int lws_tls_server_conn_alpn(struct lws *wsi) { #if defined(LWS_WITH_MBEDTLS) || (defined(OPENSSL_VERSION_NUMBER) && \ OPENSSL_VERSION_NUMBER >= 0x10002000L) const unsigned char *name = NULL; char cstr[10]; unsigned len; SSL_get0_alpn_selected(wsi->tls.ssl, &name, &len); if (!len) { lwsl_info("no ALPN upgrade\n"); return 0; } if (len > sizeof(cstr) - 1) len = sizeof(cstr) - 1; memcpy(cstr, name, len); cstr[len] = '\0'; lwsl_info("negotiated '%s' using ALPN\n", cstr); wsi->tls.use_ssl |= LCCSCF_USE_SSL; return lws_role_call_alpn_negotiated(wsi, (const char *)cstr); #endif // OPENSSL_VERSION_NUMBER >= 0x10002000L return 0; }
enum lws_ssl_capable_status lws_tls_client_connect(struct lws *wsi) { int m, n = SSL_connect(wsi->tls.ssl); const unsigned char *prot; unsigned int len; if (n == 1) { SSL_get0_alpn_selected(wsi->tls.ssl, &prot, &len); lws_role_call_alpn_negotiated(wsi, (const char *)prot); lwsl_info("client connect OK\n"); return LWS_SSL_CAPABLE_DONE; } m = SSL_get_error(wsi->tls.ssl, n); if (m == SSL_ERROR_WANT_READ || SSL_want_read(wsi->tls.ssl)) return LWS_SSL_CAPABLE_MORE_SERVICE_READ; if (m == SSL_ERROR_WANT_WRITE || SSL_want_write(wsi->tls.ssl)) return LWS_SSL_CAPABLE_MORE_SERVICE_WRITE; if (!n) /* we don't know what he wants, but he says to retry */ return LWS_SSL_CAPABLE_MORE_SERVICE; return LWS_SSL_CAPABLE_ERROR; }
int SSLConnection::getSpdyVersion() { int v = 0; #ifdef LS_ENABLE_SPDY unsigned int len = 0; const unsigned char *data = NULL; #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation SSL_get0_alpn_selected(m_ssl, &data, &len); #endif #ifdef TLSEXT_TYPE_next_proto_neg if (!data) SSL_get0_next_proto_negotiated(m_ssl, &data, &len); #endif if (len > sizeof(NPN_SPDY_PREFIX) && strncasecmp((const char *)data, NPN_SPDY_PREFIX, sizeof(NPN_SPDY_PREFIX)) == 0) { v = data[ sizeof(NPN_SPDY_PREFIX) ] - '1'; if ((v == 2) && (len >= 8) && (data[6] == '.') && (data[7] == '1')) v = 3; return v; } //h2: http2 version is 4 if (len >= 2 && data[0] == 'h' && data[1] == '2') return 4; #endif return v; }
extern "C" void CryptoNative_SslGet0AlpnSelected(SSL* ssl, const uint8_t** protocol, uint32_t* len) { #ifdef HAVE_OPENSSL_ALPN if (API_EXISTS(SSL_get0_alpn_selected)) { SSL_get0_alpn_selected(ssl, protocol, len); } else #endif { *protocol = nullptr; *len = 0; } }
/* eventcb for bufferevent. For the purpose of simplicity and readability of the example program, we omitted the certificate and peer verification. After SSL/TLS handshake is over, initialize nghttp2 library session, and send client connection header. Then send HTTP request. */ static void eventcb(struct bufferevent *bev, short events, void *ptr) { http2_session_data *session_data = (http2_session_data *)ptr; if (events & BEV_EVENT_CONNECTED) { int fd = bufferevent_getfd(bev); int val = 1; const unsigned char *alpn = NULL; unsigned int alpnlen = 0; SSL *ssl; fprintf(stderr, "Connected\n"); ssl = bufferevent_openssl_get_ssl(session_data->bev); #ifndef OPENSSL_NO_NEXTPROTONEG SSL_get0_next_proto_negotiated(ssl, &alpn, &alpnlen); #endif /* !OPENSSL_NO_NEXTPROTONEG */ #if OPENSSL_VERSION_NUMBER >= 0x10002000L if (alpn == NULL) { SSL_get0_alpn_selected(ssl, &alpn, &alpnlen); } #endif /* OPENSSL_VERSION_NUMBER >= 0x10002000L */ if (alpn == NULL || alpnlen != 2 || memcmp("h2", alpn, 2) != 0) { fprintf(stderr, "h2 is