/* Gains scalar dequantization, uniform on log scale */
void SKP_Silk_gains_dequant(
    SKP_int32                       gain_Q16[ MAX_NB_SUBFR ],   /* O    quantized gains                         */
    const SKP_int8                  ind[ MAX_NB_SUBFR ],        /* I    gain indices                            */
    SKP_int8                        *prev_ind,                  /* I/O  last index in previous frame            */
    const SKP_int                   conditional,                /* I    first gain is delta coded if 1          */
    const SKP_int                   nb_subfr                    /* I    number of subframes                     */
)
{
    SKP_int   k, ind_tmp, double_step_size_threshold;

    for( k = 0; k < nb_subfr; k++ ) {
        if( k == 0 && conditional == 0 ) {
            *prev_ind = ind[ k ];
        } else {
            /* Delta index */
            ind_tmp = ind[ k ] + MIN_DELTA_GAIN_QUANT;

            /* Accumulate deltas */
            double_step_size_threshold = 2 * MAX_DELTA_GAIN_QUANT - N_LEVELS_QGAIN + *prev_ind;
            if( ind_tmp > double_step_size_threshold ) {
                *prev_ind += SKP_LSHIFT( ind_tmp, 1 ) - double_step_size_threshold;
            } else {
                *prev_ind += ind_tmp;
            }
        }

        /* Convert to linear scale and scale */
        gain_Q16[ k ] = SKP_Silk_log2lin( SKP_min_32( SKP_SMULWB( INV_SCALE_Q16, *prev_ind ) + OFFSET, 3967 ) ); /* 3967 = 31 in Q7 */
    }
}
/* Gain scalar quantization with hysteresis, uniform on log scale */
void SKP_Silk_gains_quant(
    SKP_int8                        ind[ MAX_NB_SUBFR ],        /* O    gain indices                            */
    SKP_int32                       gain_Q16[ MAX_NB_SUBFR ],   /* I/O  gains (quantized out)                   */
    SKP_int8                        *prev_ind,                  /* I/O  last index in previous frame            */
    const SKP_int                   conditional,                /* I    first gain is delta coded if 1          */
    const SKP_int                   nb_subfr                    /* I    number of subframes                     */
)
{
    SKP_int k, double_step_size_threshold;

    for( k = 0; k < nb_subfr; k++ ) {
        /* Add half of previous quantization error, convert to log scale, scale, floor() */
        ind[ k ] = SKP_SMULWB( SCALE_Q16, SKP_Silk_lin2log( gain_Q16[ k ] ) - OFFSET );

        /* Round towards previous quantized gain (hysteresis) */
        if( ind[ k ] < *prev_ind ) {
            ind[ k ]++;
        }
        ind[ k ] = SKP_max_int( ind[ k ], 0 );

        /* Compute delta indices and limit */
        if( k == 0 && conditional == 0 ) {
            /* Full index */
            ind[ k ] = SKP_LIMIT_int( ind[ k ], *prev_ind + MIN_DELTA_GAIN_QUANT, N_LEVELS_QGAIN - 1 );
            *prev_ind = ind[ k ];
        } else {
            /* Delta index */
            ind[ k ] = ind[ k ] - *prev_ind;

            /* Double the quantization step size for large gain increases, so that the max gain level can be reached */
            double_step_size_threshold = 2 * MAX_DELTA_GAIN_QUANT - N_LEVELS_QGAIN + *prev_ind;
            if( ind[ k ] > double_step_size_threshold ) {
                ind[ k ] = double_step_size_threshold + SKP_RSHIFT( ind[ k ] - double_step_size_threshold + 1, 1 );
            }

            ind[ k ] = SKP_LIMIT_int( ind[ k ], MIN_DELTA_GAIN_QUANT, MAX_DELTA_GAIN_QUANT );

            /* Accumulate deltas */
            if( ind[ k ] > double_step_size_threshold ) {
                *prev_ind += SKP_LSHIFT( ind[ k ], 1 ) - double_step_size_threshold;
            } else {
                *prev_ind += ind[ k ];
            }

            /* Shift to make non-negative */
            ind[ k ] -= MIN_DELTA_GAIN_QUANT;
        }

        /* Convert to linear scale and scale */
        gain_Q16[ k ] = SKP_Silk_log2lin( SKP_min_32( SKP_SMULWB( INV_SCALE_Q16, *prev_ind ) + OFFSET, 3967 ) ); /* 3967 = 31 in Q7 */
    }
}
Exemple #3
0
void SKP_Silk_PLC_conceal(
    SKP_Silk_decoder_state      *psDec,             /* I/O Decoder state */
    SKP_Silk_decoder_control    *psDecCtrl,         /* I/O Decoder control */
    SKP_int16                   signal[],           /* O concealed signal */
    SKP_int                     length              /* I length of residual */
)
{
    SKP_int   i, j, k;
    SKP_int16 *B_Q14, exc_buf[ MAX_FRAME_LENGTH ], *exc_buf_ptr;
    SKP_int16 rand_scale_Q14, A_Q12_tmp[ MAX_LPC_ORDER ];
    SKP_int32 rand_seed, harm_Gain_Q15, rand_Gain_Q15;
    SKP_int   lag, idx, shift1, shift2;
    SKP_int32 energy1, energy2, *rand_ptr, *pred_lag_ptr, Atmp;
    SKP_int32 sig_Q10[ MAX_FRAME_LENGTH ], *sig_Q10_ptr, LPC_exc_Q10, LPC_pred_Q10,  LTP_pred_Q14;
    SKP_Silk_PLC_struct *psPLC;

    psPLC = &psDec->sPLC;

    /* Update LTP buffer */
    SKP_memcpy( psDec->sLTP_Q16, &psDec->sLTP_Q16[ psDec->frame_length ], psDec->frame_length * sizeof( SKP_int32 ) );

    /* LPC concealment. Apply BWE to previous LPC */
    SKP_Silk_bwexpander( psPLC->prevLPC_Q12, psDec->LPC_order, BWE_COEF_Q16 );

