    parm.pcurv->gisprompt = "new,cell,raster";
    parm.pcurv->description = _("Output profile curvature map (or fxx)");
    parm.pcurv->guisection = _("Output");

    parm.tcurv = G_define_option();
    parm.tcurv->key = "tcurv";
    parm.tcurv->type = TYPE_STRING;
    parm.tcurv->required = NO;
    parm.tcurv->gisprompt = "new,cell,raster";
    parm.tcurv->description = _("Output tangential curvature map (or fyy)");
    parm.tcurv->guisection = _("Output");

    parm.mcurv = G_define_option();
    parm.mcurv->key = "mcurv";
    parm.mcurv->type = TYPE_STRING;
    parm.mcurv->required = NO;
    parm.mcurv->gisprompt = "new,cell,raster";
    parm.mcurv->description = _("Output mean curvature map (or fxy)");
    parm.mcurv->guisection = _("Output");

    parm.smooth = G_define_option();
    parm.smooth->key = "smooth";
    parm.smooth->type = TYPE_STRING;
    parm.smooth->required = NO;
    parm.smooth->gisprompt = "old,cell,raster";
    parm.smooth->description = _("Name of raster map containing smoothing");
    parm.smooth->guisection = _("Settings");

    parm.maskmap = G_define_option();
    parm.maskmap->key = "maskmap";
    parm.maskmap->type = TYPE_STRING;
    parm.maskmap->required = NO;
    parm.maskmap->gisprompt = "old,cell,raster";
    parm.maskmap->description = _("Name of raster map to be used as mask");
    parm.maskmap->guisection = _("Settings");

    parm.overlap = G_define_option();
    parm.overlap->key = "overlap";
    parm.overlap->type = TYPE_INTEGER;
    parm.overlap->required = NO;
    parm.overlap->answer = OVERLAP;
    parm.overlap->description = _("Rows/columns overlap for segmentation");
    parm.overlap->guisection = _("Settings");

    parm.zmult = G_define_option();
    parm.zmult->key = "zmult";
    parm.zmult->type = TYPE_DOUBLE;
    parm.zmult->answer = ZMULT;
    parm.zmult->required = NO;
    parm.zmult->description = _("Multiplier for z-values");
    parm.zmult->guisection = _("Settings");

    parm.fi = G_define_option();
    parm.fi->key = "tension";
    parm.fi->type = TYPE_DOUBLE;
    parm.fi->answer = TENSION;
    parm.fi->required = NO;
    parm.fi->description = _("Spline tension value");
    parm.fi->guisection = _("Settings");

    parm.theta = G_define_option();
    parm.theta->key = "theta";
    parm.theta->type = TYPE_DOUBLE;
    parm.theta->required = NO;
    parm.theta->description = _("Anisotropy angle (in degrees)");
    parm.theta->guisection = _("Anisotropy");

    parm.scalex = G_define_option();
    parm.scalex->key = "scalex";
    parm.scalex->type = TYPE_DOUBLE;
    parm.scalex->required = NO;
    parm.scalex->description = _("Anisotropy scaling factor");
    parm.scalex->guisection = _("Anisotropy");

    flag.cprght = G_define_flag();
    flag.cprght->key = 't';
    flag.cprght->description = _("Use dnorm independent tension");

    flag.deriv = G_define_flag();
    flag.deriv->key = 'd';
    flag.deriv->description =
	_("Output partial derivatives instead of topographic parameters");
    flag.deriv->guisection = _("Output");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    G_get_set_window(&winhd);

    inp_ew_res = winhd.ew_res;
    inp_ns_res = winhd.ns_res;
    inp_cols = winhd.cols;
    inp_rows = winhd.rows;
    inp_x_orig = winhd.west;
    inp_y_orig = winhd.south;

    input = parm.input->answer;
    smooth = parm.smooth->answer;
    maskmap = parm.maskmap->answer;

    elev = parm.elev->answer;
    slope = parm.slope->answer;
    aspect = parm.aspect->answer;
    pcurv = parm.pcurv->answer;
    tcurv = parm.tcurv->answer;
    mcurv = parm.mcurv->answer;

    cond2 = ((pcurv != NULL) || (tcurv != NULL) || (mcurv != NULL));
    cond1 = ((slope != NULL) || (aspect != NULL) || cond2);
    deriv = flag.deriv->answer;
    dtens = flag.cprght->answer;

    ertre = 0.1;

    if (!G_scan_resolution(parm.res_ew->answer, &ew_res, winhd.proj))
	G_fatal_error(_("Unable to read ew_res value"));

    if (!G_scan_resolution(parm.res_ns->answer, &ns_res, winhd.proj))
	G_fatal_error(_("Unable to read ns_res value"));

    if (sscanf(parm.fi->answer, "%lf", &fi) != 1)
	G_fatal_error(_("Invalid value for tension"));

    if (sscanf(parm.zmult->answer, "%lf", &zmult) != 1)
	G_fatal_error(_("Invalid value for zmult"));

    if (sscanf(parm.overlap->answer, "%d", &overlap) != 1)
	G_fatal_error(_("Invalid value for overlap"));

    if (parm.theta->answer) {
	if (sscanf(parm.theta->answer, "%lf", &theta) != 1)
	    G_fatal_error(_("Invalid value for theta"));
    }
    if (parm.scalex->answer) {
	if (sscanf(parm.scalex->answer, "%lf", &scalex) != 1)
	    G_fatal_error(_("Invalid value for scalex"));
	if (!parm.theta->answer)
	    G_fatal_error(_("When using anisotropy both theta and scalex must be specified"));
    }

    /*
     * G_set_embedded_null_value_mode(1);
     */
    outhd.ew_res = ew_res;
    outhd.ns_res = ns_res;
    outhd.east = winhd.east;
    outhd.west = winhd.west;
    outhd.north = winhd.north;
    outhd.south = winhd.south;
    outhd.proj = winhd.proj;
    outhd.zone = winhd.zone;
    G_adjust_Cell_head(&outhd, 0, 0);
    ew_res = outhd.ew_res;
    ns_res = outhd.ns_res;
    nsizc = outhd.cols;
    nsizr = outhd.rows;
    disk = nsizc * nsizr * sizeof(int);

    az = G_alloc_vector(nsizc + 1);

    if (cond1) {
	adx = G_alloc_vector(nsizc + 1);
	ady = G_alloc_vector(nsizc + 1);
	if (cond2) {
	    adxx = G_alloc_vector(nsizc + 1);
	    adyy = G_alloc_vector(nsizc + 1);
	    adxy = G_alloc_vector(nsizc + 1);
	}
    }

    if (smooth != NULL) {

	fdsmooth = Rast_open_old(smooth, "");

	Rast_get_cellhd(smooth, "", &smhd);

	if ((winhd.ew_res != smhd.ew_res) || (winhd.ns_res != smhd.ns_res))
	    G_fatal_error(_("Map <%s> is the wrong resolution"), smooth);

	if (Rast_read_fp_range(smooth, "", &range) >= 0)
	    Rast_get_fp_range_min_max(&range, &cellmin, &cellmax);

	fcellmin = (float)cellmin;

	if (Rast_is_f_null_value(&fcellmin) || fcellmin < 0.0)
	    G_fatal_error(_("Smoothing values can not be negative or NULL"));
    }

    Rast_get_cellhd(input, "", &inphd);

    if ((winhd.ew_res != inphd.ew_res) || (winhd.ns_res != inphd.ns_res))
	G_fatal_error(_("Input map resolution differs from current region resolution!"));

    fdinp = Rast_open_old(input, "");

    sdisk = 0;
    if (elev != NULL)
	sdisk += disk;
    if (slope != NULL)
	sdisk += disk;
    if (aspect != NULL)
	sdisk += disk;
    if (pcurv != NULL)
	sdisk += disk;
    if (tcurv != NULL)
	sdisk += disk;
    if (mcurv != NULL)
	sdisk += disk;

    G_message(_("Processing all selected output files will require"));
    if (sdisk > 1024) {
	if (sdisk > 1024 * 1024) {
	    if (sdisk > 1024 * 1024 * 1024) {
		G_message(_("%.2f GB of disk space for temp files."), sdisk / (1024. * 1024. * 1024.));
	    }
	    else
		G_message(_("%.2f MB of disk space for temp files."), sdisk / (1024. * 1024.));
	}
	else
	    G_message(_("%.2f KB of disk space for temp files."), sdisk / 1024.);
    }
    else
	G_message(_("%d bytes of disk space for temp files."), sdisk);


    fstar2 = fi * fi / 4.;
    tfsta2 = fstar2 + fstar2;
    deltx = winhd.east - winhd.west;
    delty = winhd.north - winhd.south;
    xmin = winhd.west;
    xmax = winhd.east;
    ymin = winhd.south;
    ymax = winhd.north;
    if (smooth != NULL)
	smc = -9999;
    else
	smc = 0.01;


    if (Rast_read_fp_range(input, "", &range) >= 0) {
	Rast_get_fp_range_min_max(&range, &cellmin, &cellmax);
    }
    else {
	cellrow = Rast_allocate_f_buf();
	for (m1 = 0; m1 < inp_rows; m1++) {
	    Rast_get_f_row(fdinp, cellrow, m1);
	    Rast_row_update_fp_range(cellrow, m1, &range, FCELL_TYPE);
	}
	Rast_get_fp_range_min_max(&range, &cellmin, &cellmax);
    }

    fcellmin = (float)cellmin;
    if (Rast_is_f_null_value(&fcellmin))
	G_fatal_error(_("Maximum value of a raster map is NULL."));

    zmin = (double)cellmin *zmult;
    zmax = (double)cellmax *zmult;

    G_debug(1, "zmin=%f, zmax=%f", zmin, zmax);

    if (fd4 != NULL)
	fprintf(fd4, "deltx,delty %f %f \n", deltx, delty);
    create_temp_files();

    IL_init_params_2d(&params, NULL, 1, 1, zmult, KMIN, KMAX, maskmap,
		      outhd.rows, outhd.cols, az, adx, ady, adxx, adyy, adxy,
		      fi, MAXPOINTS, SCIK1, SCIK2, SCIK3, smc, elev, slope,
		      aspect, pcurv, tcurv, mcurv, dmin, inp_x_orig,
		      inp_y_orig, deriv, theta, scalex, Tmp_fd_z, Tmp_fd_dx,
		      Tmp_fd_dy, Tmp_fd_xx, Tmp_fd_yy, Tmp_fd_xy, NULL, NULL,
		      0, NULL);

    /*  In the above line, the penultimate argument is supposed to be a 
     * deviations file pointer.  None is obvious, so I used NULL. */
    /*  The 3rd and 4th argument are int-s, elatt and smatt (from the function
     * definition.  The value 1 seemed like a good placeholder...  or not. */

    IL_init_func_2d(&params, IL_grid_calc_2d, IL_matrix_create,
		    IL_check_at_points_2d,
		    IL_secpar_loop_2d, IL_crst, IL_crstg, IL_write_temp_2d);

    G_message(_("Temporarily changing the region to desired resolution ..."));
    Rast_set_window(&outhd);

    bitmask = IL_create_bitmask(&params);
    /* change region to initial region */
    G_message(_("Changing back to the original region ..."));
    Rast_set_window(&winhd);

    ertot = 0.;
    cursegm = 0;
    G_message(_("Percent complete: "));


    NPOINT =
	IL_resample_interp_segments_2d(&params, bitmask, zmin, zmax, &zminac,
				       &zmaxac, &gmin, &gmax, &c1min, &c1max,
				       &c2min, &c2max, &ertot, nsizc, &dnorm,
				       overlap, inp_rows, inp_cols, fdsmooth,
				       fdinp, ns_res, ew_res, inp_ns_res,
				       inp_ew_res, dtens);


    G_message(_("dnorm in mainc after grid before out1= %f"), dnorm);

    if (NPOINT < 0) {
	clean();
	G_fatal_error(_("split_and_interpolate() failed"));
    }

    if (fd4 != NULL)
	fprintf(fd4, "max. error found = %f \n", ertot);
    G_free_vector(az);
    if (cond1) {
	G_free_vector(adx);
	G_free_vector(ady);
	if (cond2) {
	    G_free_vector(adxx);
	    G_free_vector(adyy);
	    G_free_vector(adxy);
	}
    }
    G_message(_("dnorm in mainc after grid before out2= %f"), dnorm);

    if (IL_resample_output_2d(&params, zmin, zmax, zminac, zmaxac, c1min,
			      c1max, c2min, c2max, gmin, gmax, ertot, input,
			      &dnorm, &outhd, &winhd, smooth, NPOINT) < 0) {
	clean();
	G_fatal_error(_("Unable to write raster maps -- try increasing cell size"));
    }

    G_free(zero_array_cell);
    clean();
    if (fd4)
	fclose(fd4);
    Rast_close(fdinp);
    if (smooth != NULL)
	Rast_close(fdsmooth);

    G_done_msg(" ");
    exit(EXIT_SUCCESS);
}
Exemple #18
0
int main(int argc, char *argv[])
{
    /* Global variable & function declarations */
    struct GModule *module;
    struct {
	struct Option *orig, *real, *imag;
    } opt;
    const char *Cellmap_real, *Cellmap_imag;
    const char *Cellmap_orig;
    int realfd, imagfd,  outputfd, maskfd;	/* the input and output file descriptors */
    struct Cell_head realhead, imaghead;
    DCELL *cell_real, *cell_imag;
    CELL *maskbuf;

    int i, j;			/* Loop control variables */
    int rows, cols;		/* number of rows & columns */
    long totsize;		/* Total number of data points */
    double (*data)[2];		/* Data structure containing real & complex values of FFT */

    G_gisinit(argv[0]);

    /* Set description */
    module = G_define_module();
    G_add_keyword(_("imagery"));
    G_add_keyword(_("transformation"));
    G_add_keyword(_("Fast Fourier Transform"));
    module->description =
	_("Inverse Fast Fourier Transform (IFFT) for image processing.");

    /* define options */
    opt.real = G_define_standard_option(G_OPT_R_INPUT);
    opt.real->key = "real";
    opt.real->description = _("Name of input raster map (image fft, real part)");

    opt.imag = G_define_standard_option(G_OPT_R_INPUT);
    opt.imag->key = "imaginary";
    opt.imag->description = _("Name of input raster map (image fft, imaginary part");

    opt.orig = G_define_standard_option(G_OPT_R_OUTPUT);
    opt.orig->description = _("Name for output raster map");
    
    /*call parser */
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    Cellmap_real = opt.real->answer;
    Cellmap_imag = opt.imag->answer;
    Cellmap_orig = opt.orig->answer;

    /* get and compare the original window data */
    Rast_get_cellhd(Cellmap_real, "", &realhead);
    Rast_get_cellhd(Cellmap_imag, "", &imaghead);

    if (realhead.proj   != imaghead.proj   ||
	realhead.zone   != imaghead.zone   ||
	realhead.north  != imaghead.north  ||
	realhead.south  != imaghead.south  ||
	realhead.east   != imaghead.east   ||
	realhead.west   != imaghead.west   ||
	realhead.ew_res != imaghead.ew_res ||
	realhead.ns_res != imaghead.ns_res)
	G_fatal_error(_("The real and imaginary original windows did not match"));

    Rast_set_window(&realhead);	/* set the window to the whole cell map */

    /* open input raster map */
    realfd = Rast_open_old(Cellmap_real, "");
    imagfd = Rast_open_old(Cellmap_imag, "");

    /* get the rows and columns in the current window */
    rows = Rast_window_rows();
    cols = Rast_window_cols();
    totsize = rows * cols;

    /* Allocate appropriate memory for the structure containing
       the real and complex components of the FFT.  DATA[0] will
       contain the real, and DATA[1] the complex component.
     */
    data = G_malloc(rows * cols * 2 * sizeof(double));

    /* allocate the space for one row of cell map data */
    cell_real = Rast_allocate_d_buf();
    cell_imag = Rast_allocate_d_buf();
    
#define C(i, j) ((i) * cols + (j))

    /* Read in cell map values */
    G_message(_("Reading raster maps..."));
    for (i = 0; i < rows; i++) {
	Rast_get_d_row(realfd, cell_real, i);
	Rast_get_d_row(imagfd, cell_imag, i);
	for (j = 0; j < cols; j++) {
	    data[C(i, j)][0] = cell_real[j];
	    data[C(i, j)][1] = cell_imag[j];
	}
	G_percent(i+1, rows, 2);
    }

    /* close input cell maps */
    Rast_close(realfd);
    Rast_close(imagfd);

    /* Read in cell map values */
    G_message(_("Masking raster maps..."));
    maskfd = Rast_maskfd();
    if (maskfd >= 0) {
	maskbuf = Rast_allocate_c_buf();

	for (i = 0; i < rows; i++) {
	    Rast_get_c_row(maskfd, maskbuf, i);
	    for (j = 0; j < cols; j++) {
		if (maskbuf[j] == 0) {
		    data[C(i, j)][0] = 0.0;
		    data[C(i, j)][1] = 0.0;
		}
	    }
	    G_percent(i+1, rows, 2);
	}

	Rast_close(maskfd);
	G_free(maskbuf);
    }

#define SWAP1(a, b)				\
    do {					\
	double temp = (a);			\
	(a) = (b);				\
	(b) = temp;				\
    } while (0)

#define SWAP2(a, b)				\
    do {					\
	SWAP1(data[(a)][0], data[(b)][0]);	\
	SWAP1(data[(a)][1], data[(b)][1]);	\
    } while (0)

    /* rotate the data array for standard display */
    G_message(_("Rotating data..."));
    for (i = 0; i < rows; i++)
	for (j = 0; j < cols / 2; j++)
	    SWAP2(C(i, j), C(i, j + cols / 2));
    for (i = 0; i < rows / 2; i++)
	for (j = 0; j < cols; j++)
	    SWAP2(C(i, j), C(i + rows / 2, j));

    /* perform inverse FFT */
    G_message(_("Starting Inverse FFT..."));
    fft2(1, data, totsize, cols, rows);

    /* open the output cell map */
    outputfd = Rast_open_fp_new(Cellmap_orig);

    /* Write out result to a new cell map */
    G_message(_("Writing raster map <%s>..."),
	      Cellmap_orig);
    for (i = 0; i < rows; i++) {
	for (j = 0; j < cols; j++)
	    cell_real[j] = data[C(i, j)][0];
	Rast_put_d_row(outputfd, cell_real);

	G_percent(i+1, rows, 2);
    }

    Rast_close(outputfd);

    G_free(cell_real);
    G_free(cell_imag);

    fft_colors(Cellmap_orig);

    /* Release memory resources */
    G_free(data);

    G_done_msg(" ");

    exit(EXIT_SUCCESS);
}
Exemple #19
0
GDALDataset *GRASSDataset::Open( GDALOpenInfo * poOpenInfo )

{
    char	*pszGisdb = NULL, *pszLoc = NULL;
    char	*pszMapset = NULL, *pszElem = NULL, *pszName = NULL;
    char        **papszCells = NULL;
    char        **papszMapsets = NULL;

/* -------------------------------------------------------------------- */
/*      Does this even look like a grass file path?                     */
/* -------------------------------------------------------------------- */
    if( strstr(poOpenInfo->pszFilename,"/cellhd/") == NULL
        && strstr(poOpenInfo->pszFilename,"/group/") == NULL )
        return NULL;

    /* Always init, if no rasters are opened G_no_gisinit resets the projection and 
     * rasters in different projection may be then opened */

    // Don't use GISRC file and read/write GRASS variables (from location G_VAR_GISRC) to memory only.
    G_set_gisrc_mode ( G_GISRC_MODE_MEMORY );

    // Init GRASS libraries (required)
    G_no_gisinit();  // Doesn't check write permissions for mapset compare to G_gisinit

    // Set error function
    G_set_error_routine ( (GrassErrorHandler) Grass2CPLErrorHook );
    

    // GISBASE is path to the directory where GRASS is installed,
    if ( !getenv( "GISBASE" ) ) {
        static char* gisbaseEnv = NULL;
        const char *gisbase = GRASS_GISBASE;
        CPLError( CE_Warning, CPLE_AppDefined, "GRASS warning: GISBASE "
                "enviroment variable was not set, using:\n%s", gisbase );
        char buf[2000];
        snprintf ( buf, sizeof(buf), "GISBASE=%s", gisbase );
        buf[sizeof(buf)-1] = '\0';

        CPLFree(gisbaseEnv);
        gisbaseEnv = CPLStrdup ( buf );
        putenv( gisbaseEnv );
    }

    if ( !SplitPath( poOpenInfo->pszFilename, &pszGisdb, &pszLoc, &pszMapset,
                     &pszElem, &pszName) ) {
	return NULL;
    }

