/**
 *
 *  FeatureLeveling
 *
 *    CPU feature leveling. Set least common features set of all CPUs
 *
 *    @param[in,out]   StdHeader   - Pointer to AMD_CONFIG_PARAMS struct.
 *
 */
VOID
FeatureLeveling (
  IN OUT   AMD_CONFIG_PARAMS *StdHeader
  )
{
  UINT32 BscSocket;
  UINT32 Ignored;
  UINT32 BscCoreNum;
  UINT32 Socket;
  UINT32 Core;
  UINT32 NumberOfSockets;
  UINT32 NumberOfCores;
  BOOLEAN *FirstTime;
  BOOLEAN *NeedLeveling;
  AGESA_STATUS IgnoredSts;
  CPU_FEATURES_LIST *globalCpuFeatureList;
  AP_TASK  TaskPtr;

  ASSERT (IsBsp (StdHeader, &IgnoredSts));

  GetGlobalCpuFeatureListAddress ((UINT64 **) &globalCpuFeatureList, StdHeader);
  FirstTime = (BOOLEAN *) ((UINT8 *) globalCpuFeatureList + sizeof (CPU_FEATURES_LIST));
  NeedLeveling = (BOOLEAN *) ((UINT8 *) globalCpuFeatureList + sizeof (CPU_FEATURES_LIST) + sizeof (BOOLEAN));

  *FirstTime = TRUE;
  *NeedLeveling = FALSE;

  LibAmdMemFill (globalCpuFeatureList, 0xFF, sizeof (CPU_FEATURES_LIST), StdHeader);
  IdentifyCore (StdHeader, &BscSocket, &Ignored, &BscCoreNum, &IgnoredSts);
  NumberOfSockets = GetPlatformNumberOfSockets ();

  TaskPtr.FuncAddress.PfApTaskI = SaveFeatures;
  TaskPtr.DataTransfer.DataSizeInDwords = SIZE_IN_DWORDS (CPU_FEATURES_LIST);
  TaskPtr.ExeFlags = WAIT_FOR_CORE;
  TaskPtr.DataTransfer.DataPtr = globalCpuFeatureList;
  TaskPtr.DataTransfer.DataTransferFlags = DATA_IN_MEMORY;

  for (Socket = 0; Socket < NumberOfSockets; Socket++) {
    if (IsProcessorPresent (Socket, StdHeader)) {
      if (Socket !=  BscSocket) {
        ApUtilRunCodeOnSocketCore ((UINT8)Socket, 0, &TaskPtr, StdHeader);
      }
    }
  }
  ApUtilTaskOnExecutingCore (&TaskPtr, StdHeader, NULL);

  if (*NeedLeveling) {
    TaskPtr.FuncAddress.PfApTaskI  = WriteFeatures;
    for (Socket = 0; Socket < NumberOfSockets; Socket++) {
      if (GetActiveCoresInGivenSocket (Socket, &NumberOfCores, StdHeader)) {
        for (Core = 0; Core < NumberOfCores; Core++) {
          if ((Socket != BscSocket) || (Core != BscCoreNum)) {
            ApUtilRunCodeOnSocketCore ((UINT8)Socket, (UINT8)Core, &TaskPtr, StdHeader);
          }
        }
      }
    }
    ApUtilTaskOnExecutingCore (&TaskPtr, StdHeader, NULL);
  }
}
Exemple #2
0
/**
 * IDS function force all cores run specific task after amdinitpost
 *
 *
 *  @param[in]   ApLateTaskPtr    The Pointer of IDSAPLATETASK.
 *  @param[in,out]   StdHeader    The Pointer of AMD_CONFIG_PARAMS.
 *
 *  @retval AGESA_SUCCESS       Success
 *  @retval AGESA_ERROR         meet some error
 *
 **/
AGESA_STATUS
IdsAgesaRunFcnOnAllCoresLate  (
  IN       IDSAPLATETASK  *ApLateTaskPtr,
  IN OUT   AMD_CONFIG_PARAMS *StdHeader
  )
{
  AP_EXE_PARAMS LaunchApParams;
  AGESA_STATUS Status;

//init AgesaRunFcnOnAp parameters
  Status = AGESA_SUCCESS;
  LaunchApParams.FunctionNumber = IDS_LATE_RUN_AP_TASK_ID;
  LaunchApParams.RelatedBlockLength = SIZE_IN_DWORDS (IDSAPLATETASK);
  LaunchApParams.RelatedDataBlock = ApLateTaskPtr;
  LaunchApParams.StdHeader = *StdHeader;

  Status = RunLateApTaskOnAllAPs (&LaunchApParams, StdHeader);

//do it on Bsp
  Status = ApLateTaskPtr->ApTask (ApLateTaskPtr->ApTaskPara, StdHeader);
  return Status;
}
Exemple #3
0
/**
 * IDS function for ap run specific task after amdinitpost
 *
 *
 *  @param[in]   ApicIdOfCore      apic id of specific AP
 *  @param[in]   ApLateTaskPtr    The Pointer of IDSAPLATETASK.
 *  @param[in,out]   StdHeader    The Pointer of AMD_CONFIG_PARAMS.
 *
 *  @retval AGESA_SUCCESS       Success
 *  @retval AGESA_ERROR         meet some error
 *
 **/
AGESA_STATUS
IdsAgesaRunFcnOnApLate  (
  IN       UINTN               ApicIdOfCore,
  IN       IDSAPLATETASK  *ApLateTaskPtr,
  IN OUT   AMD_CONFIG_PARAMS *StdHeader
  )
{
  AGESA_STATUS  Status;
  AP_EXE_PARAMS LaunchApParams;

