SIM_RC sim_create_inferior (SIM_DESC sd, struct bfd *abfd, char **argv, char **env) { SIM_CPU *cpu = STATE_CPU (sd, 0); SIM_ADDR addr; /* Set the PC. */ if (abfd != NULL) addr = bfd_get_start_address (abfd); else addr = 0; sim_pc_set (cpu, addr); /* Standalone mode (i.e. `bfin-...-run`) will take care of the argv for us in sim_open() -> sim_parse_args(). But in debug mode (i.e. 'target sim' with `bfin-...-gdb`), we need to handle it. */ if (STATE_OPEN_KIND (sd) == SIM_OPEN_DEBUG) { freeargv (STATE_PROG_ARGV (sd)); STATE_PROG_ARGV (sd) = dupargv (argv); } switch (STATE_ENVIRONMENT (sd)) { case USER_ENVIRONMENT: bfin_user_init (sd, cpu, abfd, (void *)argv, (void *)env); break; case OPERATING_ENVIRONMENT: bfin_os_init (sd, cpu, (void *)argv); break; default: bfin_virtual_init (sd, cpu); break; } return SIM_RC_OK; }
int main (int argc, char **argv) { char *name; char **prog_argv = NULL; struct bfd *prog_bfd; enum sim_stop reason; int sigrc = 0; int single_step = 0; RETSIGTYPE (*prev_sigint) (); myname = argv[0] + strlen (argv[0]); while (myname > argv[0] && myname[-1] != '/') --myname; /* INTERNAL: When MYNAME is `step', single step the simulator instead of allowing it to run free. The sole purpose of this HACK is to allow the sim_resume interface's step argument to be tested without having to build/run gdb. */ if (strlen (myname) > 4 && strcmp (myname - 4, "step") == 0) { single_step = 1; } /* Create an instance of the simulator. */ default_callback.init (&default_callback); sd = sim_open (SIM_OPEN_STANDALONE, &default_callback, NULL, argv); if (sd == 0) exit (1); if (STATE_MAGIC (sd) != SIM_MAGIC_NUMBER) { fprintf (stderr, "Internal error - bad magic number in simulator struct\n"); abort (); } /* We can't set the endianness in the callback structure until sim_config is called, which happens in sim_open. */ default_callback.target_endian = (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE); /* Was there a program to run? */ prog_argv = STATE_PROG_ARGV (sd); prog_bfd = STATE_PROG_BFD (sd); if (prog_argv == NULL || *prog_argv == NULL) usage (); name = *prog_argv; /* For simulators that don't open prog during sim_open() */ if (prog_bfd == NULL) { prog_bfd = bfd_openr (name, 0); if (prog_bfd == NULL) { fprintf (stderr, "%s: can't open \"%s\": %s\n", myname, name, bfd_errmsg (bfd_get_error ())); exit (1); } if (!bfd_check_format (prog_bfd, bfd_object)) { fprintf (stderr, "%s: \"%s\" is not an object file: %s\n", myname, name, bfd_errmsg (bfd_get_error ())); exit (1); } } if (STATE_VERBOSE_P (sd)) printf ("%s %s\n", myname, name); /* Load the program into the simulator. */ if (sim_load (sd, name, prog_bfd, 0) == SIM_RC_FAIL) exit (1); /* Prepare the program for execution. */ #ifdef HAVE_ENVIRON sim_create_inferior (sd, prog_bfd, prog_argv, environ); #else sim_create_inferior (sd, prog_bfd, prog_argv, NULL); #endif /* To accommodate relative file paths, chdir to sysroot now. We mustn't do this until BFD has opened the program, else we wouldn't find the executable if it has a relative file path. */ if (simulator_sysroot[0] != '\0' && chdir (simulator_sysroot) < 0) { fprintf (stderr, "%s: can't change directory to \"%s\"\n", myname, simulator_sysroot); exit (1); } /* Run/Step the program. */ if (single_step) { do { prev_sigint = signal (SIGINT, cntrl_c); sim_resume (sd, 1/*step*/, 0); signal (SIGINT, prev_sigint); sim_stop_reason (sd, &reason, &sigrc); if ((reason == sim_stopped) && (sigrc == sim_signal_to_host (sd, SIM_SIGINT))) break; /* exit on control-C */ } /* remain