not negotiated\n"); delete_http2_session_data(session_data); return; } setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val)); initialize_nghttp2_session(session_data); send_client_connection_header(session_data); submit_request(session_data); if (session_send(session_data) != 0) { delete_http2_session_data(session_data); } return; } if (events & BEV_EVENT_EOF) { warnx("Disconnected from the remote host"); } else if (events & BEV_EVENT_ERROR) { warnx("Network error"); } else if (events & BEV_EVENT_TIMEOUT) { warnx("Timeout"); } delete_http2_session_data(session_data); }
h2o_iovec_t h2o_socket_ssl_get_selected_protocol(h2o_socket_t *sock) { const unsigned char *data = NULL; unsigned len = 0; assert(sock->ssl != NULL); #if H2O_USE_ALPN if (len == 0) SSL_get0_alpn_selected(sock->ssl->ssl, &data, &len); #endif #if H2O_USE_NPN if (len == 0) SSL_get0_next_proto_negotiated(sock->ssl->ssl, &data, &len); #endif return h2o_iovec_init(data, len); }
/* eventcb for bufferevent */ static void eventcb(struct bufferevent *bev, short events, void *ptr) { http2_session_data *session_data = (http2_session_data *)ptr; if (events & BEV_EVENT_CONNECTED) { const unsigned char *alpn = NULL; unsigned int alpnlen = 0; SSL *ssl; (void)bev; fprintf(stderr, "%s connected\n", session_data->client_addr); ssl = bufferevent_openssl_get_ssl(session_data->bev); SSL_get0_next_proto_negotiated(ssl, &alpn, &alpnlen); #if OPENSSL_VERSION_NUMBER >= 0x10002000L if (alpn == NULL) { SSL_get0_alpn_selected(ssl, &alpn, &alpnlen); } #endif // OPENSSL_VERSION_NUMBER >= 0x10002000L if (alpn == NULL || alpnlen != 2 || memcmp("h2", alpn, 2) != 0) { fprintf(stderr, "%s h2 is not negotiated\n", session_data->client_addr); delete_http2_session_data(session_data); return; } initialize_nghttp2_session(session_data); if (send_server_connection_header(session_data) != 0 || session_send(session_data) != 0) { delete_http2_session_data(session_data); return; } return; } if (events & BEV_EVENT_EOF) { fprintf(stderr, "%s EOF\n", session_data->client_addr); } else if (events & BEV_EVENT_ERROR) { fprintf(stderr, "%s network error\n", session_data->client_addr); } else if (events & BEV_EVENT_TIMEOUT) { fprintf(stderr, "%s timeout\n", session_data->client_addr); } delete_http2_session_data(session_data); }
void lws_http2_configure_if_upgraded(struct lws *wsi) { #if OPENSSL_VERSION_NUMBER >= 0x10002000L struct allocated_headers *ah; const char *method = "alpn"; const unsigned char *name; unsigned len; SSL_get0_alpn_selected(wsi->ssl, &name, &len); if (!len) { SSL_get0_next_proto_negotiated(wsi->ssl, &name, &len); method = "npn"; } if (!len) { lwsl_info("no npn/alpn upgrade\n"); return; } lwsl_info("negotiated %s using %s\n", name, method); wsi->use_ssl = 1; if (strncmp((char *)name, "http/1.1", 8) == 0) return; /* http2 */ /* adopt the header info */ ah = wsi->u.hdr.ah; lws_union_transition(wsi, LWSCM_HTTP2_SERVING); wsi->state = LWSS_HTTP2_AWAIT_CLIENT_PREFACE; /* http2 union member has http union struct at start */ wsi->u.http.ah = ah; lws_http2_init(&wsi->u.http2.peer_settings); lws_http2_init(&wsi->u.http2.my_settings); /* HTTP2 union */ #endif }