//init AgesaRunFcnOnAp parameters
  LaunchApParams.FunctionNumber = IDS_LATE_RUN_AP_TASK_ID;
  LaunchApParams.RelatedBlockLength = SIZE_IN_DWORDS (IDSAPLATETASK);
  LaunchApParams.RelatedDataBlock = ApLateTaskPtr;
  LaunchApParams.StdHeader = *StdHeader;

  AGESA_TESTPOINT (TpIfBeforeRunApFromIds, StdHeader);
  Status = AgesaRunFcnOnAp ((UINTN) ApicIdOfCore, &LaunchApParams);
  AGESA_TESTPOINT (TpIfAfterRunApFromIds, StdHeader);

  return Status;
}
/**
 *---------------------------------------------------------------------------------------
 *
 *  PutAllCoreInPState0
 *
 *  Description:
 *    This function will put core pstate to p0.
 *
 *  Parameters:
 *    @param[in,out]    *PStateBufferPtr
 *    @param[in]        *StdHeader
 *
 *    @retval          AGESA_STATUS
 *
 *---------------------------------------------------------------------------------------
 **/
AGESA_STATUS
PutAllCoreInPState0 (
  IN OUT   PSTATE_LEVELING    *PStateBufferPtr,
  IN       AMD_CONFIG_PARAMS  *StdHeader
  )
{
  AP_TASK                 TaskPtr;
  UINT32                  BscSocket;
  UINT32                  Ignored;
  UINT32                  BscCoreNum;
  UINT32                  Core;
  UINT32                  Socket;
  UINT32                  NumberOfSockets;
  UINT32                  NumberOfCores;
  AGESA_STATUS            IgnoredSts;

  TaskPtr.FuncAddress.PfApTaskI = PutCoreInPState0;
  TaskPtr.DataTransfer.DataSizeInDwords = SIZE_IN_DWORDS (PSTATE_LEVELING);
  TaskPtr.ExeFlags = WAIT_FOR_CORE;
  TaskPtr.DataTransfer.DataPtr = PStateBufferPtr;
  TaskPtr.DataTransfer.DataTransferFlags = DATA_IN_MEMORY;

  IdentifyCore (StdHeader, &BscSocket, &Ignored, &BscCoreNum, &IgnoredSts);
  NumberOfSockets = GetPlatformNumberOfSockets ();

  PutCoreInPState0 (PStateBufferPtr, StdHeader);

  for (Socket = 0; Socket < NumberOfSockets; Socket++) {
    if (GetActiveCoresInGivenSocket (Socket, &NumberOfCores, StdHeader)) {
      for (Core = 0; Core < NumberOfCores; Core++) {
        if ((Socket != (UINT32) BscSocket) || (Core != (UINT32) BscCoreNum)) {
          ApUtilRunCodeOnSocketCore ((UINT8) Socket, (UINT8) Core, &TaskPtr, StdHeader);
        }
      }
    }
  }

  return AGESA_SUCCESS;
}
Exemple #5
0
/**
 *
 *
 *     BSC task to run Core0 task at early, must only run on BSC
 *
 *     @param[in]   Socket   - Socket which run the task
 *     @param[in]   Core   - Core which run the task
 *     @param[in]   ApTask   - Task for AP
 *     @param[in,out]   StdHeader    - The Pointer of AGESA Header
 *
 */
VOID
IdsRunCodeOnCoreEarly (
  IN       UINT8 Socket,
  IN       UINT8 Core,
  IN       AP_TASK* ApTask,
  IN OUT   AMD_CONFIG_PARAMS *StdHeader
  )
{
  UINT32 BscSocket;
  UINT32 BscCoreNum;
  UINT32 IgnoredModule;
  AGESA_STATUS IgnoredSts;
  AP_TASK Core0Task;
  IDS_EARLY_AP_TASK IdsEarlyTask;