/* -------------------------------------------------------------------- */
/*      Check element name                                              */
/* -------------------------------------------------------------------- */
    if ( strcmp(pszElem,"cellhd") != 0 && strcmp(pszElem,"group") != 0 ) { 
	G_free(pszGisdb); 
        G_free(pszLoc); 
        G_free(pszMapset); 
        G_free(pszElem); 
        G_free(pszName);
	return NULL;
    }
    
/* -------------------------------------------------------------------- */
/*      Set GRASS variables                                             */
/* -------------------------------------------------------------------- */

    G__setenv( "GISDBASE", pszGisdb );
    G__setenv( "LOCATION_NAME", pszLoc );
    G__setenv( "MAPSET", pszMapset); // group is searched only in current mapset 
    G_reset_mapsets();
    G_add_mapset_to_search_path ( pszMapset );

/* -------------------------------------------------------------------- */
/*      Check if this is a valid grass cell.                            */
/* -------------------------------------------------------------------- */
    if ( strcmp(pszElem,"cellhd") == 0 ) {
	
        if ( G_find_file2("cell", pszName, pszMapset) == NULL ) {
	    G_free(pszGisdb); G_free(pszLoc); G_free(pszMapset); G_free(pszElem); G_free(pszName);
	    return NULL;
	}

	papszMapsets = CSLAddString( papszMapsets, pszMapset );
	papszCells = CSLAddString( papszCells, pszName );
    }
/* -------------------------------------------------------------------- */
/*      Check if this is a valid GRASS imagery group.                   */
/* -------------------------------------------------------------------- */
    else {
        struct Ref ref;

        I_init_group_ref( &ref );
        if ( I_get_group_ref( pszName, &ref ) == 0 ) {
	    G_free(pszGisdb); G_free(pszLoc); G_free(pszMapset); G_free(pszElem); G_free(pszName);
	    return NULL;
	}
        
        for( int iRef = 0; iRef < ref.nfiles; iRef++ ) 
	{
            papszCells = CSLAddString( papszCells, ref.file[iRef].name );
            papszMapsets = CSLAddString( papszMapsets, ref.file[iRef].mapset );
            G_add_mapset_to_search_path ( ref.file[iRef].mapset );
        }

        I_free_group_ref( &ref );
    }
    
    G_free( pszMapset );
    G_free( pszName );

/* -------------------------------------------------------------------- */
/*      Create a corresponding GDALDataset.                             */
/* -------------------------------------------------------------------- */
    GRASSDataset 	*poDS;

    poDS = new GRASSDataset();

    /* notdef: should only allow read access to an existing cell, right? */
    poDS->eAccess = poOpenInfo->eAccess;

    poDS->pszGisdbase = pszGisdb;
    poDS->pszLocation = pszLoc;
    poDS->pszElement = pszElem;
    
/* -------------------------------------------------------------------- */
/*      Capture some information from the file that is of interest.     */
/* -------------------------------------------------------------------- */

#if GRASS_VERSION_MAJOR  >= 7
    Rast_get_cellhd( papszCells[0], papszMapsets[0], &(poDS->sCellInfo) );
#else
    if( G_get_cellhd( papszCells[0], papszMapsets[0], &(poDS->sCellInfo) ) != 0 ) {
        CPLError( CE_Warning, CPLE_AppDefined, "GRASS: Cannot open raster header");
        delete poDS;
        return NULL;
    }
#endif

    poDS->nRasterXSize = poDS->sCellInfo.cols;
    poDS->nRasterYSize = poDS->sCellInfo.rows;

    poDS->adfGeoTransform[0] = poDS->sCellInfo.west;
    poDS->adfGeoTransform[1] = poDS->sCellInfo.ew_res;
    poDS->adfGeoTransform[2] = 0.0;
    poDS->adfGeoTransform[3] = poDS->sCellInfo.north;
    poDS->adfGeoTransform[4] = 0.0;
    poDS->adfGeoTransform[5] = -1 * poDS->sCellInfo.ns_res;
    
/* -------------------------------------------------------------------- */
/*      Try to get a projection definition.                             */
/* -------------------------------------------------------------------- */
    struct Key_Value *projinfo, *projunits;

    projinfo = G_get_projinfo();
    projunits = G_get_projunits();
    poDS->pszProjection = GPJ_grass_to_wkt ( projinfo, projunits, 0, 0);
    if (projinfo) G_free_key_value(projinfo);
    if (projunits) G_free_key_value(projunits);

/* -------------------------------------------------------------------- */
/*      Create band information objects.                                */
/* -------------------------------------------------------------------- */
    for( int iBand = 0; papszCells[iBand] != NULL; iBand++ )
    {
	GRASSRasterBand *rb = new GRASSRasterBand( poDS, iBand+1, papszMapsets[iBand], 
                                                                  papszCells[iBand] );

	if ( !rb->valid ) {
	    CPLError( CE_Warning, CPLE_AppDefined, "GRASS: Cannot open raster band %d", iBand);
	    delete rb;
	    delete poDS;
	    return NULL;
	}

        poDS->SetBand( iBand+1, rb );
    }

    CSLDestroy(papszCells);
    CSLDestroy(papszMapsets);
    
/* -------------------------------------------------------------------- */
/*      Confirm the requested access is supported.                      */
/* -------------------------------------------------------------------- */
    if( poOpenInfo->eAccess == GA_Update )
    {
        delete poDS;
        CPLError( CE_Failure, CPLE_NotSupported, 
                  "The GRASS driver does not support update access to existing"
                  " datasets.\n" );
        return NULL;
    }
    
    return poDS;
}
Exemple #20
0
int main(int argc, char *argv[])
{
    struct GModule *module;
    struct
    {
	struct Option *rastin, *rastout, *method, *quantile;
    } parm;
    struct
    {
	struct Flag *nulls, *weight;
    } flag;
    struct History history;
    char title[64];
    char buf_nsres[100], buf_ewres[100];
    struct Colors colors;
    int row;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("resample"));
    module->description =
	_("Resamples raster map layers to a coarser grid using aggregation.");

    parm.rastin = G_define_standard_option(G_OPT_R_INPUT);

    parm.rastout = G_define_standard_option(G_OPT_R_OUTPUT);

    parm.method = G_define_option();
    parm.method->key = "method";
    parm.method->type = TYPE_STRING;
    parm.method->required = NO;
    parm.method->description = _("Aggregation method");
    parm.method->options = build_method_list();
    parm.method->answer = "average";

    parm.quantile = G_define_option();
    parm.quantile->key = "quantile";
    parm.quantile->type = TYPE_DOUBLE;
    parm.quantile->required = NO;
    parm.quantile->description = _("Quantile to calculate for method=quantile");
    parm.quantile->options = "0.0-1.0";
    parm.quantile->answer = "0.5";

    flag.nulls = G_define_flag();
    flag.nulls->key = 'n';
    flag.nulls->description = _("Propagate NULLs");

    flag.weight = G_define_flag();
    flag.weight->key = 'w';
    flag.weight->description = _("Weight according to area (slower)");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    nulls = flag.nulls->answer;

    method = find_method(parm.method->answer);
    if (method < 0)
	G_fatal_error(_("Unknown method <%s>"), parm.method->answer);

    if (menu[method].method == c_quant) {
	quantile = atoi(parm.quantile->answer);
	closure = &quantile;
    }

    G_get_set_window(&dst_w);

    /* set window to old map */
    Rast_get_cellhd(parm.rastin->answer, "", &src_w);

    /* enlarge source window */
    {
	int r0 = (int)floor(Rast_northing_to_row(dst_w.north, &src_w));
	int r1 = (int)ceil(Rast_northing_to_row(dst_w.south, &src_w));
	int c0 = (int)floor(Rast_easting_to_col(dst_w.west, &src_w));
	int c1 = (int)ceil(Rast_easting_to_col(dst_w.east, &src_w));

	src_w.south -= src_w.ns_res * (r1 - src_w.rows);
	src_w.north += src_w.ns_res * (-r0);
	src_w.west -= src_w.ew_res * (-c0);
	src_w.east += src_w.ew_res * (c1 - src_w.cols);
	src_w.rows = r1 - r0;
	src_w.cols = c1 - c0;
    }

    Rast_set_input_window(&src_w);
    Rast_set_output_window(&dst_w);

    row_scale = 2 + ceil(dst_w.ns_res / src_w.ns_res);
    col_scale = 2 + ceil(dst_w.ew_res / src_w.ew_res);

    /* allocate buffers for input rows */
    bufs = G_malloc(row_scale * sizeof(DCELL *));
    for (row = 0; row < row_scale; row++)
	bufs[row] = Rast_allocate_d_input_buf();

    /* open old map */
    infile = Rast_open_old(parm.rastin->answer, "");

    /* allocate output buffer */
    outbuf = Rast_allocate_d_output_buf();

    /* open new map */
    outfile = Rast_open_new(parm.rastout->answer, DCELL_TYPE);

    if (flag.weight->answer && menu[method].method_w)
	resamp_weighted();
    else
	resamp_unweighted();

    G_percent(dst_w.rows, dst_w.rows, 2);

    Rast_close(infile);
    Rast_close(outfile);

    /* record map metadata/history info */
    sprintf(title, "Aggregate resample by %s", parm.method->answer);
    Rast_put_cell_title(parm.rastout->answer, title);

    Rast_short_history(parm.rastout->answer, "raster", &history);
    Rast_set_history(&history, HIST_DATSRC_1, parm.rastin->answer);
    G_format_resolution(src_w.ns_res, buf_nsres, src_w.proj);
    G_format_resolution(src_w.ew_res, buf_ewres, src_w.proj);
    Rast_format_history(&history, HIST_DATSRC_2,
			"Source map NS res: %s   EW res: %s",
			buf_nsres, buf_ewres);
    Rast_command_history(&history);
    Rast_write_history(parm.rastout->answer, &history);

    /* copy color table from source map */
    if (strcmp(parm.method->answer, "sum") != 0) {
	if (Rast_read_colors(parm.rastin->answer, "", &colors) < 0)
	    G_fatal_error(_("Unable to read color table for %s"),
			  parm.rastin->answer);
	Rast_mark_colors_as_fp(&colors);
	Rast_write_colors(parm.rastout->answer, G_mapset(), &colors);
    }

    return (EXIT_SUCCESS);
}
Exemple #21
0
int main(int argc, char **argv)
{
    struct Cell_head window;
    struct Categories cats;
    struct GModule *module;
    struct Option *opt1, *opt2, *opt3;
    struct Flag *fancy_mode, *simple_mode, *draw;
    char *tmpfile;
    FILE *fp;

    /* Initialize the GIS calls */
    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("display"));
    G_add_keyword(_("cartography"));
    module->description =
	_("Create a TITLE for a raster map in a form suitable "
	  "for display with d.text.");

    opt1 = G_define_standard_option(G_OPT_R_MAP);

    opt2 = G_define_option();
    opt2->key = "color";
    opt2->type = TYPE_STRING;
    opt2->answer = DEFAULT_FG_COLOR;
    opt2->required = NO;
    opt2->gisprompt = "old_color,color,color";
    opt2->description = _("Sets the text color");

    opt3 = G_define_option();
    opt3->key = "size";
    opt3->type = TYPE_DOUBLE;
    opt3->answer = "4.0";
    opt3->options = "0-100";
    opt3->description =
	_("Sets the text size as percentage of the frame's height");

    draw = G_define_flag();
    draw->key = 'd';
    draw->description = _("Draw title on current display");

    fancy_mode = G_define_flag();
    fancy_mode->key = 'f';
    fancy_mode->description = _("Do a fancier title");

    /* currently just title, but it doesn't have to be /that/ simple */
    simple_mode = G_define_flag();
    simple_mode->key = 's';
    simple_mode->description = _("Do a simple title");


    /* Check command line */
    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);


    map_name = opt1->answer;

    color = opt2->answer;

    if (opt3->answer != NULL)
	sscanf(opt3->answer, "%f", &size);

    type = fancy_mode->answer ? FANCY : NORMAL;

    if (fancy_mode->answer && simple_mode->answer)
	G_fatal_error(_("Title can be fancy or simple, not both"));

    if (!strlen(map_name))
	G_fatal_error(_("No map name given"));

    Rast_get_cellhd(map_name, "", &window);

    if (Rast_read_cats(map_name, "", &cats) == -1)
	G_fatal_error(_("Unable to read category file of raster map <%s>"),
		      map_name);


    if (draw->answer) {
	tmpfile = G_convert_dirseps_to_host(G_tempfile());
	if (!(fp = fopen(tmpfile, "w")))
	    G_fatal_error(_("Unable to open temporary file <%s>"), tmpfile);
    }
    else
	fp = stdout;


    if (type == NORMAL)
	normal(&window, &cats, simple_mode->answer, fp);
    else
	fancy(&window, &cats, fp);


    if (draw->answer) {
	char inarg[GPATH_MAX];
	fclose(fp);
	sprintf(inarg, "input=%s", tmpfile);
	G_spawn("d.text", "d.text", inarg, NULL);
	unlink(tmpfile);
	/* note a tmp file will remain, created by d.text so it can survive d.redraw */
    }

    exit(EXIT_SUCCESS);
}
Exemple #22
0
int main(int argc, char *argv[])
{
    char *p;
    int method;
    int in_fd;
    int selection_fd;
    int out_fd;
    DCELL *result;
    char *selection;
    RASTER_MAP_TYPE map_type;
    int row, col;
    int readrow;
    int nrows, ncols;
    int n;
    int copycolr;
    int half;
    stat_func *newvalue;
    stat_func_w *newvalue_w;
    ifunc cat_names;
    double quantile;
    const void *closure;
    struct Colors colr;
    struct Cell_head cellhd;
    struct Cell_head window;
    struct History history;
    struct GModule *module;
    struct
    {
	struct Option *input, *output, *selection;
	struct Option *method, *size;
	struct Option *title;
	struct Option *weight;
	struct Option *gauss;
	struct Option *quantile;
    } parm;
    struct
    {
	struct Flag *align, *circle;
    } flag;

    DCELL *values;		/* list of neighborhood values */

    DCELL(*values_w)[2];	/* list of neighborhood values and weights */

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("algebra"));
    G_add_keyword(_("statistics"));
    module->description =
	_("Makes each cell category value a "
	  "function of the category values assigned to the cells "
	  "around it, and stores new cell values in an output raster "
	  "map layer.");

    parm.input = G_define_standard_option(G_OPT_R_INPUT);

    parm.selection = G_define_standard_option(G_OPT_R_INPUT);
    parm.selection->key = "selection";
    parm.selection->required = NO;
    parm.selection->description = _("Name of an input raster map to select the cells which should be processed");

    parm.output = G_define_standard_option(G_OPT_R_OUTPUT);

    parm.method = G_define_option();
    parm.method->key = "method";
    parm.method->type = TYPE_STRING;
    parm.method->required = NO;
    parm.method->answer = "average";
    p = G_malloc(1024);
    for (n = 0; menu[n].name; n++) {
	if (n)
	    strcat(p, ",");
	else
	    *p = 0;
	strcat(p, menu[n].name);
    }
    parm.method->options = p;
    parm.method->description = _("Neighborhood operation");
    parm.method->guisection = _("Neighborhood");

    parm.size = G_define_option();
    parm.size->key = "size";
    parm.size->type = TYPE_INTEGER;
    parm.size->required = NO;
    parm.size->description = _("Neighborhood size");
    parm.size->answer = "3";
    parm.size->guisection = _("Neighborhood");

    parm.title = G_define_option();
    parm.title->key = "title";
    parm.title->key_desc = "phrase";
    parm.title->type = TYPE_STRING;
    parm.title->required = NO;
    parm.title->description = _("Title of the output raster map");

    parm.weight = G_define_standard_option(G_OPT_F_INPUT);
    parm.weight->key = "weight";
    parm.weight->required = NO;
    parm.weight->description = _("Text file containing weights");

    parm.gauss = G_define_option();
    parm.gauss->key = "gauss";
    parm.gauss->type = TYPE_DOUBLE;
    parm.gauss->required = NO;
    parm.gauss->description = _("Sigma (in cells) for Gaussian filter");

    parm.quantile = G_define_option();
    parm.quantile->key = "quantile";
    parm.quantile->type = TYPE_DOUBLE;
    parm.quantile->required = NO;
    parm.quantile->description = _("Quantile to calculate for method=quantile");
    parm.quantile->options = "0.0-1.0";
    parm.quantile->answer = "0.5";

    flag.align = G_define_flag();
    flag.align->key = 'a';
    flag.align->description = _("Do not align output with the input");

    flag.circle = G_define_flag();
    flag.circle->key = 'c';
    flag.circle->description = _("Use circular neighborhood");
    flag.circle->guisection = _("Neighborhood");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    sscanf(parm.size->answer, "%d", &ncb.nsize);
    if (ncb.nsize <= 0)
	G_fatal_error(_("Neighborhood size must be positive"));
    if (ncb.nsize % 2 == 0)
	G_fatal_error(_("Neighborhood size must be odd"));
    ncb.dist = ncb.nsize / 2;

    if (parm.weight->answer && flag.circle->answer)
	G_fatal_error(_("weight= and -c are mutually exclusive"));

    if (parm.weight->answer && parm.gauss->answer)
	G_fatal_error(_("weight= and gauss= are mutually exclusive"));

    ncb.oldcell = parm.input->answer;
    ncb.newcell = parm.output->answer;

    if (!flag.align->answer) {
	Rast_get_cellhd(ncb.oldcell, "", &cellhd);
	G_get_window(&window);
	Rast_align_window(&window, &cellhd);
	Rast_set_window(&window);
    }

    nrows = Rast_window_rows();
    ncols = Rast_window_cols();

    /* open raster maps */
    in_fd = Rast_open_old(ncb.oldcell, "");
    map_type = Rast_get_map_type(in_fd);

    /* get the method */
    for (method = 0; (p = menu[method].name); method++)
	if ((strcmp(p, parm.method->answer) == 0))
	    break;
    if (!p) {
	G_warning(_("<%s=%s> unknown %s"),
		  parm.method->key, parm.method->answer, parm.method->key);
	G_usage();
	exit(EXIT_FAILURE);
    }

    if (menu[method].method == c_quant) {
	quantile = atoi(parm.quantile->answer);
	closure = &quantile;
    }

    half = (map_type == CELL_TYPE) ? menu[method].half : 0;

    /* establish the newvalue routine */
    newvalue = menu[method].method;
    newvalue_w = menu[method].method_w;

    /* copy color table? */
    copycolr = menu[method].copycolr;
    if (copycolr) {
	G_suppress_warnings(1);
	copycolr =
	    (Rast_read_colors(ncb.oldcell, "", &colr) > 0);
	G_suppress_warnings(0);
    }

    /* read the weights */
    if (parm.weight->answer) {
	read_weights(parm.weight->answer);
	if (!newvalue_w)
	    weights_mask();
    }
    else if (parm.gauss->answer) {
	if (!newvalue_w)
	    G_fatal_error(_("Method %s not compatible with Gaussian filter"), parm.method->answer);
	gaussian_weights(atof(parm.gauss->answer));
    }
    else
	newvalue_w = NULL;

    /* allocate the cell buffers */
    allocate_bufs();
    result = Rast_allocate_d_buf();

    /* get title, initialize the category and stat info */
    if (parm.title->answer)
	strcpy(ncb.title, parm.title->answer);
    else
	sprintf(ncb.title, "%dx%d neighborhood: %s of %s",
		ncb.nsize, ncb.nsize, menu[method].name, ncb.oldcell);


    /* initialize the cell bufs with 'dist' rows of the old cellfile */

    readrow = 0;
    for (row = 0; row < ncb.dist; row++)
	readcell(in_fd, readrow++, nrows, ncols);

    /* open the selection raster map */
    if (parm.selection->answer) {
	G_message(_("Opening selection map <%s>"), parm.selection->answer);
	selection_fd = Rast_open_old(parm.selection->answer, "");
        selection = Rast_allocate_null_buf();
    } else {
        selection_fd = -1;
        selection = NULL;
    }