    /* Find random noise component */
    /* Scale previous excitation signal */
    exc_buf_ptr = exc_buf;
    for( k = ( NB_SUBFR >> 1 ); k < NB_SUBFR; k++ ) {
        for( i = 0; i < psDec->subfr_length; i++ ) {
            exc_buf_ptr[ i ] = ( SKP_int16 )SKP_RSHIFT( 
                SKP_SMULWW( psDec->exc_Q10[ i + k * psDec->subfr_length ], psPLC->prevGain_Q16[ k ] ), 10 );
        }
        exc_buf_ptr += psDec->subfr_length;
    }
    /* Find the subframe with lowest energy of the last two and use that as random noise generator */ 
    SKP_Silk_sum_sqr_shift( &energy1, &shift1, exc_buf,                         psDec->subfr_length );
    SKP_Silk_sum_sqr_shift( &energy2, &shift2, &exc_buf[ psDec->subfr_length ], psDec->subfr_length );
        
    if( SKP_RSHIFT( energy1, shift2 ) < SKP_RSHIFT( energy1, shift2 ) ) {
        /* First sub-frame has lowest energy */
        rand_ptr = &psDec->exc_Q10[ SKP_max_int( 0, 3 * psDec->subfr_length - RAND_BUF_SIZE ) ];
    } else {
        /* Second sub-frame has lowest energy */
        rand_ptr = &psDec->exc_Q10[ SKP_max_int( 0, psDec->frame_length - RAND_BUF_SIZE ) ];
    }

    /* Setup Gain to random noise component */ 
    B_Q14          = psPLC->LTPCoef_Q14;
    rand_scale_Q14 = psPLC->randScale_Q14;

    /* Setup attenuation gains */
    harm_Gain_Q15 = HARM_ATT_Q15[ SKP_min_int( NB_ATT - 1, psDec->lossCnt ) ];
    if( psDec->prev_sigtype == SIG_TYPE_VOICED ) {
        rand_Gain_Q15 = PLC_RAND_ATTENUATE_V_Q15[  SKP_min_int( NB_ATT - 1, psDec->lossCnt ) ];
    } else {
        rand_Gain_Q15 = PLC_RAND_ATTENUATE_UV_Q15[ SKP_min_int( NB_ATT - 1, psDec->lossCnt ) ];
    }

    /* First Lost frame */
    if( psDec->lossCnt == 0 ) {
        rand_scale_Q14 = (1 << 14 );
    
        /* Reduce random noise Gain for voiced frames */
        if( psDec->prev_sigtype == SIG_TYPE_VOICED ) {
            for( i = 0; i < LTP_ORDER; i++ ) {
                rand_scale_Q14 -= B_Q14[ i ];
            }
            rand_scale_Q14 = SKP_max_16( 3277, rand_scale_Q14 ); /* 0.2 */
            rand_scale_Q14 = ( SKP_int16 )SKP_RSHIFT( SKP_SMULBB( rand_scale_Q14, psPLC->prevLTP_scale_Q14 ), 14 );
        }

        /* Reduce random noise for unvoiced frames with high LPC gain */
        if( psDec->prev_sigtype == SIG_TYPE_UNVOICED ) {
            SKP_int32 invGain_Q30, down_scale_Q30;
            
            SKP_Silk_LPC_inverse_pred_gain( &invGain_Q30, psPLC->prevLPC_Q12, psDec->LPC_order );
            
            down_scale_Q30 = SKP_min_32( SKP_RSHIFT( ( 1 << 30 ), LOG2_INV_LPC_GAIN_HIGH_THRES ), invGain_Q30 );
            down_scale_Q30 = SKP_max_32( SKP_RSHIFT( ( 1 << 30 ), LOG2_INV_LPC_GAIN_LOW_THRES ), down_scale_Q30 );
            down_scale_Q30 = SKP_LSHIFT( down_scale_Q30, LOG2_INV_LPC_GAIN_HIGH_THRES );
            
            rand_Gain_Q15 = SKP_RSHIFT( SKP_SMULWB( down_scale_Q30, rand_Gain_Q15 ), 14 );
        }
    }

    rand_seed           = psPLC->rand_seed;
    lag                 = SKP_RSHIFT_ROUND( psPLC->pitchL_Q8, 8 );
    psDec->sLTP_buf_idx = psDec->frame_length;

    /***************************/
    /* LTP synthesis filtering */
    /***************************/
    sig_Q10_ptr = sig_Q10;
    for( k = 0; k < NB_SUBFR; k++ ) {
        /* Setup pointer */
        pred_lag_ptr = &psDec->sLTP_Q16[ psDec->sLTP_buf_idx - lag + LTP_ORDER / 2 ];
        for( i = 0; i < psDec->subfr_length; i++ ) {
            rand_seed = SKP_RAND( rand_seed );
            idx = SKP_RSHIFT( rand_seed, 25 ) & RAND_BUF_MASK;

            /* Unrolled loop */
            LTP_pred_Q14 = SKP_SMULWB(               pred_lag_ptr[  0 ], B_Q14[ 0 ] );
            LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -1 ], B_Q14[ 1 ] );
            LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -2 ], B_Q14[ 2 ] );
            LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -3 ], B_Q14[ 3 ] );
            LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -4 ], B_Q14[ 4 ] );
            pred_lag_ptr++;
            
            /* Generate LPC residual */
            LPC_exc_Q10 = SKP_LSHIFT( SKP_SMULWB( rand_ptr[ idx ], rand_scale_Q14 ), 2 ); /* Random noise part */
            LPC_exc_Q10 = SKP_ADD32( LPC_exc_Q10, SKP_RSHIFT_ROUND( LTP_pred_Q14, 4 ) );  /* Harmonic part */
            
            /* Update states */
            psDec->sLTP_Q16[ psDec->sLTP_buf_idx ] = SKP_LSHIFT( LPC_exc_Q10, 6 );
            psDec->sLTP_buf_idx++;
                
            /* Save LPC residual */
            sig_Q10_ptr[ i ] = LPC_exc_Q10;
        }
        sig_Q10_ptr += psDec->subfr_length;
        /* Gradually reduce LTP gain */
        for( j = 0; j < LTP_ORDER; j++ ) {
            B_Q14[ j ] = SKP_RSHIFT( SKP_SMULBB( harm_Gain_Q15, B_Q14[ j ] ), 15 );
        }
        /* Gradually reduce excitation gain */
        rand_scale_Q14 = SKP_RSHIFT( SKP_SMULBB( rand_scale_Q14, rand_Gain_Q15 ), 15 );

        /* Slowly increase pitch lag */
        psPLC->pitchL_Q8 += SKP_SMULWB( psPLC->pitchL_Q8, PITCH_DRIFT_FAC_Q16 );
        psPLC->pitchL_Q8 = SKP_min_32( psPLC->pitchL_Q8, SKP_LSHIFT( SKP_SMULBB( MAX_PITCH_LAG_MS, psDec->fs_kHz ), 8 ) );
        lag = SKP_RSHIFT_ROUND( psPLC->pitchL_Q8, 8 );
    }

