/* Gains scalar dequantization, uniform on log scale */ void SKP_Silk_gains_dequant( SKP_int32 gain_Q16[ MAX_NB_SUBFR ], /* O quantized gains */ const SKP_int8 ind[ MAX_NB_SUBFR ], /* I gain indices */ SKP_int8 *prev_ind, /* I/O last index in previous frame */ const SKP_int conditional, /* I first gain is delta coded if 1 */ const SKP_int nb_subfr /* I number of subframes */ ) { SKP_int k, ind_tmp, double_step_size_threshold; for( k = 0; k < nb_subfr; k++ ) { if( k == 0 && conditional == 0 ) { *prev_ind = ind[ k ]; } else { /* Delta index */ ind_tmp = ind[ k ] + MIN_DELTA_GAIN_QUANT; /* Accumulate deltas */ double_step_size_threshold = 2 * MAX_DELTA_GAIN_QUANT - N_LEVELS_QGAIN + *prev_ind; if( ind_tmp > double_step_size_threshold ) { *prev_ind += SKP_LSHIFT( ind_tmp, 1 ) - double_step_size_threshold; } else { *prev_ind += ind_tmp; } } /* Convert to linear scale and scale */ gain_Q16[ k ] = SKP_Silk_log2lin( SKP_min_32( SKP_SMULWB( INV_SCALE_Q16, *prev_ind ) + OFFSET, 3967 ) ); /* 3967 = 31 in Q7 */ } }
/* Gain scalar quantization with hysteresis, uniform on log scale */ void SKP_Silk_gains_quant( SKP_int8 ind[ MAX_NB_SUBFR ], /* O gain indices */ SKP_int32 gain_Q16[ MAX_NB_SUBFR ], /* I/O gains (quantized out) */ SKP_int8 *prev_ind, /* I/O last index in previous frame */ const SKP_int conditional, /* I first gain is delta coded if 1 */ const SKP_int nb_subfr /* I number of subframes */ ) { SKP_int k, double_step_size_threshold; for( k = 0; k < nb_subfr; k++ ) { /* Add half of previous quantization error, convert to log scale, scale, floor() */ ind[ k ] = SKP_SMULWB( SCALE_Q16, SKP_Silk_lin2log( gain_Q16[ k ] ) - OFFSET ); /* Round towards previous quantized gain (hysteresis) */ if( ind[ k ] < *prev_ind ) { ind[ k ]++; } ind[ k ] = SKP_max_int( ind[ k ], 0 ); /* Compute delta indices and limit */ if( k == 0 && conditional == 0 ) { /* Full index */ ind[ k ] = SKP_LIMIT_int( ind[ k ], *prev_ind + MIN_DELTA_GAIN_QUANT, N_LEVELS_QGAIN - 1 ); *prev_ind = ind[ k ]; } else { /* Delta index */ ind[ k ] = ind[ k ] - *prev_ind; /* Double the quantization step size for large gain increases, so that the max gain level can be reached */ double_step_size_threshold = 2 * MAX_DELTA_GAIN_QUANT - N_LEVELS_QGAIN + *prev_ind; if( ind[ k ] > double_step_size_threshold ) { ind[ k ] = double_step_size_threshold + SKP_RSHIFT( ind[ k ] - double_step_size_threshold + 1, 1 ); } ind[ k ] = SKP_LIMIT_int( ind[ k ], MIN_DELTA_GAIN_QUANT, MAX_DELTA_GAIN_QUANT ); /* Accumulate deltas */ if( ind[ k ] > double_step_size_threshold ) { *prev_ind += SKP_LSHIFT( ind[ k ], 1 ) - double_step_size_threshold; } else { *prev_ind += ind[ k ]; } /* Shift to make non-negative */ ind[ k ] -= MIN_DELTA_GAIN_QUANT; } /* Convert to linear scale and scale */ gain_Q16[ k ] = SKP_Silk_log2lin( SKP_min_32( SKP_SMULWB( INV_SCALE_Q16, *prev_ind ) + OFFSET, 3967 ) ); /* 3967 = 31 in Q7 */ } }
void SKP_Silk_PLC_conceal( SKP_Silk_decoder_state *psDec, /* I/O Decoder state */ SKP_Silk_decoder_control *psDecCtrl, /* I/O Decoder control */ SKP_int16 signal[], /* O concealed signal */ SKP_int length /* I length of residual */ ) { SKP_int i, j, k; SKP_int16 *B_Q14, exc_buf[ MAX_FRAME_LENGTH ], *exc_buf_ptr; SKP_int16 rand_scale_Q14, A_Q12_tmp[ MAX_LPC_ORDER ]; SKP_int32 rand_seed, harm_Gain_Q15, rand_Gain_Q15; SKP_int lag, idx, shift1, shift2; SKP_int32 energy1, energy2, *rand_ptr, *pred_lag_ptr, Atmp; SKP_int32 sig_Q10[ MAX_FRAME_LENGTH ], *sig_Q10_ptr, LPC_exc_Q10, LPC_pred_Q10, LTP_pred_Q14; SKP_Silk_PLC_struct *psPLC; psPLC = &psDec->sPLC; /* Update LTP buffer */ SKP_memcpy( psDec->sLTP_Q16, &psDec->sLTP_Q16[ psDec->frame_length ], psDec->frame_length * sizeof( SKP_int32 ) ); /* LPC concealment. Apply BWE to previous LPC */ SKP_Silk_bwexpander( psPLC->prevLPC_Q12, psDec->LPC_order, BWE_COEF_Q16 ); /* Find random noise component */ /* Scale previous excitation signal */ exc_buf_ptr = exc_buf; for( k = ( NB_SUBFR >> 1 ); k < NB_SUBFR; k++ ) { for( i = 0; i < psDec->subfr_length; i++ ) { exc_buf_ptr[ i ] = ( SKP_int16 )SKP_RSHIFT( SKP_SMULWW( psDec->exc_Q10[ i + k * psDec->subfr_length ], psPLC->prevGain_Q16[ k ] ), 10 ); } exc_buf_ptr += psDec->subfr_length; } /* Find the subframe with lowest energy of the last two and use that as