    /*open the new raster map */
    out_fd = Rast_open_new(ncb.newcell, map_type);

    if (flag.circle->answer)
	circle_mask();

    if (newvalue_w)
	values_w =
	    (DCELL(*)[2]) G_malloc(ncb.nsize * ncb.nsize * 2 * sizeof(DCELL));
    else
	values = (DCELL *) G_malloc(ncb.nsize * ncb.nsize * sizeof(DCELL));

    for (row = 0; row < nrows; row++) {
	G_percent(row, nrows, 2);
	readcell(in_fd, readrow++, nrows, ncols);

	if (selection)
            Rast_get_null_value_row(selection_fd, selection, row);

	for (col = 0; col < ncols; col++) {
	    DCELL *rp = &result[col];

            if (selection && selection[col]) {
		*rp = ncb.buf[ncb.dist][col];
		continue;
	    }

	    if (newvalue_w)
		n = gather_w(values_w, col);
	    else
		n = gather(values, col);

	    if (n < 0)
		Rast_set_d_null_value(rp, 1);
	    else {
		if (newvalue_w)
		    newvalue_w(rp, values_w, n, closure);
		else
		    newvalue(rp, values, n, closure);

		if (half && !Rast_is_d_null_value(rp))
		    *rp += 0.5;
	    }
	}

	Rast_put_d_row(out_fd, result);
    }
    G_percent(row, nrows, 2);

    Rast_close(out_fd);
    Rast_close(in_fd);

    if (selection)
        Rast_close(selection_fd);

    /* put out category info */
    null_cats();
    if ((cat_names = menu[method].cat_names))
	cat_names();

    Rast_write_cats(ncb.newcell, &ncb.cats);

    if (copycolr)
	Rast_write_colors(ncb.newcell, G_mapset(), &colr);

    Rast_short_history(ncb.newcell, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(ncb.newcell, &history);


    exit(EXIT_SUCCESS);
}
Exemple #23
0
int main(int argc, char *argv[])
{
    int i;
    int print_flag = 0;
    int flat_flag; 
    int set_flag;
    double x;
    int ival;
    int row_flag = 0, col_flag = 0;
    struct Cell_head window, temp_window;
    const char *value;
    const char *name;
    const char *mapset;
    char **rast_ptr, **vect_ptr;

    struct GModule *module;
    struct
    {
	struct Flag
	    *update, *print, *gprint, *flprint, *lprint, *eprint, *nangle,
	    *center, *res_set, *dist_res, *dflt, *z, *savedefault,
	    *bbox, *gmt_style, *wms_style;
    } flag;
    struct
    {
	struct Option
	    *north, *south, *east, *west, *top, *bottom,
	    *res, *nsres, *ewres, *res3, *tbres, *rows, *cols,
	    *save, *region, *raster, *raster3d, *align,
	    *zoom, *vect;
    } parm;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("general"));
    G_add_keyword(_("settings"));
    module->description =
	_("Manages the boundary definitions for the " "geographic region.");

    /* flags */

    flag.dflt = G_define_flag();
    flag.dflt->key = 'd';
    flag.dflt->description = _("Set from default region");
    flag.dflt->guisection = _("Existing");

    flag.savedefault = G_define_flag();
    flag.savedefault->key = 's';
    flag.savedefault->label = _("Save as default region");
    flag.savedefault->description = _("Only possible from the PERMANENT mapset");
    flag.savedefault->guisection = _("Existing");

    flag.print = G_define_flag();
    flag.print->key = 'p';
    flag.print->description = _("Print the current region");
    flag.print->guisection = _("Print");

    flag.lprint = G_define_flag();
    flag.lprint->key = 'l';
    flag.lprint->description = _("Print the current region in lat/long "
				 "using the current ellipsoid/datum");
    flag.lprint->guisection = _("Print");

    flag.eprint = G_define_flag();
    flag.eprint->key = 'e';
    flag.eprint->description = _("Print the current region extent");
    flag.eprint->guisection = _("Print");

    flag.center = G_define_flag();
    flag.center->key = 'c';
    flag.center->description =
	_("Print the current region map center coordinates");
    flag.center->guisection = _("Print");

    flag.gmt_style = G_define_flag();
    flag.gmt_style->key = 't';
    flag.gmt_style->description =
	_("Print the current region in GMT style");
    flag.gmt_style->guisection = _("Print");

    flag.wms_style = G_define_flag();
    flag.wms_style->key = 'w';
    flag.wms_style->description =
	_("Print the current region in WMS style");
    flag.wms_style->guisection = _("Print");

    flag.dist_res = G_define_flag();
    flag.dist_res->key = 'm';
    flag.dist_res->description =
	_("Print region resolution in meters (geodesic)");
    flag.dist_res->guisection = _("Print");

    flag.nangle = G_define_flag();
    flag.nangle->key = 'n';
    flag.nangle->label = _("Print the convergence angle (degrees CCW)");
    flag.nangle->description =
	_("The difference between the projection's grid north and true north, "
	  "measured at the center coordinates of the current region.");
    flag.nangle->guisection = _("Print");

    flag.z = G_define_flag();
    flag.z->key = '3';
    flag.z->description = _("Print also 3D settings");
    flag.z->guisection = _("Print");

    flag.bbox = G_define_flag();
    flag.bbox->key = 'b';
    flag.bbox->description =
	_("Print the maximum bounding box in lat/long on WGS84");
    flag.bbox->guisection = _("Print");

    flag.gprint = G_define_flag();
    flag.gprint->key = 'g';
    flag.gprint->description = _("Print in shell script style");
    flag.gprint->guisection = _("Print");

    flag.flprint = G_define_flag();
    flag.flprint->key = 'f';
    flag.flprint->description = _("Print in shell script style, but in one line (flat)");
    flag.flprint->guisection = _("Print");

    flag.res_set = G_define_flag();
    flag.res_set->key = 'a';
    flag.res_set->description =
	_("Align region to resolution (default = align to bounds, "
	  "works only for 2D resolution)");
    flag.res_set->guisection = _("Bounds");

    flag.update = G_define_flag();
    flag.update->key = 'u';
    flag.update->description = _("Do not update the current region");
    flag.update->guisection = _("Effects");

    /* parameters */

    parm.region = G_define_standard_option(G_OPT_M_REGION);
    parm.region->description = _("Set current region from named region");
    parm.region->guisection = _("Existing");

    parm.raster = G_define_standard_option(G_OPT_R_MAP);
    parm.raster->key = "raster";
    parm.raster->required = NO;
    parm.raster->multiple = YES;
    parm.raster->description = _("Set region to match raster map(s)");
    parm.raster->guisection = _("Existing");

    parm.raster3d = G_define_standard_option(G_OPT_R3_MAP);
    parm.raster3d->key = "raster_3d";
    parm.raster3d->required = NO;
    parm.raster3d->multiple = NO;
    parm.raster3d->description =
	_("Set region to match 3D raster map(s) (both 2D and 3D "
	  "values)");
    parm.raster3d->guisection = _("Existing");

    parm.vect = G_define_standard_option(G_OPT_V_MAP);
    parm.vect->key = "vector";
    parm.vect->required = NO;
    parm.vect->multiple = YES;
    parm.vect->label = _("Set region to match vector map(s)");
    parm.vect->description = NULL;
    parm.vect->guisection = _("Existing");

    parm.north = G_define_option();
    parm.north->key = "n";
    parm.north->key_desc = "value";
    parm.north->required = NO;
    parm.north->multiple = NO;
    parm.north->type = TYPE_STRING;
    parm.north->description = _("Value for the northern edge");
    parm.north->guisection = _("Bounds");

    parm.south = G_define_option();
    parm.south->key = "s";
    parm.south->key_desc = "value";
    parm.south->required = NO;
    parm.south->multiple = NO;
    parm.south->type = TYPE_STRING;
    parm.south->description = _("Value for the southern edge");
    parm.south->guisection = _("Bounds");

    parm.east = G_define_option();
    parm.east->key = "e";
    parm.east->key_desc = "value";
    parm.east->required = NO;
    parm.east->multiple = NO;
    parm.east->type = TYPE_STRING;
    parm.east->description = _("Value for the eastern edge");
    parm.east->guisection = _("Bounds");

    parm.west = G_define_option();
    parm.west->key = "w";
    parm.west->key_desc = "value";
    parm.west->required = NO;
    parm.west->multiple = NO;
    parm.west->type = TYPE_STRING;
    parm.west->description = _("Value for the western edge");
    parm.west->guisection = _("Bounds");

    parm.top = G_define_option();
    parm.top->key = "t";
    parm.top->key_desc = "value";
    parm.top->required = NO;
    parm.top->multiple = NO;
    parm.top->type = TYPE_STRING;
    parm.top->description = _("Value for the top edge");
    parm.top->guisection = _("Bounds");

    parm.bottom = G_define_option();
    parm.bottom->key = "b";
    parm.bottom->key_desc = "value";
    parm.bottom->required = NO;
    parm.bottom->multiple = NO;
    parm.bottom->type = TYPE_STRING;
    parm.bottom->description = _("Value for the bottom edge");
    parm.bottom->guisection = _("Bounds");

    parm.rows = G_define_option();
    parm.rows->key = "rows";
    parm.rows->key_desc = "value";
    parm.rows->required = NO;
    parm.rows->multiple = NO;
    parm.rows->type = TYPE_INTEGER;
    parm.rows->description = _("Number of rows in the new region");
    parm.rows->guisection = _("Resolution");

    parm.cols = G_define_option();
    parm.cols->key = "cols";
    parm.cols->key_desc = "value";
    parm.cols->required = NO;
    parm.cols->multiple = NO;
    parm.cols->type = TYPE_INTEGER;
    parm.cols->description = _("Number of columns in the new region");
    parm.cols->guisection = _("Resolution");

    parm.res = G_define_option();
    parm.res->key = "res";
    parm.res->key_desc = "value";
    parm.res->required = NO;
    parm.res->multiple = NO;
    parm.res->type = TYPE_STRING;
    parm.res->description =
	_("2D grid resolution (north-south and east-west)");
    parm.res->guisection = _("Resolution");

    parm.res3 = G_define_option();
    parm.res3->key = "res3";
    parm.res3->key_desc = "value";
    parm.res3->required = NO;
    parm.res3->multiple = NO;
    parm.res3->type = TYPE_STRING;
    parm.res3->description =
	_("3D grid resolution (north-south, east-west and top-bottom)");
    parm.res3->guisection = _("Resolution");

    parm.nsres = G_define_option();
    parm.nsres->key = "nsres";
    parm.nsres->key_desc = "value";
    parm.nsres->required = NO;
    parm.nsres->multiple = NO;
    parm.nsres->type = TYPE_STRING;
    parm.nsres->description = _("North-south 2D grid resolution");
    parm.nsres->guisection = _("Resolution");

    parm.ewres = G_define_option();
    parm.ewres->key = "ewres";
    parm.ewres->key_desc = "value";
    parm.ewres->required = NO;
    parm.ewres->multiple = NO;
    parm.ewres->type = TYPE_STRING;
    parm.ewres->description = _("East-west 2D grid resolution");
    parm.ewres->guisection = _("Resolution");

    parm.tbres = G_define_option();
    parm.tbres->key = "tbres";
    parm.tbres->key_desc = "value";
    parm.tbres->required = NO;
    parm.tbres->multiple = NO;
    parm.tbres->type = TYPE_STRING;
    parm.tbres->description = _("Top-bottom 3D grid resolution");
    parm.tbres->guisection = _("Resolution");

    parm.zoom = G_define_option();
    parm.zoom->key = "zoom";
    parm.zoom->key_desc = "name";
    parm.zoom->required = NO;
    parm.zoom->multiple = NO;
    parm.zoom->type = TYPE_STRING;
    parm.zoom->description =
	_("Shrink region until it meets non-NULL data from this raster map");
    parm.zoom->gisprompt = "old,cell,raster";
    parm.zoom->guisection = _("Bounds");

    parm.align = G_define_option();
    parm.align->key = "align";
    parm.align->key_desc = "name";
    parm.align->required = NO;
    parm.align->multiple = NO;
    parm.align->type = TYPE_STRING;
    parm.align->description =
	_("Adjust region cells to cleanly align with this raster map");
    parm.align->gisprompt = "old,cell,raster";
    parm.align->guisection = _("Bounds");

    parm.save = G_define_option();
    parm.save->key = "save";
    parm.save->key_desc = "name";
    parm.save->required = NO;
    parm.save->multiple = NO;
    parm.save->type = TYPE_STRING;
    parm.save->description =
	_("Save current region settings in named region file");
    parm.save->gisprompt = "new,windows,region";
    parm.save->guisection = _("Effects");

    G_option_required(flag.dflt, flag.savedefault, flag.print, flag.lprint,
                      flag.eprint, flag.center, flag.gmt_style, flag.wms_style,
                      flag.dist_res, flag.nangle, flag. z, flag.bbox, flag.gprint,
                      flag.res_set, flag.update, parm.region, parm.raster,
                      parm.raster3d, parm.vect, parm.north, parm.south, parm.east,
                      parm.west, parm.top, parm.bottom, parm.rows, parm.cols,
                      parm.res, parm.res3, parm.nsres, parm.ewres, parm.tbres,
                      parm.zoom, parm.align, parm.save, NULL);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    G_get_default_window(&window);

    set_flag = !flag.update->answer;
    flat_flag = flag.flprint->answer;

    if (flag.print->answer)
	print_flag |= PRINT_REG;

    if (flag.gprint->answer)
	print_flag |= PRINT_SH;

    if (flag.lprint->answer)
	print_flag |= PRINT_LL;

    if (flag.eprint->answer)
	print_flag |= PRINT_EXTENT;

    if (flag.center->answer)
	print_flag |= PRINT_CENTER;

    if (flag.gmt_style->answer)
	print_flag |= PRINT_GMT;

    if (flag.wms_style->answer)
	print_flag |= PRINT_WMS;

    if (flag.nangle->answer)
	print_flag |= PRINT_NANGLE;

    if (flag.dist_res->answer)
	print_flag |= PRINT_METERS;

    if (flag.z->answer)
	print_flag |= PRINT_3D;

    if (flag.bbox->answer)
	print_flag |= PRINT_MBBOX;

    if (print_flag == PRINT_METERS)
	print_flag |= PRINT_SH;

    if (print_flag == PRINT_SH ||
	print_flag & PRINT_3D || print_flag == PRINT_METERS + PRINT_SH) {
	print_flag |= PRINT_REG;
    }

    if (!flag.dflt->answer)
	G_get_window(&window);

    /* region= */
    if ((name = parm.region->answer)) {
	mapset = G_find_file2("windows", name, "");
	if (!mapset)
	    G_fatal_error(_("Region <%s> not found"), name);
	G_get_element_window(&window, "windows", name, mapset);
    }

    /* raster= */
    if (parm.raster->answer) {
	int first = 0;

	rast_ptr = parm.raster->answers;
	for (; *rast_ptr != NULL; rast_ptr++) {
	    char rast_name[GNAME_MAX];

	    strcpy(rast_name, *rast_ptr);
	    mapset = G_find_raster2(rast_name, "");
	    if (!mapset)
		G_fatal_error(_("Raster map <%s> not found"), rast_name);
	    Rast_get_cellhd(rast_name, mapset, &temp_window);
	    if (!first) {
		window = temp_window;
		first = 1;
	    }
	    else {
		window.north = (window.north > temp_window.north) ?
		    window.north : temp_window.north;
		window.south = (window.south < temp_window.south) ?
		    window.south : temp_window.south;
		window.east = (window.east > temp_window.east) ?
		    window.east : temp_window.east;
		window.west = (window.west < temp_window.west) ?
		    window.west : temp_window.west;
	    }
	}
	G_adjust_Cell_head3(&window, 0, 0, 0);
    }


    /* raster3d= */
    if ((name = parm.raster3d->answer)) {
	RASTER3D_Region win;

	if ((mapset = G_find_raster3d(name, "")) == NULL)
	    G_fatal_error(_("3D raster map <%s> not found"), name);

	if (Rast3d_read_region_map(name, mapset, &win) < 0)
	    G_fatal_error(_("Unable to read header of 3D raster map <%s@%s>"),
			  name, mapset);

	Rast3d_region_to_cell_head(&win, &window);
    }

    /* vector= */
    if (parm.vect->answer) {
	int first = 0;

	vect_ptr = parm.vect->answers;
	for (; *vect_ptr != NULL; vect_ptr++) {
	    struct Map_info Map;
	    struct bound_box box;
	    char vect_name[GNAME_MAX];
	    struct Cell_head map_window;

	    strcpy(vect_name, *vect_ptr);
	    mapset = G_find_vector2(vect_name, "");
	    if (!mapset)
		G_fatal_error(_("Vector map <%s> not found"), vect_name);

	    temp_window = window;

	    Vect_set_open_level(2);
	    if (2 > Vect_open_old_head(&Map, vect_name, mapset))
		G_fatal_error(_("Unable to open vector map <%s> on topological level"),
			      vect_name);
            
	    Vect_get_map_box(&Map, &box);
	    map_window = window;
	    map_window.north = box.N;
	    map_window.south = box.S;
	    map_window.west = box.W;
	    map_window.east = box.E;
	    map_window.top = box.T;
	    map_window.bottom = box.B;

	    if (!first) {
		window = map_window;
		first = 1;
	    }
	    else {
		window.north = (window.north > map_window.north) ?
		    window.north : map_window.north;
		window.south = (window.south < map_window.south) ?
		    window.south : map_window.south;
		window.east = (window.east > map_window.east) ?
		    window.east : map_window.east;
		window.west = (window.west < map_window.west) ?
		    window.west : map_window.west;
		if (map_window.top > window.top)
		    window.top = map_window.top;
		if (map_window.bottom < window.bottom)
		    window.bottom = map_window.bottom;
	    }

	    if (window.north == window.south) {
		window.north = window.north + 0.5 * temp_window.ns_res;
		window.south = window.south - 0.5 * temp_window.ns_res;
	    }
	    if (window.east == window.west) {
		window.west = window.west - 0.5 * temp_window.ew_res;
		window.east = window.east + 0.5 * temp_window.ew_res;
	    }
	    if (window.top == window.bottom) {
		window.bottom = (window.bottom - 0.5 * temp_window.tb_res);
		window.top = (window.top + 0.5 * temp_window.tb_res);
	    }

	    if (flag.res_set->answer)
		Rast_align_window(&window, &temp_window);

	    Vect_close(&Map);
	}
    }

    /* n= */
    if ((value = parm.north->answer)) {
	if ((i = nsew(value, "n+", "n-", "s+"))) {
	    if (!G_scan_resolution(value + 2, &x, window.proj))
		die(parm.north);
	    switch (i) {
	    case 1:
		window.north += x;
		break;
	    case 2:
		window.north -= x;
		break;
	    case 3:
		window.north = window.south + x;
		break;
	    }
	}
	else if (G_scan_northing(value, &x, window.proj))
	    window.north = x;
	else
	    die(parm.north);
    }

    /* s= */
    if ((value = parm.south->answer)) {
	if ((i = nsew(value, "s+", "s-", "n-"))) {
	    if (!G_scan_resolution(value + 2, &x, window.proj))
		die(parm.south);
	    switch (i) {
	    case 1:
		window.south += x;
		break;
	    case 2:
		window.south -= x;
		break;
	    case 3:
		window.south = window.north - x;
		break;
	    }
	}
	else if (G_scan_northing(value, &x, window.proj))
	    window.south = x;
	else
	    die(parm.south);
    }

    /* e= */
    if ((value = parm.east->answer)) {
	if ((i = nsew(value, "e+", "e-", "w+"))) {
	    if (!G_scan_resolution(value + 2, &x, window.proj))
		die(parm.east);
	    switch (i) {
	    case 1:
		window.east += x;
		break;
	    case 2:
		window.east -= x;
		break;
	    case 3:
		window.east = window.west + x;
		break;
	    }
	}
	else if (G_scan_easting(value, &x, window.proj))
	    window.east = x;
	else
	    die(parm.east);
    }

    /* w= */
    if ((value = parm.west->answer)) {
	if ((i = nsew(value, "w+", "w-", "e-"))) {
	    if (!G_scan_resolution(value + 2, &x, window.proj))
		die(parm.west);
	    switch (i) {
	    case 1:
		window.west += x;
		break;
	    case 2:
		window.west -= x;
		break;
	    case 3:
		window.west = window.east - x;
		break;
	    }
	}
	else if (G_scan_easting(value, &x, window.proj))
	    window.west = x;
	else
	    die(parm.west);
    }

    /* t= */
    if ((value = parm.top->answer)) {
	if ((i = nsew(value, "t+", "t-", "b+"))) {
	    if (sscanf(value + 2, "%lf", &x) != 1)
		die(parm.top);
	    switch (i) {
	    case 1:
		window.top += x;
		break;
	    case 2:
		window.top -= x;
		break;
	    case 3:
		window.top = window.bottom + x;
		break;
	    }
	}
	else if (sscanf(value, "%lf", &x) == 1)
	    window.top = x;
	else
	    die(parm.top);
    }