    /***************************/
    /* LPC synthesis filtering */
    /***************************/
    sig_Q10_ptr = sig_Q10;
    /* Preload LPC coeficients to array on stack. Gives small performance gain */
    SKP_memcpy( A_Q12_tmp, psPLC->prevLPC_Q12, psDec->LPC_order * sizeof( SKP_int16 ) );
    SKP_assert( psDec->LPC_order >= 10 ); /* check that unrolling works */
    for( k = 0; k < NB_SUBFR; k++ ) {
        for( i = 0; i < psDec->subfr_length; i++ ){
            /* unrolled */
            Atmp = *( ( SKP_int32* )&A_Q12_tmp[ 0 ] );    /* read two coefficients at once */
            LPC_pred_Q10 = SKP_SMULWB(               psDec->sLPC_Q14[ MAX_LPC_ORDER + i -  1 ], Atmp );
            LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i -  2 ], Atmp );
            Atmp = *( ( SKP_int32* )&A_Q12_tmp[ 2 ] );
            LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i -  3 ], Atmp );
            LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i -  4 ], Atmp );
            Atmp = *( ( SKP_int32* )&A_Q12_tmp[ 4 ] );
            LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i -  5 ], Atmp );
            LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i -  6 ], Atmp );
            Atmp = *( ( SKP_int32* )&A_Q12_tmp[ 6 ] );
            LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i -  7 ], Atmp );
            LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i -  8 ], Atmp );
            Atmp = *( ( SKP_int32* )&A_Q12_tmp[ 8 ] );
            LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i -  9 ], Atmp );
            LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i - 10 ], Atmp );
            for( j = 10 ; j < psDec->LPC_order ; j+=2 ) {
                Atmp = *( ( SKP_int32* )&A_Q12_tmp[ j ] );
                LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i -  1 - j ], Atmp );
                LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i -  2 - j ], Atmp );
            }

            /* Add prediction to LPC residual */
            sig_Q10_ptr[ i ] = SKP_ADD32( sig_Q10_ptr[ i ], LPC_pred_Q10 );
                
            /* Update states */
            psDec->sLPC_Q14[ MAX_LPC_ORDER + i ] = SKP_LSHIFT( sig_Q10_ptr[ i ], 4 );
        }
        sig_Q10_ptr += psDec->subfr_length;
        /* Update LPC filter state */
        SKP_memcpy( psDec->sLPC_Q14, &psDec->sLPC_Q14[ psDec->subfr_length ], MAX_LPC_ORDER * sizeof( SKP_int32 ) );
    }

    /* Scale with Gain */
    for( i = 0; i < psDec->frame_length; i++ ) {
        signal[ i ] = ( SKP_int16 )SKP_SAT16( SKP_RSHIFT_ROUND( SKP_SMULWW( sig_Q10[ i ], psPLC->prevGain_Q16[ NB_SUBFR - 1 ] ), 10 ) );
    }

    /**************************************/
    /* Update states                      */
    /**************************************/
    psPLC->rand_seed     = rand_seed;
    psPLC->randScale_Q14 = rand_scale_Q14;
    for( i = 0; i < NB_SUBFR; i++ ) {
        psDecCtrl->pitchL[ i ] = lag;
    }
}
void SKP_Silk_NLSF_MSVQ_encode_FLP(
          SKP_int                   *NLSFIndices,       /* O    Codebook path vector [ CB_STAGES ]      */
          SKP_float                 *pNLSF,             /* I/O  Quantized NLSF vector [ LPC_ORDER ]     */
    const SKP_Silk_NLSF_CB_FLP      *psNLSF_CB_FLP,     /* I    Codebook object                         */
    const SKP_float                 *pNLSF_q_prev,      /* I    Prev. quantized NLSF vector [LPC_ORDER] */
    const SKP_float                 *pW,                /* I    NLSF weight vector [ LPC_ORDER ]        */
    const SKP_float                 NLSF_mu,            /* I    Rate weight for the RD optimization     */
    const SKP_float                 NLSF_mu_fluc_red,   /* I    Fluctuation reduction error weight      */
    const SKP_int                   NLSF_MSVQ_Survivors,/* I    Max survivors from each stage           */
    const SKP_int                   LPC_order,          /* I    LPC order                               */
    const SKP_int                   deactivate_fluc_red /* I    Deactivate fluctuation reduction        */
)
{
    SKP_int     i, s, k, cur_survivors, prev_survivors, min_survivors, input_index, cb_index, bestIndex;
    SKP_float   se, wsse, rateDistThreshold, bestRateDist;

#if( LOW_COMPLEXITY_ONLY == 1 )
    SKP_float   pRateDist[      NLSF_MSVQ_TREE_SEARCH_MAX_VECTORS_EVALUATED_LC_MODE ];
    SKP_float   pRate[          MAX_NLSF_MSVQ_SURVIVORS_LC_MODE ];
    SKP_float   pRate_new[      MAX_NLSF_MSVQ_SURVIVORS_LC_MODE ];
    SKP_int     pTempIndices[   MAX_NLSF_MSVQ_SURVIVORS_LC_MODE ];
    SKP_int     pPath[          MAX_NLSF_MSVQ_SURVIVORS_LC_MODE * NLSF_MSVQ_MAX_CB_STAGES ];
    SKP_int     pPath_new[      MAX_NLSF_MSVQ_SURVIVORS_LC_MODE * NLSF_MSVQ_MAX_CB_STAGES ];
    SKP_float   pRes[           MAX_NLSF_MSVQ_SURVIVORS_LC_MODE * MAX_LPC_ORDER ];
    SKP_float   pRes_new[       MAX_NLSF_MSVQ_SURVIVORS_LC_MODE * MAX_LPC_ORDER ];
#else
    SKP_float   pRateDist[      NLSF_MSVQ_TREE_SEARCH_MAX_VECTORS_EVALUATED ];
    SKP_float   pRate[          MAX_NLSF_MSVQ_SURVIVORS ];
    SKP_float   pRate_new[      MAX_NLSF_MSVQ_SURVIVORS ];
    SKP_int     pTempIndices[   MAX_NLSF_MSVQ_SURVIVORS ];
    SKP_int     pPath[          MAX_NLSF_MSVQ_SURVIVORS * NLSF_MSVQ_MAX_CB_STAGES ];
    SKP_int     pPath_new[      MAX_NLSF_MSVQ_SURVIVORS * NLSF_MSVQ_MAX_CB_STAGES ];
    SKP_float   pRes[           MAX_NLSF_MSVQ_SURVIVORS * MAX_LPC_ORDER ];
    SKP_float   pRes_new[       MAX_NLSF_MSVQ_SURVIVORS * MAX_LPC_ORDER ];
#endif

    const SKP_float *pConstFloat;
          SKP_float *pFloat;
    const SKP_int   *pConstInt;
          SKP_int   *pInt;
    const SKP_float *pCB_element;
    const SKP_Silk_NLSF_CBS_FLP *pCurrentCBStage;

