Exemple #1
0
int main(int argc, char **argv)
{
  double comm_cost[] = { 0.0, 0.0, 0.0, 0.0 };
  double comp_cost[] = { 1.0 };
  SD_task_t taskA, taskB;
  xbt_dynar_t ret;

  SD_init(&argc, argv);
  SD_create_environment(argv[1]);

  taskA = SD_task_create("Task A", NULL, 1.0);
  taskB = SD_task_create("Task B", NULL, 1.0);

  SD_task_schedule(taskA, 1, SD_workstation_get_list(), comp_cost,
                   comm_cost, -1.0);
  SD_task_schedule(taskB, 1, SD_workstation_get_list(), comp_cost,
                   comm_cost, -1.0);

  ret = SD_simulate(-1.0);
  xbt_dynar_free(&ret);
  SD_task_destroy(taskA);
  SD_task_destroy(taskB);

  XBT_INFO("Simulation time: %f", SD_get_clock());

  SD_exit();
  return 0;
}
Exemple #2
0
int main(int argc, char **argv)
{
  double comm_cost[] = { 0.0, 0.0, 0.0, 0.0 };
  double comp_cost[] = { 1.0 };
  SD_task_t taskA, taskB;
  xbt_dynar_t ret;

  SD_init(&argc, argv);
  SD_create_environment(argv[1]);

  taskA = SD_task_create("Task A", NULL, 1.0);
  taskB = SD_task_create("Task B", NULL, 1.0);

  SD_task_schedule(taskA, 1, SD_workstation_get_list(), comp_cost,
                   comm_cost, -1.0);
  SD_task_schedule(taskB, 1, SD_workstation_get_list(), comp_cost,
                   comm_cost, -1.0);

  ret = SD_simulate(-1.0);
  xbt_assert(xbt_dynar_length(ret) == 2,
      "I was expecting the terminaison of 2 tasks, but I got %lu instead",
      xbt_dynar_length(ret));
  xbt_dynar_free(&ret);
  SD_task_destroy(taskA);
  SD_task_destroy(taskB);

  XBT_INFO("Simulation time: %f", SD_get_clock());

  SD_exit();
  return 0;
}
Exemple #3
0
/* SimDag Incomplete Test
 * Scenario:
 *   - Create a bunch of tasks
 *   - schedule only a subset of them (init, A and D)
 *   - run the simulation
 *   - Verify that we detect which tasks are not scheduled and show their state.
 * The scheduled task A sends 1GB. Simulation time should be
 *          1e9/1.25e8 + 1e-4 = 8.0001 seconds
 * Task D is scheduled but depends on unscheduled task C.
 */
int main(int argc, char **argv)
{

  SD_task_t taskInit;
  SD_task_t taskA, taskB, taskC, taskD;
  xbt_dynar_t ret;

  const SD_workstation_t *workstation;

  double communication_amount1 = 1e9;
  double no_cost = 0.0;

  /* initialization of SD */
  SD_init(&argc, argv);

  /* creation of the environment */
  SD_create_environment(argv[1]);

  /* creation of the tasks and their dependencies */
  taskInit = SD_task_create("Init", NULL, 1.0);
  taskA = SD_task_create("Task A", NULL, 1.0);
  taskB = SD_task_create("Task B", NULL, 1.0);
  taskC = SD_task_create("Task C", NULL, 1.0);
  taskD = SD_task_create("Task D", NULL, 1.0);


  /* scheduling parameters */

  workstation = SD_workstation_get_list();

  SD_task_dependency_add(NULL, NULL, taskInit, taskA);
  SD_task_dependency_add(NULL, NULL, taskInit, taskB);
  SD_task_dependency_add(NULL, NULL, taskC, taskD);

  /* let's launch the simulation! */
  SD_task_schedule(taskInit, 1, SD_workstation_get_list(), &no_cost,
                   &no_cost, -1.0);
  SD_task_schedule(taskA, 1, &workstation[0], &no_cost,
                     &communication_amount1, -1.0);
  SD_task_schedule(taskD, 1, &workstation[0], &no_cost,
                     &communication_amount1, -1.0);


  ret = SD_simulate(-1.);
  xbt_dynar_free(&ret);
  SD_task_destroy(taskA);
  SD_task_destroy(taskB);
  SD_task_destroy(taskC);
  SD_task_destroy(taskD);
  SD_task_destroy(taskInit);

  XBT_INFO("Simulation time: %f", SD_get_clock());

  SD_exit();
  return 0;
}
Exemple #4
0
/* Basic SimDag Test 5
 * Scenario:
 *   - Create a no-op Init task
 *   - Create two tasks: send 100kB and compute 10Mflops
 *   - Schedule them concurrently
 * The two tasks should overlap smoothly as they use different resources.
 * Simulated time should be:
 *          MAX(1e5/(1.25e8), 1e7/4e9) = MAX(.0009, .0025) = 0.0025 seconds
 */
int main(int argc, char **argv)
{

  /* creation of the tasks and their dependencies */
  SD_task_t taskInit;
  SD_task_t taskA;
  SD_task_t taskB;
  xbt_dynar_t ret;

  /* scheduling parameters */

  double no_cost[] = { 0., 0., 0., 0. };
  double amount[] = { 0., 100000., 0., 0. };
  double comput[] = { 10000000. };

  /* initialization of SD */
  SD_init(&argc, argv);

  /* creation of the environment */
  SD_create_environment(argv[1]);

  /* creation of the tasks and their dependencies */
  taskInit = SD_task_create("Task Init", NULL, 1.0);
  taskA = SD_task_create("Task A", NULL, 1.0);
  taskB = SD_task_create("Task B", NULL, 1.0);

  /* let's launch the simulation! */
  SD_task_schedule(taskInit, 1, SD_workstation_get_list(), no_cost,
                   no_cost, -1.0);
  SD_task_schedule(taskA, 2, SD_workstation_get_list(), no_cost, amount,
                   -1.0);
  SD_task_schedule(taskB, 1, SD_workstation_get_list(), comput, no_cost,
                   -1.0);

  SD_task_dependency_add(NULL, NULL, taskInit, taskA);
  SD_task_dependency_add(NULL, NULL, taskInit, taskB);

  ret = SD_simulate(-1.0);
  xbt_dynar_free(&ret);
  SD_task_destroy(taskInit);
  SD_task_destroy(taskA);
  SD_task_destroy(taskB);

  XBT_INFO("Simulation time: %f", SD_get_clock());

  SD_exit();
  return 0;
}
int main(int argc, char **argv)
{

  double time;
  double comm_amount[] = { 0.0, 0.0, 0.0, 0.0 };
  double comp_cost[] = { 1.0, 1.0 };

  SD_task_t task;
  xbt_dynar_t ret;

  SD_init(&argc, argv);
  SD_create_environment(argv[1]);

  task = SD_task_create("partask", NULL, 1.0);
  SD_task_schedule(task, 2, SD_workstation_get_list(), comp_cost,
                   comm_amount, -1.0);

  ret = SD_simulate(-1.0);
  xbt_dynar_free(&ret);

  time = SD_get_clock();

  printf("%g\n", time);
  fflush(stdout);

  SD_task_destroy(task);