  IdentifyCore (StdHeader, &BscSocket, &IgnoredModule, &BscCoreNum, &IgnoredSts);
  ASSERT (~((Socket == BscSocket) && (Core == BscCoreNum)));
  if ((Socket == BscSocket) || (Core == 0)) {
    ApUtilRunCodeOnSocketCore (Socket, Core, ApTask, StdHeader);
  } else {
    //Init IDS_EARLY_AP_TASK for Core 0
    IdsEarlyTask.Ap_Task0.ApTask = *ApTask;
    IdsEarlyTask.Ap_Task0.Core = Core;
    //Init Parameter buffer, Target core can't get the parameter from pointer, which point to Host Core memory space
    ASSERT ((ApTask->DataTransfer.DataSizeInDwords * sizeof (UINT32)) <= IDS_EARLY_AP_TASK_PARA_NUM);
    LibAmdMemCopy (&IdsEarlyTask.Parameters[0], ApTask->DataTransfer.DataPtr, sizeof (UINT32) * ApTask->DataTransfer.DataSizeInDwords, StdHeader);
    if ((ApTask->DataTransfer.DataSizeInDwords * sizeof (UINT32)) <= IDS_EARLY_AP_TASK_PARA_NUM) {
      //Lauch Core0 1st
      Core0Task.FuncAddress.PfApTaskI = (PF_AP_TASK_I)IdsCmnTaskCore0Early;
      Core0Task.ExeFlags = WAIT_FOR_CORE;
      Core0Task.DataTransfer.DataSizeInDwords = SIZE_IN_DWORDS (IDS_EARLY_AP_TASK0) + ApTask->DataTransfer.DataSizeInDwords;
      Core0Task.DataTransfer.DataPtr = &IdsEarlyTask;
      Core0Task.DataTransfer.DataTransferFlags = 0;
      ApUtilRunCodeOnSocketCore (Socket, 0, &Core0Task, StdHeader);
    }
  }
}
/**
 * Multisocket call to determine the most severe AGESA_STATUS return value after
 * processing the power management initialization tables.
 *
 * This function loops through all possible socket locations, collecting any
 * power management initialization errors that may have occurred.  These errors
 * are transferred from the core 0s of the socket in which the errors occurred
 * to the BSC's heap.  The BSC's heap is then searched for the most severe error
 * that occurred, and returns it.  This function must be called by the BSC only.
 *
 * @param[in]  StdHeader         Config handle for library and services
 *
 * @return     The most severe error code from power management init
 *
 */
AGESA_STATUS
GetEarlyPmErrorsMulti (
  IN       AMD_CONFIG_PARAMS *StdHeader
  )
{
  UINT16 i;
  UINT32 BscSocket;
  UINT32 BscModule;
  UINT32 BscCoreNum;
  UINT32 Socket;
  UINT32 NumberOfSockets;
  AP_TASK      TaskPtr;
  AGESA_EVENT  EventLogEntry;
  AGESA_STATUS ReturnCode;
  AGESA_STATUS DummyStatus;

  ASSERT (IsBsp (StdHeader, &ReturnCode));

  ReturnCode = AGESA_SUCCESS;
  EventLogEntry.EventClass = AGESA_SUCCESS;
  EventLogEntry.EventInfo = 0;
  EventLogEntry.DataParam1 = 0;
  EventLogEntry.DataParam2 = 0;
  EventLogEntry.DataParam3 = 0;
  EventLogEntry.DataParam4 = 0;

  NumberOfSockets = GetPlatformNumberOfSockets ();
  IdentifyCore (StdHeader, &BscSocket, &BscModule, &BscCoreNum, &DummyStatus);

  TaskPtr.FuncAddress.PfApTaskI = GetNextEvent;
  TaskPtr.DataTransfer.DataSizeInDwords = SIZE_IN_DWORDS (AGESA_EVENT);
  TaskPtr.DataTransfer.DataPtr = &EventLogEntry;
  TaskPtr.DataTransfer.DataTransferFlags = 0;
  TaskPtr.ExeFlags = WAIT_FOR_CORE | RETURN_PARAMS;
  for (Socket = 0; Socket < NumberOfSockets; Socket++) {
    if (Socket != BscSocket) {
      if (IsProcessorPresent (Socket, StdHeader)) {
        do {
          ApUtilRunCodeOnSocketCore ((UINT8)Socket, (UINT8) 0, &TaskPtr, StdHeader);
          if ((EventLogEntry.EventInfo & CPU_EVENT_PM_EVENT_MASK) == CPU_EVENT_PM_EVENT_CLASS) {
            PutEventLog (
              EventLogEntry.EventClass,
              EventLogEntry.EventInfo,
              EventLogEntry.DataParam1,
              EventLogEntry.DataParam2,
              EventLogEntry.DataParam3,
              EventLogEntry.DataParam4,
              StdHeader
              );
          }
        } while (EventLogEntry.EventInfo != 0);
      }
    }
  }