#ifdef USE_UNQUANTIZED_LSFS
    SKP_float NLSF_orig[ MAX_LPC_ORDER ];
    SKP_memcpy( NLSF_orig, pNLSF, LPC_order * sizeof( SKP_float ) );
#endif

    SKP_assert( NLSF_MSVQ_Survivors <= MAX_NLSF_MSVQ_SURVIVORS );
    SKP_assert( ( LOW_COMPLEXITY_ONLY == 0 ) || ( NLSF_MSVQ_Survivors <= MAX_NLSF_MSVQ_SURVIVORS_LC_MODE ) );

    cur_survivors = NLSF_MSVQ_Survivors;


    /****************************************************/
    /* Tree search for the multi-stage vector quantizer */
    /****************************************************/

    /* Clear accumulated rates */
    SKP_memset( pRate, 0, NLSF_MSVQ_Survivors * sizeof( SKP_float ) );
    
    /* Copy NLSFs into residual signal vector */
    SKP_memcpy( pRes, pNLSF, LPC_order * sizeof( SKP_float ) );

    /* Set first stage values */
    prev_survivors = 1;

    /* Minimum number of survivors */
    min_survivors = NLSF_MSVQ_Survivors / 2;

    /* Loop over all stages */
    for( s = 0; s < psNLSF_CB_FLP->nStages; s++ ) {

        /* Set a pointer to the current stage codebook */
        pCurrentCBStage = &psNLSF_CB_FLP->CBStages[ s ];

        /* Calculate the number of survivors in the current stage */
        cur_survivors = SKP_min_32( NLSF_MSVQ_Survivors, prev_survivors * pCurrentCBStage->nVectors );

#if( NLSF_MSVQ_FLUCTUATION_REDUCTION == 0 )
        /* Find a single best survivor in the last stage, if we */
        /* do not need candidates for fluctuation reduction     */
        if( s == psNLSF_CB_FLP->nStages - 1 ) {
            cur_survivors = 1;
        }
#endif

        /* Nearest neighbor clustering for multiple input data vectors */
        SKP_Silk_NLSF_VQ_rate_distortion_FLP( pRateDist, pCurrentCBStage, pRes, pW, pRate, NLSF_mu, prev_survivors, LPC_order );

        /* Sort the rate-distortion errors */
        SKP_Silk_insertion_sort_increasing_FLP( pRateDist, pTempIndices, prev_survivors * pCurrentCBStage->nVectors, cur_survivors );

        /* Discard survivors with rate-distortion values too far above the best one */
        rateDistThreshold = ( 1.0f + NLSF_MSVQ_Survivors * NLSF_MSVQ_SURV_MAX_REL_RD ) * pRateDist[ 0 ];
        while( pRateDist[ cur_survivors - 1 ] > rateDistThreshold && cur_survivors > min_survivors ) {
            cur_survivors--;
        }

        /* Update accumulated codebook contributions for the 'cur_survivors' best codebook indices */
        for( k = 0; k < cur_survivors; k++ ) { 
            if( s > 0 ) {
                /* Find the indices of the input and the codebook vector */
                if( pCurrentCBStage->nVectors == 8 ) {
                    input_index = SKP_RSHIFT( pTempIndices[ k ], 3 );
                    cb_index    = pTempIndices[ k ] & 7;
                } else {
                    input_index = pTempIndices[ k ] / pCurrentCBStage->nVectors;  
                    cb_index    = pTempIndices[ k ] - input_index * pCurrentCBStage->nVectors;
                }
            } else {
                /* Find the indices of the input and the codebook vector */
                input_index = 0;
                cb_index    = pTempIndices[ k ];
            }

            /* Subtract new contribution from the previous residual vector for each of 'cur_survivors' */
            pConstFloat = &pRes[ input_index * LPC_order ];
            pCB_element = &pCurrentCBStage->CB[ cb_index * LPC_order ];
            pFloat      = &pRes_new[ k * LPC_order ];
            for( i = 0; i < LPC_order; i++ ) {
                pFloat[ i ] = pConstFloat[ i ] - pCB_element[ i ];
            }

            /* Update accumulated rate for stage 1 to the current */
            pRate_new[ k ] = pRate[ input_index ] + pCurrentCBStage->Rates[ cb_index ];

            /* Copy paths from previous matrix, starting with the best path */
            pConstInt = &pPath[ input_index * psNLSF_CB_FLP->nStages ];
            pInt      = &pPath_new[       k * psNLSF_CB_FLP->nStages ];
            for( i = 0; i < s; i++ ) {
                pInt[ i ] = pConstInt[ i ];
            }
            /* Write the current stage indices for the 'cur_survivors' to the best path matrix */
            pInt[ s ] = cb_index;
        }

        if( s < psNLSF_CB_FLP->nStages - 1 ) {
            /* Copy NLSF residual matrix for next stage */
            SKP_memcpy(pRes, pRes_new, cur_survivors * LPC_order * sizeof( SKP_float ) );

            /* Copy rate vector for next stage */
            SKP_memcpy(pRate, pRate_new, cur_survivors * sizeof( SKP_float ) );

            /* Copy best path matrix for next stage */
            SKP_memcpy(pPath, pPath_new, cur_survivors * psNLSF_CB_FLP->nStages * sizeof( SKP_int ) );
        }

        prev_survivors = cur_survivors;
    }

    /* (Preliminary) index of the best survivor, later to be decoded */
    bestIndex = 0;

#if( NLSF_MSVQ_FLUCTUATION_REDUCTION == 1 )
    /******************************/
    /* NLSF fluctuation reduction */
    /******************************/
    if( deactivate_fluc_red != 1 ) {
    
        /* Search among all survivors, now taking also weighted fluctuation errors into account */
        bestRateDist = SKP_float_MAX;
        for( s = 0; s < cur_survivors; s++ ) {
            /* Decode survivor to compare with previous quantized NLSF vector */
            SKP_Silk_NLSF_MSVQ_decode_FLP( pNLSF, psNLSF_CB_FLP, &pPath_new[ s * psNLSF_CB_FLP->nStages ], LPC_order );

            /* Compare decoded NLSF vector with the previously quantized vector */ 
            wsse = 0;
            for( i = 0; i < LPC_order; i += 2 ) {
                /* Compute weighted squared quantization error for index i */
                se = pNLSF[ i ] - pNLSF_q_prev[ i ];
                wsse += pW[ i ] * se * se;

                /* Compute weighted squared quantization error for index i + 1 */
                se = pNLSF[ i + 1 ] - pNLSF_q_prev[ i + 1 ];
                wsse += pW[ i + 1 ] * se * se;
            }