bool tls_h2_negotiated(ssl_socket& socket) { auto ssl = socket.native_handle(); const unsigned char* next_proto = nullptr; unsigned int next_proto_len = 0; SSL_get0_next_proto_negotiated(ssl, &next_proto, &next_proto_len); #if OPENSSL_VERSION_NUMBER >= 0x10002000L if (next_proto == nullptr) { SSL_get0_alpn_selected(ssl, &next_proto, &next_proto_len); } #endif if (next_proto == nullptr) { return false; } return check_h2_is_selected(std::string_view{(const char*)next_proto, next_proto_len}); }
static HANDSHAKE_RESULT *do_handshake_internal( SSL_CTX *server_ctx, SSL_CTX *server2_ctx, SSL_CTX *client_ctx, const SSL_TEST_CTX *test_ctx, SSL_SESSION *session_in, SSL_SESSION **session_out) { SSL *server, *client; BIO *client_to_server, *server_to_client; HANDSHAKE_EX_DATA server_ex_data, client_ex_data; CTX_DATA client_ctx_data, server_ctx_data, server2_ctx_data; HANDSHAKE_RESULT *ret = HANDSHAKE_RESULT_new(); int client_turn = 1, shutdown = 0; peer_status_t client_status = PEER_RETRY, server_status = PEER_RETRY; handshake_status_t status = HANDSHAKE_RETRY; unsigned char* tick = NULL; size_t tick_len = 0; SSL_SESSION* sess = NULL; const unsigned char *proto = NULL; /* API dictates unsigned int rather than size_t. */ unsigned int proto_len = 0; memset(&server_ctx_data, 0, sizeof(server_ctx_data)); memset(&server2_ctx_data, 0, sizeof(server2_ctx_data)); memset(&client_ctx_data, 0, sizeof(client_ctx_data)); configure_handshake_ctx(server_ctx, server2_ctx, client_ctx, test_ctx, &server_ctx_data, &server2_ctx_data, &client_ctx_data); server = SSL_new(server_ctx); client = SSL_new(client_ctx); OPENSSL_assert(server != NULL && client != NULL); configure_handshake_ssl(server, client, test_ctx); if (session_in != NULL) { /* In case we're testing resumption without tickets. */ OPENSSL_assert(SSL_CTX_add_session(server_ctx, session_in)); OPENSSL_assert(SSL_set_session(client, session_in)); } memset(&server_ex_data, 0, sizeof(server_ex_data)); memset(&client_ex_data, 0, sizeof(client_ex_data)); ret->result = SSL_TEST_INTERNAL_ERROR; client_to_server = BIO_new(BIO_s_mem()); server_to_client = BIO_new(BIO_s_mem()); OPENSSL_assert(client_to_server != NULL && server_to_client != NULL); /* Non-blocking bio. */ BIO_set_nbio(client_to_server, 1); BIO_set_nbio(server_to_client, 1); SSL_set_connect_state(client); SSL_set_accept_state(server); /* The bios are now owned by the SSL object. */ SSL_set_bio(client, server_to_client, client_to_server); OPENSSL_assert(BIO_up_ref(server_to_client) > 0); OPENSSL_assert(BIO_up_ref(client_to_server) > 0); SSL_set_bio(server, client_to_server, server_to_client); ex_data_idx = SSL_get_ex_new_index(0, "ex data", NULL, NULL, NULL); OPENSSL_assert(ex_data_idx >= 0); OPENSSL_assert(SSL_set_ex_data(server, ex_data_idx, &server_ex_data) == 1); OPENSSL_assert(SSL_set_ex_data(client, ex_data_idx, &client_ex_data) == 1); SSL_set_info_callback(server, &info_cb); SSL_set_info_callback(client, &info_cb); /* * Half-duplex handshake loop. * Client and server speak to each other synchronously in the same process. * We use non-blocking BIOs, so whenever one peer blocks for read, it * returns PEER_RETRY to indicate that it's the other peer's turn to write. * The handshake succeeds once both peers have succeeded. If one peer * errors out, we also let the other peer retry (and presumably fail). */ for(;;) { if (client_turn) { client_status = do_handshake_step(client, shutdown); status = handshake_status(client_status, server_status, 1 /* client went last */); } else { server_status = do_handshake_step(server, shutdown); status = handshake_status(server_status, client_status, 0 /* server went last */); } switch (status) { case HANDSHAKE_SUCCESS: if (shutdown) { ret->result = SSL_TEST_SUCCESS; goto err; } else { client_status = server_status = PEER_RETRY; shutdown = 1; client_turn = 1; break; } case CLIENT_ERROR: ret->result = SSL_TEST_CLIENT_FAIL; goto err; case SERVER_ERROR: ret->result = SSL_TEST_SERVER_FAIL; goto err; case INTERNAL_ERROR: ret->result = SSL_TEST_INTERNAL_ERROR; goto err; case HANDSHAKE_RETRY: /* Continue. */ client_turn ^= 1; break; } } err: ret->server_alert_sent = server_ex_data.alert_sent; ret->server_alert_received = client_ex_data.alert_received; ret->client_alert_sent = client_ex_data.alert_sent; ret->client_alert_received = server_ex_data.alert_received; ret->server_protocol = SSL_version(server); ret->client_protocol = SSL_version(client); ret->servername = server_ex_data.servername; if ((sess = SSL_get0_session(client)) != NULL) SSL_SESSION_get0_ticket(sess, &tick, &tick_len); if (tick == NULL || tick_len == 0) ret->session_ticket = SSL_TEST_SESSION_TICKET_NO; else ret->session_ticket = SSL_TEST_SESSION_TICKET_YES; ret->session_ticket_do_not_call = server_ex_data.session_ticket_do_not_call; SSL_get0_next_proto_negotiated(client, &proto, &proto_len); ret->client_npn_negotiated = dup_str(proto, proto_len); SSL_get0_next_proto_negotiated(server, &proto, &proto_len); ret->server_npn_negotiated = dup_str(proto, proto_len); SSL_get0_alpn_selected(client, &proto, &proto_len); ret->client_alpn_negotiated = dup_str(proto, proto_len); SSL_get0_alpn_selected(server, &proto, &proto_len); ret->server_alpn_negotiated = dup_str(proto, proto_len); ret->client_resumed = SSL_session_reused(client); ret->server_resumed = SSL_session_reused(server); if (session_out != NULL) *session_out = SSL_get1_session(client); ctx_data_free_data(&server_ctx_data); ctx_data_free_data(&server2_ctx_data); ctx_data_free_data(&client_ctx_data); SSL_free(server); SSL_free(client); return ret; }
static void print_stuff(BIO * bio, SSL * s, int full) { X509 *peer = NULL; char *p; static const char *space = " "; char buf[BUFSIZ]; STACK_OF(X509) * sk; STACK_OF(X509_NAME) * sk2; const SSL_CIPHER *c; X509_NAME *xn; int j, i; unsigned char *exportedkeymat; if (full) { int got_a_chain = 0; sk = SSL_get_peer_cert_chain(s); if (sk != NULL) { got_a_chain = 1; /* we don't have it for SSL2 * (yet) */ BIO_printf(bio, "---\nCertificate chain\n"); for (i = 0; i < sk_X509_num(sk); i++) { X509_NAME_oneline(X509_get_subject_name( sk_X509_value(sk, i)), buf, sizeof buf); BIO_printf(bio, "%2d s:%s\n", i, buf); X509_NAME_oneline(X509_get_issuer_name( sk_X509_value(sk, i)), buf, sizeof buf); BIO_printf(bio, " i:%s\n", buf); if (c_showcerts) PEM_write_bio_X509(bio, sk_X509_value(sk, i)); } } BIO_printf(bio, "---\n"); peer = SSL_get_peer_certificate(s); if (peer != NULL) { BIO_printf(bio, "Server certificate\n"); if (!