  SD_exit();

  return 0;
}
Exemple #6
0
static void scheduleDAX(xbt_dynar_t dax)
{
  unsigned int cursor;
  SD_task_t task;

  const SD_workstation_t *ws_list = SD_workstation_get_list();
  int totalHosts = SD_workstation_get_number();
  qsort((void *) ws_list, totalHosts, sizeof(SD_workstation_t),
        name_compare_hosts);

  int count = SD_workstation_get_number();
  //fprintf(stdout, "No. workstations: %d, %d\n", count, (dax != NULL));

  xbt_dynar_foreach(dax, cursor, task) {
    if (SD_task_get_kind(task) == SD_TASK_COMP_SEQ) {
      if (!strcmp(SD_task_get_name(task), "end")
          || !strcmp(SD_task_get_name(task), "root")) {
        fprintf(stdout, "Scheduling %s to node: %s\n", SD_task_get_name(task),
                SD_workstation_get_name(ws_list[0]));
        SD_task_schedulel(task, 1, ws_list[0]);
      } else {
        fprintf(stdout, "Scheduling %s to node: %s\n", SD_task_get_name(task),
                SD_workstation_get_name(ws_list[(cursor) % count]));
        SD_task_schedulel(task, 1, ws_list[(cursor) % count]);
      }
    }
  }
}
Exemple #7
0
/*
 * Sort the global list workstations with regard to their availability dates and
 * the simulated time given as input (that corresponds to the estimated minimal
 * start time of a task).
 * All the workstations that are available before this minimal start are sorted
 * in decreasing order of available_at values and placed at the beginning of the
 * set. Those that are available after are sorted in increasing order of
 * available_at values and placed at the end of the set. This way idle times are
 * minimize, and the earliest available workstations are selected, whether the
 * task has to wait or not.
 */
SD_workstation_t * get_best_workstation_set(double time){
  int i, nfirst=0;
  int nworkstations = SD_workstation_get_number();
  const SD_workstation_t *workstations = SD_workstation_get_list();
  SD_workstation_t *best_workstation_set = NULL;

  best_workstation_set = (SD_workstation_t*) calloc (nworkstations,
      sizeof(SD_workstation_t));

  for (i = 0; i < nworkstations; i++){
    if (SD_workstation_get_available_at(workstations[i]) > time){
      best_workstation_set[nworkstations-nfirst-1] = workstations[i];
      nfirst++;
    } else {
      best_workstation_set[i - nfirst] = workstations[i];
    }
  }

  /* Order hosts that are available before the end of node's parent
   * in a decreasing order w.r.t. their availability date*/
  qsort(best_workstation_set,nworkstations-nfirst,sizeof(SD_workstation_t),
      availableAtCompareWorkstations);

  /* Order hosts that are available after the end of node's parent
   * in a increasing order w.r.t. their availability date */
  qsort(&(best_workstation_set[nworkstations-nfirst]), nfirst,
      sizeof(SD_workstation_t), NavailableAtCompareWorkstations);

  return best_workstation_set;
}
Exemple #8
0
int main(int argc, char **argv)
{
  unsigned int ctr;
  const SD_workstation_t *workstations;
  int total_nworkstations;
  xbt_dict_t current_storage_list;
  char *mount_name;
  char *storage_name;
  xbt_dict_cursor_t cursor = NULL;

  SD_init(&argc, argv);
  /* Set the workstation model to default, as storage is not supported by the
   * ptask_L07 model yet.
   */
  SD_config("host/model", "default");
  SD_create_environment(argv[1]);
  workstations = SD_workstation_get_list();
  total_nworkstations = SD_workstation_get_number();

  for (ctr=0; ctr<total_nworkstations;ctr++){
    current_storage_list = SD_workstation_get_mounted_storage_list(workstations[ctr]);
    xbt_dict_foreach(current_storage_list,cursor,mount_name,storage_name)
      XBT_INFO("Workstation '%s' mounts '%s'",
         SD_workstation_get_name(workstations[ctr]), mount_name);
    xbt_dict_free(&current_storage_list);
  }
  SD_exit();
  return 0;
}
Exemple #9
0
int main(int argc, char **argv)
{
  double time;
  SD_task_t root;
  SD_task_t task1;
  SD_task_t task2;
  double communication_amount1[] = { 0.0, 1.0, 0.0, 0.0 };
  double communication_amount2[] = { 0.0, 1.0, 0.0, 0.0 };
  double no_cost1[] = { 0.0 };
  double no_cost[] = { 0.0, 0.0 };
  xbt_dynar_t ret;

  SD_init(&argc, argv);
  SD_create_environment(argv[1]);

  root = SD_task_create("Root", NULL, 1.0);
  task1 = SD_task_create("Comm 1", NULL, 1.0);
  task2 = SD_task_create("Comm 2", NULL, 1.0);

  SD_task_schedule(root, 1, SD_workstation_get_list(), no_cost1, no_cost1,
                   -1.0);
  SD_task_schedule(task1, 2, SD_workstation_get_list(), no_cost,
                   communication_amount1, -1.0);
  SD_task_schedule(task2, 2, SD_workstation_get_list(), no_cost,
                   communication_amount2, -1.0);

  SD_task_dependency_add(NULL, NULL, root, task1);
  SD_task_dependency_add(NULL, NULL, root, task2);

  ret = SD_simulate(-1.0);
  xbt_dynar_free(&ret);

  time = SD_get_clock();

  printf("%g\n", time);
  fflush(stdout);

  SD_task_destroy(root);
  SD_task_destroy(task1);
  SD_task_destroy(task2);

  SD_exit();

  return 0;
}
Exemple #10
0
int main(int argc, char **argv)
{

  const char *platform_file;
  const SD_workstation_t *workstations;
  int ws_nr;
  SD_workstation_t w1 = NULL;
  SD_workstation_t w2 = NULL;
  const char *name1, *name2;
  int i, j, k;

  /* initialisation of SD */
  SD_init(&argc, argv);

  /*  xbt_log_control_set("sd.thres=debug"); */

  if (argc < 2) {
    XBT_INFO("Usage: %s platform_file", argv[0]);
    XBT_INFO("example: %s sd_platform.xml", argv[0]);
    exit(1);
  }

  /* creation of the environment */
  platform_file = argv[1];
  SD_create_environment(platform_file);

  /* test the estimation functions */
  workstations = SD_workstation_get_list();
  ws_nr = SD_workstation_get_number();


  /* Show routes between all workstation */

  for (i = 0; i < ws_nr; i++) {
    for (j = 0; j < ws_nr; j++) {
      const SD_link_t *route;
      int route_size;
      w1 = workstations[i];
      w2 = workstations[j];
      name1 = SD_workstation_get_name(w1);
      name2 = SD_workstation_get_name(w2);
      XBT_INFO("Route between %s and %s:", name1, name2);
      route = SD_route_get_list(w1, w2);
      route_size = SD_route_get_size(w1, w2);
      for (k = 0; k < route_size; k++) {
        XBT_INFO("\tLink %s: latency = %f, bandwidth = %f",
              SD_link_get_name(route[k]),
              SD_link_get_current_latency(route[k]),
              SD_link_get_current_bandwidth(route[k]));
      }
    }
  }

  SD_exit();
  return 0;
}
Exemple #11
0
/*
 * Used to start a new simulation within the same run on the fresh basis.
 * This function browses the list of workstations and set back attributes to
 * their initial values:
 *   - available_at = 0.0
 *   - last_scheduled_task = NULL
 */
void reset_workstation_attributes() {
  int i;
  int nworkstations = SD_workstation_get_number();
  const SD_workstation_t *workstations = SD_workstation_get_list();

  for (i = 0; i < nworkstations; i++){
    SD_workstation_set_available_at(workstations[i], 0.0);
    SD_workstation_set_last_scheduled_task(workstations[i], NULL);
  }
}
Exemple #12
0
/*
 * Determine how many distinct workstations have been used by a given schedule.
 * This function is called once the simulation is over. It simply browses the
 * list of all workstations and check the 'available_at' attribute. If its
 * value is greater than 0.0 this means that at least one has been executed
 * there, thus incrementing the peak value.
 */
int compute_peak_resource_usage() {
  int i, peak=0;
  int nworkstations = SD_workstation_get_number();
  const SD_workstation_t *workstations = SD_workstation_get_list();
  for (i = 0; i < nworkstations; i++)
    if (SD_workstation_get_available_at(workstations[i]) > 0.0)
      peak++;

  return peak;
}
Exemple #13
0
static SD_task_t create_empty_cost_root()
{
  double no_cost[] = { 0.0 };
  SD_task_t root;

  root = SD_task_create("Root", NULL, 1.0);
  SD_task_schedule(root, 1, SD_workstation_get_list(), no_cost, no_cost,
                   -1.0);

  return root;
}
Exemple #14
0
static SD_task_t create_root_with_costs()
{
  double comp_cost[] = { 0.0, 0.0 };
  double comm_cost[] = { 0.0, 1.0, 0.0, 0.0 };
  SD_task_t root;

  root = SD_task_create("Root", NULL, 1.0);
  SD_task_schedule(root, 2, SD_workstation_get_list(), comp_cost,
                   comm_cost, -1.0);

  return root;
}
Exemple #15
0
/*
 * Return a rough estimation of what would be the execution time of task given
 * as input on a given number of workstations. The task has to be of kind
 * SD_TASK_COMP_PAR_AMDAHL, as Amdahl's law is applied to get this estimation.
 * It also assumes a fully homogeneous set of workstations as no distinction is
 * made within the whole set.
 */
double SD_task_estimate_execution_time(SD_task_t task, int nworkstations){
  const SD_workstation_t *workstations = SD_workstation_get_list();
  double amount, alpha, power, estimate;

  amount = SD_task_get_amount(task);
  alpha = SD_task_get_alpha(task);
  power = SD_workstation_get_power(workstations[0]);
  estimate = (alpha + (1 - alpha)/nworkstations) * (amount/power);