            /* Add the fluctuation reduction penalty to the rate distortion error */
            wsse = pRateDist[s] + wsse * NLSF_mu_fluc_red;

            /* Keep index of best survivor */
            if( wsse < bestRateDist ) {
                bestRateDist = wsse;
                bestIndex = s;
            }
        }
    }
#endif

    /* Copy best path to output argument */
    SKP_memcpy( NLSFIndices, &pPath_new[ bestIndex * psNLSF_CB_FLP->nStages ], psNLSF_CB_FLP->nStages * sizeof( SKP_int ) );

    /* Decode and stabilize the best survivor */
    SKP_Silk_NLSF_MSVQ_decode_FLP( pNLSF, psNLSF_CB_FLP, NLSFIndices, LPC_order );

#ifdef USE_UNQUANTIZED_LSFS
    SKP_memcpy( pNLSF, NLSF_orig, LPC_order * sizeof( SKP_float ) );
#endif

}
void SKP_Silk_noise_shape_analysis_FIX(
    SKP_Silk_encoder_state_FIX      *psEnc,         /* I/O  Encoder state FIX                           */
    SKP_Silk_encoder_control_FIX    *psEncCtrl,     /* I/O  Encoder control FIX                         */
    const SKP_int16                 *pitch_res,     /* I    LPC residual from pitch analysis            */
    const SKP_int16                 *x              /* I    Input signal [ 2 * frame_length + la_shape ]*/
)
{
    SKP_Silk_shape_state_FIX *psShapeSt = &psEnc->sShape;
    SKP_int     k, nSamples, lz, Qnrg, b_Q14, scale = 0, sz;
    SKP_int32   SNR_adj_dB_Q7, HarmBoost_Q16, HarmShapeGain_Q16, Tilt_Q16, tmp32;
    SKP_int32   nrg, pre_nrg_Q30, log_energy_Q7, log_energy_prev_Q7, energy_variation_Q7;
    SKP_int32   delta_Q16, BWExp1_Q16, BWExp2_Q16, gain_mult_Q16, gain_add_Q16, strength_Q16, b_Q8;
    SKP_int32   auto_corr[     SHAPE_LPC_ORDER_MAX + 1 ];
    SKP_int32   refl_coef_Q16[ SHAPE_LPC_ORDER_MAX ];
    SKP_int32   AR_Q24[        SHAPE_LPC_ORDER_MAX ];
    SKP_int16   x_windowed[    SHAPE_LPC_WIN_MAX ];
    const SKP_int16 *x_ptr, *pitch_res_ptr;

    SKP_int32   sqrt_nrg[ NB_SUBFR ], Qnrg_vec[ NB_SUBFR ];

    /* Point to start of first LPC analysis block */
    x_ptr = x + psEnc->sCmn.la_shape - SKP_SMULBB( SHAPE_LPC_WIN_MS, psEnc->sCmn.fs_kHz ) + psEnc->sCmn.frame_length / NB_SUBFR;

    /****************/
    /* CONTROL SNR  */
    /****************/
    /* Reduce SNR_dB values if recent bitstream has exceeded TargetRate */
    psEncCtrl->current_SNR_dB_Q7 = psEnc->SNR_dB_Q7 - SKP_SMULWB( SKP_LSHIFT( ( SKP_int32 )psEnc->BufferedInChannel_ms, 7 ), 3277 );

    /* Reduce SNR_dB if inband FEC used */
    if( psEnc->speech_activity_Q8 > LBRR_SPEECH_ACTIVITY_THRES_Q8 ) {
        psEncCtrl->current_SNR_dB_Q7 -= SKP_RSHIFT( psEnc->inBandFEC_SNR_comp_Q8, 1 );
    }

    /****************/
    /* GAIN CONTROL */
    /****************/
    /* Input quality is the average of the quality in the lowest two VAD bands */
    psEncCtrl->input_quality_Q14 = ( SKP_int )SKP_RSHIFT( ( SKP_int32 )psEncCtrl->input_quality_bands_Q15[ 0 ] 
        + psEncCtrl->input_quality_bands_Q15[ 1 ], 2 );
    /* Coding quality level, between 0.0_Q0 and 1.0_Q0, but in Q14 */
    psEncCtrl->coding_quality_Q14 = SKP_RSHIFT( SKP_Silk_sigm_Q15( SKP_RSHIFT_ROUND( psEncCtrl->current_SNR_dB_Q7 - ( 18 << 7 ), 4 ) ), 1 );

    /* Reduce coding SNR during low speech activity */
    b_Q8 = ( 1 << 8 ) - psEnc->speech_activity_Q8;
    b_Q8 = SKP_SMULWB( SKP_LSHIFT( b_Q8, 8 ), b_Q8 );
    SNR_adj_dB_Q7 = SKP_SMLAWB( psEncCtrl->current_SNR_dB_Q7,
        SKP_SMULBB( -BG_SNR_DECR_dB_Q7 >> ( 4 + 1 ), b_Q8 ),                                            // Q11
        SKP_SMULWB( ( 1 << 14 ) + psEncCtrl->input_quality_Q14, psEncCtrl->coding_quality_Q14 ) );      // Q12

    if( psEncCtrl->sCmn.sigtype == SIG_TYPE_VOICED ) {
        /* Reduce gains for periodic signals */
        SNR_adj_dB_Q7 = SKP_SMLAWB( SNR_adj_dB_Q7, HARM_SNR_INCR_dB_Q7 << 1, psEnc->LTPCorr_Q15 );
    } else { 
        /* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */
        SNR_adj_dB_Q7 = SKP_SMLAWB( SNR_adj_dB_Q7, 
            SKP_SMLAWB( 6 << ( 7 + 2 ), -104856, psEncCtrl->current_SNR_dB_Q7 ),    //-104856_Q18 = -0.4_Q0, Q9
            ( 1 << 14 ) - psEncCtrl->input_quality_Q14 );                           // Q14
    }

    /*************************/
    /* SPARSENESS PROCESSING */
    /*************************/
    /* Set quantizer offset */
    if( psEncCtrl->sCmn.sigtype == SIG_TYPE_VOICED ) {
        /* Initally set to 0; may be overruled in process_gains(..) */
        psEncCtrl->sCmn.QuantOffsetType = 0;
        psEncCtrl->sparseness_Q8 = 0;
    } else {
        /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */
        nSamples = SKP_LSHIFT( psEnc->sCmn.fs_kHz, 1 );
        energy_variation_Q7 = 0;
        log_energy_prev_Q7  = 0;
        pitch_res_ptr = pitch_res;
        for( k = 0; k < FRAME_LENGTH_MS / 2; k++ ) {    
            SKP_Silk_sum_sqr_shift( &nrg, &scale, pitch_res_ptr, nSamples );
            nrg += SKP_RSHIFT( nSamples, scale );           // Q(-scale)
            
            log_energy_Q7 = SKP_Silk_lin2log( nrg );
            if( k > 0 ) {
                energy_variation_Q7 += SKP_abs( log_energy_Q7 - log_energy_prev_Q7 );
            }
            log_energy_prev_Q7 = log_energy_Q7;
            pitch_res_ptr += nSamples;
        }

        psEncCtrl->sparseness_Q8 = SKP_RSHIFT( SKP_Silk_sigm_Q15( SKP_SMULWB( energy_variation_Q7 - ( 5 << 7 ), 6554 ) ), 7 );    // 6554_Q16 = 0.1_Q0