    /* b= */
    if ((value = parm.bottom->answer)) {
	if ((i = nsew(value, "b+", "b-", "t-"))) {
	    if (sscanf(value + 2, "%lf", &x) != 1)
		die(parm.bottom);
	    switch (i) {
	    case 1:
		window.bottom += x;
		break;
	    case 2:
		window.bottom -= x;
		break;
	    case 3:
		window.bottom = window.top - x;
		break;
	    }
	}
	else if (sscanf(value, "%lf", &x) == 1)
	    window.bottom = x;
	else
	    die(parm.bottom);
    }

    /* res= */
    if ((value = parm.res->answer)) {
	if (!G_scan_resolution(value, &x, window.proj))
	    die(parm.res);
	window.ns_res = x;
	window.ew_res = x;

	if (flag.res_set->answer) {
	    window.north = ceil(window.north / x) * x;
	    window.south = floor(window.south / x) * x;
	    window.east = ceil(window.east / x) * x;
	    window.west = floor(window.west / x) * x;
	}
    }

    /* res3= */
    if ((value = parm.res3->answer)) {
	if (!G_scan_resolution(value, &x, window.proj))
	    die(parm.res);
	window.ns_res3 = x;
	window.ew_res3 = x;
	window.tb_res = x;
    }

    /* nsres= */
    if ((value = parm.nsres->answer)) {
	if (!G_scan_resolution(value, &x, window.proj))
	    die(parm.nsres);
	window.ns_res = x;

	if (flag.res_set->answer) {
	    window.north = ceil(window.north / x) * x;
	    window.south = floor(window.south / x) * x;
	}
    }

    /* ewres= */
    if ((value = parm.ewres->answer)) {
	if (!G_scan_resolution(value, &x, window.proj))
	    die(parm.ewres);
	window.ew_res = x;

	if (flag.res_set->answer) {
	    window.east = ceil(window.east / x) * x;
	    window.west = floor(window.west / x) * x;
	}
    }

    /* tbres= */
    if ((value = parm.tbres->answer)) {
	if (sscanf(value, "%lf", &x) != 1)
	    die(parm.tbres);
	window.tb_res = x;

	if (flag.res_set->answer) {
	    window.top = ceil(window.top / x) * x;
	    window.bottom = floor(window.bottom / x) * x;
	}
    }

    /* rows= */
    if ((value = parm.rows->answer)) {
	if (sscanf(value, "%i", &ival) != 1)
	    die(parm.rows);
	window.rows = ival;
	row_flag = 1;
    }

    /* cols= */
    if ((value = parm.cols->answer)) {
	if (sscanf(value, "%i", &ival) != 1)
	    die(parm.cols);
	window.cols = ival;
	col_flag = 1;
    }

    /* zoom= */
    if ((name = parm.zoom->answer)) {
	mapset = G_find_raster2(name, "");
	if (!mapset)
	    G_fatal_error(_("Raster map <%s> not found"), name);
	zoom(&window, name, mapset);
    }

    /* align= */
    if ((name = parm.align->answer)) {
	mapset = G_find_raster2(name, "");
	if (!mapset)
	    G_fatal_error(_("Raster map <%s> not found"), name);
	Rast_get_cellhd(name, mapset, &temp_window);
	Rast_align_window(&window, &temp_window);
    }

    /* save= */
    if ((name = parm.save->answer)) {
	temp_window = window;
	G_adjust_Cell_head3(&temp_window, 0, 0, 0);
	if (G_put_element_window(&temp_window, "windows", name) < 0)
	    G_fatal_error(_("Unable to set region <%s>"), name);
    }

    G_adjust_Cell_head3(&window, row_flag, col_flag, 0);
    if (set_flag) {
	if (G_put_window(&window) < 0)
	    G_fatal_error(_("Unable to update current region"));
    }

    if (flag.savedefault->answer) {
	if (strcmp(G_mapset(), "PERMANENT") == 0) {
	    G_put_element_window(&window, "", "DEFAULT_WIND");
	}
	else {
	    G_fatal_error(_("Unable to change default region. "
			    "The current mapset is not <PERMANENT>."));
	}
    }				/* / flag.savedefault->answer */


    if (print_flag)
	print_window(&window, print_flag, flat_flag);

    exit(EXIT_SUCCESS);
}
Exemple #24
0
int main(int argc, char *argv[])
{
    /* buffer for input-output rasters */
    void *inrast_TEMPKA, *inrast_PATM, *inrast_RNET, *inrast_G0;
    DCELL *outrast;

    /* pointers to input-output raster files */
    int infd_TEMPKA, infd_PATM, infd_RNET, infd_G0;
    int outfd;

    /* names of input-output raster files */
    char *RNET, *TEMPKA, *PATM, *G0;
    char *ETa;

    /* input-output cell values */
    DCELL d_tempka, d_pt_patm, d_rnet, d_g0;
    DCELL d_pt_alpha, d_pt_delta, d_pt_ghamma, d_daily_et;

    /* region information and handler */
    struct Cell_head cellhd;
    int nrows, ncols;
    int row, col;

    /* parser stuctures definition */
    struct GModule *module;
    struct Option *input_RNET, *input_TEMPKA, *input_PATM, *input_G0,
	*input_PT;
    struct Option *output;
    struct Flag *zero;
    struct Colors color;
    struct History history;

    /* Initialize the GIS calls */
    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("imagery"));
    G_add_keyword(_("evapotranspiration"));
    module->description =
	_("Computes evapotranspiration calculation "
	  "Priestley and Taylor formulation, 1972.");
    
    /* Define different options */
    input_RNET = G_define_standard_option(G_OPT_R_INPUT);
    input_RNET->key = "net_radiation";
    input_RNET->description = _("Name of input net radiation raster map [W/m2]");

    input_G0 = G_define_standard_option(G_OPT_R_INPUT);
    input_G0->key = "soil_heatflux";
    input_G0->description = _("Name of input soil heat flux raster map [W/m2]");

    input_TEMPKA = G_define_standard_option(G_OPT_R_INPUT);
    input_TEMPKA->key = "air_temperature";
    input_TEMPKA->description = _("Name of input air temperature raster map [K]");

    input_PATM = G_define_standard_option(G_OPT_R_INPUT);
    input_PATM->key = "atmospheric_pressure";
    input_PATM->description = _("Name of input atmospheric pressure raster map [millibars]");

    input_PT = G_define_option();
    input_PT->key = "priestley_taylor_coeff";
    input_PT->type = TYPE_DOUBLE;
    input_PT->required = YES;
    input_PT->description = _("Priestley-Taylor coefficient");
    input_PT->answer = "1.26";

    output = G_define_standard_option(G_OPT_R_OUTPUT);
    output->description = _("Name of output evapotranspiration raster map [mm/d]");

    /* Define the different flags */
    zero = G_define_flag();
    zero->key = 'z';
    zero->description = _("Set negative ETa to zero");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    /* get entered parameters */
    RNET = input_RNET->answer;
    TEMPKA = input_TEMPKA->answer;
    PATM = input_PATM->answer;
    G0 = input_G0->answer;
    d_pt_alpha = atof(input_PT->answer);

    ETa = output->answer;

    /* open pointers to input raster files */
    infd_RNET = Rast_open_old(RNET, "");
    infd_TEMPKA = Rast_open_old(TEMPKA, "");
    infd_PATM = Rast_open_old(PATM, "");
    infd_G0 = Rast_open_old(G0, "");

    /* read headers of raster files */
    Rast_get_cellhd(RNET, "", &cellhd);
    Rast_get_cellhd(TEMPKA, "", &cellhd);
    Rast_get_cellhd(PATM, "", &cellhd);
    Rast_get_cellhd(G0, "", &cellhd);

    /* Allocate input buffer */
    inrast_RNET = Rast_allocate_d_buf();
    inrast_TEMPKA = Rast_allocate_d_buf();
    inrast_PATM = Rast_allocate_d_buf();
    inrast_G0 = Rast_allocate_d_buf();

    /* get rows and columns number of the current region */
    nrows = Rast_window_rows();
    ncols = Rast_window_cols();

    /* allocate output buffer */
    outrast = Rast_allocate_d_buf();

    /* open pointers to output raster files */
    outfd = Rast_open_new(ETa, DCELL_TYPE);

    /* start the loop through cells */
    for (row = 0; row < nrows; row++) {

	G_percent(row, nrows, 2);
	/* read input raster row into line buffer */
	Rast_get_d_row(infd_RNET, inrast_RNET, row);
	Rast_get_d_row(infd_TEMPKA, inrast_TEMPKA, row);
	Rast_get_d_row(infd_PATM, inrast_PATM, row);
	Rast_get_d_row(infd_G0, inrast_G0, row);

	for (col = 0; col < ncols; col++) {
	    /* read current cell from line buffer */
            d_rnet = ((DCELL *) inrast_RNET)[col];
            d_tempka = ((DCELL *) inrast_TEMPKA)[col];
            d_pt_patm = ((DCELL *) inrast_PATM)[col];
            d_g0 = ((DCELL *) inrast_G0)[col];

	    /*Delta_pt and Ghamma_pt */
	    d_pt_delta = pt_delta(d_tempka);
	    d_pt_ghamma = pt_ghamma(d_tempka, d_pt_patm);

	    /*Calculate ET */
	    d_daily_et =
		pt_daily_et(d_pt_alpha, d_pt_delta, d_pt_ghamma, d_rnet, d_g0,
			    d_tempka);
	    if (zero->answer && d_daily_et < 0)
		d_daily_et = 0.0;

	    /* write calculated ETP to output line buffer */
	    outrast[col] = d_daily_et;
	}

	/* write output line buffer to output raster file */
	Rast_put_d_row(outfd, outrast);
    }
    /* free buffers and close input maps */

    G_free(inrast_RNET);
    G_free(inrast_TEMPKA);
    G_free(inrast_PATM);
    G_free(inrast_G0);
    Rast_close(infd_RNET);
    Rast_close(infd_TEMPKA);
    Rast_close(infd_PATM);
    Rast_close(infd_G0);

    /* generate color table between -20 and 20 */
    Rast_make_rainbow_colors(&color, -20, 20);
    Rast_write_colors(ETa, G_mapset(), &color);

    Rast_short_history(ETa, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(ETa, &history);

    /* free buffers and close output map */
    G_free(outrast);
    Rast_close(outfd);

    return (EXIT_SUCCESS);
}
Exemple #25
0
int camera_angle(char *name)
{
    int row, col, nrows, ncols;
    double XC = group.XC;
    double YC = group.YC;
    double ZC = group.ZC;
    double c_angle, c_angle_min, c_alt, c_az, slope, aspect;
    double radians_to_degrees = 180.0 / M_PI;
    /* double degrees_to_radians = M_PI / 180.0; */
    DCELL e1, e2, e3, e4, e5, e6, e7, e8, e9;
    double factor, V, H, dx, dy, dz, key;
    double north, south, east, west, ns_med;
    FCELL *fbuf0, *fbuf1, *fbuf2, *tmpbuf, *outbuf;
    int elevfd, outfd;
    struct Cell_head cellhd;
    struct Colors colr;
    FCELL clr_min, clr_max;
    struct History hist;
    char *type;

    G_message(_("Calculating camera angle to local surface..."));
    
    select_target_env();
    
    /* align target window to elevation map, otherwise we get artefacts
     * like in r.slope.aspect -a */
     
    Rast_get_cellhd(elev_name, elev_mapset, &cellhd);

    Rast_align_window(&target_window, &cellhd);
    Rast_set_window(&target_window);
    
    elevfd = Rast_open_old(elev_name, elev_mapset);
    if (elevfd < 0) {
	G_fatal_error(_("Could not open elevation raster"));
	return 1;
    }

    nrows = target_window.rows;
    ncols = target_window.cols;
    
    outfd = Rast_open_new(name, FCELL_TYPE);
    fbuf0 = Rast_allocate_buf(FCELL_TYPE);
    fbuf1 = Rast_allocate_buf(FCELL_TYPE);
    fbuf2 = Rast_allocate_buf(FCELL_TYPE);
    outbuf = Rast_allocate_buf(FCELL_TYPE);
    
    /* give warning if location units are different from meters and zfactor=1 */
    factor = G_database_units_to_meters_factor();
    if (factor != 1.0)
	G_warning(_("Converting units to meters, factor=%.6f"), factor);

    G_begin_distance_calculations();
    north = Rast_row_to_northing(0.5, &target_window);
    ns_med = Rast_row_to_northing(1.5, &target_window);
    south = Rast_row_to_northing(2.5, &target_window);
    east = Rast_col_to_easting(2.5, &target_window);
    west = Rast_col_to_easting(0.5, &target_window);
    V = G_distance(east, north, east, south) * 4;
    H = G_distance(east, ns_med, west, ns_med) * 4;
    
    c_angle_min = 90;
    Rast_get_row(elevfd, fbuf1, 0, FCELL_TYPE);
    Rast_get_row(elevfd, fbuf2, 1, FCELL_TYPE);

    for (row = 0; row < nrows; row++) {
	G_percent(row, nrows, 2);
	
	Rast_set_null_value(outbuf, ncols, FCELL_TYPE);

	/* first and last row */
	if (row == 0 || row == nrows - 1) {
	    Rast_put_row(outfd, outbuf, FCELL_TYPE);
	    continue;
	}
	
	tmpbuf = fbuf0;
	fbuf0 = fbuf1;
	fbuf1 = fbuf2;
	fbuf2 = tmpbuf;
	
	Rast_get_row(elevfd, fbuf2, row + 1, FCELL_TYPE);

	north = Rast_row_to_northing(row + 0.5, &target_window);

	for (col = 1; col < ncols - 1; col++) {
	    
	    e1 = fbuf0[col - 1];
	    if (Rast_is_d_null_value(&e1))
		continue;
	    e2 = fbuf0[col];
	    if (Rast_is_d_null_value(&e2))
		continue;
	    e3 = fbuf0[col + 1];
	    if (Rast_is_d_null_value(&e3))
		continue;
	    e4 = fbuf1[col - 1];
	    if (Rast_is_d_null_value(&e4))
		continue;
	    e5 = fbuf1[col];
	    if (Rast_is_d_null_value(&e5))
		continue;
	    e6 = fbuf1[col + 1];
	    if (Rast_is_d_null_value(&e6))
		continue;
	    e7 = fbuf2[col - 1];
	    if (Rast_is_d_null_value(&e7))
		continue;
	    e8 = fbuf2[col];
	    if (Rast_is_d_null_value(&e8))
		continue;
	    e9 = fbuf2[col + 1];
	    if (Rast_is_d_null_value(&e9))
		continue;
	    
	    dx = ((e1 + e4 + e4 + e7) - (e3 + e6 + e6 + e9)) / H;
	    dy = ((e7 + e8 + e8 + e9) - (e1 + e2 + e2 + e3)) / V;
	    
	    /* compute topographic parameters */
	    key = dx * dx + dy * dy;
	    /* slope in radians */
	    slope = atan(sqrt(key));

	    /* aspect in radians */
	    if (key == 0.)
		aspect = 0.;
	    else if (dx == 0) {
		if (dy > 0)
		    aspect = M_PI / 2;
		else
		    aspect = 1.5 * M_PI;
	    }
	    else {
		aspect = atan2(dy, dx);
		if (aspect <= 0.)
		    aspect = 2 * M_PI + aspect;
	    }
	    
	    /* camera altitude angle in radians */
	    east = Rast_col_to_easting(col + 0.5, &target_window);
	    dx = east - XC;
	    dy = north - YC;
	    dz = ZC - e5;
	    c_alt = atan(sqrt(dx * dx + dy * dy) / dz);

	    /* camera azimuth angle in radians */
	    c_az = atan(dy / dx);
	    if (east < XC && north != YC)
		c_az += M_PI;
	    else if (north < YC && east > XC)
		c_az += 2 * M_PI;
		
	    /* camera angle to real ground */
	    /* orthogonal to ground: 90 degrees */
	    /* parallel to ground: 0 degrees */
	    c_angle = asin(cos(c_alt) * cos(slope) - sin(c_alt) * sin(slope) * cos(c_az - aspect));
	    
	    outbuf[col] = c_angle * radians_to_degrees;
	    if (c_angle_min > outbuf[col])
		c_angle_min = outbuf[col];
	}
	Rast_put_row(outfd, outbuf, FCELL_TYPE);
    }
    G_percent(row, nrows, 2);

    Rast_close(elevfd);
    Rast_close(outfd);
    G_free(fbuf0);
    G_free(fbuf1);
    G_free(fbuf2);
    G_free(outbuf);

    type = "raster";
    Rast_short_history(name, type, &hist);
    Rast_command_history(&hist);
    Rast_write_history(name, &hist);
    
    Rast_init_colors(&colr);
    if (c_angle_min < 0) {
	clr_min = (FCELL)((int)(c_angle_min / 10 - 1)) * 10;
	clr_max = 0;
	Rast_add_f_color_rule(&clr_min, 0, 0, 0, &clr_max, 0,
				  0, 0, &colr);
    }
    clr_min = 0;
    clr_max = 10;
    Rast_add_f_color_rule(&clr_min, 0, 0, 0, &clr_max, 255,
			      0, 0, &colr);
    clr_min = 10;
    clr_max = 40;
    Rast_add_f_color_rule(&clr_min, 255, 0, 0, &clr_max, 255,
			      255, 0, &colr);
    clr_min = 40;
    clr_max = 90;
    Rast_add_f_color_rule(&clr_min, 255, 255, 0, &clr_max, 0,
			      255, 0, &colr);

    Rast_write_colors(name, G_mapset(), &colr);

    select_current_env();

    return 1;
}
Exemple #26
0
int main(int argc, char *argv[])
{
    int out_fd, base_raster;
    char *infile, *outmap;
    int percent;
    double zrange_min, zrange_max, d_tmp;
    double irange_min, irange_max;
    unsigned long estimated_lines;

    RASTER_MAP_TYPE rtype, base_raster_data_type;
    struct History history;
    char title[64];
    SEGMENT base_segment;
    struct PointBinning point_binning;
    void *base_array;
    void *raster_row;
    struct Cell_head region;
    struct Cell_head input_region;
    int rows, last_rows, row0, cols;		/* scan box size */
    int row;		/* counters */

    int pass, npasses;
    unsigned long line, line_total;
    unsigned int counter;
    unsigned long n_invalid;
    char buff[BUFFSIZE];
    double x, y, z;
    double intensity;
    int arr_row, arr_col;
    unsigned long count, count_total;
    int point_class;

    double zscale = 1.0;
    double iscale = 1.0;
    double res = 0.0;

    struct BinIndex bin_index_nodes;
    bin_index_nodes.num_nodes = 0;
    bin_index_nodes.max_nodes = 0;
    bin_index_nodes.nodes = 0;

    struct GModule *module;
    struct Option *input_opt, *output_opt, *percent_opt, *type_opt, *filter_opt, *class_opt;
    struct Option *method_opt, *base_raster_opt;
    struct Option *zrange_opt, *zscale_opt;
    struct Option *irange_opt, *iscale_opt;
    struct Option *trim_opt, *pth_opt, *res_opt;
    struct Option *file_list_opt;
    struct Flag *print_flag, *scan_flag, *shell_style, *over_flag, *extents_flag;
    struct Flag *intens_flag, *intens_import_flag;
    struct Flag *set_region_flag;
    struct Flag *base_rast_res_flag;
    struct Flag *only_valid_flag;