  XBT_DEBUG("Estimation for task %s is: %f seconds",
      SD_task_get_name(task), estimate);
  return estimate;
}
Exemple #16
0
int main(int argc, char **argv)
{
  char *platformFile = NULL;
  int totalHosts, totalLinks;
  unsigned int i;
  xbt_dict_t props = NULL;
  xbt_dict_cursor_t cursor = NULL;
  xbt_lib_cursor_t cursor_src = NULL;
  xbt_lib_cursor_t cursor_dst = NULL;
  char *src,*dst,*key,*data;
  char **value;
  xbt_ex_t e;

  const SD_workstation_t *hosts;
  const SD_link_t *links;

  SD_init(&argc, argv);

  platformFile = argv[1];
  XBT_DEBUG("%s", platformFile);
  TRY {
    SD_create_environment(platformFile);
  } CATCH(e) {
    xbt_die("Error while loading %s: %s",platformFile,e.msg);
  }

  printf("<?xml version='1.0'?>\n");
  printf("<!DOCTYPE platform SYSTEM \"http://simgrid.gforge.inria.fr/simgrid.dtd\">\n");
  printf("<platform version=\"3\">\n");
  printf("<AS id=\"AS0\" routing=\"Full\">\n");

  // Hosts
  totalHosts = SD_workstation_get_number();
  hosts = SD_workstation_get_list();
  qsort((void *) hosts, totalHosts, sizeof(SD_workstation_t),
        name_compare_hosts);

  for (i = 0; i < totalHosts; i++) {
    printf("  <host id=\"%s\" power=\"%.0f\"",
           SD_workstation_get_name(hosts[i]),
           SD_workstation_get_power(hosts[i]));
    props = SD_workstation_get_properties(hosts[i]);
    if (props && xbt_dict_length(props) > 0) {
      printf(">\n");
      xbt_dict_foreach(props, cursor, key, data) {
        printf("    <prop id=\"%s\" value=\"%s\"/>\n", key, data);
      }
      printf("  </host>\n");
    } else {
Exemple #17
0
int main(int argc, char **argv)
{
  const SD_workstation_t *workstations;
  SD_workstation_t w1;
  SD_workstation_t w2;
  const char *name1;
  const char *name2;
  xbt_dict_t props;
  xbt_dict_cursor_t cursor = NULL;
  char *key, *data;
  char noexist[] = "NoProp";
  const char *value;
  char exist[] = "Hdd";

  /* initialisation of SD */
  SD_init(&argc, argv);
  if (argc < 2) {
    XBT_INFO("Usage: %s platform_file", argv[0]);
    XBT_INFO("example: %s sd_platform.xml", argv[0]);
    exit(1);
  }
  SD_create_environment(argv[1]);

  /* init of platform elements */
  workstations = SD_workstation_get_list();
  w1 = workstations[0];
  w2 = workstations[1];
  SD_workstation_set_access_mode(w2, SD_WORKSTATION_SEQUENTIAL_ACCESS);
  name1 = SD_workstation_get_name(w1);
  name2 = SD_workstation_get_name(w2);


  /* The host properties can be retrived from all interfaces */

  XBT_INFO("Property list for workstation %s", name1);
  /* Get the property list of the workstation 1 */
  props = SD_workstation_get_properties(w1);


  /* Trying to set a new property */
  xbt_dict_set(props, "NewProp", strdup("newValue"), NULL);

  /* Print the properties of the workstation 1 */
  xbt_dict_foreach(props, cursor, key, data) {
    XBT_INFO("\tProperty: %s has value: %s", key, data);
  }
Exemple #18
0
int main(int argc, char **argv) {
  xbt_os_timer_t timer = xbt_os_timer_new();

  /* initialization of SD */
  SD_init(&argc, argv);

  if (argc > 1) {
    SD_create_environment(argv[1]);
  } else {
    SD_create_environment("../../platforms/One_cluster_no_backbone.xml");
  }

  ws_list = SD_workstation_get_list();
  reclaimed = xbt_dynar_new(sizeof(bcast_task_t),xbt_free_ref);
  xbt_dynar_t done = NULL;

  xbt_os_cputimer_start(timer);
  send_one(0,SD_workstation_get_number());
  do {
    if (done != NULL && !xbt_dynar_is_empty(done)) {
      unsigned int cursor;
      SD_task_t task;

      xbt_dynar_foreach(done, cursor, task) {
        bcast_task_t bt = SD_task_get_data(task);

        if (bt->i != bt->j -1)
          send_one(bt->i,bt->j);
        if (bt->j != bt->k -1)
          send_one(bt->j,bt->k);

        if (xbt_dynar_length(reclaimed)<100) {
          xbt_dynar_push_as(reclaimed,bcast_task_t,bt);
        } else {
          free(bt);
        }
        SD_task_destroy(task);
      }
      xbt_dynar_free(&done);
    }
Exemple #19
0
int main(int argc, char **argv)
{
  int i;
  const char *platform_file;
  const SD_workstation_t *workstations;
  int kind;
  SD_task_t task, taskA, taskB, taskC;
  xbt_dynar_t changed_tasks;
  SD_workstation_t workstation_list[2];
  double computation_amount[2];
  double communication_amount[4] = { 0 };
  double rate = -1.0;
  SD_workstation_t w1, w2;

  /* SD initialization */
  SD_init(&argc, argv);

  /*  xbt_log_control_set("sd.thres=debug"); */

  if (argc < 2) {
    XBT_INFO("Usage: %s platform_file", argv[0]);
    XBT_INFO("example: %s sd_platform.xml", argv[0]);
    exit(1);
  }

  /* creation of the environment */
  platform_file = argv[1];
  SD_create_environment(platform_file);

  /* Change the access mode of the workstations */
  workstations = SD_workstation_get_list();
  w1 = workstations[0];
  w2 = workstations[1];
  for (i = 0; i < 2; i++) {
    SD_workstation_set_access_mode(workstations[i],
                                   SD_WORKSTATION_SEQUENTIAL_ACCESS);
    XBT_INFO("Access mode of %s is %s",
          SD_workstation_get_name(workstations[i]),
          (SD_workstation_get_access_mode(workstations[i]) ==
           SD_WORKSTATION_SEQUENTIAL_ACCESS) ? "sequential" : "shared");
  }

  /* creation of the tasks and their dependencies */
  taskA = SD_task_create_comp_seq("Task A", NULL, 2e9);
  taskB = SD_task_create_comm_e2e("Task B", NULL, 2e9);
  taskC = SD_task_create_comp_seq("Task C", NULL, 1e9);
  TRACE_category ("taskA");
  TRACE_category ("taskB");
  TRACE_category ("taskC");
  TRACE_sd_set_task_category (taskA, "taskA");
  TRACE_sd_set_task_category (taskB, "taskB");
  TRACE_sd_set_task_category (taskC, "taskC");

  /* if everything is ok, no exception is forwarded or rethrown by main() */

  /* watch points */
  SD_task_watch(taskA, SD_RUNNING);
  SD_task_watch(taskB, SD_RUNNING);
  SD_task_watch(taskC, SD_RUNNING);
  SD_task_watch(taskC, SD_DONE);


  /* scheduling parameters */
  workstation_list[0] = w1;
  workstation_list[1] = w2;
  computation_amount[0] = SD_task_get_amount(taskA);
  computation_amount[1] = SD_task_get_amount(taskB);

  communication_amount[1] = SD_task_get_amount(taskC);
  communication_amount[2] = 0.0;