  for (i = 0; PeekEventLog (&EventLogEntry, i, StdHeader); i++) {
    if ((EventLogEntry.EventInfo & CPU_EVENT_PM_EVENT_MASK) == CPU_EVENT_PM_EVENT_CLASS) {
      if (EventLogEntry.EventClass > ReturnCode) {
        ReturnCode = EventLogEntry.EventClass;
      }
    }
  }
  return (ReturnCode);
}
Exemple #7
0
/**
 * Family 10h core 0 entry point for performing the family 10h Processor-
 * Systemboard Power Delivery Check.
 *
 * The steps are as follows:
 *    1. Starting with P0, loop through all P-states until a passing state is
 *       found.  A passing state is one in which the current required by the
 *       CPU is less than the maximum amount of current that the system can
 *       provide to the CPU.  If P0 is under the limit, no further action is
 *       necessary.
 *    2. If at least one P-State is under the limit & at least one P-State is
 *       over the limit, the BIOS must:
 *       a. If the processor's current P-State is disabled by the power check,
 *          then the BIOS must request a transition to an enabled P-state
 *          using MSRC001_0062[PstateCmd] and wait for MSRC001_0063[CurPstate]
 *          to reflect the new value.
 *       b. Copy the contents of the enabled P-state MSRs to the highest
 *          performance P-state locations.
 *       c. Request a P-state transition to the P-state MSR containing the
 *          COF/VID values currently applied.
 *       d. On revision E systems with CPUID Fn8000_0007[CPB]=1, if P0 is disabled then
 *          program F4x15C[BoostSrc]=0. This step uses hardware P-state numbering.
 *       e. Adjust the following P-state parameters affected by the P-state
 *          MSR copy by subtracting the number of P-states that are disabled
 *          by the power check.
 *          1. F3x64[HtcPstateLimit]
 *          2. F3x68[StcPstateLimit]
 *          3. F3xDC[PstateMaxVal]
 *    3. If all P-States are over the limit, the BIOS must:
 *       a. If the processor's current P-State is !=F3xDC[PstateMaxVal], then
 *          write F3xDC[PstateMaxVal] to MSRC001_0062[PstateCmd] and wait for
 *          MSRC001_0063[CurPstate] to reflect the new value.
 *       b. If F3xDC[PstateMaxVal]!= 000b, copy the contents of the P-state
 *          MSR pointed to by F3xDC[PstateMaxVal] to MSRC001_0064 and set
 *          MSRC001_0064[PstateEn]
 *       c. Write 000b to MSRC001_0062[PstateCmd] and wait for MSRC001_0063
 *          [CurPstate] to reflect the new value.
 *       d. Adjust the following P-state parameters to zero on revision D and earlier processors.
 *          On revision E processors adjust the following fields to F4x15C[NumBoostStates]:
 *          1. F3x64[HtcPstateLimit]
 *          2. F3x68[StcPstateLimit]
 *          3. F3xDC[PstateMaxVal]
 *       e. For revision E systems with CPUID Fn8000_0007[CPB]=1, program F4x15C[BoostSrc]=0.
 *
 * @param[in]  FamilySpecificServices  The current Family Specific Services.
 * @param[in]  CpuEarlyParams          Service parameters
 * @param[in]  StdHeader               Config handle for library and services.
 *
 */
VOID
F10PmPwrCheck (
  IN       CPU_SPECIFIC_SERVICES *FamilySpecificServices,
  IN       AMD_CPU_EARLY_PARAMS  *CpuEarlyParams,
  IN       AMD_CONFIG_PARAMS     *StdHeader
  )
{
  UINT8       DisPsNum;
  UINT8       PsMaxVal;
  UINT8       Pstate;
  UINT32      ProcIddMax;
  UINT32      LocalPciRegister;
  UINT32      Socket;
  UINT32      Module;
  UINT32      Core;
  UINT32      AndMask;
  UINT32      OrMask;
  UINT32      PstateLimit;
  PCI_ADDR    PciAddress;
  UINT64      LocalMsrRegister;
  AP_TASK     TaskPtr;
  AGESA_STATUS IgnoredSts;
  PWRCHK_ERROR_DATA ErrorData;

  // get the socket number
  IdentifyCore (StdHeader, &Socket, &Module, &Core, &IgnoredSts);
  ErrorData.SocketNumber = (UINT8)Socket;

  ASSERT (Core == 0);

  // get the Max P-state value
  for (PsMaxVal = NM_PS_REG - 1; PsMaxVal != 0; --PsMaxVal) {
    LibAmdMsrRead (PS_REG_BASE + PsMaxVal, &LocalMsrRegister, StdHeader);
    if (((PSTATE_MSR *) &LocalMsrRegister)->PsEnable == 1) {
      break;
    }
  }

  ErrorData.HwPstateNumber = (UINT8) (PsMaxVal + 1);

  DisPsNum = 0;
  for (Pstate = 0; Pstate < ErrorData.HwPstateNumber; Pstate++) {
    if (FamilySpecificServices->GetProcIddMax (FamilySpecificServices, Pstate, &ProcIddMax, StdHeader)) {
      if (ProcIddMax > CpuEarlyParams->PlatformConfig.VrmProperties[CoreVrm].CurrentLimit) {
        // Add to event log the Pstate that exceeded the current limit
        PutEventLog (AGESA_WARNING,
                     CPU_EVENT_PM_PSTATE_OVERCURRENT,
                     Socket, Pstate, 0, 0, StdHeader);
        DisPsNum++;
      } else {
        break;
      }
    }
  }

  // If all P-state registers are disabled, move P[PsMaxVal] to P0
  // and transition to P0, then wait for CurPstate = 0

  ErrorData.AllowablePstateNumber = ((PsMaxVal + 1) - DisPsNum);

  // We only need to log this event on the BSC
  if (ErrorData.AllowablePstateNumber == 0) {
    PutEventLog (AGESA_FATAL,
                 CPU_EVENT_PM_ALL_PSTATE_OVERCURRENT,
                 Socket, 0, 0, 0, StdHeader);
  }

  if (DisPsNum != 0) {
    GetPciAddress (StdHeader, Socket, Module, &PciAddress, &IgnoredSts);
    // Check if CPB is supported. if yes, get the number of boost states.
    ErrorData.NumberofBoostStates = F10GetNumberOfBoostedPstatesOnCore (StdHeader);

    TaskPtr.FuncAddress.PfApTaskI = F10PmPwrCheckCore;
    TaskPtr.DataTransfer.DataSizeInDwords = SIZE_IN_DWORDS (PWRCHK_ERROR_DATA);
    TaskPtr.DataTransfer.DataPtr = &ErrorData;
    TaskPtr.DataTransfer.DataTransferFlags = 0;
    TaskPtr.ExeFlags = WAIT_FOR_CORE;
    ApUtilRunCodeOnAllLocalCoresAtEarly (&TaskPtr, StdHeader, CpuEarlyParams);

