Exemple #1
0
void bumps_t::initialize (
  const bump_specifier_t & b0, const bump_specifier_t & b1)
{
  // Precompute the coefficients of four cubic polynomials in t, giving
  // the two smoothstep regions of the each of the two bump functions.
  v4f b0t = load4f (& b0.t0); // b0.t0 b0.t1 b0.t2 b0.t2
  v4f b1t = load4f (& b1.t0); // b1.t0 b1.t1 b1.t2 b1.t2
  v4f b0v = _mm_movelh_ps (load4f (& b0.v0), _mm_setzero_ps ()); // b0.v0 b0.v1
  v4f b1v = _mm_movelh_ps (load4f (& b1.v0), _mm_setzero_ps ()); // b1.v0 b1.v1
  v4f S = SHUFPS (b0t, b1t, (0, 2, 0, 2)); // b0.t0 b0.t2 b1.t0 b1.t2
  v4f T = SHUFPS (b0t, b1t, (1, 3, 1, 3)); // b0.t1 b0.t3 b1.t1 b1.t3
  v4f U = SHUFPS (b0v, b1v, (0, 2, 0, 2)); // b0.v0   0   b1.v0   0
  v4f V1 = SHUFPS (b0v, b1v, (1, 0, 1, 0)); // b0.v1 b0.v0 b1.v1 b1.v0
  v4f V2 = SHUFPS (b0v, b1v, (2, 1, 2, 1)); //   0   b0.v1   0   b1.v1
  v4f V = V1 - V2;
  v4f d = T - S;
  v4f a = T + S;
  v4f m = (V - U) / (d * d * d);
  store4f (c [0], U + m * S * S * (a + d + d));
  store4f (c [1], _mm_set1_ps (-6.0f) * m * S * T);
  store4f (c [2], _mm_set1_ps (+3.0f) * m * a);
  store4f (c [3], _mm_set1_ps (-2.0f) * m);
  store4f (S0, S);
  store4f (T0, T);
  store4f (U0, U);
  store4f (V0, V);
}
Exemple #2
0
LinearFunc SamplerJitCache::CompileLinear(const SamplerID &id) {
	_assert_msg_(G3D, id.linear, "Linear should be set on sampler id");
	BeginWrite();

	// We'll first write the nearest sampler, which we will CALL.
	// This may differ slightly based on the "linear" flag.
	const u8 *nearest = AlignCode16();

	if (!Jit_ReadTextureFormat(id)) {
		EndWrite();
		SetCodePtr(const_cast<u8 *>(nearest));
		return nullptr;
	}

	RET();

	// Now the actual linear func, which is exposed externally.
	const u8 *start = AlignCode16();

	// NOTE: This doesn't use the general register mapping.
	// POSIX: arg1=uptr, arg2=vptr, arg3=frac_u, arg4=frac_v, arg5=src, arg6=bufw, stack+8=level
	// Win64: arg1=uptr, arg2=vptr, arg3=frac_u, arg4=frac_v, stack+40=src, stack+48=bufw, stack+56=level
	//
	// We map these to nearest CALLs, with order: u, v, src, bufw, level

	// Let's start by saving a bunch of registers.
	PUSH(R15);
	PUSH(R14);
	PUSH(R13);
	PUSH(R12);
	// Won't need frac_u/frac_v for a while.
	PUSH(arg4Reg);
	PUSH(arg3Reg);
	// Extra space to restore alignment and save resultReg for lerp.
	// TODO: Maybe use XMMs instead?
	SUB(64, R(RSP), Imm8(24));

	MOV(64, R(R12), R(arg1Reg));
	MOV(64, R(R13), R(arg2Reg));
#ifdef _WIN32
	// First arg now starts at 24 (extra space) + 48 (pushed stack) + 8 (ret address) + 32 (shadow space)
	const int argOffset = 24 + 48 + 8 + 32;
	MOV(64, R(R14), MDisp(RSP, argOffset));
	MOV(32, R(R15), MDisp(RSP, argOffset + 8));
	// level is at argOffset + 16.
#else
	MOV(64, R(R14), R(arg5Reg));
	MOV(32, R(R15), R(arg6Reg));
	// level is at 24 + 48 + 8.
#endif

	// Early exit on !srcPtr.
	FixupBranch zeroSrc;
	if (id.hasInvalidPtr) {
		CMP(PTRBITS, R(R14), Imm8(0));
		FixupBranch nonZeroSrc = J_CC(CC_NZ);
		XOR(32, R(RAX), R(RAX));
		zeroSrc = J(true);
		SetJumpTarget(nonZeroSrc);
	}

	// At this point:
	// R12=uptr, R13=vptr, stack+24=frac_u, stack+32=frac_v, R14=src, R15=bufw, stack+X=level

	auto doNearestCall = [&](int off) {
		MOV(32, R(uReg), MDisp(R12, off));
		MOV(32, R(vReg), MDisp(R13, off));
		MOV(64, R(srcReg), R(R14));
		MOV(32, R(bufwReg), R(R15));
		// Leave level, we just always load from RAM.  Separate CLUTs is uncommon.