  SD_task_schedule(taskA, 1, &w1,
                   &(computation_amount[0]), SD_SCHED_NO_COST, rate);
  SD_task_schedule(taskB, 2, workstation_list,
                   SD_SCHED_NO_COST, communication_amount, rate);
  SD_task_schedule(taskC, 1, &w1,
                   &(computation_amount[1]), SD_SCHED_NO_COST, rate);

  /* let's launch the simulation! */
  while (!xbt_dynar_is_empty(changed_tasks = SD_simulate(-1.0))) {
    for (i = 0; i < 2; i++) {
      task = SD_workstation_get_current_task(workstations[i]);
      if (task)
        kind = SD_task_get_kind(task);
      else {
        XBT_INFO("There is no task running on %s",
              SD_workstation_get_name(workstations[i]));
        continue;
      }

      switch (kind) {
      case SD_TASK_COMP_SEQ:
        XBT_INFO("%s is currently running on %s (SD_TASK_COMP_SEQ)",
              SD_task_get_name(task),
              SD_workstation_get_name(workstations[i]));
        break;
      case SD_TASK_COMM_E2E:
        XBT_INFO("%s is currently running on %s (SD_TASK_COMM_E2E)",
              SD_task_get_name(task),
              SD_workstation_get_name(workstations[i]));
        break;
      case SD_TASK_NOT_TYPED:
        XBT_INFO("Task running on %s has no type",
              SD_workstation_get_name(workstations[i]));
        break;
      default:
        XBT_ERROR("Shouldn't be here");
      }
    }
    xbt_dynar_free_container(&changed_tasks);
  }
  xbt_dynar_free_container(&changed_tasks);

  XBT_DEBUG("Destroying tasks...");

  SD_task_destroy(taskA);
  SD_task_destroy(taskB);
  SD_task_destroy(taskC);

  XBT_DEBUG("Tasks destroyed. Exiting SimDag...");

  SD_exit();
  return 0;
}
Exemple #20
0
int main(int argc, char **argv)
{
  int i;
  unsigned int ctr;
  const char *platform_file;
  const SD_workstation_t *workstations;
  const char *name1;
  const char *name2;
  double computation_amount1;
  double computation_amount2;
  double communication_amount12;
  double communication_amount21;
  const SD_link_t *route;
  int route_size;
  SD_task_t task, taskA, taskB, taskC, taskD, checkB, checkD;
  xbt_dynar_t changed_tasks;
  xbt_ex_t ex;
  const int workstation_number = 2;
  SD_workstation_t workstation_list[2];
  double computation_amount[2];
  double communication_amount[4] = { 0 };
  double rate = -1.0;
  SD_workstation_t w1, w2;

  /* initialization of SD */
  SD_init(&argc, argv);

  /*  xbt_log_control_set("sd.thres=debug"); */

  if (argc < 2) {
    XBT_INFO("Usage: %s platform_file", argv[0]);
    XBT_INFO("example: %s sd_platform.xml", argv[0]);
    exit(1);
  }

  /* creation of the environment */
  platform_file = argv[1];
  SD_create_environment(platform_file);

  /* test the estimation functions */
  workstations = SD_workstation_get_list();
  w1 = workstations[0];
  w2 = workstations[1];
  SD_workstation_set_access_mode(w2, SD_WORKSTATION_SEQUENTIAL_ACCESS);
  name1 = SD_workstation_get_name(w1);
  name2 = SD_workstation_get_name(w2);
  computation_amount1 = 2000000;
  computation_amount2 = 1000000;
  communication_amount12 = 2000000;
  communication_amount21 = 3000000;
  XBT_INFO("Computation time for %f flops on %s: %f", computation_amount1,
        name1, SD_workstation_get_computation_time(w1,
                                                   computation_amount1));
  XBT_INFO("Computation time for %f flops on %s: %f", computation_amount2,
        name2, SD_workstation_get_computation_time(w2,
                                                   computation_amount2));

  XBT_INFO("Route between %s and %s:", name1, name2);
  route = SD_route_get_list(w1, w2);
  route_size = SD_route_get_size(w1, w2);
  for (i = 0; i < route_size; i++) {
    XBT_INFO("   Link %s: latency = %f, bandwidth = %f",
          SD_link_get_name(route[i]),
          SD_link_get_current_latency(route[i]),
          SD_link_get_current_bandwidth(route[i]));
  }
  XBT_INFO("Route latency = %f, route bandwidth = %f",
        SD_route_get_current_latency(w1, w2),
        SD_route_get_current_bandwidth(w1, w2));
  XBT_INFO("Communication time for %f bytes between %s and %s: %f",
        communication_amount12, name1, name2,
        SD_route_get_communication_time(w1, w2, communication_amount12));
  XBT_INFO("Communication time for %f bytes between %s and %s: %f",
        communication_amount21, name2, name1,
        SD_route_get_communication_time(w2, w1, communication_amount21));

  /* creation of the tasks and their dependencies */
  taskA = SD_task_create("Task A", NULL, 10.0);
  taskB = SD_task_create("Task B", NULL, 40.0);
  taskC = SD_task_create("Task C", NULL, 30.0);
  taskD = SD_task_create("Task D", NULL, 60.0);

  /* try to attach and retrieve user data to a task */
  SD_task_set_data(taskA, (void*) &computation_amount1);
  if (computation_amount1 != (*((double*) SD_task_get_data(taskA))))
      XBT_ERROR("User data was corrupted by a simple set/get");

  SD_task_dependency_add(NULL, NULL, taskB, taskA);
  SD_task_dependency_add(NULL, NULL, taskC, taskA);
  SD_task_dependency_add(NULL, NULL, taskD, taskB);
  SD_task_dependency_add(NULL, NULL, taskD, taskC);
  /*  SD_task_dependency_add(NULL, NULL, taskA, taskD); /\* deadlock */



  TRY {
    SD_task_dependency_add(NULL, NULL, taskA, taskA);   /* shouldn't work and must raise an exception */
    xbt_die("Hey, I can add a dependency between Task A and Task A!");
  }
  CATCH(ex) {
    if (ex.category != arg_error)
      RETHROW;                  /* this is a serious error */
    xbt_ex_free(ex);
  }

  TRY {
    SD_task_dependency_add(NULL, NULL, taskB, taskA);   /* shouldn't work and must raise an exception */
    xbt_die("Oh oh, I can add an already existing dependency!");
  }
  CATCH(ex) {
    if (ex.category != arg_error)
      RETHROW;
    xbt_ex_free(ex);
  }

  TRY {
    SD_task_dependency_remove(taskA, taskC);    /* shouldn't work and must raise an exception */
    xbt_die("Dude, I can remove an unknown dependency!");
  }
  CATCH(ex) {
    if (ex.category != arg_error)
      RETHROW;
    xbt_ex_free(ex);
  }

  TRY {
    SD_task_dependency_remove(taskC, taskC);    /* shouldn't work and must raise an exception */
    xbt_die("Wow, I can remove a dependency between Task C and itself!");
  }
  CATCH(ex) {
    if (ex.category != arg_error)
      RETHROW;
    xbt_ex_free(ex);
  }


  /* if everything is ok, no exception is forwarded or rethrown by main() */

  /* watch points */
  SD_task_watch(taskD, SD_DONE);
  SD_task_watch(taskB, SD_DONE);
  SD_task_unwatch(taskD, SD_DONE);


  /* scheduling parameters */
  workstation_list[0] = w1;
  workstation_list[1] = w2;
  computation_amount[0] = computation_amount1;
  computation_amount[1] = computation_amount2;

  communication_amount[1] = communication_amount12;
  communication_amount[2] = communication_amount21;

  /* estimated time */
  task = taskD;
  XBT_INFO("Estimated time for '%s': %f", SD_task_get_name(task),
        SD_task_get_execution_time(task, workstation_number,
                                   workstation_list, computation_amount,
                                   communication_amount));