    // Final Step 1
    // For revision E systems with CPUID Fn8000_0007[CPB]=1, if P0 is disabled then
    // program F4x15C[BoostSrc]=0. This step uses hardware P-state numbering.
    if (ErrorData.NumberofBoostStates == 1) {
      PciAddress.Address.Function = FUNC_4;
      PciAddress.Address.Register = CPB_CTRL_REG;
      LibAmdPciRead (AccessWidth32, PciAddress, &LocalPciRegister, StdHeader);
      ((CPB_CTRL_REGISTER *) &LocalPciRegister)->BoostSrc = 0;
      LibAmdPciWrite (AccessWidth32, PciAddress, &LocalPciRegister, StdHeader);
    }
    // Final Step 2
    //    F3x64[HtPstatelimit] -= disPsNum
    //    F3x68[StcPstateLimit]-= disPsNum
    //    F3xDC[PstateMaxVal]-= disPsNum

    PciAddress.Address.Function = FUNC_3;
    PciAddress.Address.Register = HTC_REG;
    AndMask = 0xFFFFFFFF;
    ((HTC_REGISTER *) &AndMask)->HtcPstateLimit = 0;
    OrMask = 0x00000000;
    LibAmdPciRead (AccessWidth32, PciAddress, &LocalPciRegister, StdHeader); // F3x64
    PstateLimit = ((HTC_REGISTER *) &LocalPciRegister)->HtcPstateLimit;
    if (ErrorData.AllowablePstateNumber != 0) {
      if (PstateLimit > DisPsNum) {
        PstateLimit -= DisPsNum;
        ((HTC_REGISTER *) &OrMask)->HtcPstateLimit = PstateLimit;
      }
    } else {
      ((HTC_REGISTER *) &OrMask)->HtcPstateLimit = ErrorData.NumberofBoostStates;
    }
    ModifyCurrentSocketPci (&PciAddress, AndMask, OrMask, StdHeader); // F3x64

    PciAddress.Address.Register = STC_REG;
    AndMask = 0xFFFFFFFF;
    ((STC_REGISTER *) &AndMask)->StcPstateLimit = 0;
    OrMask = 0x00000000;
    LibAmdPciRead (AccessWidth32, PciAddress, &LocalPciRegister, StdHeader); // F3x68
    PstateLimit = ((STC_REGISTER *) &LocalPciRegister)->StcPstateLimit;
    if (ErrorData.AllowablePstateNumber != 0) {
      if (PstateLimit > DisPsNum) {
        PstateLimit -= DisPsNum;
        ((STC_REGISTER *) &OrMask)->StcPstateLimit = PstateLimit;
      }
    } else {
      ((STC_REGISTER *) &OrMask)->StcPstateLimit = ErrorData.NumberofBoostStates;
    }
    ModifyCurrentSocketPci (&PciAddress, AndMask, OrMask, StdHeader); // F3x68

    PciAddress.Address.Register = CPTC2_REG;
    AndMask = 0xFFFFFFFF;
    ((CLK_PWR_TIMING_CTRL2_REGISTER *) &AndMask)->PstateMaxVal = 0;
    OrMask = 0x00000000;
    LibAmdPciRead (AccessWidth32, PciAddress, &LocalPciRegister, StdHeader); // F3xDC
    PstateLimit = ((CLK_PWR_TIMING_CTRL2_REGISTER *) &LocalPciRegister)->PstateMaxVal;
    if (ErrorData.AllowablePstateNumber != 0) {
      if (PstateLimit > DisPsNum) {
        PstateLimit -= DisPsNum;
        ((CLK_PWR_TIMING_CTRL2_REGISTER *) &OrMask)->PstateMaxVal = PstateLimit;
      }
    } else {
      ((CLK_PWR_TIMING_CTRL2_REGISTER *) &OrMask)->PstateMaxVal = ErrorData.NumberofBoostStates;
    }
    ModifyCurrentSocketPci (&PciAddress, AndMask, OrMask, StdHeader); // F3xDC