(c_showcerts && got_a_chain)) /* Redundant if we * showed the whole * chain */ PEM_write_bio_X509(bio, peer); X509_NAME_oneline(X509_get_subject_name(peer), buf, sizeof buf); BIO_printf(bio, "subject=%s\n", buf); X509_NAME_oneline(X509_get_issuer_name(peer), buf, sizeof buf); BIO_printf(bio, "issuer=%s\n", buf); } else BIO_printf(bio, "no peer certificate available\n"); sk2 = SSL_get_client_CA_list(s); if ((sk2 != NULL) && (sk_X509_NAME_num(sk2) > 0)) { BIO_printf(bio, "---\nAcceptable client certificate CA names\n"); for (i = 0; i < sk_X509_NAME_num(sk2); i++) { xn = sk_X509_NAME_value(sk2, i); X509_NAME_oneline(xn, buf, sizeof(buf)); BIO_write(bio, buf, strlen(buf)); BIO_write(bio, "\n", 1); } } else { BIO_printf(bio, "---\nNo client certificate CA names sent\n"); } p = SSL_get_shared_ciphers(s, buf, sizeof buf); if (p != NULL) { /* * This works only for SSL 2. In later protocol * versions, the client does not know what other * ciphers (in addition to the one to be used in the * current connection) the server supports. */ BIO_printf(bio, "---\nCiphers common between both SSL endpoints:\n"); j = i = 0; while (*p) { if (*p == ':') { BIO_write(bio, space, 15 - j % 25); i++; j = 0; BIO_write(bio, ((i % 3) ? " " : "\n"), 1); } else { BIO_write(bio, p, 1); j++; } p++; } BIO_write(bio, "\n", 1); } BIO_printf(bio, "---\nSSL handshake has read %ld bytes and written %ld bytes\n", BIO_number_read(SSL_get_rbio(s)), BIO_number_written(SSL_get_wbio(s))); } BIO_printf(bio, (SSL_cache_hit(s) ? "---\nReused, " : "---\nNew, ")); c = SSL_get_current_cipher(s); BIO_printf(bio, "%s, Cipher is %s\n", SSL_CIPHER_get_version(c), SSL_CIPHER_get_name(c)); if (peer != NULL) { EVP_PKEY *pktmp; pktmp = X509_get_pubkey(peer); BIO_printf(bio, "Server public key is %d bit\n", EVP_PKEY_bits(pktmp)); EVP_PKEY_free(pktmp); } BIO_printf(bio, "Secure Renegotiation IS%s supported\n", SSL_get_secure_renegotiation_support(s) ? "" : " NOT"); /* Compression is not supported and will always be none. */ BIO_printf(bio, "Compression: NONE\n"); BIO_printf(bio, "Expansion: NONE\n"); #ifdef SSL_DEBUG { /* Print out local port of connection: useful for debugging */ int sock; struct sockaddr_in ladd; socklen_t ladd_size = sizeof(ladd); sock = SSL_get_fd(s); getsockname(sock, (struct sockaddr *) & ladd, &ladd_size); BIO_printf(bio_c_out, "LOCAL PORT is %u\n", ntohs(ladd.sin_port)); } #endif if (next_proto.status != -1) { const unsigned char *proto; unsigned int proto_len; SSL_get0_next_proto_negotiated(s, &proto, &proto_len); BIO_printf(bio, "Next protocol: (%d) ", next_proto.status); BIO_write(bio, proto, proto_len); BIO_write(bio, "\n", 1); } { const unsigned char *proto; unsigned int proto_len; SSL_get0_alpn_selected(s, &proto, &proto_len); if (proto_len > 0) { BIO_printf(bio, "ALPN protocol: "); BIO_write(bio, proto, proto_len); BIO_write(bio, "\n", 1); } else BIO_printf(bio, "No ALPN negotiated\n"); } #ifndef OPENSSL_NO_SRTP { SRTP_PROTECTION_PROFILE *srtp_profile = SSL_get_selected_srtp_profile(s); if (srtp_profile) BIO_printf(bio, "SRTP Extension negotiated, profile=%s\n", srtp_profile->name); } #endif SSL_SESSION_print(bio, SSL_get_session(s)); if (keymatexportlabel != NULL) { BIO_printf(bio, "Keying material exporter:\n"); BIO_printf(bio, " Label: '%s'\n", keymatexportlabel); BIO_printf(bio, " Length: %i bytes\n", keymatexportlen); exportedkeymat = malloc(keymatexportlen); if (exportedkeymat != NULL) { if (!SSL_export_keying_material(s, exportedkeymat, keymatexportlen, keymatexportlabel, strlen(keymatexportlabel), NULL, 0, 0)) { BIO_printf(bio, " Error\n"); } else { BIO_printf(bio, " Keying material: "); for (i = 0; i < keymatexportlen; i++) BIO_printf(bio, "%02X", exportedkeymat[i]); BIO_printf(bio, "\n"); } free(exportedkeymat); } } BIO_printf(bio, "---\n"); if (peer != NULL) X509_free(peer); /* flush, or debugging output gets mixed with http response */ (void) BIO_flush(bio); }