  /* let's launch the simulation! */

  SD_task_schedule(taskA, workstation_number, workstation_list,
                   computation_amount, communication_amount, rate);
  SD_task_schedule(taskB, workstation_number, workstation_list,
                   computation_amount, communication_amount, rate);
  SD_task_schedule(taskC, workstation_number, workstation_list,
                   computation_amount, communication_amount, rate);
  SD_task_schedule(taskD, workstation_number, workstation_list,
                   computation_amount, communication_amount, rate);

  changed_tasks = SD_simulate(-1.0);
  xbt_dynar_foreach(changed_tasks, ctr, task) {
    XBT_INFO("Task '%s' start time: %f, finish time: %f",
          SD_task_get_name(task),
          SD_task_get_start_time(task), SD_task_get_finish_time(task));
  }
int main(int argc, char **argv)
{
  /* initialisation of SD */

  SD_workstation_t w1, w2;
  const SD_workstation_t *workstations;
  const SD_link_t *route;
  const char *name1;
  const char *name2;
  int route_size, i, j, k;
  int list_size;

#ifdef _XBT_WIN32
  setbuf(stderr, NULL);
  setbuf(stdout, NULL);
#else
  setvbuf(stdout, NULL, _IOLBF, 0);
#endif

  SD_init(&argc, argv);

  /* creation of the environment */
  SD_create_environment(argv[1]);
  printf("Workstation number: %d, link number: %d\n",
         SD_workstation_get_number(), SD_link_get_number());

  if (argc >= 3) {
    if (!strcmp(argv[2], "ONE_LINK")) {
      workstations = SD_workstation_get_list();
      w1 = workstations[0];
      w2 = workstations[1];
      name1 = SD_workstation_get_name(w1);
      name2 = SD_workstation_get_name(w2);

      printf("Route between %s and %s\n", name1, name2);
      route = SD_route_get_list(w1, w2);
      route_size = SD_route_get_size(w1, w2);
      printf("Route size %d\n", route_size);
      for (i = 0; i < route_size; i++) {
      printf("  Link %s: latency = %f, bandwidth = %f\n",
           SD_link_get_name(route[i]),
           SD_link_get_current_latency(route[i]),
           SD_link_get_current_bandwidth(route[i]));
      }
      printf("Route latency = %f, route bandwidth = %f\n",
         SD_route_get_current_latency(w1, w2),
         SD_route_get_current_bandwidth(w1, w2));
    }
    if (!strcmp(argv[2], "FULL_LINK")) {
      workstations = SD_workstation_get_list();
      list_size = SD_workstation_get_number();
      for (i = 0; i < list_size; i++) {
      w1 = workstations[i];
      name1 = SD_workstation_get_name(w1);
      for (j = 0; j < list_size; j++) {
        w2 = workstations[j];
        name2 = SD_workstation_get_name(w2);
        printf("Route between %s and %s\n", name1, name2);
        route = SD_route_get_list(w1, w2);
        route_size = SD_route_get_size(w1, w2);
        printf("  Route size %d\n", route_size);
        for (k = 0; k < route_size; k++) {
        printf("  Link %s: latency = %f, bandwidth = %f\n",
             SD_link_get_name(route[k]),
             SD_link_get_current_latency(route[k]),
             SD_link_get_current_bandwidth(route[k]));
        }
        printf("  Route latency = %f, route bandwidth = %f\n",
           SD_route_get_current_latency(w1, w2),
           SD_route_get_current_bandwidth(w1, w2));
      }
      }
    }
    if (!strcmp(argv[2], "PROP")) {
      printf("SG_TEST_mem: %s\n",
          SD_workstation_get_property_value(SD_workstation_get_by_name("host1"),
          "SG_TEST_mem")
          );
      printf("Author: %s\n", SD_as_router_get_property_value("AS0", "author"));
      printf("AS1: %s\n", SD_as_router_get_property_value("AS1", "name"));
      printf("AS2: %s\n", SD_as_router_get_property_value("AS2", "name"));
    }
  }

  SD_exit();
  return 0;
}
Exemple #22
0
      ("------------------- Display all tasks of the loaded DAG ---------------------------");
  xbt_dynar_foreach(dax, cursor, task) {
    SD_task_dump(task);
  }

  FILE *dotout = fopen("dax.dot", "w");
  fprintf(dotout, "digraph A {\n");
  xbt_dynar_foreach(dax, cursor, task) {
    SD_task_dotty(task, dotout);
  }
  fprintf(dotout, "}\n");
  fclose(dotout);

  /* Schedule them all on the first workstation */
  XBT_INFO("------------------- Schedule tasks ---------------------------");
  const SD_workstation_t *ws_list = SD_workstation_get_list();
  int totalHosts = SD_workstation_get_number();
  qsort((void *) ws_list, totalHosts, sizeof(SD_workstation_t),
        name_compare_hosts);

  int count = SD_workstation_get_number();
  xbt_dynar_foreach(dax, cursor, task) {
    if (SD_task_get_kind(task) == SD_TASK_COMP_SEQ) {
      if (!strcmp(SD_task_get_name(task), "end"))
        SD_task_schedulel(task, 1, ws_list[0]);
      else
        SD_task_schedulel(task, 1, ws_list[cursor % count]);
    }
  }

  XBT_INFO
Exemple #23
0
int main(int argc, char **argv)
{
  int i, j;
  xbt_dynar_t changed_tasks;
  int n_hosts;
  const SD_workstation_t *hosts;
  SD_task_t taskInit;
  SD_task_t PtoPComm1;
  SD_task_t PtoPComm2;
  SD_task_t ParComp_wocomm;
  SD_task_t IntraRedist;
  SD_task_t ParComp_wcomm1;
  SD_task_t InterRedist;
  SD_task_t taskFinal;
  SD_task_t ParComp_wcomm2;
  SD_workstation_t PtoPcomm1_hosts[2];
  SD_workstation_t PtoPcomm2_hosts[2];
  double PtoPcomm1_table[] = { 0, 12500000, 0, 0 };     /* 100Mb */
  double PtoPcomm2_table[] = { 0, 1250000, 0, 0 };      /* 10Mb */
  double ParComp_wocomm_cost[] = { 1e+9, 1e+9, 1e+9, 1e+9, 1e+9 };      /* 1 Gflop per Proc */
  double *ParComp_wocomm_table;
  SD_workstation_t ParComp_wocomm_hosts[5];
  double *IntraRedist_cost;
  double *IntraRedist_table;
  SD_workstation_t IntraRedist_hosts[5];
  double ParComp_wcomm1_cost[] = { 1e+9, 1e+9, 1e+9, 1e+9, 1e+9 };      /* 1 Gflop per Proc */
  double *ParComp_wcomm1_table;
  SD_workstation_t ParComp_wcomm1_hosts[5];
  double *InterRedist_cost;
  double *InterRedist_table;
  double ParComp_wcomm2_cost[] = { 1e+8, 1e+8, 1e+8, 1e+8, 1e+8 };      /* 1 Gflop per Proc (0.02sec duration) */
  SD_workstation_t ParComp_wcomm2_hosts[5];
  double final_cost = 5e+9;
  double *ParComp_wcomm2_table;

  /* initialisation of SD */
  SD_init(&argc, argv);

  /* creation of the environment */
  if (strstr(argv[1],".xml"))
    SD_create_environment(argv[1]);
  else
    xbt_die("Unsupported platform description style (not XML): %s",
            argv[1]);

  /* getting platform infos */
  n_hosts = SD_workstation_get_number();
  hosts = SD_workstation_get_list();

  /* sorting hosts by hostname */
  qsort((void *) hosts, n_hosts, sizeof(SD_workstation_t),
        nameCompareHosts);

  /* creation of the tasks */
  taskInit = SD_task_create("Initial", NULL, 1.0);
  PtoPComm1 = SD_task_create("PtoP Comm 1", NULL, 1.0);
  PtoPComm2 = SD_task_create("PtoP Comm 2", NULL, 1.0);
  ParComp_wocomm = SD_task_create("Par Comp without comm", NULL, 1.0);
  IntraRedist = SD_task_create("intra redist", NULL, 1.0);
  ParComp_wcomm1 = SD_task_create("Par Comp with comm 1", NULL, 1.0);
  InterRedist = SD_task_create("inter redist", NULL, 1.0);
  taskFinal = SD_task_create("Final", NULL, 1.0);
  ParComp_wcomm2 = SD_task_create("Par Comp with comm 2", NULL, 1.0);