    // Now that P0 has changed, recalculate VSSlamTime
    F10ProgramVSSlamTimeOnSocket (&PciAddress, CpuEarlyParams, StdHeader);
  }
}
Exemple #8
0
/**
 * Family 15h core 0 entry point for performing the family 15h Processor-
 * Systemboard Power Delivery Check.
 *
 * The steps are as follows:
 *    1. Starting with P0, loop through all P-states until a passing state is
 *       found.  A passing state is one in which the current required by the
 *       CPU is less than the maximum amount of current that the system can
 *       provide to the CPU.  If P0 is under the limit, no further action is
 *       necessary.
 *    2. If at least one P-State is under the limit & at least one P-State is
 *       over the limit, the BIOS must:
 *       a. If the processor's current P-State is disabled by the power check,
 *          then the BIOS must request a transition to an enabled P-state
 *          using MSRC001_0062[PstateCmd] and wait for MSRC001_0063[CurPstate]
 *          to reflect the new value.
 *       b. Copy the contents of the enabled P-state MSRs to the highest
 *          performance P-state locations.
 *       c. Request a P-state transition to the P-state MSR containing the
 *          COF/VID values currently applied.
 *       d. If a subset of boosted P-states are disabled, then copy the contents
 *          of the highest performance boosted P-state still enabled to the
 *          boosted P-states that have been disabled.
 *       e. If all boosted P-states are disabled, then program D18F4x15C[BoostSrc]
 *          to zero.
 *       f. Adjust the following P-state parameters affected by the P-state
 *          MSR copy by subtracting the number of P-states that are disabled
 *          by the power check.
 *          1. F3x64[HtcPstateLimit]
 *          2. F3x68[SwPstateLimit]
 *          3. F3xDC[PstateMaxVal]
 *    3. If all P-States are over the limit, the BIOS must:
 *       a. If the processor's current P-State is !=F3xDC[PstateMaxVal], then
 *          write F3xDC[PstateMaxVal] to MSRC001_0062[PstateCmd] and wait for
 *          MSRC001_0063[CurPstate] to reflect the new value.
 *       b. If MSRC001_0061[PstateMaxVal]!=000b, copy the contents of the P-state
 *          MSR pointed to by F3xDC[PstateMaxVal] to the software P0 MSR.
 *          Write 000b to MSRC001_0062[PstateCmd] and wait for MSRC001_0063
 *          [CurPstate] to reflect the new value.
 *       c. Adjust the following P-state parameters to zero:
 *          1. F3x64[HtcPstateLimit]
 *          2. F3x68[SwPstateLimit]
 *          3. F3xDC[PstateMaxVal]
 *       d. Program D18F4x15C[BoostSrc] to zero.
 *
 * @param[in]  FamilySpecificServices  The current Family Specific Services.
 * @param[in]  CpuEarlyParams          Service parameters
 * @param[in]  StdHeader               Config handle for library and services.
 *
 */
VOID
F15PmPwrCheck (
  IN       CPU_SPECIFIC_SERVICES *FamilySpecificServices,
  IN       AMD_CPU_EARLY_PARAMS  *CpuEarlyParams,
  IN       AMD_CONFIG_PARAMS     *StdHeader
  )
{
  UINT8       DisPsNum;
  UINT8       PsMaxVal;
  UINT8       Pstate;
  UINT32      ProcIddMax;
  UINT32      LocalPciRegister;
  UINT32      Socket;
  UINT32      Module;
  UINT32      Core;
  UINT32      AndMask;
  UINT32      OrMask;
  UINT32      PstateLimit;
  PCI_ADDR    PciAddress;
  UINT64      LocalMsrRegister;
  AP_TASK     TaskPtr;
  AGESA_STATUS IgnoredSts;
  PWRCHK_ERROR_DATA ErrorData;
  UINT32      NumModules;
  UINT32      HighCore;
  UINT32      LowCore;
  UINT32      ModuleIndex;


  // get the socket number
  IdentifyCore (StdHeader, &Socket, &Module, &Core, &IgnoredSts);
  ErrorData.SocketNumber = (UINT8) Socket;

  ASSERT (Core == 0);

  // get the Max P-state value
  for (PsMaxVal = NM_PS_REG - 1; PsMaxVal != 0; --PsMaxVal) {
    LibAmdMsrRead (PS_REG_BASE + PsMaxVal, &LocalMsrRegister, StdHeader);
    if (((F15_PSTATE_MSR *) &LocalMsrRegister)->PsEnable == 1) {
      break;
    }
  }

  ErrorData.HwPstateNumber = (UINT8) (PsMaxVal + 1);

 // Starting with P0, loop through all P-states until a passing state is
 // found.  A passing state is one in which the current required by the
 // CPU is less than the maximum amount of current that the system can
 // provide to the CPU.  If P0 is under the limit, no further action is
 // necessary.
  DisPsNum = 0;
  for (Pstate = 0; Pstate < ErrorData.HwPstateNumber; Pstate++) {
    if (FamilySpecificServices->GetProcIddMax (FamilySpecificServices, Pstate, &ProcIddMax, StdHeader)) {
      if (ProcIddMax > CpuEarlyParams->PlatformConfig.VrmProperties[CoreVrm].CurrentLimit) {
        // Add to event log the Pstate that exceeded the current limit
        PutEventLog (AGESA_WARNING,
                     CPU_EVENT_PM_PSTATE_OVERCURRENT,
                     Socket, Pstate, 0, 0, StdHeader);
        DisPsNum++;
      } else {
        break;
      }
    }
  }

  ErrorData.AllowablePstateNumber = ((PsMaxVal + 1) - DisPsNum);

  if (ErrorData.AllowablePstateNumber == 0) {
    PutEventLog (AGESA_FATAL,
                 CPU_EVENT_PM_ALL_PSTATE_OVERCURRENT,
                 Socket, 0, 0, 0, StdHeader);
  }

  if (DisPsNum != 0) {
    GetPciAddress (StdHeader, Socket, Module, &PciAddress, &IgnoredSts);
    PciAddress.Address.Function = FUNC_4;
    PciAddress.Address.Register = CPB_CTRL_REG;
    LibAmdPciRead (AccessWidth32, PciAddress, &LocalPciRegister, StdHeader); // F4x15C
    ErrorData.NumberOfBoostStates = (UINT8) ((F15_CPB_CTRL_REGISTER *) &LocalPciRegister)->NumBoostStates;

    if (DisPsNum >= ErrorData.NumberOfBoostStates) {
      // If all boosted P-states are disabled, then program D18F4x15C[BoostSrc] to zero.
      AndMask = 0xFFFFFFFF;
      ((F15_CPB_CTRL_REGISTER *) &AndMask)->BoostSrc = 0;
      OrMask = 0x00000000;
      OptionMultiSocketConfiguration.ModifyCurrSocketPci (&PciAddress, AndMask, OrMask, StdHeader); // F4x15C
      // Update the result of isFeatureEnabled in heap.
      UpdateFeatureStatusInHeap (CoreBoost, FALSE, StdHeader);