/* * Note that |extra| points to the correct client/server configuration * within |test_ctx|. When configuring the handshake, general mode settings * are taken from |test_ctx|, and client/server-specific settings should be * taken from |extra|. * * The configuration code should never reach into |test_ctx->extra| or * |test_ctx->resume_extra| directly. * * (We could refactor test mode settings into a substructure. This would result * in cleaner argument passing but would complicate the test configuration * parsing.) */ static HANDSHAKE_RESULT *do_handshake_internal( SSL_CTX *server_ctx, SSL_CTX *server2_ctx, SSL_CTX *client_ctx, const SSL_TEST_CTX *test_ctx, const SSL_TEST_EXTRA_CONF *extra, SSL_SESSION *session_in, SSL_SESSION **session_out) { PEER server, client; BIO *client_to_server, *server_to_client; HANDSHAKE_EX_DATA server_ex_data, client_ex_data; CTX_DATA client_ctx_data, server_ctx_data, server2_ctx_data; HANDSHAKE_RESULT *ret = HANDSHAKE_RESULT_new(); int client_turn = 1; connect_phase_t phase = HANDSHAKE; handshake_status_t status = HANDSHAKE_RETRY; const unsigned char* tick = NULL; size_t tick_len = 0; SSL_SESSION* sess = NULL; const unsigned char *proto = NULL; /* API dictates unsigned int rather than size_t. */ unsigned int proto_len = 0; memset(&server_ctx_data, 0, sizeof(server_ctx_data)); memset(&server2_ctx_data, 0, sizeof(server2_ctx_data)); memset(&client_ctx_data, 0, sizeof(client_ctx_data)); memset(&server, 0, sizeof(server)); memset(&client, 0, sizeof(client)); configure_handshake_ctx(server_ctx, server2_ctx, client_ctx, test_ctx, extra, &server_ctx_data, &server2_ctx_data, &client_ctx_data); /* Setup SSL and buffers; additional configuration happens below. */ create_peer(&server, server_ctx); create_peer(&client, client_ctx); server.bytes_to_write = client.bytes_to_read = test_ctx->app_data_size; client.bytes_to_write = server.bytes_to_read = test_ctx->app_data_size; configure_handshake_ssl(server.ssl, client.ssl, extra); if (session_in != NULL) { /* In case we're testing resumption without tickets. */ TEST_check(SSL_CTX_add_session(server_ctx, session_in)); TEST_check(SSL_set_session(client.ssl, session_in)); } memset(&server_ex_data, 0, sizeof(server_ex_data)); memset(&client_ex_data, 0, sizeof(client_ex_data)); ret->result = SSL_TEST_INTERNAL_ERROR; client_to_server = BIO_new(BIO_s_mem()); server_to_client = BIO_new(BIO_s_mem()); TEST_check(client_to_server != NULL); TEST_check(server_to_client != NULL); /* Non-blocking bio. */ BIO_set_nbio(client_to_server, 1); BIO_set_nbio(server_to_client, 1); SSL_set_connect_state(client.ssl); SSL_set_accept_state(server.ssl); /* The bios are now owned by the SSL object. */ SSL_set_bio(client.ssl, server_to_client, client_to_server); TEST_check(BIO_up_ref(server_to_client) > 0); TEST_check(BIO_up_ref(client_to_server) > 0); SSL_set_bio(server.ssl, client_to_server, server_to_client); ex_data_idx = SSL_get_ex_new_index(0, "ex data", NULL, NULL, NULL); TEST_check(ex_data_idx >= 0); TEST_check(SSL_set_ex_data(server.ssl, ex_data_idx, &server_ex_data) == 