random noise generator */ SKP_Silk_sum_sqr_shift( &energy1, &shift1, exc_buf, psDec->subfr_length ); SKP_Silk_sum_sqr_shift( &energy2, &shift2, &exc_buf[ psDec->subfr_length ], psDec->subfr_length ); if( SKP_RSHIFT( energy1, shift2 ) < SKP_RSHIFT( energy1, shift2 ) ) { /* First sub-frame has lowest energy */ rand_ptr = &psDec->exc_Q10[ SKP_max_int( 0, 3 * psDec->subfr_length - RAND_BUF_SIZE ) ]; } else { /* Second sub-frame has lowest energy */ rand_ptr = &psDec->exc_Q10[ SKP_max_int( 0, psDec->frame_length - RAND_BUF_SIZE ) ]; } /* Setup Gain to random noise component */ B_Q14 = psPLC->LTPCoef_Q14; rand_scale_Q14 = psPLC->randScale_Q14; /* Setup attenuation gains */ harm_Gain_Q15 = HARM_ATT_Q15[ SKP_min_int( NB_ATT - 1, psDec->lossCnt ) ]; if( psDec->prev_sigtype == SIG_TYPE_VOICED ) { rand_Gain_Q15 = PLC_RAND_ATTENUATE_V_Q15[ SKP_min_int( NB_ATT - 1, psDec->lossCnt ) ]; } else { rand_Gain_Q15 = PLC_RAND_ATTENUATE_UV_Q15[ SKP_min_int( NB_ATT - 1, psDec->lossCnt ) ]; } /* First Lost frame */ if( psDec->lossCnt == 0 ) { rand_scale_Q14 = (1 << 14 ); /* Reduce random noise Gain for voiced frames */ if( psDec->prev_sigtype == SIG_TYPE_VOICED ) { for( i = 0; i < LTP_ORDER; i++ ) { rand_scale_Q14 -= B_Q14[ i ]; } rand_scale_Q14 = SKP_max_16( 3277, rand_scale_Q14 ); /* 0.2 */ rand_scale_Q14 = ( SKP_int16 )SKP_RSHIFT( SKP_SMULBB( rand_scale_Q14, psPLC->prevLTP_scale_Q14 ), 14 ); } /* Reduce random noise for unvoiced frames with high LPC gain */ if( psDec->prev_sigtype == SIG_TYPE_UNVOICED ) { SKP_int32 invGain_Q30, down_scale_Q30; SKP_Silk_LPC_inverse_pred_gain( &invGain_Q30, psPLC->prevLPC_Q12, psDec->LPC_order ); down_scale_Q30 = SKP_min_32( SKP_RSHIFT( ( 1 << 30 ), LOG2_INV_LPC_GAIN_HIGH_THRES ), invGain_Q30 ); down_scale_Q30 = SKP_max_32( SKP_RSHIFT( ( 1 << 30 ), LOG2_INV_LPC_GAIN_LOW_THRES ), down_scale_Q30 ); down_scale_Q30 = SKP_LSHIFT( down_scale_Q30, LOG2_INV_LPC_GAIN_HIGH_THRES ); rand_Gain_Q15 = SKP_RSHIFT( SKP_SMULWB( down_scale_Q30, rand_Gain_Q15 ), 14 ); } } rand_seed = psPLC->rand_seed; lag = SKP_RSHIFT_ROUND( psPLC->pitchL_Q8, 8 ); psDec->sLTP_buf_idx = psDec->frame_length; /***************************/ /* LTP synthesis filtering */ /***************************/ sig_Q10_ptr = sig_Q10; for( k = 0; k < NB_SUBFR; k++ ) { /* Setup pointer */ pred_lag_ptr = &psDec->sLTP_Q16[ psDec->sLTP_buf_idx - lag + LTP_ORDER / 2 ]; for( i = 0; i < psDec->subfr_length; i++ ) { rand_seed = SKP_RAND( rand_seed ); idx = SKP_RSHIFT( rand_seed, 25 ) & RAND_BUF_MASK; /* Unrolled loop */ LTP_pred_Q14 = SKP_SMULWB( pred_lag_ptr[ 0 ], B_Q14[ 0 ] ); LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -1 ], B_Q14[ 1 ] ); LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -2 ], B_Q14[ 2 ] ); LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -3 ], B_Q14[ 3 ] ); LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -4 ], B_Q14[ 4 ] ); pred_lag_ptr++; /* Generate LPC residual */ LPC_exc_Q10 = SKP_LSHIFT( SKP_SMULWB( rand_ptr[ idx ], rand_scale_Q14 ), 2 ); /* Random noise part */ LPC_exc_Q10 = SKP_ADD32( LPC_exc_Q10, SKP_RSHIFT_ROUND( LTP_pred_Q14, 4 ) ); /* Harmonic part */ /* Update states */ psDec->sLTP_Q16[ psDec->sLTP_buf_idx ] = SKP_LSHIFT( LPC_exc_Q10, 6 ); psDec->sLTP_buf_idx++; /* Save LPC residual */ sig_Q10_ptr[ i ] = LPC_exc_Q10; } sig_Q10_ptr += psDec->subfr_length; /* Gradually reduce LTP gain */ for( j = 0; j < LTP_ORDER; j++ ) { B_Q14[ j ] = SKP_RSHIFT( SKP_SMULBB( harm_Gain_Q15, B_Q14[ j ] ), 15 ); } /* Gradually reduce excitation gain */ rand_scale_Q14 = SKP_RSHIFT( SKP_SMULBB( rand_scale_Q14, rand_Gain_Q15 ), 15 ); /* Slowly increase pitch lag */ psPLC->pitchL_Q8 += SKP_SMULWB( psPLC->pitchL_Q8, PITCH_DRIFT_FAC_Q16 ); psPLC->pitchL_Q8 = SKP_min_32( psPLC->pitchL_Q8, SKP_LSHIFT( SKP_SMULBB( MAX_PITCH_LAG_MS, psDec->fs_kHz ), 8 ) ); lag = SKP_RSHIFT_ROUND( psPLC->pitchL_Q8, 8 ); } /***************************/ /* LPC synthesis filtering */ /***************************/ sig_Q10_ptr = sig_Q10; /* Preload LPC coeficients to array on stack. Gives small performance gain */ SKP_memcpy( A_Q12_tmp, psPLC->prevLPC_Q12, psDec->LPC_order * sizeof( SKP_int16 ) ); SKP_assert( psDec->LPC_order >= 10 ); /* check that unrolling works */ for( k = 0; k < NB_SUBFR; k++ ) { for( i = 0; i < psDec->subfr_length; i++ ){ /* unrolled */ Atmp = *( ( SKP_int32* )&A_Q12_tmp[ 0 ] ); /* read two coefficients at once */ LPC_pred_Q10 = SKP_SMULWB( psDec->sLPC_Q14[ MAX_LPC_ORDER + i - 1 ], Atmp ); LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i - 2 ], Atmp ); Atmp = *( ( SKP_int32* )&A_Q12_tmp[ 2 ] ); LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i - 3 ], Atmp ); LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i - 4 ], Atmp ); Atmp = *( ( SKP_int32* )&A_Q12_tmp[ 4 ] ); LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i - 5 ], Atmp ); LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i - 6 ], Atmp ); Atmp = *( ( SKP_int32* )&A_Q12_tmp[ 6 ] ); LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i - 7 ], Atmp ); LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i - 8 ], Atmp ); Atmp = *( ( SKP_int32* )&A_Q12_tmp[ 8 ] ); LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i - 9 ], Atmp ); LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i - 10 ], Atmp ); for( j = 10 ; j < psDec->LPC_order ; j+=2 ) { Atmp = *( ( SKP_int32* )&A_Q12_tmp[ j ] ); LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i - 1 - j ], Atmp ); LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psDec->sLPC_Q14[ MAX_LPC_ORDER + i - 2 - j ], Atmp ); } /* Add prediction to LPC residual */ sig_Q10_ptr[ i ] = SKP_ADD32( sig_Q10_ptr[ i ], LPC_pred_Q10 ); /* Update states */ psDec->sLPC_Q14[ MAX_LPC_ORDER + i ] = SKP_LSHIFT( sig_Q10_ptr[ i ], 4 ); } sig_Q10_ptr += psDec->subfr_length; /* Update LPC filter state */ SKP_memcpy( psDec->sLPC_Q14, &psDec->sLPC_Q14[ psDec->subfr_length ], MAX_LPC_ORDER * sizeof( SKP_int32 ) ); } /* Scale with Gain */ for( i = 0; i < psDec->frame_length; i++ ) { signal[ i ] = ( SKP_int16 )SKP_SAT16( SKP_RSHIFT_ROUND( SKP_SMULWW( sig_Q10[ i ], psPLC->prevGain_Q16[ NB_SUBFR - 1 ] ), 10 ) ); } /**************************************/ /* Update states */ /**************************************/ psPLC->rand_seed = rand_seed; psPLC->randScale_Q14 = rand_scale_Q14; for( i = 0; i < NB_SUBFR; i++ ) { psDecCtrl->pitchL[ i ] = lag; } }
void SKP_Silk_NLSF_MSVQ_encode_FLP( SKP_int *NLSFIndices, /* O Codebook path vector [ CB_STAGES ] */ SKP_float *pNLSF, /* I/O Quantized NLSF vector [ LPC_ORDER ] */ const SKP_Silk_NLSF_CB_FLP *psNLSF_CB_FLP, /* I Codebook object */ const SKP_float *pNLSF_q_prev, /* I Prev. quantized NLSF vector [LPC_ORDER] */ const SKP_float *pW, /* I NLSF weight vector [ LPC_ORDER ] */ const SKP_float NLSF_mu, /* I Rate weight for the RD optimization */ const SKP_float NLSF_mu_fluc_red, /* I Fluctuation reduction error weight */ const SKP_int NLSF_MSVQ_Survivors,/* I Max survivors from each stage */ const SKP_int LPC_order, /* I LPC order */ const SKP_int deactivate_fluc_red /* I Deactivate fluctuation reduction */ ) { SKP_int i, s, k, cur_survivors, prev_survivors, min_survivors, input_index, cb_index, bestIndex; SKP_float se, wsse, rateDistThreshold, bestRateDist; #if( LOW_COMPLEXITY_ONLY == 1 ) SKP_float pRateDist[ NLSF_MSVQ_TREE_SEARCH_MAX_VECTORS_EVALUATED_LC_MODE ]; SKP_float pRate[ MAX_NLSF_MSVQ_SURVIVORS_LC_MODE ]; SKP_float pRate_new[ MAX_NLSF_MSVQ_SURVIVORS_LC_MODE ]; SKP_int pTempIndices[ MAX_NLSF_MSVQ_SURVIVORS_LC_MODE ]; SKP_int pPath[ MAX_NLSF_MSVQ_SURVIVORS_LC_MODE * NLSF_MSVQ_MAX_CB_STAGES ]; SKP_int pPath_new[ MAX_NLSF_MSVQ_SURVIVORS_LC_MODE * NLSF_MSVQ_MAX_CB_STAGES ]; SKP_float pRes[ MAX_NLSF_MSVQ_SURVIVORS_LC_MODE * MAX_LPC_ORDER ]; SKP_float pRes_new[ MAX_NLSF_MSVQ_SURVIVORS_LC_MODE * MAX_LPC_ORDER ]; #else SKP_float pRateDist[ NLSF_MSVQ_TREE_SEARCH_MAX_VECTORS_EVALUATED ]; SKP_float pRate[ MAX_NLSF_MSVQ_SURVIVORS ]; SKP_float pRate_new[ MAX_NLSF_MSVQ_SURVIVORS ]; SKP_int pTempIndices[ MAX_NLSF_MSVQ_SURVIVORS ]; SKP_int pPath[ MAX_NLSF_MSVQ_SURVIVORS * NLSF_MSVQ_MAX_CB_STAGES ]; SKP_int pPath_new[ MAX_NLSF_MSVQ_SURVIVORS * NLSF_MSVQ_MAX_CB_STAGES ]; SKP_float pRes[ MAX_NLSF_MSVQ_SURVIVORS * MAX_LPC_ORDER ]; SKP_float pRes_new[ MAX_NLSF_MSVQ_SURVIVORS * MAX_LPC_ORDER ]; #endif const SKP_float *pConstFloat; SKP_float *pFloat; const SKP_int *pConstInt; SKP_int *pInt; const SKP_float *pCB_element; const SKP_Silk_NLSF_CBS_FLP *pCurrentCBStage; #ifdef USE_UNQUANTIZED_LSFS SKP_float NLSF_orig[ MAX_LPC_ORDER ]; SKP_memcpy( NLSF_orig, pNLSF, LPC_order * sizeof( SKP_float ) ); #endif SKP_assert( NLSF_MSVQ_Survivors <= MAX_NLSF_MSVQ_SURVIVORS ); SKP_assert( ( LOW_COMPLEXITY_ONLY == 0 ) || ( NLSF_MSVQ_Survivors <= MAX_NLSF_MSVQ_SURVIVORS_LC_MODE ) ); cur_survivors = NLSF_MSVQ_Survivors; /****************************************************/ /* Tree search for the multi-stage vector quantizer */ /****************************************************/ /* Clear accumulated rates */ SKP_memset( pRate, 0, NLSF_MSVQ_Survivors * sizeof( SKP_float ) ); /* Copy NLSFs into residual signal vector */ SKP_memcpy( pRes, pNLSF, LPC_order * sizeof( SKP_float ) ); /* Set first stage values */ prev_survivors = 1; /* Minimum number of survivors */ min_survivors = NLSF_MSVQ_Survivors / 2; /* Loop over all stages */ for( s = 0; s < psNLSF_CB_FLP->nStages; s++ ) { /* Set a pointer to the current stage codebook */ pCurrentCBStage = &psNLSF_CB_FLP->CBStages[ s ]; /* Calculate the number of survivors in the current stage */ cur_survivors = SKP_min_32( NLSF_MSVQ_Survivors, prev_survivors * pCurrentCBStage->nVectors ); #if( NLSF_MSVQ_FLUCTUATION_REDUCTION == 0 ) /* Find a single best survivor in the last stage, if we */ /* do not need candidates for fluctuation reduction */ if( s == psNLSF_CB_FLP->nStages - 1 ) { cur_survivors = 1; } #endif /* Nearest neighbor clustering for multiple input data vectors */ SKP_Silk_NLSF_VQ_rate_distortion_FLP( pRateDist, pCurrentCBStage, pRes, pW, pRate, NLSF_mu, prev_survivors, LPC_order ); /* Sort the rate-distortion errors */ SKP_Silk_insertion_sort_increasing_FLP( pRateDist, pTempIndices, prev_survivors * pCurrentCBStage->nVectors, cur_survivors ); /* Discard survivors with rate-distortion values too far above the best one */ rateDistThreshold = ( 1.0f + NLSF_MSVQ_Survivors * NLSF_MSVQ_SURV_MAX_REL_RD ) * pRateDist[ 0 ]; while( pRateDist[ cur_survivors - 1 ] > rateDistThreshold && cur_survivors > min_survivors ) { cur_survivors--; } /* Update accumulated codebook contributions for the 'cur_survivors' best codebook indices */ for( k = 0; k < cur_survivors; k++ ) { if( s > 0 ) { /* Find the indices of the input and the codebook vector */ if( pCurrentCBStage->nVectors == 8 ) { input_index = SKP_RSHIFT( pTempIndices[ k ], 3 ); cb_index = pTempIndices[ k ] & 7; } else { input_index = pTempIndices[ k ] / pCurrentCBStage->nVectors; cb_index = pTempIndices[ k ] - input_index * pCurrentCBStage->nVectors; } } else { /* Find the indices of the input and the codebook vector */ input_index = 0; cb_index = pTempIndices[ k ]; } /* Subtract new contribution from the previous residual vector for each of 'cur_survivors' */ pConstFloat = &pRes[ input_index * LPC_order ]; pCB_element = &pCurrentCBStage->CB[ cb_index * LPC_order ]; pFloat = &pRes_new[ k * LPC_order ]; for( i = 0; i < LPC_order; i++ ) { pFloat[ i ] = pConstFloat[ i ] - pCB_element[ i ]; } /* Update accumulated rate for stage 1 to the current */ pRate_new[ k ] = pRate[ input_index ] + pCurrentCBStage->Rates[ cb_index ]; /* Copy paths from previous matrix, starting with the best path */ pConstInt = &pPath[ input_index * psNLSF_CB_FLP->nStages ]; pInt = &pPath_new[ k * psNLSF_CB_FLP->nStages ]; for( i = 0; i < s; i++ ) { pInt[ i ] = pConstInt[ i ]; } /* Write the current stage indices for the 'cur_survivors' to the best path matrix */ pInt[ s ] = cb_index; } if( s < psNLSF_CB_FLP->nStages - 1 ) { /* Copy NLSF residual matrix for next stage */ SKP_memcpy(pRes, pRes_new, cur_survivors * LPC_order * sizeof( SKP_float ) ); /* Copy rate vector for next stage */ SKP_memcpy(pRate, pRate_new, cur_survivors * sizeof( SKP_float ) ); /* Copy best path matrix for next stage */ SKP_memcpy(pPath, pPath_new, cur_survivors * psNLSF_CB_FLP->nStages * sizeof( SKP_int ) ); } prev_survivors = cur_survivors; } /* (Preliminary) index of the best survivor, later to be decoded */ bestIndex = 0; #if( NLSF_MSVQ_FLUCTUATION_REDUCTION == 1 ) /******************************/ /* NLSF fluctuation reduction */ /******************************/ if( deactivate_fluc_red != 1 ) { /* Search among all survivors, now taking also weighted fluctuation errors into account */ bestRateDist = SKP_float_MAX; for( s = 0; s < cur_survivors; s++ ) { /* Decode survivor to compare with previous