      ErrorData.NumberOfSwPstatesDisabled = DisPsNum - ErrorData.NumberOfBoostStates;
    } else {
      ErrorData.NumberOfSwPstatesDisabled = 0;
    }

    NumModules = GetPlatformNumberOfModules ();

    // Only execute this loop if this is an MCM.
    if (NumModules > 1) {

      // Since the P-State MSRs are shared across a
      // node, we only need to set one core in the node for the modified number of supported p-states
      // to be reported across all of the cores in the module.
      TaskPtr.FuncAddress.PfApTaskI = F15PmPwrCheckCore;
      TaskPtr.DataTransfer.DataSizeInDwords = SIZE_IN_DWORDS (PWRCHK_ERROR_DATA);
      TaskPtr.DataTransfer.DataPtr = &ErrorData;
      TaskPtr.DataTransfer.DataTransferFlags = 0;
      TaskPtr.ExeFlags = WAIT_FOR_CORE;

      for (ModuleIndex = 0; ModuleIndex < NumModules; ModuleIndex++) {
        // Execute the P-State reduction code on the module's primary core only.
        // Skip this code for the BSC's module.
        if (ModuleIndex != Module) {
          if (GetGivenModuleCoreRange (Socket, ModuleIndex, &LowCore, &HighCore, StdHeader)) {
            ApUtilRunCodeOnSocketCore ((UINT8)Socket, (UINT8)LowCore, &TaskPtr, StdHeader);
          }
        }
      }
  }

    // Path for SCM and the BSC
    F15PmPwrCheckCore (&ErrorData, StdHeader);

    // Final Step
    //    F3x64[HtPstatelimit] -= disPsNum
    //    F3x68[SwPstateLimit] -= disPsNum
    //    F3xDC[PstateMaxVal] -= disPsNum

    PciAddress.Address.Function = FUNC_3;
    PciAddress.Address.Register = HTC_REG;
    AndMask = 0xFFFFFFFF;
    ((HTC_REGISTER *) &AndMask)->HtcPstateLimit = 0;
    OrMask = 0x00000000;
    LibAmdPciRead (AccessWidth32, PciAddress, &LocalPciRegister, StdHeader); // F3x64
    PstateLimit = ((HTC_REGISTER *) &LocalPciRegister)->HtcPstateLimit;
    if (PstateLimit > ErrorData.NumberOfSwPstatesDisabled) {
      PstateLimit -= ErrorData.NumberOfSwPstatesDisabled;
      ((HTC_REGISTER *) &OrMask)->HtcPstateLimit = PstateLimit;
    }
    OptionMultiSocketConfiguration.ModifyCurrSocketPci (&PciAddress, AndMask, OrMask, StdHeader); // F3x64

    PciAddress.Address.Register = SW_PS_LIMIT_REG;
    AndMask = 0xFFFFFFFF;
    ((SW_PS_LIMIT_REGISTER *) &AndMask)->SwPstateLimit = 0;
    OrMask = 0x00000000;
    LibAmdPciRead (AccessWidth32, PciAddress, &LocalPciRegister, StdHeader); // F3x68
    PstateLimit = ((SW_PS_LIMIT_REGISTER *) &LocalPciRegister)->SwPstateLimit;
    if (PstateLimit > ErrorData.NumberOfSwPstatesDisabled) {
      PstateLimit -= ErrorData.NumberOfSwPstatesDisabled;
      ((SW_PS_LIMIT_REGISTER *) &OrMask)->SwPstateLimit = PstateLimit;
    }
    OptionMultiSocketConfiguration.ModifyCurrSocketPci (&PciAddress, AndMask, OrMask, StdHeader); // F3x68