1); TEST_check(SSL_set_ex_data(client.ssl, ex_data_idx, &client_ex_data) == 1); SSL_set_info_callback(server.ssl, &info_cb); SSL_set_info_callback(client.ssl, &info_cb); client.status = server.status = PEER_RETRY; /* * Half-duplex handshake loop. * Client and server speak to each other synchronously in the same process. * We use non-blocking BIOs, so whenever one peer blocks for read, it * returns PEER_RETRY to indicate that it's the other peer's turn to write. * The handshake succeeds once both peers have succeeded. If one peer * errors out, we also let the other peer retry (and presumably fail). */ for(;;) { if (client_turn) { do_connect_step(&client, phase); status = handshake_status(client.status, server.status, 1 /* client went last */); } else { do_connect_step(&server, phase); status = handshake_status(server.status, client.status, 0 /* server went last */); } switch (status) { case HANDSHAKE_SUCCESS: phase = next_phase(phase); if (phase == CONNECTION_DONE) { ret->result = SSL_TEST_SUCCESS; goto err; } else { client.status = server.status = PEER_RETRY; /* * For now, client starts each phase. Since each phase is * started separately, we can later control this more * precisely, for example, to test client-initiated and * server-initiated shutdown. */ client_turn = 1; break; } case CLIENT_ERROR: ret->result = SSL_TEST_CLIENT_FAIL; goto err; case SERVER_ERROR: ret->result = SSL_TEST_SERVER_FAIL; goto err; case INTERNAL_ERROR: ret->result = SSL_TEST_INTERNAL_ERROR; goto err; case HANDSHAKE_RETRY: /* Continue. */ client_turn ^= 1; break; } } err: ret->server_alert_sent = server_ex_data.alert_sent; ret->server_num_fatal_alerts_sent = server_ex_data.num_fatal_alerts_sent; ret->server_alert_received = client_ex_data.alert_received; ret->client_alert_sent = client_ex_data.alert_sent; ret->client_num_fatal_alerts_sent = client_ex_data.num_fatal_alerts_sent; ret->client_alert_received = server_ex_data.alert_received; ret->server_protocol = SSL_version(server.ssl); ret->client_protocol = SSL_version(client.ssl); ret->servername = server_ex_data.servername; if ((sess = SSL_get0_session(client.ssl)) != NULL) SSL_SESSION_get0_ticket(sess, &tick, &tick_len); if (tick == NULL || tick_len == 0) ret->session_ticket = SSL_TEST_SESSION_TICKET_NO; else ret->session_ticket = SSL_TEST_SESSION_TICKET_YES; ret->session_ticket_do_not_call = server_ex_data.session_ticket_do_not_call; #ifndef OPENSSL_NO_NEXTPROTONEG SSL_get0_next_proto_negotiated(client.ssl, &proto, &proto_len); ret->client_npn_negotiated = dup_str(proto, proto_len); SSL_get0_next_proto_negotiated(server.ssl, &proto, &proto_len); ret->server_npn_negotiated = dup_str(proto, proto_len); #endif SSL_get0_alpn_selected(client.ssl, &proto, &proto_len); ret->client_alpn_negotiated = dup_str(proto, proto_len); SSL_get0_alpn_selected(server.ssl, &proto, &proto_len); ret->server_alpn_negotiated = dup_str(proto, proto_len); ret->client_resumed = SSL_session_reused(client.ssl); ret->server_resumed = SSL_session_reused(server.ssl); if (session_out != NULL) *session_out = SSL_get1_session(client.ssl); ctx_data_free_data(&server_ctx_data); ctx_data_free_data(&server2_ctx_data); ctx_data_free_data(&client_ctx_data); peer_free_data(&server); peer_free_data(&client); return ret; }