quantized NLSF vector */ SKP_Silk_NLSF_MSVQ_decode_FLP( pNLSF, psNLSF_CB_FLP, &pPath_new[ s * psNLSF_CB_FLP->nStages ], LPC_order ); /* Compare decoded NLSF vector with the previously quantized vector */ wsse = 0; for( i = 0; i < LPC_order; i += 2 ) { /* Compute weighted squared quantization error for index i */ se = pNLSF[ i ] - pNLSF_q_prev[ i ]; wsse += pW[ i ] * se * se; /* Compute weighted squared quantization error for index i + 1 */ se = pNLSF[ i + 1 ] - pNLSF_q_prev[ i + 1 ]; wsse += pW[ i + 1 ] * se * se; } /* Add the fluctuation reduction penalty to the rate distortion error */ wsse = pRateDist[s] + wsse * NLSF_mu_fluc_red; /* Keep index of best survivor */ if( wsse < bestRateDist ) { bestRateDist = wsse; bestIndex = s; } } } #endif /* Copy best path to output argument */ SKP_memcpy( NLSFIndices, &pPath_new[ bestIndex * psNLSF_CB_FLP->nStages ], psNLSF_CB_FLP->nStages * sizeof( SKP_int ) ); /* Decode and stabilize the best survivor */ SKP_Silk_NLSF_MSVQ_decode_FLP( pNLSF, psNLSF_CB_FLP, NLSFIndices, LPC_order ); #ifdef USE_UNQUANTIZED_LSFS SKP_memcpy( pNLSF, NLSF_orig, LPC_order * sizeof( SKP_float ) ); #endif }
void SKP_Silk_noise_shape_analysis_FIX( SKP_Silk_encoder_state_FIX *psEnc, /* I/O Encoder state FIX */ SKP_Silk_encoder_control_FIX *psEncCtrl, /* I/O Encoder control FIX */ const SKP_int16 *pitch_res, /* I LPC residual from pitch analysis */ const SKP_int16 *x /* I Input signal [ 2 * frame_length + la_shape ]*/ ) { SKP_Silk_shape_state_FIX *psShapeSt = &psEnc->sShape; SKP_int k, nSamples, lz, Qnrg, b_Q14, scale = 0, sz; SKP_int32 SNR_adj_dB_Q7, HarmBoost_Q16, HarmShapeGain_Q16, Tilt_Q16, tmp32; SKP_int32 nrg, pre_nrg_Q30, log_energy_Q7, log_energy_prev_Q7, energy_variation_Q7; SKP_int32 delta_Q16, BWExp1_Q16, BWExp2_Q16, gain_mult_Q16, gain_add_Q16, strength_Q16, b_Q8; SKP_int32 auto_corr[ SHAPE_LPC_ORDER_MAX + 1 ]; SKP_int32 refl_coef_Q16[ SHAPE_LPC_ORDER_MAX ]; SKP_int32 AR_Q24[ SHAPE_LPC_ORDER_MAX ]; SKP_int16 x_windowed[ SHAPE_LPC_WIN_MAX ]; const SKP_int16 *x_ptr, *pitch_res_ptr; SKP_int32 sqrt_nrg[ NB_SUBFR ], Qnrg_vec[ NB_SUBFR ]; /* Point to start of first LPC analysis block */ x_ptr = x + psEnc->sCmn.la_shape - SKP_SMULBB( SHAPE_LPC_WIN_MS, psEnc->sCmn.fs_kHz ) + psEnc->sCmn.frame_length / NB_SUBFR; /****************/ /* CONTROL SNR */ /****************/ /* Reduce SNR_dB values if recent bitstream has exceeded TargetRate */ psEncCtrl->current_SNR_dB_Q7 = psEnc->SNR_dB_Q7 - SKP_SMULWB( SKP_LSHIFT( ( SKP_int32 )psEnc->BufferedInChannel_ms, 7 ), 3277 ); /* Reduce SNR_dB if inband FEC used */ if( psEnc->speech_activity_Q8 > LBRR_SPEECH_ACTIVITY_THRES_Q8 ) { psEncCtrl->current_SNR_dB_Q7 -= SKP_RSHIFT( psEnc->inBandFEC_SNR_comp_Q8, 1 ); } /****************/ /* GAIN CONTROL */ /****************/ /* Input quality is the average of the quality in the lowest two VAD bands */ psEncCtrl->input_quality_Q14 = ( SKP_int )SKP_RSHIFT( ( SKP_int32 )psEncCtrl->input_quality_bands_Q15[ 0 ] + psEncCtrl->input_quality_bands_Q15[ 1 ], 2 ); /* Coding quality level, between 0.0_Q0 and 1.0_Q0, but in Q14 */ psEncCtrl->coding_quality_Q14 = SKP_RSHIFT( SKP_Silk_sigm_Q15( SKP_RSHIFT_ROUND( psEncCtrl->current_SNR_dB_Q7 - ( 18 << 7 ), 4 ) ), 1 ); /* Reduce coding SNR during low speech activity */ b_Q8 = ( 1 << 8 ) - psEnc->speech_activity_Q8; b_Q8 = SKP_SMULWB( SKP_LSHIFT( b_Q8, 8 ), b_Q8 ); SNR_adj_dB_Q7 = SKP_SMLAWB( psEncCtrl->current_SNR_dB_Q7, SKP_SMULBB( -BG_SNR_DECR_dB_Q7 >> ( 4 + 1 ), b_Q8 ), // Q11 SKP_SMULWB( ( 1 << 14 ) + psEncCtrl->input_quality_Q14, psEncCtrl->coding_quality_Q14 ) ); // Q12 if( psEncCtrl->sCmn.sigtype == SIG_TYPE_VOICED ) { /* Reduce gains for periodic signals */ SNR_adj_dB_Q7 = SKP_SMLAWB( SNR_adj_dB_Q7, HARM_SNR_INCR_dB_Q7 << 1, psEnc->LTPCorr_Q15 ); } else { /* For unvoiced signals and low-quality input, adjust the quality slower than SNR_dB setting */ SNR_adj_dB_Q7 = SKP_SMLAWB( SNR_adj_dB_Q7, SKP_SMLAWB( 6 << ( 7 + 2 ), -104856, psEncCtrl->current_SNR_dB_Q7 ), //-104856_Q18 = -0.4_Q0, Q9 ( 1 << 14 ) - psEncCtrl->input_quality_Q14 ); // Q14 } /*************************/ /* SPARSENESS PROCESSING */ /*************************/ /* Set quantizer offset */ if( psEncCtrl->sCmn.sigtype == SIG_TYPE_VOICED ) { /* Initally set to 0; may be overruled