        /* Set quantization offset depending on sparseness measure */
        if( psEncCtrl->sparseness_Q8 > SPARSENESS_THRESHOLD_QNT_OFFSET_Q8 ) {
            psEncCtrl->sCmn.QuantOffsetType = 0;
        } else {
            psEncCtrl->sCmn.QuantOffsetType = 1;
        }
        
        /* Increase coding SNR for sparse signals */
        SNR_adj_dB_Q7 = SKP_SMLAWB( SNR_adj_dB_Q7, SPARSE_SNR_INCR_dB_Q7 << 8, psEncCtrl->sparseness_Q8 - ( 1 << 7 ) );
    }

    /*******************************/
    /* Control bandwidth expansion */
    /*******************************/
    delta_Q16  = SKP_SMULWB( ( 1 << 16 ) - SKP_SMULBB( 3, psEncCtrl->coding_quality_Q14 ), LOW_RATE_BANDWIDTH_EXPANSION_DELTA_Q16 );
    BWExp1_Q16 = BANDWIDTH_EXPANSION_Q16 - delta_Q16;
    BWExp2_Q16 = BANDWIDTH_EXPANSION_Q16 + delta_Q16;
    if( psEnc->sCmn.fs_kHz == 24 ) {
        /* Less bandwidth expansion for super wideband */
        BWExp1_Q16 = ( 1 << 16 ) - SKP_SMULWB( SWB_BANDWIDTH_EXPANSION_REDUCTION_Q16, ( 1 << 16 ) - BWExp1_Q16 );
        BWExp2_Q16 = ( 1 << 16 ) - SKP_SMULWB( SWB_BANDWIDTH_EXPANSION_REDUCTION_Q16, ( 1 << 16 ) - BWExp2_Q16 );
    }
    /* BWExp1 will be applied after BWExp2, so make it relative */
    BWExp1_Q16 = SKP_DIV32_16( SKP_LSHIFT( BWExp1_Q16, 14 ), SKP_RSHIFT( BWExp2_Q16, 2 ) );

    /********************************************/
    /* Compute noise shaping AR coefs and gains */
    /********************************************/
    sz = ( SKP_int )SKP_SMULBB( SHAPE_LPC_WIN_MS, psEnc->sCmn.fs_kHz );
    for( k = 0; k < NB_SUBFR; k++ ) {
        /* Apply window */
        SKP_Silk_apply_sine_window( x_windowed, x_ptr, 0, SHAPE_LPC_WIN_MS * psEnc->sCmn.fs_kHz );

        /* Update pointer: next LPC analysis block */
        x_ptr += psEnc->sCmn.frame_length / NB_SUBFR;

        /* Calculate auto correlation */
        SKP_Silk_autocorr( auto_corr, &scale, x_windowed, sz, psEnc->sCmn.shapingLPCOrder + 1 );

        /* Add white noise, as a fraction of energy */
        auto_corr[0] = SKP_ADD32( auto_corr[0], SKP_max_32( SKP_SMULWB( SKP_RSHIFT( auto_corr[ 0 ], 4 ), SHAPE_WHITE_NOISE_FRACTION_Q20 ), 1 ) ); 

        /* Calculate the reflection coefficients using schur */
        nrg = SKP_Silk_schur64( refl_coef_Q16, auto_corr, psEnc->sCmn.shapingLPCOrder );

        /* Convert reflection coefficients to prediction coefficients */
        SKP_Silk_k2a_Q16( AR_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder );

        /* Bandwidth expansion for synthesis filter shaping */
        SKP_Silk_bwexpander_32( AR_Q24, psEnc->sCmn.shapingLPCOrder, BWExp2_Q16 );

        /* Make sure to fit in Q13 SKP_int16 */
        SKP_Silk_LPC_fit( &psEncCtrl->AR2_Q13[ k * SHAPE_LPC_ORDER_MAX ], AR_Q24, 13, psEnc->sCmn.shapingLPCOrder );

        /* Compute noise shaping filter coefficients */
        SKP_memcpy(
            &psEncCtrl->AR1_Q13[ k * SHAPE_LPC_ORDER_MAX ], 
            &psEncCtrl->AR2_Q13[ k * SHAPE_LPC_ORDER_MAX ], 
            psEnc->sCmn.shapingLPCOrder * sizeof( SKP_int16 ) );

        /* Bandwidth expansion for analysis filter shaping */
        SKP_assert( BWExp1_Q16 <= ( 1 << 16 ) ); // If ever breaking, use LPC_stabilize() in these cases to stay within range
        SKP_Silk_bwexpander( &psEncCtrl->AR1_Q13[ k * SHAPE_LPC_ORDER_MAX ], psEnc->sCmn.shapingLPCOrder, BWExp1_Q16 );

        /* Increase residual energy */
        nrg = SKP_SMLAWB( nrg, SKP_RSHIFT( auto_corr[ 0 ], 8 ), SHAPE_MIN_ENERGY_RATIO_Q24 );

        Qnrg = -scale;          // range: -12...30
        SKP_assert( Qnrg >= -12 );
        SKP_assert( Qnrg <=  30 );