		CALL(nearest);
		MOV(32, MDisp(RSP, off), R(resultReg));
	};

	doNearestCall(0);
	doNearestCall(4);
	doNearestCall(8);
	doNearestCall(12);

	// Convert TL, TR, BL, BR to floats for easier blending.
	if (!cpu_info.bSSE4_1) {
		PXOR(XMM0, R(XMM0));
	}

	MOVD_xmm(fpScratchReg1, MDisp(RSP, 0));
	MOVD_xmm(fpScratchReg2, MDisp(RSP, 4));
	MOVD_xmm(fpScratchReg3, MDisp(RSP, 8));
	MOVD_xmm(fpScratchReg4, MDisp(RSP, 12));

	if (cpu_info.bSSE4_1) {
		PMOVZXBD(fpScratchReg1, R(fpScratchReg1));
		PMOVZXBD(fpScratchReg2, R(fpScratchReg2));
		PMOVZXBD(fpScratchReg3, R(fpScratchReg3));
		PMOVZXBD(fpScratchReg4, R(fpScratchReg4));
	} else {
		PUNPCKLBW(fpScratchReg1, R(XMM0));
		PUNPCKLBW(fpScratchReg2, R(XMM0));
		PUNPCKLBW(fpScratchReg3, R(XMM0));
		PUNPCKLBW(fpScratchReg4, R(XMM0));
		PUNPCKLWD(fpScratchReg1, R(XMM0));
		PUNPCKLWD(fpScratchReg2, R(XMM0));
		PUNPCKLWD(fpScratchReg3, R(XMM0));
		PUNPCKLWD(fpScratchReg4, R(XMM0));
	}
	CVTDQ2PS(fpScratchReg1, R(fpScratchReg1));
	CVTDQ2PS(fpScratchReg2, R(fpScratchReg2));
	CVTDQ2PS(fpScratchReg3, R(fpScratchReg3));
	CVTDQ2PS(fpScratchReg4, R(fpScratchReg4));

	// Okay, now multiply the R sides by frac_u, and L by (256 - frac_u)...
	MOVD_xmm(fpScratchReg5, MDisp(RSP, 24));
	CVTDQ2PS(fpScratchReg5, R(fpScratchReg5));
	SHUFPS(fpScratchReg5, R(fpScratchReg5), _MM_SHUFFLE(0, 0, 0, 0));
	if (RipAccessible(by256)) {
		MULPS(fpScratchReg5, M(by256));  // rip accessible
	} else {
		Crash();  // TODO
	}
	MOVAPS(XMM0, M(ones));
	SUBPS(XMM0, R(fpScratchReg5));

	MULPS(fpScratchReg1, R(XMM0));
	MULPS(fpScratchReg2, R(fpScratchReg5));
	MULPS(fpScratchReg3, R(XMM0));
	MULPS(fpScratchReg4, R(fpScratchReg5));

	// Now set top=fpScratchReg1, bottom=fpScratchReg3.
	ADDPS(fpScratchReg1, R(fpScratchReg2));
	ADDPS(fpScratchReg3, R(fpScratchReg4));

	// Next, time for frac_v.
	MOVD_xmm(fpScratchReg5, MDisp(RSP, 32));
	CVTDQ2PS(fpScratchReg5, R(fpScratchReg5));
	SHUFPS(fpScratchReg5, R(fpScratchReg5), _MM_SHUFFLE(0, 0, 0, 0));
	MULPS(fpScratchReg5, M(by256));
	MOVAPS(XMM0, M(ones));
	SUBPS(XMM0, R(fpScratchReg5));

	MULPS(fpScratchReg1, R(XMM0));
	MULPS(fpScratchReg3, R(fpScratchReg5));

	// Still at the 255 scale, now we're interpolated.
	ADDPS(fpScratchReg1, R(fpScratchReg3));

	// Time to convert back to a single 32 bit value.
	CVTPS2DQ(fpScratchReg1, R(fpScratchReg1));
	PACKSSDW(fpScratchReg1, R(fpScratchReg1));
	PACKUSWB(fpScratchReg1, R(fpScratchReg1));
	MOVD_xmm(R(resultReg), fpScratchReg1);

	if (id.hasInvalidPtr) {
		SetJumpTarget(zeroSrc);
	}

	ADD(64, R(RSP), Imm8(24));
	POP(arg3Reg);
	POP(arg4Reg);
	POP(R12);
	POP(R13);
	POP(R14);
	POP(R15);

	RET();

	EndWrite();
	return (LinearFunc)start;
}