in process_gains(..) */ psEncCtrl->sCmn.QuantOffsetType = 0; psEncCtrl->sparseness_Q8 = 0; } else { /* Sparseness measure, based on relative fluctuations of energy per 2 milliseconds */ nSamples = SKP_LSHIFT( psEnc->sCmn.fs_kHz, 1 ); energy_variation_Q7 = 0; log_energy_prev_Q7 = 0; pitch_res_ptr = pitch_res; for( k = 0; k < FRAME_LENGTH_MS / 2; k++ ) { SKP_Silk_sum_sqr_shift( &nrg, &scale, pitch_res_ptr, nSamples ); nrg += SKP_RSHIFT( nSamples, scale ); // Q(-scale) log_energy_Q7 = SKP_Silk_lin2log( nrg ); if( k > 0 ) { energy_variation_Q7 += SKP_abs( log_energy_Q7 - log_energy_prev_Q7 ); } log_energy_prev_Q7 = log_energy_Q7; pitch_res_ptr += nSamples; } psEncCtrl->sparseness_Q8 = SKP_RSHIFT( SKP_Silk_sigm_Q15( SKP_SMULWB( energy_variation_Q7 - ( 5 << 7 ), 6554 ) ), 7 ); // 6554_Q16 = 0.1_Q0 /* Set quantization offset depending on sparseness measure */ if( psEncCtrl->sparseness_Q8 > SPARSENESS_THRESHOLD_QNT_OFFSET_Q8 ) { psEncCtrl->sCmn.QuantOffsetType = 0; } else { psEncCtrl->sCmn.QuantOffsetType = 1; } /* Increase coding SNR for sparse signals */ SNR_adj_dB_Q7 = SKP_SMLAWB( SNR_adj_dB_Q7, SPARSE_SNR_INCR_dB_Q7 << 8, psEncCtrl->sparseness_Q8 - ( 1 << 7 ) ); } /*******************************/ /* Control bandwidth expansion */ /*******************************/ delta_Q16 = SKP_SMULWB( ( 1 << 16 ) - SKP_SMULBB( 3, psEncCtrl->coding_quality_Q14 ), LOW_RATE_BANDWIDTH_EXPANSION_DELTA_Q16 ); BWExp1_Q16 = BANDWIDTH_EXPANSION_Q16 - delta_Q16; BWExp2_Q16 = BANDWIDTH_EXPANSION_Q16 + delta_Q16; if( psEnc->sCmn.fs_kHz == 24 ) { /* Less bandwidth expansion for super wideband */ BWExp1_Q16 = ( 1 << 16 ) - SKP_SMULWB( SWB_BANDWIDTH_EXPANSION_REDUCTION_Q16, ( 1 << 16 ) - BWExp1_Q16 ); BWExp2_Q16 = ( 1 << 16 ) - SKP_SMULWB( SWB_BANDWIDTH_EXPANSION_REDUCTION_Q16, ( 1 << 16 ) - BWExp2_Q16 ); } /* BWExp1 will be applied after BWExp2, so make it relative */ BWExp1_Q16 = SKP_DIV32_16( SKP_LSHIFT( BWExp1_Q16, 14 ), SKP_RSHIFT( BWExp2_Q16, 2 ) ); /********************************************/ /* Compute noise shaping AR coefs and gains */ /********************************************/ sz = ( SKP_int )SKP_SMULBB( SHAPE_LPC_WIN_MS, psEnc->sCmn.fs_kHz ); for( k = 0; k < NB_SUBFR; k++ ) { /* Apply window */ SKP_Silk_apply_sine_window( x_windowed, x_ptr, 0, SHAPE_LPC_WIN_MS * psEnc->sCmn.fs_kHz ); /* Update pointer: next LPC analysis block */ x_ptr += psEnc->sCmn.frame_length / NB_SUBFR; /* Calculate auto correlation */ SKP_Silk_autocorr( auto_corr, &scale, x_windowed, sz, psEnc->sCmn.shapingLPCOrder + 1 ); /* Add white noise, as a fraction of energy */ auto_corr[0] = SKP_ADD32( auto_corr[0], SKP_max_32( SKP_SMULWB( SKP_RSHIFT( auto_corr[ 0 ], 4 ), SHAPE_WHITE_NOISE_FRACTION_Q20 ), 1 ) ); /* Calculate the reflection coefficients using schur */ nrg = SKP_Silk_schur64( refl_coef_Q16, auto_corr, psEnc->sCmn.shapingLPCOrder ); /* Convert reflection coefficients to prediction coefficients */ SKP_Silk_k2a_Q16( AR_Q24, refl_coef_Q16, psEnc->sCmn.shapingLPCOrder ); /* Bandwidth expansion for synthesis filter shaping */ SKP_Silk_bwexpander_32( AR_Q24, psEnc->sCmn.shapingLPCOrder, BWExp2_Q16 ); /* Make sure to fit in Q13 SKP_int16 */ SKP_Silk_LPC_fit( &psEncCtrl->AR2_Q13[ k * SHAPE_LPC_ORDER_MAX ], AR_Q24, 13, psEnc->sCmn.shapingLPCOrder ); /* Compute noise shaping filter coefficients */ SKP_memcpy( &psEncCtrl->AR1_Q13[ k * SHAPE_LPC_ORDER_MAX ], &psEncCtrl->AR2_Q13[ k * SHAPE_LPC_ORDER_MAX ], psEnc->sCmn.shapingLPCOrder * sizeof( SKP_int16 ) ); /* Bandwidth expansion for analysis filter shaping */ SKP_assert( BWExp1_Q16 <= ( 1 << 16 ) ); // If ever breaking, use LPC_stabilize() in these cases to stay within range SKP_Silk_bwexpander( &psEncCtrl->AR1_Q13[ k * SHAPE_LPC_ORDER_MAX ], psEnc->sCmn.shapingLPCOrder, BWExp1_Q16 ); /* Increase residual energy */ nrg = SKP_SMLAWB( nrg, SKP_RSHIFT( auto_corr[ 0 ], 8 ), SHAPE_MIN_ENERGY_RATIO_Q24 ); Qnrg = -scale; // range: -12...30 SKP_assert( Qnrg >= -12 ); SKP_assert( Qnrg <= 30 ); /* Make sure that Qnrg is an even number */ if( Qnrg & 1 ) { Qnrg -= 1; nrg >>= 1; } tmp32 = SKP_Silk_SQRT_APPROX( nrg ); Qnrg >>= 1; // range: -6...15 sqrt_nrg[ k ] = tmp32; Qnrg_vec[ k ] = Qnrg; psEncCtrl->Gains_Q16[ k ] = SKP_LSHIFT_SAT32( tmp32, 16 - Qnrg ); /* Ratio of prediction gains, in energy domain */ SKP_Silk_LPC_inverse_pred_gain_Q13( &pre_nrg_Q30, &psEncCtrl->AR2_Q13[ k * SHAPE_LPC_ORDER_MAX ], psEnc->sCmn.shapingLPCOrder ); SKP_Silk_LPC_inverse_pred_gain_Q13( &nrg, &psEncCtrl->AR1_Q13[ k * SHAPE_LPC_ORDER_MAX ], psEnc->sCmn.shapingLPCOrder ); lz = SKP_min_32( SKP_Silk_CLZ32( pre_nrg_Q30 ) - 1, 19 ); pre_nrg_Q30 = SKP_DIV32( SKP_LSHIFT( pre_nrg_Q30, lz ), SKP_RSHIFT( nrg, 20 - lz ) + 1 ); // Q20 pre_nrg_Q30 = SKP_RSHIFT( SKP_LSHIFT_SAT32( pre_nrg_Q30, 9 ), 1 ); /* Q28 */ psEncCtrl->GainsPre_Q14[ k ] = ( SKP_int )SKP_Silk_SQRT_APPROX( pre_nrg_Q30 ); }