  /* creation of the dependencies */
  SD_task_dependency_add(NULL, NULL, taskInit, PtoPComm1);
  SD_task_dependency_add(NULL, NULL, taskInit, PtoPComm2);
  SD_task_dependency_add(NULL, NULL, PtoPComm1, ParComp_wocomm);
  SD_task_dependency_add(NULL, NULL, ParComp_wocomm, IntraRedist);
  SD_task_dependency_add(NULL, NULL, IntraRedist, ParComp_wcomm1);
  SD_task_dependency_add(NULL, NULL, ParComp_wcomm1, InterRedist);
  SD_task_dependency_add(NULL, NULL, InterRedist, ParComp_wcomm2);
  SD_task_dependency_add(NULL, NULL, ParComp_wcomm2, taskFinal);
  SD_task_dependency_add(NULL, NULL, PtoPComm2, taskFinal);


  /* scheduling parameters */

  /* large point-to-point communication (0.1 sec duration) */
  PtoPcomm1_hosts[0] = hosts[0];
  PtoPcomm1_hosts[1] = hosts[1];

  /* small point-to-point communication (0.01 sec duration) */
  PtoPcomm2_hosts[0] = hosts[0];
  PtoPcomm2_hosts[1] = hosts[2];

  /* parallel task without intra communications (1 sec duration) */
  ParComp_wocomm_table = xbt_new0(double, 25);

  for (i = 0; i < 5; i++) {
    ParComp_wocomm_hosts[i] = hosts[i];
  }

  /* redistribution within a cluster (small latencies) */
  /* each host send (4*2.5Mb =) 10Mb */
  /* bandwidth is shared between 5 flows (0.05sec duration) */
  IntraRedist_cost = xbt_new0(double, 5);
  IntraRedist_table = xbt_new0(double, 25);
  for (i = 0; i < 5; i++) {
    for (j = 0; j < 5; j++) {
      if (i == j)
        IntraRedist_table[i * 5 + j] = 0.;
      else
        IntraRedist_table[i * 5 + j] = 312500.; /* 2.5Mb */
    }
  }

  for (i = 0; i < 5; i++) {
    IntraRedist_hosts[i] = hosts[i];
  }

  /* parallel task with intra communications */
  /* Computation domination (1 sec duration) */
  ParComp_wcomm1_table = xbt_new0(double, 25);

  for (i = 0; i < 5; i++) {
    ParComp_wcomm1_hosts[i] = hosts[i];
  }

  for (i = 0; i < 5; i++) {
    for (j = 0; j < 5; j++) {
      if (i == j)
        ParComp_wcomm1_table[i * 5 + j] = 0.;
      else
        ParComp_wcomm1_table[i * 5 + j] = 312500.;      /* 2.5Mb */
    }
  }

  /* inter cluster redistribution (big latency on the backbone) */
  /* (0.5sec duration without latency impact) */
  InterRedist_cost = xbt_new0(double, 10);
  InterRedist_table = xbt_new0(double, 100);
  for (i = 0; i < 5; i++) {
    InterRedist_table[i * 10 + i + 5] = 1250000.;       /* 10Mb */
  }

  /* parallel task with intra communications */
  /* Communication domination (0.1 sec duration) */

  ParComp_wcomm2_table = xbt_new0(double, 25);

  for (i = 0; i < 5; i++) {
    ParComp_wcomm2_hosts[i] = hosts[i + 5];
  }

  for (i = 0; i < 5; i++) {
    for (j = 0; j < 5; j++) {
      if (i == j)
        ParComp_wcomm2_table[i * 5 + j] = 0.;
      else
        ParComp_wcomm2_table[i * 5 + j] = 625000.;      /* 5Mb */
    }
  }

  /* Sequential task */


  /* scheduling the tasks */
  SD_task_schedule(taskInit, 1, hosts, SD_SCHED_NO_COST, SD_SCHED_NO_COST,
                   -1.0);
  SD_task_schedule(PtoPComm1, 2, PtoPcomm1_hosts, SD_SCHED_NO_COST,
                   PtoPcomm1_table, -1.0);
  SD_task_schedule(PtoPComm2, 2, PtoPcomm2_hosts, SD_SCHED_NO_COST,
                   PtoPcomm2_table, -1.0);
  SD_task_schedule(ParComp_wocomm, 5, ParComp_wocomm_hosts,
                   ParComp_wocomm_cost, ParComp_wocomm_table, -1.0);
  SD_task_schedule(IntraRedist, 5, IntraRedist_hosts, IntraRedist_cost,
                   IntraRedist_table, -1.0);
  SD_task_schedule(ParComp_wcomm1, 5, ParComp_wcomm1_hosts,
                   ParComp_wcomm1_cost, ParComp_wcomm1_table, -1.0);
  SD_task_schedule(InterRedist, 10, hosts, InterRedist_cost,
                   InterRedist_table, -1.0);
  SD_task_schedule(ParComp_wcomm2, 5, ParComp_wcomm2_hosts,
                   ParComp_wcomm2_cost, ParComp_wcomm2_table, -1.0);
  SD_task_schedule(taskFinal, 1, &(hosts[9]), &final_cost,
                   SD_SCHED_NO_COST, -1.0);

  /* let's launch the simulation! */
  changed_tasks = SD_simulate(-1.0);

  XBT_INFO("Simulation time: %f", SD_get_clock());

  xbt_dynar_free_container(&changed_tasks);

  free(ParComp_wocomm_table);
  free(IntraRedist_cost);
  free(IntraRedist_table);
  free(ParComp_wcomm1_table);
  free(InterRedist_cost);
  free(InterRedist_table);
  free(ParComp_wcomm2_table);

  SD_task_destroy(taskInit);
  SD_task_destroy(PtoPComm1);
  SD_task_destroy(PtoPComm2);
  SD_task_destroy(ParComp_wocomm);
  SD_task_destroy(IntraRedist);
  SD_task_destroy(ParComp_wcomm1);
  SD_task_destroy(InterRedist);
  SD_task_destroy(ParComp_wcomm2);
  SD_task_destroy(taskFinal);

  SD_exit();
  return 0;
}
Exemple #24
0
int main(int argc, char **argv)
{
  int i;
  const char *platform_file;
  const SD_workstation_t *workstations;
  SD_task_t taskA, taskB, taskC, taskD;
  xbt_dynar_t changed_tasks;

  /* initialization of SD */
  SD_init(&argc, argv);

  /*  xbt_log_control_set("sd.thres=debug"); */

  if (argc < 2) {
    XBT_INFO("Usage: %s platform_file", argv[0]);
    XBT_INFO("example: %s sd_platform.xml", argv[0]);
    exit(1);
  }

  /* creation of the environment */
  platform_file = argv[1];
  SD_create_environment(platform_file);

  /* Change the access mode of the workstations */
  workstations = SD_workstation_get_list();
  for (i = 0; i < 2; i++) {
    SD_workstation_dump(workstations[i]);
    
    SD_workstation_set_access_mode(workstations[i],
                                   SD_WORKSTATION_SEQUENTIAL_ACCESS);
    XBT_INFO(" Change access mode of %s to %s",
          SD_workstation_get_name(workstations[i]),
          (SD_workstation_get_access_mode(workstations[i]) ==
           SD_WORKSTATION_SEQUENTIAL_ACCESS) ? "sequential" : "shared");
  }
  /* Well I changed my mind, I want the second workstation to be shared */

  SD_workstation_set_access_mode(workstations[1],
                                     SD_WORKSTATION_SHARED_ACCESS);
  XBT_INFO(" Change access mode of %s to %s",
           SD_workstation_get_name(workstations[1]),
           (SD_workstation_get_access_mode(workstations[1]) ==
           SD_WORKSTATION_SEQUENTIAL_ACCESS) ? "sequential" : "shared");

  /* creation of the tasks and their dependencies */
  taskA = SD_task_create_comp_seq("Task A", NULL, 2e10);
  taskB = SD_task_create_comm_e2e("Task B", NULL, 2e8);
  taskC = SD_task_create_comp_seq("Task C", NULL, 1e10);
  taskD = SD_task_create_comp_seq("Task D", NULL, 1e11);