    /* LAS */
    LASReaderH LAS_reader;
    LASHeaderH LAS_header;
    LASSRSH LAS_srs;
    LASPointH LAS_point;
    int return_filter;

    const char *projstr;
    struct Cell_head cellhd, loc_wind;

    unsigned int n_filtered;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("import"));
    G_add_keyword(_("LIDAR"));
    G_add_keyword(_("statistics"));
    G_add_keyword(_("conversion"));
    G_add_keyword(_("aggregation"));
    G_add_keyword(_("binning"));
    module->description =
	_("Creates a raster map from LAS LiDAR points using univariate statistics.");

    input_opt = G_define_standard_option(G_OPT_F_BIN_INPUT);
    input_opt->required = NO;
    input_opt->label = _("LAS input file");
    input_opt->description = _("LiDAR input files in LAS format (*.las or *.laz)");
    input_opt->guisection = _("Input");

    output_opt = G_define_standard_option(G_OPT_R_OUTPUT);
    output_opt->required = NO;
    output_opt->guisection = _("Output");

    file_list_opt = G_define_standard_option(G_OPT_F_INPUT);
    file_list_opt->key = "file";
    file_list_opt->label = _("File containing names of LAS input files");
    file_list_opt->description = _("LiDAR input files in LAS format (*.las or *.laz)");
    file_list_opt->required = NO;
    file_list_opt->guisection = _("Input");

    method_opt = G_define_option();
    method_opt->key = "method";
    method_opt->type = TYPE_STRING;
    method_opt->required = NO;
    method_opt->description = _("Statistic to use for raster values");
    method_opt->options =
	"n,min,max,range,sum,mean,stddev,variance,coeff_var,median,percentile,skewness,trimmean";
    method_opt->answer = "mean";
    method_opt->guisection = _("Statistic");
    G_asprintf((char **)&(method_opt->descriptions),
               "n;%s;"
               "min;%s;"
               "max;%s;"
               "range;%s;"
               "sum;%s;"
               "mean;%s;"
               "stddev;%s;"
               "variance;%s;"
               "coeff_var;%s;"
               "median;%s;"
               "percentile;%s;"
               "skewness;%s;"
               "trimmean;%s",
               _("Number of points in cell"),
               _("Minimum value of point values in cell"),
               _("Maximum value of point values in cell"),
               _("Range of point values in cell"),
               _("Sum of point values in cell"),
               _("Mean (average) value of point values in cell"),
               _("Standard deviation of point values in cell"),
               _("Variance of point values in cell"),
               _("Coefficient of variance of point values in cell"),
               _("Median value of point values in cell"),
               _("pth (nth) percentile of point values in cell"),
               _("Skewness of point values in cell"),
               _("Trimmed mean of point values in cell"));

    type_opt = G_define_standard_option(G_OPT_R_TYPE);
    type_opt->required = NO;
    type_opt->answer = "FCELL";

    base_raster_opt = G_define_standard_option(G_OPT_R_INPUT);
    base_raster_opt->key = "base_raster";
    base_raster_opt->required = NO;
    base_raster_opt->label =
        _("Subtract raster values from the Z coordinates");
    base_raster_opt->description =
        _("The scale for Z is applied beforehand, the range filter for"
          " Z afterwards");
    base_raster_opt->guisection = _("Transform");

    zrange_opt = G_define_option();
    zrange_opt->key = "zrange";
    zrange_opt->type = TYPE_DOUBLE;
    zrange_opt->required = NO;
    zrange_opt->key_desc = "min,max";
    zrange_opt->description = _("Filter range for Z data (min,max)");
    zrange_opt->guisection = _("Selection");

    zscale_opt = G_define_option();
    zscale_opt->key = "zscale";
    zscale_opt->type = TYPE_DOUBLE;
    zscale_opt->required = NO;
    zscale_opt->answer = "1.0";
    zscale_opt->description = _("Scale to apply to Z data");
    zscale_opt->guisection = _("Transform");

    irange_opt = G_define_option();
    irange_opt->key = "intensity_range";
    irange_opt->type = TYPE_DOUBLE;
    irange_opt->required = NO;
    irange_opt->key_desc = "min,max";
    irange_opt->description = _("Filter range for intensity values (min,max)");
    irange_opt->guisection = _("Selection");

    iscale_opt = G_define_option();
    iscale_opt->key = "intensity_scale";
    iscale_opt->type = TYPE_DOUBLE;
    iscale_opt->required = NO;
    iscale_opt->answer = "1.0";
    iscale_opt->description = _("Scale to apply to intensity values");
    iscale_opt->guisection = _("Transform");

    percent_opt = G_define_option();
    percent_opt->key = "percent";
    percent_opt->type = TYPE_INTEGER;
    percent_opt->required = NO;
    percent_opt->answer = "100";
    percent_opt->options = "1-100";
    percent_opt->description = _("Percent of map to keep in memory");

    /* I would prefer to call the following "percentile", but that has too
     * much namespace overlap with the "percent" option above */
    pth_opt = G_define_option();
    pth_opt->key = "pth";
    pth_opt->type = TYPE_INTEGER;
    pth_opt->required = NO;
    pth_opt->options = "1-100";
    pth_opt->description = _("pth percentile of the values");
    pth_opt->guisection = _("Statistic");

    trim_opt = G_define_option();
    trim_opt->key = "trim";
    trim_opt->type = TYPE_DOUBLE;
    trim_opt->required = NO;
    trim_opt->options = "0-50";
    trim_opt->label = _("Discard given percentage of the smallest and largest values");
    trim_opt->description =
	_("Discard <trim> percent of the smallest and <trim> percent of the largest observations");
    trim_opt->guisection = _("Statistic");

    res_opt = G_define_option();
    res_opt->key = "resolution";
    res_opt->type = TYPE_DOUBLE;
    res_opt->required = NO;
    res_opt->description =
	_("Output raster resolution");
    res_opt->guisection = _("Output");

    filter_opt = G_define_option();
    filter_opt->key = "return_filter";
    filter_opt->type = TYPE_STRING;
    filter_opt->required = NO;
    filter_opt->label = _("Only import points of selected return type");
    filter_opt->description = _("If not specified, all points are imported");
    filter_opt->options = "first,last,mid";
    filter_opt->guisection = _("Selection");

    class_opt = G_define_option();
    class_opt->key = "class_filter";
    class_opt->type = TYPE_INTEGER;
    class_opt->multiple = YES;
    class_opt->required = NO;
    class_opt->label = _("Only import points of selected class(es)");
    class_opt->description = _("Input is comma separated integers. "
                               "If not specified, all points are imported.");
    class_opt->guisection = _("Selection");

    print_flag = G_define_flag();
    print_flag->key = 'p';
    print_flag->description =
	_("Print LAS file info and exit");

    extents_flag = G_define_flag();
    extents_flag->key = 'e';
    extents_flag->label =
        _("Use the extent of the input for the raster extent");
    extents_flag->description =
        _("Set internally computational region extents based on the"
          " point cloud");
    extents_flag->guisection = _("Output");

    set_region_flag = G_define_flag();
    set_region_flag->key = 'n';
    set_region_flag->label =
        _("Set computation region to match the new raster map");
    set_region_flag->description =
        _("Set computation region to match the 2D extent and resolution"
          " of the newly created new raster map");
    set_region_flag->guisection = _("Output");

    over_flag = G_define_flag();
    over_flag->key = 'o';
    over_flag->label =
	_("Override projection check (use current location's projection)");
    over_flag->description =
	_("Assume that the dataset has same projection as the current location");

    scan_flag = G_define_flag();
    scan_flag->key = 's';
    scan_flag->description = _("Scan data file for extent then exit");

    shell_style = G_define_flag();
    shell_style->key = 'g';
    shell_style->description =
	_("In scan mode, print using shell script style");

    intens_flag = G_define_flag();
    intens_flag->key = 'i';
    intens_flag->label =
        _("Use intensity values rather than Z values");
    intens_flag->description =
        _("Uses intensity values everywhere as if they would be Z"
          " coordinates");

    intens_import_flag = G_define_flag();
    intens_import_flag->key = 'j';
    intens_import_flag->description =
        _("Use Z values for filtering, but intensity values for statistics");

    base_rast_res_flag = G_define_flag();
    base_rast_res_flag->key = 'd';
    base_rast_res_flag->label =
        _("Use base raster resolution instead of computational region");
    base_rast_res_flag->description =
        _("For getting values from base raster, use its actual"
          " resolution instead of computational region resolution");

    only_valid_flag = G_define_flag();
    only_valid_flag->key = 'v';
    only_valid_flag->label = _("Use only valid points");
    only_valid_flag->description =
        _("Points invalid according to APSRS LAS specification will be"
          " filtered out");
    only_valid_flag->guisection = _("Selection");

    G_option_required(input_opt, file_list_opt, NULL);
    G_option_exclusive(input_opt, file_list_opt, NULL);
    G_option_required(output_opt, print_flag, scan_flag, shell_style, NULL);
    G_option_exclusive(intens_flag, intens_import_flag, NULL);
    G_option_requires(base_rast_res_flag, base_raster_opt, NULL);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    int only_valid = FALSE;
    n_invalid = 0;
    if (only_valid_flag->answer)
        only_valid = TRUE;

    /* we could use rules but this gives more info and allows continuing */
    if (set_region_flag->answer && !(extents_flag->answer || res_opt->answer)) {
        G_warning(_("Flag %c makes sense only with %s option or -%c flag"),
                  set_region_flag->key, res_opt->key, extents_flag->key);
        /* avoid the call later on */
        set_region_flag->answer = '\0';
    }

    struct StringList infiles;

    if (file_list_opt->answer) {
        if (access(file_list_opt->answer, F_OK) != 0)
            G_fatal_error(_("File <%s> does not exist"), file_list_opt->answer);
        string_list_from_file(&infiles, file_list_opt->answer);
    }
    else {
        string_list_from_one_item(&infiles, input_opt->answer);
    }

    /* parse input values */
    outmap = output_opt->answer;

    if (shell_style->answer && !scan_flag->answer) {
	scan_flag->answer = 1; /* pointer not int, so set = shell_style->answer ? */
    }

    /* check zrange and extent relation */
    if (scan_flag->answer || extents_flag->answer) {
        if (zrange_opt->answer)
            G_warning(_("zrange will not be taken into account during scan"));
    }

    Rast_get_window(&region);
    /* G_get_window seems to be unreliable if the location has been changed */
    G_get_set_window(&loc_wind);        /* TODO: v.in.lidar uses G_get_default_window() */

    estimated_lines = 0;
    int i;
    for (i = 0; i < infiles.num_items; i++) {
        infile = infiles.items[i];
        /* don't if file not found */
        if (access(infile, F_OK) != 0)
            G_fatal_error(_("Input file <%s> does not exist"), infile);
        /* Open LAS file*/
        LAS_reader = LASReader_Create(infile);
        if (LAS_reader == NULL)
            G_fatal_error(_("Unable to open file <%s> as a LiDAR point cloud"),
                          infile);
        LAS_header = LASReader_GetHeader(LAS_reader);
        if  (LAS_header == NULL) {
            G_fatal_error(_("Unable to read LAS header of <%s>"), infile);
        }

        LAS_srs = LASHeader_GetSRS(LAS_header);

        /* print info or check projection if we are actually importing */
        if (print_flag->answer) {
            /* print filename when there is more than one file */
            if (infiles.num_items > 1)
                fprintf(stdout, "File: %s\n", infile);
            /* Print LAS header */
            print_lasinfo(LAS_header, LAS_srs);
        }
        else {
            /* report that we are checking more files */
            if (i == 1)
                G_message(_("First file's projection checked,"
                            " checking projection of the other files..."));
            /* Fetch input map projection in GRASS form. */
            projstr = LASSRS_GetWKT_CompoundOK(LAS_srs);
            /* we are printing the non-warning messages only for first file */
            projection_check_wkt(cellhd, loc_wind, projstr, over_flag->answer,
                                 shell_style->answer || i);
            /* if there is a problem in some other file, first OK message
             * is printed but than a warning, this is not ideal but hopefully
             * not so confusing when importing multiple files */
        }
        if (scan_flag->answer || extents_flag->answer) {
            /* we assign to the first one (i==0) but update for the rest */
            scan_bounds(LAS_reader, shell_style->answer, extents_flag->answer, i,
                        zscale, &region);
        }
        /* number of estimated point across all files */
        /* TODO: this should be ull which won't work with percent report */
        estimated_lines += LASHeader_GetPointRecordsCount(LAS_header);
        /* We are closing all again and we will be opening them later,
         * so we don't have to worry about limit for open files. */
        LASSRS_Destroy(LAS_srs);
        LASHeader_Destroy(LAS_header);
        LASReader_Destroy(LAS_reader);
    }
    /* if we are not importing, end */
    if (print_flag->answer || scan_flag->answer)
        exit(EXIT_SUCCESS);

    return_filter = LAS_ALL;
    if (filter_opt->answer) {
	if (strcmp(filter_opt->answer, "first") == 0)
	    return_filter = LAS_FIRST;
	else if (strcmp(filter_opt->answer, "last") == 0)
	    return_filter = LAS_LAST;
	else if (strcmp(filter_opt->answer, "mid") == 0)
	    return_filter = LAS_MID;
	else
	    G_fatal_error(_("Unknown filter option <%s>"), filter_opt->answer);
    }
    struct ReturnFilter return_filter_struct;
    return_filter_struct.filter = return_filter;
    struct ClassFilter class_filter;
    class_filter_create_from_strings(&class_filter, class_opt->answers);

    percent = atoi(percent_opt->answer);
    /* TODO: we already used zscale */
    /* TODO: we don't report intensity range */
    if (zscale_opt->answer)
        zscale = atof(zscale_opt->answer);
    if (iscale_opt->answer)
        iscale = atof(iscale_opt->answer);

    /* parse zrange */
    if (zrange_opt->answer != NULL) {
	if (zrange_opt->answers[0] == NULL)
	    G_fatal_error(_("Invalid zrange"));

	sscanf(zrange_opt->answers[0], "%lf", &zrange_min);
	sscanf(zrange_opt->answers[1], "%lf", &zrange_max);

	if (zrange_min > zrange_max) {
	    d_tmp = zrange_max;
	    zrange_max = zrange_min;
	    zrange_min = d_tmp;
	}
    }
    /* parse irange */
    if (irange_opt->answer != NULL) {
        if (irange_opt->answers[0] == NULL)
            G_fatal_error(_("Invalid %s"), irange_opt->key);

        sscanf(irange_opt->answers[0], "%lf", &irange_min);
        sscanf(irange_opt->answers[1], "%lf", &irange_max);

        if (irange_min > irange_max) {
            d_tmp = irange_max;
            irange_max = irange_min;
            irange_min = d_tmp;
        }
    }

    point_binning_set(&point_binning, method_opt->answer, pth_opt->answer,
                      trim_opt->answer, FALSE);

    base_array = NULL;

    if (strcmp("CELL", type_opt->answer) == 0)
	rtype = CELL_TYPE;
    else if (strcmp("DCELL", type_opt->answer) == 0)
	rtype = DCELL_TYPE;
    else
	rtype = FCELL_TYPE;

    if (point_binning.method == METHOD_N)
	rtype = CELL_TYPE;

    if (res_opt->answer) {
	/* align to resolution */
	res = atof(res_opt->answer);

	if (!G_scan_resolution(res_opt->answer, &res, region.proj))
	    G_fatal_error(_("Invalid input <%s=%s>"), res_opt->key, res_opt->answer);

	if (res <= 0)
	    G_fatal_error(_("Option '%s' must be > 0.0"), res_opt->key);
	
	region.ns_res = region.ew_res = res;

	region.north = ceil(region.north / res) * res;
	region.south = floor(region.south / res) * res;
	region.east = ceil(region.east / res) * res;
	region.west = floor(region.west / res) * res;

	G_adjust_Cell_head(&region, 0, 0);
    }
    else if (extents_flag->answer) {
	/* align to current region */
	Rast_align_window(&region, &loc_wind);
    }
    Rast_set_output_window(&region);

    rows = last_rows = region.rows;
    npasses = 1;
    if (percent < 100) {
	rows = (int)(region.rows * (percent / 100.0));
	npasses = region.rows / rows;
	last_rows = region.rows - npasses * rows;
	if (last_rows)
	    npasses++;
	else
	    last_rows = rows;

    }
    cols = region.cols;

    G_debug(2, "region.n=%f  region.s=%f  region.ns_res=%f", region.north,
	    region.south, region.ns_res);
    G_debug(2, "region.rows=%d  [box_rows=%d]  region.cols=%d", region.rows,
	    rows, region.cols);

    /* using row-based chunks (used for output) when input and output
     * region matches and using segment library when they don't */
    int use_segment = 0;
    int use_base_raster_res = 0;
    /* TODO: see if the input region extent is smaller than the raster
     * if yes, the we need to load the whole base raster if the -e
     * flag was defined (alternatively clip the regions) */
    if (base_rast_res_flag->answer)
        use_base_raster_res = 1;
    if (base_raster_opt->answer && (res_opt->answer || use_base_raster_res
                                    || extents_flag->answer))
        use_segment = 1;
    if (base_raster_opt->answer && !use_segment) {
        /* TODO: do we need to test existence first? mapset? */
        base_raster = Rast_open_old(base_raster_opt->answer, "");
        base_raster_data_type = Rast_get_map_type(base_raster);
        base_array = G_calloc((size_t)rows * (cols + 1), Rast_cell_size(base_raster_data_type));
    }
    if (base_raster_opt->answer && use_segment) {
        if (use_base_raster_res) {
            /* read raster actual extent and resolution */
            Rast_get_cellhd(base_raster_opt->answer, "", &input_region);
            /* TODO: make it only as small as the output is or points are */
            Rast_set_input_window(&input_region);  /* we have split window */
        } else {
            Rast_get_input_window(&input_region);
        }
        rast_segment_open(&base_segment, base_raster_opt->answer, &base_raster_data_type);
    }

    if (!scan_flag->answer) {
        if (!check_rows_cols_fit_to_size_t(rows, cols))
		G_fatal_error(_("Unable to process the hole map at once. "
                        "Please set the '%s' option to some value lower than 100."),
				percent_opt->key);
        point_binning_memory_test(&point_binning, rows, cols, rtype);
	}

    /* open output map */
    out_fd = Rast_open_new(outmap, rtype);

    /* allocate memory for a single row of output data */
    raster_row = Rast_allocate_output_buf(rtype);

    G_message(_("Reading data ..."));

    count_total = line_total = 0;

    /* main binning loop(s) */
    for (pass = 1; pass <= npasses; pass++) {

	if (npasses > 1)
	    G_message(_("Pass #%d (of %d) ..."), pass, npasses);

	/* figure out segmentation */
	row0 = (pass - 1) * rows;
	if (pass == npasses) {
	    rows = last_rows;
	}

        if (base_array) {
            G_debug(2, "filling base raster array");
            for (row = 0; row < rows; row++) {
                Rast_get_row(base_raster, base_array + ((size_t) row * cols * Rast_cell_size(base_raster_data_type)), row, base_raster_data_type);
            }
        }

	G_debug(2, "pass=%d/%d  rows=%d", pass, npasses, rows);

    point_binning_allocate(&point_binning, rows, cols, rtype);

	line = 0;
	count = 0;
	counter = 0;
	G_percent_reset();

        /* loop of input files */
        for (i = 0; i < infiles.num_items; i++) {
            infile = infiles.items[i];
            /* we already know file is there, so just do basic checks */
            LAS_reader = LASReader_Create(infile);
            if (LAS_reader == NULL)
                G_fatal_error(_("Unable to open file <%s>"), infile);

            while ((LAS_point = LASReader_GetNextPoint(LAS_reader)) != NULL) {
                line++;
                counter++;

                if (counter == 100000) {        /* speed */
                    if (line < estimated_lines)
                        G_percent(line, estimated_lines, 3);
                    counter = 0;
                }

                /* We always count them and report because behavior
                 * changed in between 7.0 and 7.2 from undefined (but skipping
                 * invalid points) to filtering them out only when requested. */
                if (!LASPoint_IsValid(LAS_point)) {
                    n_invalid++;
                    if (only_valid)
                        continue;
                }

                x = LASPoint_GetX(LAS_point);
                y = LASPoint_GetY(LAS_point);
                if (intens_flag->answer)
                    /* use intensity as z here to allow all filters (and
                     * modifications) below to be applied for intensity */
                    z = LASPoint_GetIntensity(LAS_point);
                else
                    z = LASPoint_GetZ(LAS_point);

                int return_n = LASPoint_GetReturnNumber(LAS_point);
                int n_returns = LASPoint_GetNumberOfReturns(LAS_point);
                if (return_filter_is_out(&return_filter_struct, return_n, n_returns)) {
                    n_filtered++;
                    continue;
                }
                point_class = (int) LASPoint_GetClassification(LAS_point);
                if (class_filter_is_out(&class_filter, point_class))
                    continue;

                if (y <= region.south || y > region.north) {
                    continue;
                }
                if (x < region.west || x >= region.east) {
                    continue;
                }

                /* find the bin in the current array box */
		arr_row = (int)((region.north - y) / region.ns_res) - row0;
		if (arr_row < 0 || arr_row >= rows)
		    continue;
                arr_col = (int)((x - region.west) / region.ew_res);

                z = z * zscale;

                if (base_array) {
                    double base_z;
                    if (row_array_get_value_row_col(base_array, arr_row, arr_col,
                                                    cols, base_raster_data_type,
                                                    &base_z))
                        z -= base_z;
                    else
                        continue;
                }
                else if (use_segment) {
                    double base_z;
                    if (rast_segment_get_value_xy(&base_segment, &input_region,
                                                  base_raster_data_type, x, y,
                                                  &base_z))
                        z -= base_z;
                    else
                        continue;
                }

                if (zrange_opt->answer) {
                    if (z < zrange_min || z > zrange_max) {
                        continue;
                    }
                }

                if (intens_import_flag->answer || irange_opt->answer) {
                    intensity = LASPoint_GetIntensity(LAS_point);
                    intensity *= iscale;
                    if (irange_opt->answer) {
                        if (intensity < irange_min || intensity > irange_max) {
                            continue;
                        }
                    }
                    /* use intensity for statistics */
                    if (intens_import_flag->answer)
                        z = intensity;
                }

                count++;
                /*          G_debug(5, "x: %f, y: %f, z: %f", x, y, z); */

                update_value(&point_binning, &bin_index_nodes, cols,
                             arr_row, arr_col, rtype, x, y, z);
            }                        /* while !EOF of one input file */
            /* close input LAS file */
            LASReader_Destroy(LAS_reader);
        }           /* end of loop for all input files files */