// This test launches a gRPC server on a separate thread and then establishes a // TLS handshake via a minimal TLS client. The TLS client has configurable (via // alpn_list) ALPN settings and can probe at the supported ALPN preferences // using this (via alpn_expected). static bool server_ssl_test(const char *alpn_list[], unsigned int alpn_list_len, const char *alpn_expected) { bool success = true; grpc_init(); int port = grpc_pick_unused_port_or_die(); gpr_event_init(&client_handshake_complete); // Launch the gRPC server thread. gpr_thd_options thdopt = gpr_thd_options_default(); gpr_thd_id thdid; gpr_thd_options_set_joinable(&thdopt); GPR_ASSERT(gpr_thd_new(&thdid, server_thread, &port, &thdopt)); SSL_load_error_strings(); OpenSSL_add_ssl_algorithms(); const SSL_METHOD *method = TLSv1_2_client_method(); SSL_CTX *ctx = SSL_CTX_new(method); if (!ctx) { perror("Unable to create SSL context"); ERR_print_errors_fp(stderr); abort(); } // Load key pair. if (SSL_CTX_use_certificate_file(ctx, SSL_CERT_PATH, SSL_FILETYPE_PEM) < 0) { ERR_print_errors_fp(stderr); abort(); } if (SSL_CTX_use_PrivateKey_file(ctx, SSL_KEY_PATH, SSL_FILETYPE_PEM) < 0) { ERR_print_errors_fp(stderr); abort(); } // Set the cipher list to match the one expressed in // src/core/lib/tsi/ssl_transport_security.c. const char *cipher_list = "ECDHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES256-" "SHA384:ECDHE-RSA-AES256-GCM-SHA384"; if (!SSL_CTX_set_cipher_list(ctx, cipher_list)) { ERR_print_errors_fp(stderr); gpr_log(GPR_ERROR, "Couldn't set server cipher list."); abort(); } // Configure ALPN list the client will send to the server. This must match the // wire format, see documentation for SSL_CTX_set_alpn_protos. unsigned int alpn_protos_len = alpn_list_len; for (unsigned int i = 0; i < alpn_list_len; ++i) { alpn_protos_len += (unsigned int)strlen(alpn_list[i]); } unsigned char *alpn_protos = gpr_malloc(alpn_protos_len); unsigned char *p = alpn_protos; for (unsigned int i = 0; i < alpn_list_len; ++i) { const uint8_t len = (uint8_t)strlen(alpn_list[i]); *p++ = len; memcpy(p, alpn_list[i], len); p += len; } GPR_ASSERT(SSL_CTX_set_alpn_protos(ctx, alpn_protos, alpn_protos_len) == 0); // Try and connect to server. We allow a bounded number of retries as we might // be racing with the server setup on its separate thread. int retries = 10; int sock = -1; while (sock == -1 && retries-- > 0) { sock = create_socket(port); if (sock < 0) { sleep(1); } } GPR_ASSERT(sock > 0); gpr_log(GPR_INFO, "Connected to server on port %d", port); // Establish a SSL* and connect at SSL layer. SSL *ssl = SSL_new(ctx); GPR_ASSERT(ssl); SSL_set_fd(ssl, sock); if (SSL_connect(ssl) <= 0) { ERR_print_errors_fp(stderr); gpr_log(GPR_ERROR, "Handshake failed."); success = false; } else { gpr_log(GPR_INFO, "Handshake successful."); // Validate ALPN preferred by server matches alpn_expected. const unsigned char *alpn_selected; unsigned int alpn_selected_len; SSL_get0_alpn_selected(ssl, &alpn_selected, &alpn_selected_len); if (strlen(alpn_expected) != alpn_selected_len || strncmp((const char *)alpn_selected, alpn_expected, alpn_selected_len) != 0) { gpr_log(GPR_ERROR, "Unexpected ALPN protocol preference"); success = false; } } gpr_event_set(&client_handshake_complete, &client_handshake_complete); SSL_free(ssl); gpr_free(alpn_protos); SSL_CTX_free(ctx); EVP_cleanup(); close(sock); gpr_thd_join(thdid); grpc_shutdown(); return success; }