    PciAddress.Address.Register = CPTC2_REG;
    AndMask = 0xFFFFFFFF;
    ((CLK_PWR_TIMING_CTRL2_REGISTER *) &AndMask)->PstateMaxVal = 0;
    OrMask = 0x00000000;
    LibAmdPciRead (AccessWidth32, PciAddress, &LocalPciRegister, StdHeader); // F3xDC
    PstateLimit = ((CLK_PWR_TIMING_CTRL2_REGISTER *) &LocalPciRegister)->PstateMaxVal;
    if (PstateLimit > ErrorData.NumberOfSwPstatesDisabled) {
      PstateLimit -= ErrorData.NumberOfSwPstatesDisabled;
      ((CLK_PWR_TIMING_CTRL2_REGISTER *) &OrMask)->PstateMaxVal = PstateLimit;
    }
    OptionMultiSocketConfiguration.ModifyCurrSocketPci (&PciAddress, AndMask, OrMask, StdHeader); // F3xDC
  }
}
Exemple #9
0
/**
 * Family 10h core 0 entry point for performing the "Northbridge COF and
 * VID Configuration" algorithm.
 *
 * The steps are as follows:
 *    1. Determine if the algorithm is necessary by checking if all NB FIDs
 *       match in the coherent fabric.  If so, check to see if NbCofVidUpdate
 *       is zero for all CPUs.  If that is also true, no further steps are
 *       necessary.  If not + cold reset, proceed to step 2.  If not + warm
 *       reset, proceed to step 8.
 *    2. Determine NewNbVid & NewNbFid.
 *    3. Copy Startup Pstate settings to P0/P1 MSRs on all local cores.
 *    4. Copy NewNbVid to P0 NbVid on all local cores.
 *    5. Transition to P1 on all local cores.
 *    6. Transition to P0 on local core 0 only.
 *    7. Copy NewNbFid to F3xD4[NbFid], set NbFidEn, and issue a warm reset.
 *    8. Update all enabled Pstate MSRs' NbVids according to NbVidUpdateAll
 *       on all local cores.
 *    9. Transition to Startup Pstate on all local cores.
 *
 * @param[in]  FamilySpecificServices  The current Family Specific Services.
 * @param[in]  CpuEarlyParamsPtr       Service related parameters (unused).
 * @param[in]  StdHeader               Config handle for library and services.
 *
 */
VOID
F10PmNbCofVidInit (
  IN       CPU_SPECIFIC_SERVICES *FamilySpecificServices,
  IN       AMD_CPU_EARLY_PARAMS  *CpuEarlyParamsPtr,
  IN       AMD_CONFIG_PARAMS     *StdHeader
  )
{
  BOOLEAN   PerformNbCofVidCfg;
  BOOLEAN   SystemNbCofsMatch;
  UINT8     NewNbFid;
  UINT8     NewNbVid;
  UINT32    Socket;
  UINT32    Module;
  UINT32    Core;
  UINT32    SystemNbCof;
  UINT32    AndMask;
  UINT32    OrMask;
  UINT32    Ignored;
  UINT32    NewNbVoltage;
  WARM_RESET_REQUEST Request;
  AP_TASK   TaskPtr;
  PCI_ADDR  PciAddress;
  AGESA_STATUS IgnoredSts;
  NB_COF_VID_INIT_WARM FunctionData;

  PerformNbCofVidCfg = TRUE;
  OptionMultiSocketConfiguration.GetSystemNbCof (&SystemNbCof, &SystemNbCofsMatch, StdHeader);
  if (SystemNbCofsMatch) {
    if (!OptionMultiSocketConfiguration.GetSystemNbCofVidUpdate (StdHeader)) {
      PerformNbCofVidCfg = FALSE;
    }
  }
  if (PerformNbCofVidCfg) {
    // get the local node ID
    IdentifyCore (StdHeader, &Socket, &Module, &Core, &IgnoredSts);
    GetPciAddress (StdHeader, Socket, Module, &PciAddress, &IgnoredSts);

    ASSERT (Core == 0);

    // get NewNbVid
    FamilySpecificServices->GetNbFrequency (FamilySpecificServices, &PciAddress, &Ignored, &NewNbVoltage, StdHeader);
    ASSERT (((1550000 - NewNbVoltage) % 12500) == 0);
    NewNbVid = (UINT8) ((1550000 - NewNbVoltage) / 12500);
    ASSERT (NewNbVid < 0x80);

    if (!(IsWarmReset (StdHeader))) {

      // determine NewNbFid
      NewNbFid = (UINT8) ((SystemNbCof / 200) - 4);

      TaskPtr.FuncAddress.PfApTaskI = PmNbCofVidInitP0P1Core;
      TaskPtr.DataTransfer.DataSizeInDwords = 1;
      TaskPtr.DataTransfer.DataPtr = &NewNbVid;
      TaskPtr.DataTransfer.DataTransferFlags = 0;
      TaskPtr.ExeFlags = 0;
      ApUtilRunCodeOnAllLocalCoresAtEarly (&TaskPtr, StdHeader, CpuEarlyParamsPtr);

      // Transition core 0 to P0 and wait for change to complete
      FamilySpecificServices->TransitionPstate (FamilySpecificServices, (UINT8) 0, (BOOLEAN) TRUE, StdHeader);

      PciAddress.Address.Register = CPTC0_REG;
      AndMask = 0xFFFFFFFF;
      ((CLK_PWR_TIMING_CTRL_REGISTER *) &AndMask)->NbFid = 0;
      OrMask = 0x00000000;
      ((CLK_PWR_TIMING_CTRL_REGISTER *) &OrMask)->NbFid = NewNbFid;
      ((CLK_PWR_TIMING_CTRL_REGISTER *) &OrMask)->NbFidEn = 1;
      ModifyCurrentSocketPci (&PciAddress, AndMask, OrMask, StdHeader);

      // warm reset request
      FamilySpecificServices->GetWarmResetFlag (FamilySpecificServices, StdHeader, &Request);
      Request.RequestBit = TRUE;
      FamilySpecificServices->SetWarmResetFlag (FamilySpecificServices, StdHeader, &Request);
    } else {
      // warm reset path

      FunctionData.NewNbVid = NewNbVid;
      FamilySpecificServices->IsNbCofInitNeeded (FamilySpecificServices, &PciAddress, &FunctionData.NbVidUpdateAll, StdHeader);

      TaskPtr.FuncAddress.PfApTaskI = PmNbCofVidInitWarmCore;
      TaskPtr.DataTransfer.DataSizeInDwords = SIZE_IN_DWORDS (NB_COF_VID_INIT_WARM);
      TaskPtr.DataTransfer.DataPtr = &FunctionData;
      TaskPtr.DataTransfer.DataTransferFlags = 0;
      TaskPtr.ExeFlags = WAIT_FOR_CORE;
      ApUtilRunCodeOnAllLocalCoresAtEarly (&TaskPtr, StdHeader, CpuEarlyParamsPtr);
    }
  } // skip whole algorithm
}