        /* Make sure that Qnrg is an even number */
        if( Qnrg & 1 ) {
            Qnrg -= 1;
            nrg >>= 1;
        }

        tmp32 = SKP_Silk_SQRT_APPROX( nrg );
        Qnrg >>= 1;             // range: -6...15

        sqrt_nrg[ k ] = tmp32;
        Qnrg_vec[ k ] = Qnrg;

        psEncCtrl->Gains_Q16[ k ] = SKP_LSHIFT_SAT32( tmp32, 16 - Qnrg );
        /* Ratio of prediction gains, in energy domain */
        SKP_Silk_LPC_inverse_pred_gain_Q13( &pre_nrg_Q30, &psEncCtrl->AR2_Q13[ k * SHAPE_LPC_ORDER_MAX ], psEnc->sCmn.shapingLPCOrder );
        SKP_Silk_LPC_inverse_pred_gain_Q13( &nrg,         &psEncCtrl->AR1_Q13[ k * SHAPE_LPC_ORDER_MAX ], psEnc->sCmn.shapingLPCOrder );

        lz = SKP_min_32( SKP_Silk_CLZ32( pre_nrg_Q30 ) - 1, 19 );
        pre_nrg_Q30 = SKP_DIV32( SKP_LSHIFT( pre_nrg_Q30, lz ), SKP_RSHIFT( nrg, 20 - lz ) + 1 ); // Q20
        pre_nrg_Q30 = SKP_RSHIFT( SKP_LSHIFT_SAT32( pre_nrg_Q30, 9 ), 1 );  /* Q28 */
        psEncCtrl->GainsPre_Q14[ k ] = ( SKP_int )SKP_Silk_SQRT_APPROX( pre_nrg_Q30 );
    }
void SKP_Silk_NLSF_MSVQ_encode_FIX(
    SKP_int                   *NLSFIndices,           /* O    Codebook path vector [ CB_STAGES ]      */
    SKP_int                   *pNLSF_Q15,             /* I/O  Quantized NLSF vector [ LPC_ORDER ]     */
    const SKP_Silk_NLSF_CB_struct   *psNLSF_CB,             /* I    Codebook object                         */
    const SKP_int                   *pNLSF_q_Q15_prev,      /* I    Prev. quantized NLSF vector [LPC_ORDER] */
    const SKP_int                   *pW_Q6,                 /* I    NLSF weight vector [ LPC_ORDER ]        */
    const SKP_int                   NLSF_mu_Q15,            /* I    Rate weight for the RD optimization     */
    const SKP_int                   NLSF_mu_fluc_red_Q16,   /* I    Fluctuation reduction error weight      */
    const SKP_int                   NLSF_MSVQ_Survivors,    /* I    Max survivors from each stage           */
    const SKP_int                   LPC_order,              /* I    LPC order                               */
    const SKP_int                   deactivate_fluc_red     /* I    Deactivate fluctuation reduction        */
)
{
    SKP_int     i, s, k, cur_survivors = 0, prev_survivors, input_index, cb_index, bestIndex;
    SKP_int32   rateDistThreshold_Q18;
    SKP_int     pNLSF_in_Q15[ MAX_LPC_ORDER ];
#if( NLSF_MSVQ_FLUCTUATION_REDUCTION == 1 )
    SKP_int32   se_Q15, wsse_Q20, bestRateDist_Q20;
#endif

#if( LOW_COMPLEXITY_ONLY == 1 )
    SKP_int32   pRateDist_Q18[  NLSF_MSVQ_TREE_SEARCH_MAX_VECTORS_EVALUATED_LC_MODE ];
    SKP_int32   pRate_Q5[       MAX_NLSF_MSVQ_SURVIVORS_LC_MODE ];
    SKP_int32   pRate_new_Q5[   MAX_NLSF_MSVQ_SURVIVORS_LC_MODE ];
    SKP_int     pTempIndices[   MAX_NLSF_MSVQ_SURVIVORS_LC_MODE ];
    SKP_int     pPath[          MAX_NLSF_MSVQ_SURVIVORS_LC_MODE * NLSF_MSVQ_MAX_CB_STAGES ];
    SKP_int     pPath_new[      MAX_NLSF_MSVQ_SURVIVORS_LC_MODE * NLSF_MSVQ_MAX_CB_STAGES ];
    SKP_int     pRes_Q15[       MAX_NLSF_MSVQ_SURVIVORS_LC_MODE * MAX_LPC_ORDER ];
    SKP_int     pRes_new_Q15[   MAX_NLSF_MSVQ_SURVIVORS_LC_MODE * MAX_LPC_ORDER ];
#else
    SKP_int32   pRateDist_Q18[  NLSF_MSVQ_TREE_SEARCH_MAX_VECTORS_EVALUATED ];
    SKP_int32   pRate_Q5[       MAX_NLSF_MSVQ_SURVIVORS ];
    SKP_int32   pRate_new_Q5[   MAX_NLSF_MSVQ_SURVIVORS ];
    SKP_int     pTempIndices[   MAX_NLSF_MSVQ_SURVIVORS ];
    SKP_int     pPath[          MAX_NLSF_MSVQ_SURVIVORS * NLSF_MSVQ_MAX_CB_STAGES ];
    SKP_int     pPath_new[      MAX_NLSF_MSVQ_SURVIVORS * NLSF_MSVQ_MAX_CB_STAGES ];
    SKP_int     pRes_Q15[       MAX_NLSF_MSVQ_SURVIVORS * MAX_LPC_ORDER ];
    SKP_int     pRes_new_Q15[   MAX_NLSF_MSVQ_SURVIVORS * MAX_LPC_ORDER ];
#endif

    const SKP_int   *pConstInt;
    SKP_int   *pInt;
    const SKP_int16 *pCB_element;
    const SKP_Silk_NLSF_CBS *pCurrentCBStage;

    SKP_assert( NLSF_MSVQ_Survivors <= MAX_NLSF_MSVQ_SURVIVORS );
    SKP_assert( ( LOW_COMPLEXITY_ONLY == 0 ) || ( NLSF_MSVQ_Survivors <= MAX_NLSF_MSVQ_SURVIVORS_LC_MODE ) );



    /* Copy the input vector */
    SKP_memcpy( pNLSF_in_Q15, pNLSF_Q15, LPC_order * sizeof( SKP_int ) );

    /****************************************************/
    /* Tree search for the multi-stage vector quantizer */
    /****************************************************/

    /* Clear accumulated rates */
    SKP_memset( pRate_Q5, 0, NLSF_MSVQ_Survivors * sizeof( SKP_int32 ) );

    /* Copy NLSFs into residual signal vector */
    for( i = 0; i < LPC_order; i++ ) {
        pRes_Q15[ i ] = pNLSF_Q15[ i ];
    }

    /* Set first stage values */
    prev_survivors = 1;

    /* Loop over all stages */
    for( s = 0; s < psNLSF_CB->nStages; s++ ) {

        /* Set a pointer to the current stage codebook */
        pCurrentCBStage = &psNLSF_CB->CBStages[ s ];

        /* Calculate the number of survivors in the current stage */
        cur_survivors = SKP_min_32( NLSF_MSVQ_Survivors, SKP_SMULBB( prev_survivors, pCurrentCBStage->nVectors ) );

#if( NLSF_MSVQ_FLUCTUATION_REDUCTION == 0 )
        /* Find a single best survivor in the last stage, if we */
        /* do not need candidates for fluctuation reduction     */
        if( s == psNLSF_CB->nStages - 1 ) {
            cur_survivors = 1;
        }
#endif