  SD_task_dependency_add("B->C", NULL,taskB, taskC);

  /* watch points */
  SD_task_watch(taskA, SD_RUNNING);
  SD_task_watch(taskB, SD_RUNNING);
  SD_task_watch(taskC, SD_RUNNING);
  SD_task_watch(taskC, SD_DONE);
  SD_task_watch(taskD, SD_DONE);


  /* scheduling parameters */
  SD_task_schedulel(taskA, 1, workstations[0]);
  SD_task_schedulel(taskB, 2, workstations[0], workstations[1]);
  SD_task_schedulel(taskC, 1, workstations[1]);
  SD_task_schedulel(taskD, 1, workstations[1]);

  /* let's launch the simulation! */
  while (!xbt_dynar_is_empty(changed_tasks = SD_simulate(-1.0))) {
    XBT_INFO(" Simulation was suspended, check workstation states"); 
    for (i = 0; i < 2; i++) {
      SD_workstation_dump(workstations[i]);
    }
    xbt_dynar_free(&changed_tasks);
  }
  xbt_dynar_free(&changed_tasks);

  XBT_DEBUG("Destroying tasks...");

  SD_task_destroy(taskA);
  SD_task_destroy(taskB);
  SD_task_destroy(taskC);
  SD_task_destroy(taskD);

  XBT_DEBUG("Tasks destroyed. Exiting SimDag...");

  SD_exit();
  return 0;
}
Exemple #25
0
int main(int argc, char **argv)
{
  char *platformFile = NULL;
  int totalHosts, totalLinks;
  int timings=0;
  int downgrade = 0;
  int version = 3;
  const char *link_ctn = link_ctn_v3;
  unsigned int i;
  xbt_dict_t props = NULL;
  xbt_dict_cursor_t cursor = NULL;
  xbt_lib_cursor_t cursor_src = NULL;
  xbt_lib_cursor_t cursor_dst = NULL;
  char *src,*dst,*key,*data;
  sg_routing_edge_t value1;
  sg_routing_edge_t value2;

  const SD_workstation_t *hosts;
  const SD_link_t *links;
  xbt_os_timer_t parse_time = xbt_os_timer_new();

  setvbuf(stdout, NULL, _IOLBF, 0);

  SD_init(&argc, argv);

  if (parse_cmdline(&timings, &downgrade, &platformFile, argc, argv) || !platformFile) {
    xbt_die("Invalid command line arguments: expected [--timings|--downgrade] platformFile");
  }
 
  XBT_DEBUG("%d,%d,%s", timings, downgrade, platformFile);

  if (downgrade) {
    version = 2;
    link_ctn = link_ctn_v2;
  }

  create_environment(parse_time, platformFile);

  if (timings) {
    XBT_INFO("Parsing time: %fs (%d hosts, %d links)",
          xbt_os_timer_elapsed(parse_time),SD_workstation_get_number(),SD_link_get_number());
  } else {
    printf("<?xml version='1.0'?>\n");
    printf("<!DOCTYPE platform SYSTEM \"http://simgrid.gforge.inria.fr/simgrid.dtd\">\n");
    printf("<platform version=\"%d\">\n", version);
    if (!downgrade)
      printf("<AS id=\"AS0\" routing=\"Full\">\n");

    // Hosts
    totalHosts = SD_workstation_get_number();
    hosts = SD_workstation_get_list();
    qsort((void *) hosts, totalHosts, sizeof(SD_workstation_t),
        name_compare_hosts);

    for (i = 0; i < totalHosts; i++) {
      printf("  <host id=\"%s\" power=\"%.0f\"",
          SD_workstation_get_name(hosts[i]),
          SD_workstation_get_power(hosts[i]));
      props = SD_workstation_get_properties(hosts[i]);
      if (props && !xbt_dict_is_empty(props)) {
        printf(">\n");
        xbt_dict_foreach(props, cursor, key, data) {
          printf("    <prop id=\"%s\" value=\"%s\"/>\n", key, data);
        }
        printf("  </host>\n");
      } else {
Exemple #26
0
int main(int argc, char **argv) {
  unsigned int flag, cursor, cursor2;
  char *platform_file = NULL, *daxname = NULL, *priority=NULL;
  int total_nworkstations = 0;
  const SD_workstation_t *workstations = NULL;
  xbt_dynar_t daxes = NULL, current_dax = NULL;
  int completed_daxes = 0;
  SD_task_t task;
  scheduling_globals_t globals;
  WorkstationAttribute attr;
  double total_cost = 0.0, score = 0.0;

  SD_init(&argc, argv);

  /* get rid off some logs that are useless */
  xbt_log_control_set("sd_daxparse.thresh:critical");
  xbt_log_control_set("surf_workstation.thresh:critical");
  xbt_log_control_set("root.fmt:[%9.3r]%e[%13c/%7p]%e%m%n");

  globals = new_scheduling_globals();

  daxes = xbt_dynar_new(sizeof(xbt_dynar_t), NULL);
  opterr = 0;

  while (1){
    static struct option long_options[] = {
        {"alg", 1, 0, 'a'},
        {"platform", 1, 0, 'b'},
        {"dax", 1, 0, 'c'},
        {"priority", 1, 0, 'd'},
        {"deadline", 1, 0, 'e'},
        {"budget", 1, 0, 'f'},
        {"price", 1, 0, 'g'},
        {"period", 1, 0, 'h'},
        {"uh", 1, 0, 'i'},
        {"ul", 1, 0, 'j'},
        {"provisioning_delay", 1, 0, 'k'},
        {"silent", 0, 0, 'y'},
        {"dump", 1, 0, 'z'},
        {0, 0, 0, 0}
    };

    int option_index = 0;
    flag = getopt_long (argc, argv, "",
                        long_options, &option_index);

    /* Detect the end of the options. */
    if (flag == -1)
      break;

    switch (flag) {
    case 0:
      /* If this option set a flag, do nothing else now. */
      if (long_options[option_index].flag != 0)
        break;
      printf ("option %s", long_options[option_index].name);
      if (optarg)
        printf (" with arg %s", optarg);
        printf ("\n");
      break;
    case 'a': /* Algorithm name */
      /* DPDS, WA-DPDS, SPSS, Ours*/
      globals->alg = getAlgorithmByName(optarg);
      break;
    case 'b':
      platform_file = optarg;
      SD_create_environment(platform_file);
      total_nworkstations = SD_workstation_get_number();
      workstations = SD_workstation_get_list();

      /* Sort the hosts by name for sake of simplicity */
      qsort((void *)workstations,total_nworkstations, sizeof(SD_workstation_t),
          nameCompareWorkstations);

      for(cursor=0; cursor<total_nworkstations; cursor++){
        SD_workstation_allocate_attribute(workstations[cursor]);
      }
      break;
    case 'c':
      /* List of DAGs to schedule concurrently (just file names here) */
      daxname = optarg;
      XBT_DEBUG("Loading %s", daxname);
      current_dax = SD_daxload(daxname);
      xbt_dynar_foreach(current_dax,cursor,task) {
        if (SD_task_get_kind(task) == SD_TASK_COMP_SEQ){
          SD_task_watch(task, SD_DONE);
        }
        SD_task_allocate_attribute(task);
        SD_task_set_dax_name(task, daxname);
      }
      xbt_dynar_push(daxes,&current_dax);
      break;
    case 'd':
      priority = optarg;
      if (!strcmp(priority,"random"))
        globals->priority_method = RANDOM;
      else if (!strcmp(priority, "sorted"))
        globals->priority_method = SORTED;
      else {
        XBT_ERROR("Unknown priority setting method.");
        exit(1);
      }
      break;
    case 'e':
      globals->deadline = atof(optarg);
      break;
    case 'f':
      globals->budget = atof(optarg);
      break;
    case 'g':
      globals->price = atof(optarg);
      break;
    case 'h':
      globals->period = atof(optarg);
      break;
    case 'i':
      globals->uh = atof(optarg);
      break;
    case 'j':
      globals->ul = atof(optarg);
      break;
    case 'k':
      globals->provisioning_delay = atof(optarg);
      break;
    case 'y':
      xbt_log_control_set("root.thresh:critical");
      break;
    case 'z':
      break;
    }
  }
  /* Display some information about the current run */
  XBT_INFO("Algorithm: %s",getAlgorithmName(globals->alg));
  XBT_INFO("  Priority method: %s",
      globals->priority_method ? "SORTED" : "RANDOM");
  XBT_INFO("  Dynamic provisioning period: %.0fs", globals->period);
  XBT_INFO("  Lower utilization threshold: %.2f%%", globals->ul);
  XBT_INFO("  Upper utilization threshold: %.2f%%", globals->uh);