	G_percent(1, 1, 1);	/* flush */
	G_debug(2, "pass %d finished, %lu coordinates in box", pass, count);
	count_total += count;
	line_total += line;

	/* calc stats and output */
	G_message(_("Writing to map ..."));
	for (row = 0; row < rows; row++) {
        /* potentially vector writing can be independent on the binning */
        write_values(&point_binning, &bin_index_nodes, raster_row, row,
            cols, rtype, NULL);
	    /* write out line of raster data */
        Rast_put_row(out_fd, raster_row, rtype);
	}

	/* free memory */
	point_binning_free(&point_binning, &bin_index_nodes);
    }				/* passes loop */
    if (base_array)
        Rast_close(base_raster);
    if (use_segment)
        Segment_close(&base_segment);

    G_percent(1, 1, 1);		/* flush */
    G_free(raster_row);

    /* close raster file & write history */
    Rast_close(out_fd);

    sprintf(title, "Raw X,Y,Z data binned into a raster grid by cell %s",
            method_opt->answer);
    Rast_put_cell_title(outmap, title);

    Rast_short_history(outmap, "raster", &history);
    Rast_command_history(&history);
    Rast_set_history(&history, HIST_DATSRC_1, infile);
    Rast_write_history(outmap, &history);

    /* set computation region to the new raster map */
    /* TODO: should be in the done message */
    if (set_region_flag->answer)
        G_put_window(&region);

    if (n_invalid && only_valid)
        G_message(_("%lu input points were invalid and filtered out"),
                  n_invalid);
    if (n_invalid && !only_valid)
        G_message(_("%lu input points were invalid, use -%c flag to filter"
                    " them out"), n_invalid, only_valid_flag->key);
    if (infiles.num_items > 1) {
        sprintf(buff, _("Raster map <%s> created."
                        " %lu points from %d files found in region."),
                outmap, count_total, infiles.num_items);
    }
    else {
        sprintf(buff, _("Raster map <%s> created."
                        " %lu points found in region."),
                outmap, count_total);
    }

    G_done_msg("%s", buff);
    G_debug(1, "Processed %lu points.", line_total);

    string_list_free(&infiles);

    exit(EXIT_SUCCESS);

}
Exemple #27
0
int main(int argc, char *argv[])
{
    struct Cell_head cellhd;	/*region+header info */
    char *mapset;		/*mapset name */
    int nrows, ncols;
    int row, col;
    struct GModule *module;
    struct Option *input, *input1, *input2, *input3, *input4, *input5, *output;
    struct History history;	/*metadata */
    struct Colors colors;	/*Color rules */

    /************************************/
    char *name, *name1, *name2;	/*input raster name */
    char *result;		/*output raster name */

    /*File Descriptors */
    int nfiles, nfiles1, nfiles2;
    int infd[MAXFILES], infd1[MAXFILES], infd2[MAXFILES];
    int outfd;

    /****************************************/
    /* Pointers for file names              */
    char **names;
    char **ptr;
    char **names1;
    char **ptr1;
    char **names2;
    char **ptr2;

    /****************************************/
    int DOYbeforeETa[MAXFILES], DOYafterETa[MAXFILES];
    int bfr, aft;

    /****************************************/
    int ok;
    int i = 0, j = 0;
    double etodoy;		/*minimum ETo DOY */
    double startperiod, endperiod;  /*first and last days (DOYs) of the period studied */
    void *inrast[MAXFILES], *inrast1[MAXFILES], *inrast2[MAXFILES];
    DCELL *outrast;
    CELL val1, val2;
    
    RASTER_MAP_TYPE in_data_type[MAXFILES];	/* ETa */
    RASTER_MAP_TYPE in_data_type1[MAXFILES];	/* DOY of ETa */
    RASTER_MAP_TYPE in_data_type2[MAXFILES];	/* ETo */
    RASTER_MAP_TYPE out_data_type = DCELL_TYPE;

    /************************************/
    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("imagery"));
    G_add_keyword(_("evapotranspiration"));
    module->description =_("Computes temporal integration of satellite "
			   "ET actual (ETa) following the daily ET reference "
			   "(ETo) from meteorological station(s).");
    
    /* Define the different options */
    input = G_define_standard_option(G_OPT_R_INPUTS);
    input->key = "eta";
    input->description = _("Names of satellite ETa raster maps [mm/d or cm/d]");

    input1 = G_define_standard_option(G_OPT_R_INPUTS);
    input1->key = "eta_doy";
    input1->description =
	_("Names of satellite ETa Day of Year (DOY) raster maps [0-400] [-]");

    input2 = G_define_standard_option(G_OPT_R_INPUTS);
    input2->key = "eto";
    input2->description =
	_("Names of meteorological station ETo raster maps [0-400] [mm/d or cm/d]");

    input3 = G_define_option();
    input3->key = "eto_doy_min";
    input3->type = TYPE_DOUBLE;
    input3->required = YES;
    input3->description = _("Value of DOY for ETo first day");
    
    input4 = G_define_option();
    input4->key = "start_period";
    input4->type = TYPE_DOUBLE;
    input4->required = YES;
    input4->description = _("Value of DOY for the first day of the period studied");

    input5 = G_define_option();
    input5->key = "end_period";
    input5->type = TYPE_DOUBLE;
    input5->required = YES;
    input5->description = _("Value of DOY for the last day of the period studied");

    output = G_define_standard_option(G_OPT_R_OUTPUT);
    
    /* init nfiles */
    nfiles = 1;
    nfiles1 = 1;
    nfiles2 = 1;

    /********************/

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    ok = 1;
    names = input->answers;
    ptr = input->answers;
    names1 = input1->answers;
    ptr1 = input1->answers;
    names2 = input2->answers;
    ptr2 = input2->answers;
    etodoy = atof(input3->answer);
    startperiod = atof(input4->answer);
    endperiod = atof(input5->answer);
    result = output->answer;

    /****************************************/
    if (endperiod<startperiod) {
	G_fatal_error(_("The DOY for end_period can not be smaller than start_period"));
	ok = 0;
    }
    if (etodoy>startperiod) {
	G_fatal_error(_("The DOY for start_period can not be smaller than eto_doy_min"));
	ok = 0;
    }
    for (; *ptr != NULL; ptr++) {
	if (nfiles > MAXFILES)
	    G_fatal_error(_("Too many ETa files. Only %d allowed."),
			  MAXFILES);
	name = *ptr;
	/* Allocate input buffer */
	infd[nfiles] = Rast_open_old(name, "");
	Rast_get_cellhd(name, "", &cellhd);
	inrast[nfiles] = Rast_allocate_d_buf();
	nfiles++;
    }
    nfiles--;
    if (nfiles <= 1)
	G_fatal_error(_("The min specified input map is two"));
	
	/****************************************/
    for (; *ptr1 != NULL; ptr1++) {
	if (nfiles1 > MAXFILES)
	    G_fatal_error(_("Too many ETa_doy files. Only %d allowed."),
			  MAXFILES);
	name1 = *ptr1;
	/* Allocate input buffer */
	infd1[nfiles1] = Rast_open_old(name1, "");
	Rast_get_cellhd(name1, "", &cellhd);
	inrast1[nfiles1] = Rast_allocate_d_buf();
	nfiles1++;
    }
    nfiles1--;
    if (nfiles1 <= 1)
	G_fatal_error(_("The min specified input map is two"));


	/****************************************/
    if (nfiles != nfiles1)
	G_fatal_error(_("ETa and ETa_DOY file numbers are not equal!"));

	/****************************************/

    for (; *ptr2 != NULL; ptr2++) {
	if (nfiles > MAXFILES)
	    G_fatal_error(_("Too many ETo files. Only %d allowed."),
			  MAXFILES);
	name2 = *ptr2;
	/* Allocate input buffer */
	infd2[nfiles2] = Rast_open_old(name2, "");
	Rast_get_cellhd(name2, "", &cellhd);
	inrast2[nfiles2] = Rast_allocate_d_buf();
	nfiles2++;
    }
    nfiles2--;
    if (nfiles2 <= 1)
	G_fatal_error(_("The min specified input map is two"));

    /* Allocate output buffer, use input map data_type */
    nrows = Rast_window_rows();
    ncols = Rast_window_cols();
    outrast = Rast_allocate_d_buf();

    /* Create New raster files */
    outfd = Rast_open_new(result, 1);

    /*******************/
    /* Process pixels */
    double doy[MAXFILES];
    double sum[MAXFILES];

    for (row = 0; row < nrows; row++) 
    {
	DCELL d_out;
	DCELL d_ETrF[MAXFILES];
	DCELL d[MAXFILES];
	DCELL d1[MAXFILES];
	DCELL d2[MAXFILES];
	G_percent(row, nrows, 2);

	/* read input map */
	for (i = 1; i <= nfiles; i++) 
	    Rast_get_d_row(infd[i], inrast[i], row);
	
	for (i = 1; i <= nfiles1; i++) 
	    Rast_get_d_row(infd1[i], inrast1[i], row);

	for (i = 1; i <= nfiles2; i++) 
	    Rast_get_d_row (infd2[i], inrast2[i], row);

	/*process the data */
	for (col = 0; col < ncols; col++) 
        {
            int	d1_null=0;
            int	d_null=0;
	    for (i = 1; i <= nfiles; i++) 
            {
		    if (Rast_is_d_null_value(&((DCELL *) inrast[i])[col]))
		    	d_null=1;
		    else
	                d[i] = ((DCELL *) inrast[i])[col];
	    }
	    for (i = 1; i <= nfiles1; i++) 
            {
		    if (Rast_is_d_null_value(&((DCELL *) inrast1[i])[col]))
			d1_null=1;
		    else
	                d1[i] = ((DCELL *) inrast1[i])[col];
	    }

	    for (i = 1; i <= nfiles2; i++) 
		    d2[i] = ((DCELL *) inrast2[i])[col];

	    /* Find out the DOY of the eto image    */
	    for (i = 1; i <= nfiles1; i++) 
            {
		if ( d_null==1 || d1_null==1 )
			Rast_set_d_null_value(&outrast[col],1);	
		else
		{
			doy[i] = d1[i] - etodoy+1;
			if (Rast_is_d_null_value(&d2[(int)doy[i]]) || d2[(int)doy[i]]==0 )
				Rast_set_d_null_value(&outrast[col],1);
			else
				d_ETrF[i] = d[i] / d2[(int)doy[i]];
		} 
	    }

	    for (i = 1; i <= nfiles1; i++) 
            {
		/* do nothing	*/
		if ( d_null==1 || d1_null==1)
                {
			/*G_message("  null value ");*/
                }
		else
		{
			DOYbeforeETa[i]=0; DOYafterETa[i]=0;
			if (i == 1)   
				DOYbeforeETa[i] = startperiod;
			else
			{
 				int k=i-1;
				while (d1[k]>=startperiod )
				{
					if (d1[k]<0)	 // case were d1[k] is null
						k=k-1;					
					else
					{
						DOYbeforeETa[i] = 1+((d1[i] + d1[k])/2.0);
						break;
					}			
				}

			}
	
			if (i == nfiles1)  
				DOYafterETa[i] = endperiod;
			else
			{
				int k=i+1;
				while (d1[k]<=endperiod)
				{
					if (d1[k]<0)   // case were d1[k] is null
						k=k+1;
					else
					{
						DOYafterETa[i] = (d1[i] + d1[k]) / 2.0;
						break;
	   				}					
				}
			}
		}	
	    }

	    sum[MAXFILES] = 0.0;
	    for (i = 1; i <= nfiles1; i++) 
            {
		if(d_null==1 || d1_null==1)
                {
		    /* do nothing	 */
		} 
                else
                {
			if (DOYbeforeETa[i]==0 || DOYbeforeETa[i]==0 ) 	
                            Rast_set_d_null_value(&outrast[col],1);
			else 
                        {
				bfr = (int)DOYbeforeETa[i];
				aft = (int)DOYafterETa[i];
				sum[i]=0.0;
				for (j = bfr; j < aft; j++) 
					sum[i] += d2[(int)(j-etodoy+1)];
			}
		}
	    }
	
	    d_out = 0.0;
	    for (i = 1; i <= nfiles1; i++)
            {
		if(d_null==1 || d_null==1)
			Rast_set_d_null_value(&outrast[col],1);
		else
                {	
			d_out += d_ETrF[i] * sum[i];
		     	outrast[col] = d_out;
		}	
	    }
	}
	Rast_put_row(outfd, outrast, out_data_type);
    }

    for (i = 1; i <= nfiles; i++) {
	G_free(inrast[i]);
	Rast_close(infd[i]);
    }
    for (i = 1; i <= nfiles1; i++) {
	G_free(inrast1[i]);
	Rast_close(infd1[i]);
    }
    for (i = 1; i <= nfiles2; i++) {
	G_free(inrast2[i]);
	Rast_close(infd2[i]);
    }
    G_free(outrast);
    Rast_close(outfd);

    /* Color table from 0.0 to 10.0 */
    Rast_init_colors(&colors);
    val1 = 0;
    val2 = 10;
    Rast_add_c_color_rule(&val1, 0, 0, 0, &val2, 255, 255, 255, &colors);
    /* Metadata */
    Rast_short_history(result, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(result, &history);

    exit(EXIT_SUCCESS);
}
Exemple #28
0
int main(int argc, char *argv[])
{
    struct Cell_head cellhd;

    /* buffer for in out raster */
    DCELL *inrast_T, *inrast_RH, *inrast_u2;
    DCELL *inrast_Rn, *inrast_DEM, *inrast_hc, *outrast;
    char *EPo;

    int nrows, ncols;
    int row, col;
    int infd_T, infd_RH, infd_u2, infd_Rn, infd_DEM, infd_hc;
    int outfd;

    char *T, *RH, *u2, *Rn, *DEM, *hc;
    DCELL d_T, d_RH, d_u2, d_Rn, d_Z, d_hc;
    DCELL d_EPo;

    int d_night;

    struct History history;
    struct GModule *module;
    struct Option *input_DEM, *input_T, *input_RH;
    struct Option *input_u2, *input_Rn, *input_hc, *output;
    struct Flag *day, *zero;

    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("imagery"));
    G_add_keyword(_("evapotranspiration"));
    module->description =
	_("Computes potential evapotranspiration calculation with hourly Penman-Monteith.");

    /* Define different options */
    input_DEM = G_define_standard_option(G_OPT_R_ELEV);
    input_DEM->description = _("Name of input elevation raster map [m a.s.l.]");
    
    input_T = G_define_standard_option(G_OPT_R_INPUT);
    input_T->key = "temperature";
    input_T->description = _("Name of input temperature raster map [C]");

    input_RH = G_define_standard_option(G_OPT_R_INPUT);
    input_RH->key = "relativehumidity";
    input_RH->description = _("Name of input relative humidity raster map [%]");

    input_u2 = G_define_standard_option(G_OPT_R_INPUT);
    input_u2->key = "windspeed";
    input_u2->description = _("Name of input wind speed raster map [m/s]");

    input_Rn = G_define_standard_option(G_OPT_R_INPUT);
    input_Rn->key = "netradiation";
    input_Rn->description =
	_("Name of input net solar radiation raster map [MJ/m2/h]");

    input_hc = G_define_standard_option(G_OPT_R_INPUT);
    input_hc->key = "cropheight";
    input_hc->description = _("Name of input crop height raster map [m]");

    output = G_define_standard_option(G_OPT_R_OUTPUT);
	_("Name for output raster map [mm/h]");

    zero = G_define_flag();
    zero->key = 'z';
    zero->description = _("Set negative evapotranspiration to zero");

    day = G_define_flag();
    day->key = 'n';
    day->description = _("Use Night-time");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    /* get entered parameters */
    T = input_T->answer;
    RH = input_RH->answer;
    u2 = input_u2->answer;
    Rn = input_Rn->answer;
    EPo = output->answer;
    DEM = input_DEM->answer;
    hc = input_hc->answer;

    if (day->answer) {
	d_night = TRUE;
    }
    else {
	d_night = FALSE;
    }

    infd_T = Rast_open_old(T, "");
    infd_RH = Rast_open_old(RH, "");
    infd_u2 = Rast_open_old(u2, "");
    infd_Rn = Rast_open_old(Rn, "");
    infd_DEM = Rast_open_old(DEM, "");
    infd_hc = Rast_open_old(hc, "");

    Rast_get_cellhd(T, "", &cellhd);
    Rast_get_cellhd(RH, "", &cellhd);
    Rast_get_cellhd(u2, "", &cellhd);
    Rast_get_cellhd(Rn, "", &cellhd);
    Rast_get_cellhd(DEM, "", &cellhd);
    Rast_get_cellhd(hc, "", &cellhd);

    /* Allocate input buffer */
    inrast_T = Rast_allocate_d_buf();
    inrast_RH = Rast_allocate_d_buf();
    inrast_u2 = Rast_allocate_d_buf();
    inrast_Rn = Rast_allocate_d_buf();
    inrast_DEM = Rast_allocate_d_buf();
    inrast_hc = Rast_allocate_d_buf();

    /* Allocate output buffer */
    nrows = Rast_window_rows();
    ncols = Rast_window_cols();
    outrast = Rast_allocate_d_buf();

    outfd = Rast_open_new(EPo, DCELL_TYPE);

    for (row = 0; row < nrows; row++) {

	/* read a line input maps into buffers */
	Rast_get_d_row(infd_T, inrast_T, row);
	Rast_get_d_row(infd_RH, inrast_RH, row);
	Rast_get_d_row(infd_u2, inrast_u2, row);
	Rast_get_d_row(infd_Rn, inrast_Rn, row);
	Rast_get_d_row(infd_DEM, inrast_DEM, row);
	Rast_get_d_row(infd_hc, inrast_hc, row);

	/* read every cell in the line buffers */
	for (col = 0; col < ncols; col++) {
	    d_T = ((DCELL *) inrast_T)[col];
	    d_RH = ((DCELL *) inrast_RH)[col];
	    d_u2 = ((DCELL *) inrast_u2)[col];
	    d_Rn = ((DCELL *) inrast_Rn)[col];
	    d_Z = ((DCELL *) inrast_DEM)[col];
	    d_hc = ((DCELL *) inrast_hc)[col];

	    /* calculate evapotranspiration */
	    if (d_hc < 0) {
		/* calculate evaporation */
		d_EPo =
		    calc_openwaterETp(d_T, d_Z, d_u2, d_Rn, d_night, d_RH,
				      d_hc);
	    }
	    else {
		/* calculate evapotranspiration */
		d_EPo = calc_ETp(d_T, d_Z, d_u2, d_Rn, d_night, d_RH, d_hc);
	    }

	    if (zero->answer && d_EPo < 0)
		d_EPo = 0;

	    ((DCELL *) outrast)[col] = d_EPo;
	}
	Rast_put_d_row(outfd, outrast);
    }
    G_free(inrast_T);
    G_free(inrast_RH);
    G_free(inrast_u2);
    G_free(inrast_Rn);
    G_free(inrast_DEM);
    G_free(inrast_hc);
    G_free(outrast);
    Rast_close(infd_T);
    Rast_close(infd_RH);
    Rast_close(infd_u2);
    Rast_close(infd_Rn);
    Rast_close(infd_DEM);
    Rast_close(infd_hc);
    Rast_close(outfd);