        /* Nearest neighbor clustering for multiple input data vectors */
        SKP_Silk_NLSF_VQ_rate_distortion_FIX( pRateDist_Q18, pCurrentCBStage, pRes_Q15, pW_Q6,
                                              pRate_Q5, NLSF_mu_Q15, prev_survivors, LPC_order );

        /* Sort the rate-distortion errors */
        SKP_Silk_insertion_sort_increasing( pRateDist_Q18, pTempIndices,
                                            prev_survivors * pCurrentCBStage->nVectors, cur_survivors );

        /* Discard survivors with rate-distortion values too far above the best one */
        if( pRateDist_Q18[ 0 ] < SKP_int32_MAX / NLSF_MSVQ_SURV_MAX_REL_RD ) {
            rateDistThreshold_Q18 = SKP_MUL( NLSF_MSVQ_SURV_MAX_REL_RD, pRateDist_Q18[ 0 ] );
            while( pRateDist_Q18[ cur_survivors - 1 ] > rateDistThreshold_Q18 && cur_survivors > 1 ) {
                cur_survivors--;
            }
        }
        /* Update accumulated codebook contributions for the 'cur_survivors' best codebook indices */
        for( k = 0; k < cur_survivors; k++ ) {
            if( s > 0 ) {
                /* Find the indices of the input and the codebook vector */
                if( pCurrentCBStage->nVectors == 8 ) {
                    input_index = SKP_RSHIFT( pTempIndices[ k ], 3 );
                    cb_index    = pTempIndices[ k ] & 7;
                } else {
                    input_index = SKP_DIV32_16( pTempIndices[ k ], pCurrentCBStage->nVectors );
                    cb_index    = pTempIndices[ k ] - SKP_SMULBB( input_index, pCurrentCBStage->nVectors );
                }
            } else {
                /* Find the indices of the input and the codebook vector */
                input_index = 0;
                cb_index    = pTempIndices[ k ];
            }

            /* Subtract new contribution from the previous residual vector for each of 'cur_survivors' */
            pConstInt   = &pRes_Q15[ SKP_SMULBB( input_index, LPC_order ) ];
            pCB_element = &pCurrentCBStage->CB_NLSF_Q15[ SKP_SMULBB( cb_index, LPC_order ) ];
            pInt        = &pRes_new_Q15[ SKP_SMULBB( k, LPC_order ) ];
            for( i = 0; i < LPC_order; i++ ) {
                pInt[ i ] = pConstInt[ i ] - ( SKP_int )pCB_element[ i ];
            }

            /* Update accumulated rate for stage 1 to the current */
            pRate_new_Q5[ k ] = pRate_Q5[ input_index ] + pCurrentCBStage->Rates_Q5[ cb_index ];

            /* Copy paths from previous matrix, starting with the best path */
            pConstInt = &pPath[ SKP_SMULBB( input_index, psNLSF_CB->nStages ) ];
            pInt      = &pPath_new[ SKP_SMULBB( k, psNLSF_CB->nStages ) ];
            for( i = 0; i < s; i++ ) {
                pInt[ i ] = pConstInt[ i ];
            }
            /* Write the current stage indices for the 'cur_survivors' to the best path matrix */
            pInt[ s ] = cb_index;
        }

        if( s < psNLSF_CB->nStages - 1 ) {
            /* Copy NLSF residual matrix for next stage */
            SKP_memcpy( pRes_Q15, pRes_new_Q15, SKP_SMULBB( cur_survivors, LPC_order ) * sizeof( SKP_int ) );

            /* Copy rate vector for next stage */
            SKP_memcpy( pRate_Q5, pRate_new_Q5, cur_survivors * sizeof( SKP_int32 ) );

            /* Copy best path matrix for next stage */
            SKP_memcpy( pPath, pPath_new, SKP_SMULBB( cur_survivors, psNLSF_CB->nStages ) * sizeof( SKP_int ) );
        }

        prev_survivors = cur_survivors;
    }

    /* (Preliminary) index of the best survivor, later to be decoded */
    bestIndex = 0;

#if( NLSF_MSVQ_FLUCTUATION_REDUCTION == 1 )
    /******************************/
    /* NLSF fluctuation reduction */
    /******************************/
    if( deactivate_fluc_red != 1 ) {

        /* Search among all survivors, now taking also weighted fluctuation errors into account */
        bestRateDist_Q20 = SKP_int32_MAX;
        for( s = 0; s < cur_survivors; s++ ) {
            /* Decode survivor to compare with previous quantized NLSF vector */
            SKP_Silk_NLSF_MSVQ_decode( pNLSF_Q15, psNLSF_CB, &pPath_new[ SKP_SMULBB( s, psNLSF_CB->nStages ) ], LPC_order );

            /* Compare decoded NLSF vector with the previously quantized vector */
            wsse_Q20 = 0;
            for( i = 0; i < LPC_order; i += 2 ) {
                /* Compute weighted squared quantization error for index i */
                se_Q15 = pNLSF_Q15[ i ] - pNLSF_q_Q15_prev[ i ]; // range: [ -32767 : 32767 ]
                wsse_Q20 = SKP_SMLAWB( wsse_Q20, SKP_SMULBB( se_Q15, se_Q15 ), pW_Q6[ i ] );

                /* Compute weighted squared quantization error for index i + 1 */
                se_Q15 = pNLSF_Q15[ i + 1 ] - pNLSF_q_Q15_prev[ i + 1 ]; // range: [ -32767 : 32767 ]
                wsse_Q20 = SKP_SMLAWB( wsse_Q20, SKP_SMULBB( se_Q15, se_Q15 ), pW_Q6[ i + 1 ] );
            }
            SKP_assert( wsse_Q20 >= 0 );

            /* Add the fluctuation reduction penalty to the rate distortion error */
            wsse_Q20 = SKP_ADD_POS_SAT32( pRateDist_Q18[ s ], SKP_SMULWB( wsse_Q20, NLSF_mu_fluc_red_Q16 ) );

            /* Keep index of best survivor */
            if( wsse_Q20 < bestRateDist_Q20 ) {
                bestRateDist_Q20 = wsse_Q20;
                bestIndex = s;
            }
        }
    }
#endif

    /* Copy best path to output argument */
    SKP_memcpy( NLSFIndices, &pPath_new[ SKP_SMULBB( bestIndex, psNLSF_CB->nStages ) ], psNLSF_CB->nStages * sizeof( SKP_int ) );

    /* Decode and stabilize the best survivor */
    SKP_Silk_NLSF_MSVQ_decode( pNLSF_Q15, psNLSF_CB, NLSFIndices, LPC_order );

}