  XBT_INFO("Platform: %s (%d potential VMs)", platform_file,
      SD_workstation_get_number());
  XBT_INFO("  VM hourly cost: $%f", globals->price);
  XBT_INFO("  VM provisioning delay: %.0fs", globals->provisioning_delay);
  if (ceil(globals->budget/((globals->deadline/3600.)*globals->price))>
      SD_workstation_get_number()){
    XBT_ERROR("The platform file doesn't have enough nodes. Stop here");
    exit(1);
  }
  /* Assign price and provisioning delay to workstation/VM (for the sake of
   * simplicity) */
  for(cursor=0; cursor<total_nworkstations; cursor++){
    SD_workstation_set_price(workstations[cursor], globals->price);
    SD_workstation_set_provisioning_delay(workstations[cursor],
        globals->provisioning_delay);
  }

  XBT_INFO("Ensemble: %lu DAXes", xbt_dynar_length(daxes));
  /* Assign priorities to the DAXes composing the ensemble according to the
   * chosen method: RANDOM (default) or SORTED.
   * Then display the result.
   */
  assign_dax_priorities(daxes, globals->priority_method);
  xbt_dynar_foreach(daxes, cursor, current_dax){
     task = get_root(current_dax);
     XBT_INFO("  %s", SD_task_get_dax_name(task));
     XBT_INFO("    Priority: %d", SD_task_get_dax_priority(task));
  }
Exemple #27
0
int main(int argc, char **argv)
{
  unsigned int ctr;
  const SD_workstation_t *workstations;
  SD_task_t t1, c1, t2, c2, t3, c3, t4, task;
  xbt_dynar_t changed_tasks;

  SD_init(&argc, argv);
  SD_create_environment(argv[1]);
  workstations = SD_workstation_get_list();

  t1 = SD_task_create_comp_seq("t1", NULL, 25000000);
  c1 = SD_task_create_comm_e2e("c1", NULL, 125000000);
  t2 = SD_task_create_comp_seq("t2", NULL, 25000000);
  c2 = SD_task_create_comm_e2e("c2", NULL, 62500000);
  t3 = SD_task_create_comp_seq("t3", NULL, 25000000);
  c3 = SD_task_create_comm_e2e("c3", NULL, 31250000);
  t4 = SD_task_create_comp_seq("t4", NULL, 25000000);

  /* Add dependencies: t1->c1->t2->c2->t3 */
  SD_task_dependency_add(NULL, NULL, t1, c1);
  SD_task_dependency_add(NULL, NULL, c1, t2);
  SD_task_dependency_add(NULL, NULL, t2, c2);
  SD_task_dependency_add(NULL, NULL, c2, t3);
  SD_task_dependency_add(NULL, NULL, t3, c3);
  SD_task_dependency_add(NULL, NULL, c3, t4);

  /* Schedule tasks t1 and w3 on first host, t2 on second host */
  /* Transfers are auto-scheduled */
  SD_task_schedulel(t1, 1, workstations[0]);
  SD_task_schedulel(t2, 1, workstations[1]);
  SD_task_schedulel(t3, 1, workstations[0]);
  SD_task_schedulel(t4, 1, workstations[1]);

  /* Add some watchpoint upon task completion */
  SD_task_watch(t1, SD_DONE);
  SD_task_watch(c1, SD_DONE);
  SD_task_watch(t2, SD_DONE);
  SD_task_watch(c2, SD_DONE);
  SD_task_watch(t3, SD_DONE);
  SD_task_watch(c3, SD_DONE);
  SD_task_watch(t4, SD_DONE);

  while (!xbt_dynar_is_empty((changed_tasks = SD_simulate(-1.0)))) {    
    XBT_INFO("link1: bw=%.0f, lat=%f",
             SD_route_get_current_bandwidth(workstations[0], workstations[1]),
             SD_route_get_current_latency(workstations[0], workstations[1]));
    XBT_INFO("Jupiter: power=%.0f",
             SD_workstation_get_power(workstations[0])*
             SD_workstation_get_available_power(workstations[0]));
    XBT_INFO("Tremblay: power=%.0f",
             SD_workstation_get_power(workstations[1])*
             SD_workstation_get_available_power(workstations[1]));
    xbt_dynar_foreach(changed_tasks, ctr, task) {
      XBT_INFO("Task '%s' start time: %f, finish time: %f",
           SD_task_get_name(task),
           SD_task_get_start_time(task), SD_task_get_finish_time(task));
      if (SD_task_get_state(task)==SD_DONE)
        SD_task_destroy(task);
    }
    xbt_dynar_free_container(&changed_tasks);
  }
int main(int argc, char **argv)
{
  unsigned int ctr;
  const char *platform_file;
  const SD_workstation_t *workstations;
  SD_task_t task, taskA, taskB, taskC, taskD, taskE;
  xbt_dynar_t changed_tasks;

  /* initialization of SD */
  SD_init(&argc, argv);

  /*  xbt_log_control_set("sd.thres=debug"); */

  if (argc < 2) {
    XBT_INFO("Usage: %s platform_file", argv[0]);
    XBT_INFO("example: %s sd_platform.xml", argv[0]);
    exit(1);
  }

  /* creation of the environment */
  platform_file = argv[1];
  SD_create_environment(platform_file);
 
  workstations = SD_workstation_get_list();

  /* creation of some typed tasks and their dependencies */
  /* chain of five tasks, three compute tasks with two data transfers */
  /* in between */
  taskA = SD_task_create_comp_seq("Task A", NULL, 5e9);
  taskB = SD_task_create_comm_e2e("Task B", NULL, 1e7);
  taskC = SD_task_create_comp_seq("Task C", NULL, 5e9);
  taskD = SD_task_create_comm_e2e("Task D", NULL, 1e7);
  taskE = SD_task_create_comp_seq("Task E", NULL, 5e9);

  SD_task_dependency_add(NULL, NULL, taskA, taskB);
  SD_task_dependency_add(NULL, NULL, taskB, taskC);
  SD_task_dependency_add(NULL, NULL, taskC, taskD);
  SD_task_dependency_add(NULL, NULL, taskD, taskE);

  /* Add watchpoints on completion of compute tasks */
  SD_task_watch(taskA, SD_DONE);
  SD_task_watch(taskC, SD_DONE);
  SD_task_watch(taskE, SD_DONE);

  /* Auto-schedule the compute tasks on three different workstations */
  /* Data transfer tasks taskB and taskD are automagically scheduled */
  SD_task_schedulel(taskA, 1, workstations[0]);
  SD_task_schedulel(taskC, 1, workstations[1]);
  SD_task_schedulel(taskE, 1, workstations[0]);
  while (!xbt_dynar_is_empty((changed_tasks = SD_simulate(-1.0)))) {
    XBT_INFO("Simulation stopped after %.4f seconds", SD_get_clock());
    xbt_dynar_foreach(changed_tasks, ctr, task) {
      XBT_INFO("Task '%s' start time: %f, finish time: %f",
         SD_task_get_name(task),
         SD_task_get_start_time(task), 
         SD_task_get_finish_time(task));
 
    }
    /* let throttle the communication for taskD if its parent is SD_DONE */
    /* the bandwidth is 1.25e8, the data size is 1e7, and we want to throttle
     * the bandwidth by a factor 2. the rate is then 1.25e8/(2*1e7)=6.25
     * Changing the rate is possible before the task execution starts (in SD_RUNNING
     * state).
     */
    if (SD_task_get_state(taskC) == SD_DONE && SD_task_get_state(taskD) < SD_RUNNING)
      SD_task_set_rate(taskD, 6.25);
    xbt_dynar_free_container(&changed_tasks);
  }