    /* add command line incantation to history file */
    Rast_short_history(EPo, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(EPo, &history);

    exit(EXIT_SUCCESS);
}
Exemple #29
0
int main(int argc, char **argv)
{
    char *mapname,		/* ptr to name of output layer  */
     *setname,			/* ptr to name of input mapset  */
     *ipolname;			/* name of interpolation method */

    int fdi,			/* input map file descriptor    */
      fdo,			/* output map file descriptor   */
      method,			/* position of method in table  */
      permissions,		/* mapset permissions           */
      cell_type,		/* output celltype              */
      cell_size,		/* size of a cell in bytes      */
      row, col,			/* counters                     */
      irows, icols,		/* original rows, cols          */
      orows, ocols, have_colors,	/* Input map has a colour table */
      overwrite,		/* Overwrite                    */
      curr_proj;		/* output projection (see gis.h) */

    void *obuffer,		/* buffer that holds one output row     */
     *obufptr;			/* column ptr in output buffer  */
    struct cache *ibuffer;	/* buffer that holds the input map      */
    func interpolate;		/* interpolation routine        */

    double xcoord1, xcoord2,	/* temporary x coordinates      */
      ycoord1, ycoord2,		/* temporary y coordinates      */
      col_idx,			/* column index in input matrix */
      row_idx,			/* row index in input matrix    */
      onorth, osouth,		/* save original border coords  */
      oeast, owest, inorth, isouth, ieast, iwest;
    char north_str[30], south_str[30], east_str[30], west_str[30];

    struct Colors colr;		/* Input map colour table       */
    struct History history;

    struct pj_info iproj,	/* input map proj parameters    */
      oproj;			/* output map proj parameters   */

    struct Key_Value *in_proj_info,	/* projection information of    */
     *in_unit_info,		/* input and output mapsets     */
     *out_proj_info, *out_unit_info;

    struct GModule *module;

    struct Flag *list,		/* list files in source location */
     *nocrop,			/* don't crop output map        */
     *print_bounds,		/* print output bounds and exit */
     *gprint_bounds;		/* same but print shell style	*/

    struct Option *imapset,	/* name of input mapset         */
     *inmap,			/* name of input layer          */
     *inlocation,		/* name of input location       */
     *outmap,			/* name of output layer         */
     *indbase,			/* name of input database       */
     *interpol,			/* interpolation method:
				   nearest neighbor, bilinear, cubic */
     *memory,			/* amount of memory for cache   */
     *res;			/* resolution of target map     */
    struct Cell_head incellhd,	/* cell header of input map     */
      outcellhd;		/* and output map               */


    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("raster"));
    G_add_keyword(_("projection"));
    G_add_keyword(_("transformation"));
    module->description =
	_("Re-projects a raster map from given location to the current location.");

    inmap = G_define_standard_option(G_OPT_R_INPUT);
    inmap->description = _("Name of input raster map to re-project");
    inmap->required = NO;
    inmap->guisection = _("Source");

    inlocation = G_define_option();
    inlocation->key = "location";
    inlocation->type = TYPE_STRING;
    inlocation->required = YES;
    inlocation->description = _("Location containing input raster map");
    inlocation->gisprompt = "old,location,location";
    inlocation->key_desc = "name";

    imapset = G_define_standard_option(G_OPT_M_MAPSET);
    imapset->label = _("Mapset containing input raster map");
    imapset->description = _("default: name of current mapset");
    imapset->guisection = _("Source");

    indbase = G_define_option();
    indbase->key = "dbase";
    indbase->type = TYPE_STRING;
    indbase->required = NO;
    indbase->description = _("Path to GRASS database of input location");
    indbase->gisprompt = "old,dbase,dbase";
    indbase->key_desc = "path";
    indbase->guisection = _("Source");

    outmap = G_define_standard_option(G_OPT_R_OUTPUT);
    outmap->required = NO;
    outmap->description = _("Name for output raster map (default: same as 'input')");
    outmap->guisection = _("Target");

    ipolname = make_ipol_list();
    
    interpol = G_define_option();
    interpol->key = "method";
    interpol->type = TYPE_STRING;
    interpol->required = NO;
    interpol->answer = "nearest";
    interpol->options = ipolname;
    interpol->description = _("Interpolation method to use");
    interpol->guisection = _("Target");
    interpol->descriptions = make_ipol_desc();

    memory = G_define_option();
    memory->key = "memory";
    memory->type = TYPE_INTEGER;
    memory->required = NO;
    memory->description = _("Cache size (MiB)");

    res = G_define_option();
    res->key = "resolution";
    res->type = TYPE_DOUBLE;
    res->required = NO;
    res->description = _("Resolution of output raster map");
    res->guisection = _("Target");

    list = G_define_flag();
    list->key = 'l';
    list->description = _("List raster maps in input location and exit");

    nocrop = G_define_flag();
    nocrop->key = 'n';
    nocrop->description = _("Do not perform region cropping optimization");

    print_bounds = G_define_flag();
    print_bounds->key = 'p';
    print_bounds->description =
	_("Print input map's bounds in the current projection and exit");
    print_bounds->guisection = _("Target");
    
    gprint_bounds = G_define_flag();
    gprint_bounds->key = 'g';
    gprint_bounds->description =
	_("Print input map's bounds in the current projection and exit (shell style)");
    gprint_bounds->guisection = _("Target");

    /* The parser checks if the map already exists in current mapset,
       we switch out the check and do it
       in the module after the parser */
    overwrite = G_check_overwrite(argc, argv);

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);


    /* get the method */
    for (method = 0; (ipolname = menu[method].name); method++)
	if (strcmp(ipolname, interpol->answer) == 0)
	    break;

    if (!ipolname)
	G_fatal_error(_("<%s=%s> unknown %s"),
		      interpol->key, interpol->answer, interpol->key);
    interpolate = menu[method].method;

    mapname = outmap->answer ? outmap->answer : inmap->answer;
    if (mapname && !list->answer && !overwrite &&
	G_find_raster(mapname, G_mapset()))
	G_fatal_error(_("option <%s>: <%s> exists."), "output", mapname);

    setname = imapset->answer ? imapset->answer : G_store(G_mapset());
    if (strcmp(inlocation->answer, G_location()) == 0 &&
        (!indbase->answer || strcmp(indbase->answer, G_gisdbase()) == 0))
#if 0
	G_fatal_error(_("Input and output locations can not be the same"));
#else
	G_warning(_("Input and output locations are the same"));
#endif
    G_get_window(&outcellhd);

    if(gprint_bounds->answer && !print_bounds->answer)
	print_bounds->answer = gprint_bounds->answer;
    curr_proj = G_projection();

    /* Get projection info for output mapset */
    if ((out_proj_info = G_get_projinfo()) == NULL)
	G_fatal_error(_("Unable to get projection info of output raster map"));

    if ((out_unit_info = G_get_projunits()) == NULL)
	G_fatal_error(_("Unable to get projection units of output raster map"));

    if (pj_get_kv(&oproj, out_proj_info, out_unit_info) < 0)
	G_fatal_error(_("Unable to get projection key values of output raster map"));

    /* Change the location           */
    G__create_alt_env();
    G__setenv("GISDBASE", indbase->answer ? indbase->answer : G_gisdbase());
    G__setenv("LOCATION_NAME", inlocation->answer);

    permissions = G__mapset_permissions(setname);
    if (permissions < 0)	/* can't access mapset       */
	G_fatal_error(_("Mapset <%s> in input location <%s> - %s"),
		      setname, inlocation->answer,
		      permissions == 0 ? _("permission denied")
		      : _("not found"));

    /* if requested, list the raster maps in source location - MN 5/2001 */
    if (list->answer) {
	int i;
	char **list;
	G_verbose_message(_("Checking location <%s> mapset <%s>"),
			  inlocation->answer, setname);
	list = G_list(G_ELEMENT_RASTER, G__getenv("GISDBASE"),
		      G__getenv("LOCATION_NAME"), setname);
	for (i = 0; list[i]; i++) {
	    fprintf(stdout, "%s\n", list[i]);
	}
	fflush(stdout);
	exit(EXIT_SUCCESS);	/* leave r.proj after listing */
    }

    if (!inmap->answer)
	G_fatal_error(_("Required parameter <%s> not set"), inmap->key);

    if (!G_find_raster(inmap->answer, setname))
	G_fatal_error(_("Raster map <%s> in location <%s> in mapset <%s> not found"),
		      inmap->answer, inlocation->answer, setname);

    /* Read input map colour table */
    have_colors = Rast_read_colors(inmap->answer, setname, &colr);

    /* Get projection info for input mapset */
    if ((in_proj_info = G_get_projinfo()) == NULL)
	G_fatal_error(_("Unable to get projection info of input map"));

    if ((in_unit_info = G_get_projunits()) == NULL)
	G_fatal_error(_("Unable to get projection units of input map"));

    if (pj_get_kv(&iproj, in_proj_info, in_unit_info) < 0)
	G_fatal_error(_("Unable to get projection key values of input map"));

    G_free_key_value(in_proj_info);
    G_free_key_value(in_unit_info);
    G_free_key_value(out_proj_info);
    G_free_key_value(out_unit_info);
    if (G_verbose() > G_verbose_std())
	pj_print_proj_params(&iproj, &oproj);

    /* this call causes r.proj to read the entire map into memeory */
    Rast_get_cellhd(inmap->answer, setname, &incellhd);

    Rast_set_input_window(&incellhd);

    if (G_projection() == PROJECTION_XY)
	G_fatal_error(_("Unable to work with unprojected data (xy location)"));

    /* Save default borders so we can show them later */
    inorth = incellhd.north;
    isouth = incellhd.south;
    ieast = incellhd.east;
    iwest = incellhd.west;
    irows = incellhd.rows;
    icols = incellhd.cols;

    onorth = outcellhd.north;
    osouth = outcellhd.south;
    oeast = outcellhd.east;
    owest = outcellhd.west;
    orows = outcellhd.rows;
    ocols = outcellhd.cols;


    if (print_bounds->answer) {
	G_message(_("Input map <%s@%s> in location <%s>:"),
	    inmap->answer, setname, inlocation->answer);

	if (pj_do_proj(&iwest, &isouth, &iproj, &oproj) < 0)
	    G_fatal_error(_("Error in pj_do_proj (projection of input coordinate pair)"));
	if (pj_do_proj(&ieast, &inorth, &iproj, &oproj) < 0)
	    G_fatal_error(_("Error in pj_do_proj (projection of input coordinate pair)"));

	G_format_northing(inorth, north_str, curr_proj);
	G_format_northing(isouth, south_str, curr_proj);
	G_format_easting(ieast, east_str, curr_proj);
	G_format_easting(iwest, west_str, curr_proj);

	if(gprint_bounds->answer) {
	    fprintf(stdout, "n=%s s=%s w=%s e=%s rows=%d cols=%d\n",
		north_str, south_str, west_str, east_str, irows, icols);
	}
	else {
	    fprintf(stdout, "Source cols: %d\n", icols);
	    fprintf(stdout, "Source rows: %d\n", irows);
	    fprintf(stdout, "Local north: %s\n",  north_str);
	    fprintf(stdout, "Local south: %s\n", south_str);
	    fprintf(stdout, "Local west: %s\n", west_str);
	    fprintf(stdout, "Local east: %s\n", east_str);
	}

	/* somehow approximate local ewres, nsres ?? (use 'g.region -m' on lat/lon side) */

	exit(EXIT_SUCCESS);
    }


    /* Cut non-overlapping parts of input map */
    if (!nocrop->answer)
	bordwalk(&outcellhd, &incellhd, &oproj, &iproj);

    /* Add 2 cells on each side for bilinear/cubic & future interpolation methods */
    /* (should probably be a factor based on input and output resolution) */
    incellhd.north += 2 * incellhd.ns_res;
    incellhd.east += 2 * incellhd.ew_res;
    incellhd.south -= 2 * incellhd.ns_res;
    incellhd.west -= 2 * incellhd.ew_res;
    if (incellhd.north > inorth)
	incellhd.north = inorth;
    if (incellhd.east > ieast)
	incellhd.east = ieast;
    if (incellhd.south < isouth)
	incellhd.south = isouth;
    if (incellhd.west < iwest)
	incellhd.west = iwest;

    Rast_set_input_window(&incellhd);

    /* And switch back to original location */

    G__switch_env();

    /* Adjust borders of output map */

    if (!nocrop->answer)
	bordwalk(&incellhd, &outcellhd, &iproj, &oproj);

#if 0
    outcellhd.west = outcellhd.south = HUGE_VAL;
    outcellhd.east = outcellhd.north = -HUGE_VAL;
    for (row = 0; row < incellhd.rows; row++) {
	ycoord1 = Rast_row_to_northing((double)(row + 0.5), &incellhd);
	for (col = 0; col < incellhd.cols; col++) {
	    xcoord1 = Rast_col_to_easting((double)(col + 0.5), &incellhd);
	    pj_do_proj(&xcoord1, &ycoord1, &iproj, &oproj);
	    if (xcoord1 > outcellhd.east)
		outcellhd.east = xcoord1;
	    if (ycoord1 > outcellhd.north)
		outcellhd.north = ycoord1;
	    if (xcoord1 < outcellhd.west)
		outcellhd.west = xcoord1;
	    if (ycoord1 < outcellhd.south)
		outcellhd.south = ycoord1;
	}
    }
#endif

    if (res->answer != NULL)	/* set user defined resolution */
	outcellhd.ns_res = outcellhd.ew_res = atof(res->answer);

    G_adjust_Cell_head(&outcellhd, 0, 0);
    Rast_set_output_window(&outcellhd);

    G_message(" ");
    G_message(_("Input:"));
    G_message(_("Cols: %d (%d)"), incellhd.cols, icols);
    G_message(_("Rows: %d (%d)"), incellhd.rows, irows);
    G_message(_("North: %f (%f)"), incellhd.north, inorth);
    G_message(_("South: %f (%f)"), incellhd.south, isouth);
    G_message(_("West: %f (%f)"), incellhd.west, iwest);
    G_message(_("East: %f (%f)"), incellhd.east, ieast);
    G_message(_("EW-res: %f"), incellhd.ew_res);
    G_message(_("NS-res: %f"), incellhd.ns_res);
    G_message(" ");

    G_message(_("Output:"));
    G_message(_("Cols: %d (%d)"), outcellhd.cols, ocols);
    G_message(_("Rows: %d (%d)"), outcellhd.rows, orows);
    G_message(_("North: %f (%f)"), outcellhd.north, onorth);
    G_message(_("South: %f (%f)"), outcellhd.south, osouth);
    G_message(_("West: %f (%f)"), outcellhd.west, owest);
    G_message(_("East: %f (%f)"), outcellhd.east, oeast);
    G_message(_("EW-res: %f"), outcellhd.ew_res);
    G_message(_("NS-res: %f"), outcellhd.ns_res);
    G_message(" ");

    /* open and read the relevant parts of the input map and close it */
    G__switch_env();
    Rast_set_input_window(&incellhd);
    fdi = Rast_open_old(inmap->answer, setname);
    cell_type = Rast_get_map_type(fdi);
    ibuffer = readcell(fdi, memory->answer);
    Rast_close(fdi);

    G__switch_env();
    Rast_set_output_window(&outcellhd);

    if (strcmp(interpol->answer, "nearest") == 0) {
	fdo = Rast_open_new(mapname, cell_type);
	obuffer = (CELL *) Rast_allocate_output_buf(cell_type);
    }
    else {
	fdo = Rast_open_fp_new(mapname);
	cell_type = FCELL_TYPE;
	obuffer = (FCELL *) Rast_allocate_output_buf(cell_type);
    }

    cell_size = Rast_cell_size(cell_type);

    xcoord1 = xcoord2 = outcellhd.west + (outcellhd.ew_res / 2);
    /**/ ycoord1 = ycoord2 = outcellhd.north - (outcellhd.ns_res / 2);
    /**/ G_important_message(_("Projecting..."));
    G_percent(0, outcellhd.rows, 2);

    for (row = 0; row < outcellhd.rows; row++) {
	obufptr = obuffer;

	for (col = 0; col < outcellhd.cols; col++) {
	    /* project coordinates in output matrix to       */
	    /* coordinates in input matrix                   */
	    if (pj_do_proj(&xcoord1, &ycoord1, &oproj, &iproj) < 0)
		Rast_set_null_value(obufptr, 1, cell_type);
	    else {
		/* convert to row/column indices of input matrix */
		col_idx = (xcoord1 - incellhd.west) / incellhd.ew_res;
		row_idx = (incellhd.north - ycoord1) / incellhd.ns_res;

		/* and resample data point               */
		interpolate(ibuffer, obufptr, cell_type,
			    &col_idx, &row_idx, &incellhd);
	    }

	    obufptr = G_incr_void_ptr(obufptr, cell_size);
	    xcoord2 += outcellhd.ew_res;
	    xcoord1 = xcoord2;
	    ycoord1 = ycoord2;
	}

	Rast_put_row(fdo, obuffer, cell_type);

	xcoord1 = xcoord2 = outcellhd.west + (outcellhd.ew_res / 2);
	ycoord2 -= outcellhd.ns_res;
	ycoord1 = ycoord2;
	G_percent(row, outcellhd.rows - 1, 2);
    }

    Rast_close(fdo);

    if (have_colors > 0) {
	Rast_write_colors(mapname, G_mapset(), &colr);
	Rast_free_colors(&colr);
    }

    Rast_short_history(mapname, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(mapname, &history);

    G_done_msg(NULL);
    exit(EXIT_SUCCESS);
}
Exemple #30
0
int main(int argc, char *argv[])
{
    struct Cell_head cellhd;
    /* buffer for in, tmp and out raster */
    void *inrast_Rn, *inrast_g0;
    void *inrast_z0m, *inrast_t0dem;
    DCELL *outrast;
    int nrows, ncols;
    int row, col;
    int row_wet, col_wet;
    int row_dry, col_dry;
    double m_row_wet, m_col_wet;
    double m_row_dry, m_col_dry;
    int infd_Rn, infd_g0;
    int infd_z0m, infd_t0dem;
    int outfd;
    char *Rn, *g0;
    char *z0m, *t0dem;
    char *h0;

    double ustar, ea;
    struct History history;
    struct GModule *module;
    struct Option *input_Rn, *input_g0;
    struct Option *input_z0m, *input_t0dem, *input_ustar;
    struct Option *input_ea, *output;
    struct Option *input_row_wet, *input_col_wet;
    struct Option *input_row_dry, *input_col_dry;
    struct Flag *flag2, *flag3;
    /********************************/
    double xp, yp;
    double xmin, ymin;
    double xmax, ymax;
    double stepx, stepy;
    double latitude, longitude;
    int rowDry, colDry, rowWet, colWet;
    /********************************/
    G_gisinit(argv[0]);

    module = G_define_module();
    G_add_keyword(_("imagery"));
    G_add_keyword(_("energy balance"));
    G_add_keyword(_("soil moisture"));
    G_add_keyword(_("evaporative fraction"));
    G_add_keyword(_("SEBAL"));
    module->description = _("Computes sensible heat flux iteration SEBAL 01.");

    /* Define different options */
    input_Rn = G_define_standard_option(G_OPT_R_INPUT);
    input_Rn->key = "netradiation";
    input_Rn->description =
	_("Name of instantaneous Net Radiation raster map [W/m2]");

    input_g0 = G_define_standard_option(G_OPT_R_INPUT);
    input_g0->key = "soilheatflux";
    input_g0->description =
	_("Name of instantaneous soil heat flux raster map [W/m2]");

    input_z0m = G_define_standard_option(G_OPT_R_INPUT);
    input_z0m->key = "aerodynresistance";
    input_z0m->description =
	_("Name of aerodynamic resistance to heat momentum raster map [s/m]");

    input_t0dem = G_define_standard_option(G_OPT_R_INPUT);
    input_t0dem->key = "temperaturemeansealevel";
    input_t0dem->description =
	_("Name of altitude corrected surface temperature raster map [K]");

    input_ustar = G_define_option();
    input_ustar->key = "frictionvelocitystar";
    input_ustar->type = TYPE_DOUBLE;
    input_ustar->required = YES;
    input_ustar->gisprompt = "old,value";
    input_ustar->answer = "0.32407";
    input_ustar->description = _("Value of the height independent friction velocity (u*) [m/s]");
    input_ustar->guisection = _("Parameters");

    input_ea = G_define_option();
    input_ea->key = "vapourpressureactual";
    input_ea->type = TYPE_DOUBLE;
    input_ea->required = YES;
    input_ea->answer = "1.511";
    input_ea->description = _("Value of the actual vapour pressure (e_act) [KPa]");
    input_ea->guisection = _("Parameters");

    input_row_wet = G_define_option();
    input_row_wet->key = "row_wet_pixel";
    input_row_wet->type = TYPE_DOUBLE;
    input_row_wet->required = NO;
    input_row_wet->description = _("Row value of the wet pixel");
    input_row_wet->guisection = _("Parameters");

    input_col_wet = G_define_option();
    input_col_wet->key = "column_wet_pixel";
    input_col_wet->type = TYPE_DOUBLE;
    input_col_wet->required = NO;
    input_col_wet->description = _("Column value of the wet pixel");
    input_col_wet->guisection = _("Parameters");

    input_row_dry = G_define_option();
    input_row_dry->key = "row_dry_pixel";
    input_row_dry->type = TYPE_DOUBLE;
    input_row_dry->required = NO;
    input_row_dry->description = _("Row value of the dry pixel");
    input_row_dry->guisection = _("Parameters");

    input_col_dry = G_define_option();
    input_col_dry->key = "column_dry_pixel";
    input_col_dry->type = TYPE_DOUBLE;
    input_col_dry->required = NO;
    input_col_dry->description = _("Column value of the dry pixel");
    input_col_dry->guisection = _("Parameters");

    output = G_define_standard_option(G_OPT_R_OUTPUT);
    output->description = _("Name for output sensible heat flux raster map [W/m2]");
    