void SKP_Silk_NLSF_MSVQ_encode_FIX( SKP_int *NLSFIndices, /* O Codebook path vector [ CB_STAGES ] */ SKP_int *pNLSF_Q15, /* I/O Quantized NLSF vector [ LPC_ORDER ] */ const SKP_Silk_NLSF_CB_struct *psNLSF_CB, /* I Codebook object */ const SKP_int *pNLSF_q_Q15_prev, /* I Prev. quantized NLSF vector [LPC_ORDER] */ const SKP_int *pW_Q6, /* I NLSF weight vector [ LPC_ORDER ] */ const SKP_int NLSF_mu_Q15, /* I Rate weight for the RD optimization */ const SKP_int NLSF_mu_fluc_red_Q16, /* I Fluctuation reduction error weight */ const SKP_int NLSF_MSVQ_Survivors, /* I Max survivors from each stage */ const SKP_int LPC_order, /* I LPC order */ const SKP_int deactivate_fluc_red /* I Deactivate fluctuation reduction */ ) { SKP_int i, s, k, cur_survivors = 0, prev_survivors, input_index, cb_index, bestIndex; SKP_int32 rateDistThreshold_Q18; SKP_int pNLSF_in_Q15[ MAX_LPC_ORDER ]; #if( NLSF_MSVQ_FLUCTUATION_REDUCTION == 1 ) SKP_int32 se_Q15, wsse_Q20, bestRateDist_Q20; #endif #if( LOW_COMPLEXITY_ONLY == 1 ) SKP_int32 pRateDist_Q18[ NLSF_MSVQ_TREE_SEARCH_MAX_VECTORS_EVALUATED_LC_MODE ]; SKP_int32 pRate_Q5[ MAX_NLSF_MSVQ_SURVIVORS_LC_MODE ]; SKP_int32 pRate_new_Q5[ MAX_NLSF_MSVQ_SURVIVORS_LC_MODE ]; SKP_int pTempIndices[ MAX_NLSF_MSVQ_SURVIVORS_LC_MODE ]; SKP_int pPath[ MAX_NLSF_MSVQ_SURVIVORS_LC_MODE * NLSF_MSVQ_MAX_CB_STAGES ]; SKP_int pPath_new[ MAX_NLSF_MSVQ_SURVIVORS_LC_MODE * NLSF_MSVQ_MAX_CB_STAGES ]; SKP_int pRes_Q15[ MAX_NLSF_MSVQ_SURVIVORS_LC_MODE * MAX_LPC_ORDER ]; SKP_int pRes_new_Q15[ MAX_NLSF_MSVQ_SURVIVORS_LC_MODE * MAX_LPC_ORDER ]; #else SKP_int32 pRateDist_Q18[ NLSF_MSVQ_TREE_SEARCH_MAX_VECTORS_EVALUATED ]; SKP_int32 pRate_Q5[ MAX_NLSF_MSVQ_SURVIVORS ]; SKP_int32 pRate_new_Q5[ MAX_NLSF_MSVQ_SURVIVORS ]; SKP_int pTempIndices[ MAX_NLSF_MSVQ_SURVIVORS ]; SKP_int pPath[ MAX_NLSF_MSVQ_SURVIVORS * NLSF_MSVQ_MAX_CB_STAGES ]; SKP_int pPath_new[ MAX_NLSF_MSVQ_SURVIVORS * NLSF_MSVQ_MAX_CB_STAGES ]; SKP_int pRes_Q15[ MAX_NLSF_MSVQ_SURVIVORS * MAX_LPC_ORDER ]; SKP_int pRes_new_Q15[ MAX_NLSF_MSVQ_SURVIVORS * MAX_LPC_ORDER ]; #endif const SKP_int *pConstInt; SKP_int *pInt; const SKP_int16 *pCB_element; const SKP_Silk_NLSF_CBS *pCurrentCBStage; SKP_assert( NLSF_MSVQ_Survivors <= MAX_NLSF_MSVQ_SURVIVORS ); SKP_assert( ( LOW_COMPLEXITY_ONLY == 0 ) || ( NLSF_MSVQ_Survivors <= MAX_NLSF_MSVQ_SURVIVORS_LC_MODE ) ); /* Copy the input vector */ SKP_memcpy( pNLSF_in_Q15, pNLSF_Q15, LPC_order * sizeof( SKP_int ) ); /****************************************************/ /* Tree search for the multi-stage vector quantizer */ /****************************************************/ /* Clear accumulated rates */ SKP_memset( pRate_Q5, 0, NLSF_MSVQ_Survivors * sizeof( SKP_int32 ) ); /* Copy NLSFs into residual signal vector */ for( i = 0; i < LPC_order; i++ ) { pRes_Q15[ i ] = pNLSF_Q15[ i ]; } /* Set first stage values */ prev_survivors = 1; /* Loop over all stages */ for( s = 0; s < psNLSF_CB->nStages; s++ ) { /* Set a pointer to the current stage codebook */ pCurrentCBStage = &psNLSF_CB->CBStages[ s ]; /* Calculate the number of survivors in the current stage */ cur_survivors = SKP_min_32( NLSF_MSVQ_Survivors, SKP_SMULBB( prev_survivors, pCurrentCBStage->nVectors ) ); #if( NLSF_MSVQ_FLUCTUATION_REDUCTION == 0 ) /* Find a single best survivor in the last stage, if we */ /* do not need candidates for fluctuation reduction */ if( s == psNLSF_CB->nStages - 1 ) { cur_survivors = 1; } #endif /* Nearest neighbor clustering for multiple input data vectors */ SKP_Silk_NLSF_VQ_rate_distortion_FIX( pRateDist_Q18, pCurrentCBStage, pRes_Q15, pW_Q6, pRate_Q5, NLSF_mu_Q15, prev_survivors, LPC_order ); /* Sort the rate-distortion errors */ SKP_Silk_insertion_sort_increasing( pRateDist_Q18, pTempIndices, prev_survivors * pCurrentCBStage->nVectors, cur_survivors ); /* Discard survivors with rate-distortion values too far above the best one */ if( pRateDist_Q18[ 0 ] < SKP_int32_MAX / NLSF_MSVQ_SURV_MAX_REL_RD ) { rateDistThreshold_Q18 = SKP_MUL( NLSF_MSVQ_SURV_MAX_REL_RD, pRateDist_Q18[ 0 ] ); while( pRateDist_Q18[ cur_survivors - 1 ] > rateDistThreshold_Q18 && cur_survivors > 1 ) { cur_survivors--; } } /* Update accumulated codebook contributions for the 'cur_survivors' best codebook indices */ for( k = 0; k < cur_survivors; k++ ) { if( s > 0 ) { /* Find the indices of the input and the codebook vector */ if( pCurrentCBStage->nVectors == 8 ) { input_index = SKP_RSHIFT( pTempIndices[ k ], 3 ); cb_index = pTempIndices[ k ] & 7; } else { input_index = SKP_DIV32_16( pTempIndices[ k ], pCurrentCBStage->nVectors ); cb_index = pTempIndices[ k ] - SKP_SMULBB( input_index, pCurrentCBStage->nVectors ); } } else { /* Find the indices of the input and the codebook vector */ input_index = 0; cb_index = pTempIndices[ k ]; } /* Subtract new contribution from the previous residual vector for each of 'cur_survivors' */ pConstInt = &pRes_Q15[ SKP_SMULBB( input_index, LPC_order ) ]; pCB_element = &pCurrentCBStage->CB_NLSF_Q15[ SKP_SMULBB( cb_index, LPC_order ) ]; pInt = &pRes_new_Q15[ SKP_SMULBB( k, LPC_order ) ]; for( i = 0; i < LPC_order; i++ ) { pInt[ i ] = pConstInt[ i ] - ( SKP_int )pCB_element[ i ]; } /* Update accumulated rate for stage 1 to the current */ pRate_new_Q5[ k ] = pRate_Q5[ input_index ] + pCurrentCBStage->Rates_Q5[ cb_index ]; /* Copy paths from previous matrix, starting with the best path */ pConstInt = &pPath[ SKP_SMULBB( input_index, psNLSF_CB->nStages ) ]; pInt = &pPath_new[ SKP_SMULBB( k, psNLSF_CB->nStages ) ]; for( i = 0; i < s; i++ ) { pInt[ i ] = pConstInt[ i ]; } /* Write the current stage indices for the 'cur_survivors' to the best path matrix */ pInt[ s ] = cb_index; } if( s < psNLSF_CB->nStages - 1 ) { /* Copy NLSF residual matrix for next stage */ SKP_memcpy( pRes_Q15, pRes_new_Q15, SKP_SMULBB( cur_survivors, LPC_order ) * sizeof( SKP_int ) ); /* Copy rate vector for next stage */ SKP_memcpy( pRate_Q5, pRate_new_Q5, cur_survivors * sizeof( SKP_int32 ) ); /* Copy best path matrix for next stage */ SKP_memcpy( pPath, pPath_new, SKP_SMULBB( cur_survivors, psNLSF_CB->nStages ) * sizeof( SKP_int ) ); } prev_survivors = cur_survivors; } /* (Preliminary) index of the best survivor, later to be decoded */ bestIndex = 0; #if( NLSF_MSVQ_FLUCTUATION_REDUCTION == 1 ) /******************************/ /* NLSF fluctuation reduction */ /******************************/ if( deactivate_fluc_red != 1 ) { /* Search among all survivors, now taking also weighted fluctuation errors into account */ bestRateDist_Q20 = SKP_int32_MAX; for( s = 0; s < cur_survivors; s++ ) { /* Decode survivor to compare with previous quantized NLSF vector */ SKP_Silk_NLSF_MSVQ_decode( pNLSF_Q15, psNLSF_CB, &pPath_new[ SKP_SMULBB( s, psNLSF_CB->nStages ) ], LPC_order ); /* Compare decoded NLSF vector with the previously quantized vector */ wsse_Q20 = 0; for( i = 0; i < LPC_order; i += 2 ) { /* Compute weighted squared quantization error for index i */ se_Q15 = pNLSF_Q15[ i ] - pNLSF_q_Q15_prev[ i ]; // range: [ -32767 : 32767 ] wsse_Q20 = SKP_SMLAWB( wsse_Q20, SKP_SMULBB( se_Q15, se_Q15 ), pW_Q6[ i ] ); /* Compute weighted squared quantization error for index i + 1 */ se_Q15 = pNLSF_Q15[ i + 1 ] - pNLSF_q_Q15_prev[ i + 1 ]; // range: [ -32767 : 32767 ] wsse_Q20 = SKP_SMLAWB( wsse_Q20, SKP_SMULBB( se_Q15, se_Q15 ), pW_Q6[ i + 1 ] ); } SKP_assert( wsse_Q20 >= 0 ); /* Add the fluctuation reduction penalty to the rate distortion error */ wsse_Q20 = SKP_ADD_POS_SAT32( pRateDist_Q18[ s ], SKP_SMULWB( wsse_Q20, NLSF_mu_fluc_red_Q16 ) ); /* Keep index of best survivor */ if( wsse_Q20 < bestRateDist_Q20 ) { bestRateDist_Q20 = wsse_Q20; bestIndex = s; } } } #endif /* Copy best path to output argument */ SKP_memcpy( NLSFIndices, &pPath_new[ SKP_SMULBB( bestIndex, psNLSF_CB->nStages ) ], psNLSF_CB->nStages * sizeof( SKP_int ) ); /* Decode and stabilize the best survivor */ SKP_Silk_NLSF_MSVQ_decode( pNLSF_Q15, psNLSF_CB, NLSFIndices, LPC_order ); }