    /* Define the different flags */
    flag2 = G_define_flag();
    flag2->key = 'a';
    flag2->description = _("Automatic wet/dry pixel (careful!)");

    flag3 = G_define_flag();
    flag3->key = 'c';
    flag3->description =
	_("Dry/Wet pixels coordinates are in image projection, not row/col");

    if (G_parser(argc, argv))
	exit(EXIT_FAILURE);

    /* get entered parameters */
    Rn = input_Rn->answer;
    g0 = input_g0->answer;
    z0m = input_z0m->answer;
    t0dem = input_t0dem->answer;

    h0 = output->answer;

    ustar = atof(input_ustar->answer);
    ea = atof(input_ea->answer);

    if(input_row_wet->answer&&
    input_col_wet->answer&&
    input_row_dry->answer&&
    input_col_dry->answer){
        m_row_wet = atof(input_row_wet->answer);
        m_col_wet = atof(input_col_wet->answer);
        m_row_dry = atof(input_row_dry->answer);
        m_col_dry = atof(input_col_dry->answer);
    }
    if ((!input_row_wet->answer || !input_col_wet->answer ||
	 !input_row_dry->answer || !input_col_dry->answer) &&
	!flag2->answer) {
	G_fatal_error(_("Either auto-mode either wet/dry pixels coordinates should be provided!"));
    }
    if (flag3->answer) {
	G_message(_("Manual wet/dry pixels in image coordinates"));
	G_message(_("Wet Pixel=> x:%f y:%f"), m_col_wet, m_row_wet);
	G_message(_("Dry Pixel=> x:%f y:%f"), m_col_dry, m_row_dry);
    }
    else {
        if(flag2->answer)
	    G_message(_("Automatic mode selected"));
	else {
	    G_message(_("Wet Pixel=> row:%.0f col:%.0f"), m_row_wet, m_col_wet);
	    G_message(_("Dry Pixel=> row:%.0f col:%.0f"), m_row_dry, m_col_dry);
	}
    }
    /* check legal output name */
    if (G_legal_filename(h0) < 0)
	G_fatal_error(_("<%s> is an illegal name"), h0);

    infd_Rn = Rast_open_old(Rn, "");
    infd_g0 = Rast_open_old(g0, "");
    infd_z0m = Rast_open_old(z0m, "");
    infd_t0dem = Rast_open_old(t0dem, "");

    Rast_get_cellhd(Rn, "", &cellhd);
    Rast_get_cellhd(g0, "", &cellhd);
    Rast_get_cellhd(z0m, "", &cellhd);
    Rast_get_cellhd(t0dem, "", &cellhd);

    /* Allocate input buffer */
    inrast_Rn = Rast_allocate_d_buf();
    inrast_g0 = Rast_allocate_d_buf();
    inrast_z0m = Rast_allocate_d_buf();
    inrast_t0dem = Rast_allocate_d_buf();

    /***************************************************/
    /* Setup pixel location variables */
    /***************************************************/
    stepx = cellhd.ew_res;
    stepy = cellhd.ns_res;

    xmin = cellhd.west;
    xmax = cellhd.east;
    ymin = cellhd.south;
    ymax = cellhd.north;

    nrows = Rast_window_rows();
    ncols = Rast_window_cols();

    /***************************************************/
    /* Allocate output buffer */
    /***************************************************/
    outrast = Rast_allocate_d_buf();
    outfd = Rast_open_new(h0, DCELL_TYPE);
    /***************************************************/
    /* Allocate memory for temporary images            */
    double **d_Roh, **d_Rah;

    if ((d_Roh = G_alloc_matrix(nrows, ncols)) == NULL)
	G_message("Unable to allocate memory for temporary d_Roh image");
    if ((d_Rah = G_alloc_matrix(nrows, ncols)) == NULL)
	G_message("Unable to allocate memory for temporary d_Rah image");
    /***************************************************/

    /* MANUAL T0DEM WET/DRY PIXELS */
    DCELL d_Rn_dry,d_g0_dry;
    DCELL d_t0dem_dry,d_t0dem_wet;

    if (flag2->answer) {
	/* Process tempk min / max pixels */
	/* Internal use only */
	DCELL d_Rn_wet,d_g0_wet;
	DCELL d_Rn,d_g0,d_h0;
	DCELL t0dem_min,t0dem_max;
        /*********************/
	for (row = 0; row < nrows; row++) {
	    DCELL d_t0dem;
	    G_percent(row, nrows, 2);
	    Rast_get_d_row(infd_t0dem,inrast_t0dem,row);
	    Rast_get_d_row(infd_Rn,inrast_Rn,row);
	    Rast_get_d_row(infd_g0,inrast_g0,row);
	    /*process the data */
	    for (col = 0; col < ncols; col++) {
		d_t0dem = ((DCELL *) inrast_t0dem)[col];
		d_Rn = ((DCELL *) inrast_Rn)[col];
		d_g0 = ((DCELL *) inrast_g0)[col];
		if (Rast_is_d_null_value(&d_t0dem) ||
		    Rast_is_d_null_value(&d_Rn) || 
                    Rast_is_d_null_value(&d_g0)) {
		    /* do nothing */
		}
		else {
		    if (d_t0dem <= 250.0) {
			/* do nothing */
		    }
		    else {
			d_h0 = d_Rn - d_g0;
			if (d_t0dem < t0dem_min &&
			    d_Rn > 0.0 && d_g0 > 0.0 && d_h0 > 0.0 &&
			    d_h0 < 100.0) {
			    t0dem_min = d_t0dem;
			    d_t0dem_wet = d_t0dem;
			    d_Rn_wet = d_Rn;
			    d_g0_wet = d_g0;
			    m_col_wet = col;
			    m_row_wet = row;
			}
			if (d_t0dem > t0dem_max &&
			    d_Rn > 0.0 && d_g0 > 0.0 && d_h0 > 100.0 &&
			    d_h0 < 500.0) {
			    t0dem_max = d_t0dem;
			    d_t0dem_dry = d_t0dem;
			    d_Rn_dry = d_Rn;
			    d_g0_dry = d_g0;
			    m_col_dry = col;
			    m_row_dry = row;
			}
		    }
		}
	    }
	}
	G_message("row_wet=%d\tcol_wet=%d", row_wet, col_wet);
	G_message("row_dry=%d\tcol_dry=%d", row_dry, col_dry);
	G_message("g0_wet=%f", d_g0_wet);
	G_message("Rn_wet=%f", d_Rn_wet);
	G_message("LE_wet=%f", d_Rn_wet - d_g0_wet);
	G_message("t0dem_dry=%f", d_t0dem_dry);
	G_message("rnet_dry=%f", d_Rn_dry);
	G_message("g0_dry=%f", d_g0_dry);
	G_message("h0_dry=%f", d_Rn_dry - d_g0_dry);
    }/* END OF FLAG2 */

    G_message("Passed here");

    /* MANUAL T0DEM WET/DRY PIXELS */
    /*DRY PIXEL */
    if (flag3->answer) {
	/*Calculate coordinates of row/col from projected ones */
	row = (int)((ymax - m_row_dry) / (double)stepy);
	col = (int)((m_col_dry - xmin) / (double)stepx);
	G_message("Dry Pixel | row:%i col:%i", row, col);
    }
    else {
	row = (int)m_row_dry;
	col = (int)m_col_dry;
	G_message("Dry Pixel | row:%i col:%i", row, col);
    }
    rowDry = row;
    colDry = col;
    Rast_get_d_row(infd_Rn, inrast_Rn, row);
    Rast_get_d_row(infd_g0, inrast_g0, row);
    Rast_get_d_row(infd_t0dem, inrast_t0dem, row);
    d_Rn_dry = ((DCELL *) inrast_Rn)[col];
    d_g0_dry = ((DCELL *) inrast_g0)[col];
    d_t0dem_dry = ((DCELL *) inrast_t0dem)[col];
    /*WET PIXEL */
    if (flag3->answer) {
	/*Calculate coordinates of row/col from projected ones */
	row = (int)((ymax - m_row_wet) / (double)stepy);
	col = (int)((m_col_wet - xmin) / (double)stepx);
	G_message("Wet Pixel | row:%i col:%i", row, col);
    }
    else {
	row = m_row_wet;
	col = m_col_wet;
	G_message("Wet Pixel | row:%i col:%i", row, col);
    }
    rowWet = row;
    colWet = col;
    Rast_get_d_row(infd_t0dem, inrast_t0dem, row);
    d_t0dem_wet = ((DCELL *) inrast_t0dem)[col];
    /* END OF MANUAL WET/DRY PIXELS */
    double h_dry;

    h_dry = d_Rn_dry - d_g0_dry;
    G_message("h_dry = %f", h_dry);
    G_message("t0dem_dry = %f", d_t0dem_dry);
    G_message("t0dem_wet = %f", d_t0dem_wet);
    DCELL d_rah_dry;
    DCELL d_roh_dry;

    /* INITIALIZATION */
    for (row = 0; row < nrows; row++) {
	DCELL d_t0dem,d_z0m;
	DCELL d_rah1,d_roh1;
	DCELL d_u5;
	G_percent(row, nrows, 2);
	/* read a line input maps into buffers */
	Rast_get_d_row(infd_z0m, inrast_z0m, row);
	Rast_get_d_row(infd_t0dem, inrast_t0dem,row);
	/* read every cell in the line buffers */
	for (col = 0; col < ncols; col++) {
            d_z0m = ((DCELL *) inrast_z0m)[col];
            d_t0dem = ((DCELL *) inrast_t0dem)[col];
	    if (Rast_is_d_null_value(&d_t0dem) || Rast_is_d_null_value(&d_z0m)) {
		/* do nothing */
		d_Roh[row][col] = -999.9;
		d_Rah[row][col] = -999.9;
	    }
	    else {
		d_u5 = (ustar / 0.41) * log(5 / d_z0m);
		d_rah1=(1/(d_u5*pow(0.41,2)))*log(5/d_z0m)*log(5/(d_z0m*0.1));
		d_roh1=((998-ea)/(d_t0dem*2.87))+(ea/(d_t0dem*4.61));
		if (d_roh1 > 5)  d_roh1 = 1.0;
		else d_roh1=((1000-4.65)/(d_t0dem*2.87))+(4.65/(d_t0dem*4.61));
		if (row == rowDry && col == colDry) {	/*collect dry pix info */
		    d_rah_dry = d_rah1;
		    d_roh_dry = d_roh1;
		    G_message("d_rah_dry=%f d_roh_dry=%f",d_rah_dry,d_roh_dry);
		}
		d_Roh[row][col] = d_roh1;
		d_Rah[row][col] = d_rah1;
	    }
	}
    }
    DCELL d_dT_dry;

    /*Calculate dT_dry */
    d_dT_dry = (h_dry * d_rah_dry) / (1004 * d_roh_dry);
    double a, b;

    /*Calculate coefficients for next dT equation */
    /*a = 1.0/ ((d_dT_dry-0.0) / (d_t0dem_dry-d_t0dem_wet)); */
    /*b = ( a * d_t0dem_wet ) * (-1.0); */
    double sumx = d_t0dem_wet + d_t0dem_dry;
    double sumy = d_dT_dry + 0.0;
    double sumx2 = pow(d_t0dem_wet, 2) + pow(d_t0dem_dry, 2);
    double sumxy = (d_t0dem_wet * 0.0) + (d_t0dem_dry * d_dT_dry);
    a = (sumxy - ((sumx * sumy) / 2.0)) / (sumx2 - (pow(sumx, 2) / 2.0));
    b = (sumy - (a * sumx)) / 2.0;
    G_message("d_dT_dry=%f", d_dT_dry);
    G_message("dT1=%f * t0dem + (%f)", a, b);
    DCELL d_h_dry;

    /* ITERATION 1 */
    for (row = 0; row < nrows; row++) {
	DCELL d_t0dem,d_z0m;
	DCELL d_h1,d_rah1,d_rah2,d_roh1;
	DCELL d_L,d_x,d_psih,d_psim;
	DCELL d_u5;
	G_percent(row, nrows, 2);
	/* read a line input maps into buffers */
	Rast_get_d_row(infd_z0m, inrast_z0m, row);
	Rast_get_d_row(infd_t0dem, inrast_t0dem,row);
	/* read every cell in the line buffers */
	for (col = 0; col < ncols; col++) {
            d_z0m = ((DCELL *) inrast_z0m)[col];
            d_t0dem = ((DCELL *) inrast_t0dem)[col];
	    d_rah1 = d_Rah[row][col];
	    d_roh1 = d_Roh[row][col];
	    if (Rast_is_d_null_value(&d_t0dem) || Rast_is_d_null_value(&d_z0m)) {
		/* do nothing */
	    }
	    else {
		if (d_rah1 < 1.0) 
		    d_h1 = 0.0;
		else 
		    d_h1 = (1004 * d_roh1) * (a * d_t0dem + b) / d_rah1;
		d_L =-1004*d_roh1*pow(ustar,3)*d_t0dem/(d_h1*9.81*0.41);
		d_x = pow((1-16*(5/d_L)),0.25);
		d_psim =2*log((1+d_x)/2)+log((1+pow(d_x,2))/2)-2*atan(d_x)+0.5*M_PI;
		d_psih =2*log((1+pow(d_x,2))/2);
		d_u5 =(ustar/0.41)*log(5/d_z0m);
		d_rah2 = (1/(d_u5*pow(0.41,2)))*log((5/d_z0m)-d_psim)
                        *log((5/(d_z0m*0.1))-d_psih);
		if (row == rowDry && col == colDry) {/*collect dry pix info */
		    d_rah_dry = d_rah2;
		    d_h_dry = d_h1;
		}
		d_Rah[row][col] = d_rah1;
	    }
	}
    }

    /*Calculate dT_dry */
    d_dT_dry = (d_h_dry * d_rah_dry) / (1004 * d_roh_dry);
    /*Calculate coefficients for next dT equation */
    /*      a = (d_dT_dry-0)/(d_t0dem_dry-d_t0dem_wet); */
    /*      b = (-1.0) * ( a * d_t0dem_wet ); */
    /*      G_message("d_dT_dry=%f",d_dT_dry); */
    /*      G_message("dT2=%f * t0dem + (%f)", a, b); */
    sumx = d_t0dem_wet + d_t0dem_dry;
    sumy = d_dT_dry + 0.0;
    sumx2 = pow(d_t0dem_wet, 2) + pow(d_t0dem_dry, 2);
    sumxy = (d_t0dem_wet * 0.0) + (d_t0dem_dry * d_dT_dry);
    a = (sumxy - ((sumx * sumy) / 2.0)) / (sumx2 - (pow(sumx, 2) / 2.0));
    b = (sumy - (a * sumx)) / 2.0;
    G_message("d_dT_dry=%f", d_dT_dry);
    G_message("dT1=%f * t0dem + (%f)", a, b);

    /* ITERATION 2 */
    /***************************************************/
    /***************************************************/
    for (row = 0; row < nrows; row++) {
	DCELL d_t0dem;
	DCELL d_z0m;
	DCELL d_rah2;
	DCELL d_rah3;
	DCELL d_roh1;
	DCELL d_h2;
	DCELL d_L;
	DCELL d_x;
	DCELL d_psih;
	DCELL d_psim;
	DCELL d_u5;
	G_percent(row, nrows, 2);
	/* read a line input maps into buffers */
	Rast_get_d_row(infd_z0m,inrast_z0m,row);
	Rast_get_d_row(infd_t0dem,inrast_t0dem,row);
	/* read every cell in the line buffers */
	for (col = 0; col < ncols; col++) {
            d_z0m = ((DCELL *) inrast_z0m)[col];
            d_t0dem = ((DCELL *) inrast_t0dem)[col];
	    d_rah2 = d_Rah[row][col];
	    d_roh1 = d_Roh[row][col];
	    if (Rast_is_d_null_value(&d_t0dem) || Rast_is_d_null_value(&d_z0m)) {
		/* do nothing */
	    }
	    else {
		if (d_rah2 < 1.0) {
		    d_h2 = 0.0;
		}
		else {
		    d_h2 =(1004*d_roh1)*(a*d_t0dem+b)/d_rah2;
		}
		d_L =-1004*d_roh1*pow(ustar,3)*d_t0dem/(d_h2*9.81*0.41);
		d_x = pow((1 - 16 * (5 / d_L)), 0.25);
		d_psim =2*log((1+d_x)/2)+log((1+pow(d_x,2))/2)-
		    2*atan(d_x)+0.5*M_PI;
		d_psih =2*log((1+pow(d_x,2))/2);
		d_u5 =(ustar/0.41)*log(5/d_z0m);
		d_rah3=(1/(d_u5*pow(0.41,2)))*log((5/d_z0m)-d_psim)*
                       log((5/(d_z0m*0.1))-d_psih);
		if (row == rowDry && col == colDry) {/*collect dry pix info */
		    d_rah_dry = d_rah2;
		    d_h_dry = d_h2;
		}
		d_Rah[row][col] = d_rah2;
	    }
	}
    }

    /*Calculate dT_dry */
    d_dT_dry = (d_h_dry * d_rah_dry) / (1004 * d_roh_dry);
    /*Calculate coefficients for next dT equation */
    /*      a = (d_dT_dry-0)/(d_t0dem_dry-d_t0dem_wet); */
    /*      b = (-1.0) * ( a * d_t0dem_wet ); */
    /*      G_message("d_dT_dry=%f",d_dT_dry); */
    /*      G_message("dT3=%f * t0dem + (%f)", a, b); */
    sumx = d_t0dem_wet + d_t0dem_dry;
    sumy = d_dT_dry + 0.0;
    sumx2 = pow(d_t0dem_wet, 2) + pow(d_t0dem_dry, 2);
    sumxy = (d_t0dem_wet * 0.0) + (d_t0dem_dry * d_dT_dry);
    a = (sumxy - ((sumx * sumy) / 2.0)) / (sumx2 - (pow(sumx, 2) / 2.0));
    b = (sumy - (a * sumx)) / 2.0;
    G_message("d_dT_dry=%f", d_dT_dry);
    G_message("dT1=%f * t0dem + (%f)", a, b);

    /* ITERATION 3 */
    /***************************************************/
    /***************************************************/

    for (row = 0; row < nrows; row++) {
	DCELL d_t0dem;
	DCELL d_z0m;
	DCELL d_rah3;
	DCELL d_roh1;
	DCELL d_h3;
	DCELL d_L;
	DCELL d_x;
	DCELL d_psih;
	DCELL d_psim;
	DCELL d;		/* Output pixel */
	G_percent(row, nrows, 2);
	/* read a line input maps into buffers */
	Rast_get_d_row(infd_z0m, inrast_z0m, row);
	Rast_get_d_row(infd_t0dem,inrast_t0dem,row);
	/* read every cell in the line buffers */
	for (col = 0; col < ncols; col++) {
            d_z0m = ((DCELL *) inrast_z0m)[col];
            d_t0dem = ((DCELL *) inrast_t0dem)[col];
	    d_rah3 = d_Rah[row][col];
	    d_roh1 = d_Roh[row][col];
	    if (Rast_is_d_null_value(&d_t0dem) || Rast_is_d_null_value(&d_z0m)) {
		Rast_set_d_null_value(&outrast[col], 1);
	    }
	    else {
		if (d_rah3 < 1.0) {
		    d_h3 = 0.0;
		}
		else {
		    d_h3 = (1004 * d_roh1) * (a * d_t0dem + b) / d_rah3;
		}
		if (d_h3 < 0 && d_h3 > -50) {
		    d_h3 = 0.0;
		}
		if (d_h3 < -50 || d_h3 > 1000) {
		    Rast_set_d_null_value(&outrast[col], 1);
		}
		outrast[col] = d_h3;
	    }
	}
	Rast_put_d_row(outfd, outrast);
    }


    G_free(inrast_z0m);
    Rast_close(infd_z0m);
    G_free(inrast_t0dem);
    Rast_close(infd_t0dem);

    G_free(outrast);
    Rast_close(outfd);

    /* add command line incantation to history file */
    Rast_short_history(h0, "raster", &history);
    Rast_command_history(&history);
    Rast_write_history(h0, &history);

    exit(EXIT_SUCCESS);
}