on breakpoint or signals in oe mode*/ while (((reason == sim_signalled) && (sigrc == sim_signal_to_host (sd, SIM_SIGTRAP))) || ((reason == sim_stopped) && (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT))); } else { do { #if defined (HAVE_SIGACTION) && defined (SA_RESTART) struct sigaction sa, osa; sa.sa_handler = cntrl_c; sigemptyset (&sa.sa_mask); sa.sa_flags = 0; sigaction (SIGINT, &sa, &osa); prev_sigint = osa.sa_handler; #else prev_sigint = signal (SIGINT, cntrl_c); #endif sim_resume (sd, 0, sigrc); signal (SIGINT, prev_sigint); sim_stop_reason (sd, &reason, &sigrc); if ((reason == sim_stopped) && (sigrc == sim_signal_to_host (sd, SIM_SIGINT))) break; /* exit on control-C */ /* remain on signals in oe mode */ } while ((reason == sim_stopped) && (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)); } /* Print any stats the simulator collected. */ if (STATE_VERBOSE_P (sd)) sim_info (sd, 0); /* Shutdown the simulator. */ sim_close (sd, 0); /* If reason is sim_exited, then sigrc holds the exit code which we want to return. If reason is sim_stopped or sim_signalled, then sigrc holds the signal that the simulator received; we want to return that to indicate failure. */ /* Why did we stop? */ switch (reason) { case sim_signalled: case sim_stopped: if (sigrc != 0) fprintf (stderr, "program stopped with signal %d.\n", sigrc); break; case sim_exited: break; default: fprintf (stderr, "program in undefined state (%d:%d)\n", reason, sigrc); break; } return sigrc; }
SIM_DESC sim_open (SIM_OPEN_KIND kind, host_callback *callback, struct bfd *abfd, char **argv) { char c; int i; SIM_DESC sd = sim_state_alloc (kind, callback); /* The cpu data is kept in a separately allocated chunk of memory. */ if (sim_cpu_alloc_all (sd, 1, /*cgen_cpu_max_extra_bytes ()*/0) != SIM_RC_OK) { free_state (sd); return 0; } { /* XXX: Only first core gets profiled ? */ SIM_CPU *cpu = STATE_CPU (sd, 0); STATE_WATCHPOINTS (sd)->pc = &PCREG; STATE_WATCHPOINTS (sd)->sizeof_pc = sizeof (PCREG); } if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK) { free_state (sd); return 0; } /* XXX: Default to the Virtual environment. */ if (STATE_ENVIRONMENT (sd) == ALL_ENVIRONMENT) STATE_ENVIRONMENT (sd) = VIRTUAL_ENVIRONMENT; /* These options override any module options. Obviously ambiguity should be avoided, however the caller may wish to augment the meaning of an option. */ #define e_sim_add_option_table(sd, options) \ do { \ extern const OPTION options[]; \ sim_add_option_table (sd, NULL, options); \ } while (0) e_sim_add_option_table (sd, bfin_mmu_options); e_sim_add_option_table (sd, bfin_mach_options); /* getopt will print the error message so we just have to exit if this fails. FIXME: Hmmm... in the case of gdb we need getopt to call print_filtered. */ if (sim_parse_args (sd, argv) != SIM_RC_OK) { free_state (sd); return 0; } /* Allocate external memory if none specified by user. Use address 4 here in case the user wanted address 0 unmapped. */ if (sim_core_read_buffer (sd, NULL, read_map, &c, 4, 1) == 0) { bu16 emuexcpt = 0x25; sim_do_commandf (sd, "memory-size 0x%lx", BFIN_DEFAULT_MEM_SIZE); sim_write (sd, 0, (void *)&emuexcpt, 2); } /* Check for/establish the a reference program image. */ if (sim_analyze_program (sd, (STATE_PROG_ARGV (sd) != NULL ? *STATE_PROG_ARGV (sd) : NULL), abfd) != SIM_RC_OK) { free_state (sd); return 0; } /* Establish any remaining configuration options. */ if (sim_config (sd) != SIM_RC_OK) { free_state (sd); return 0; } if (sim_post_argv_init (sd) != SIM_RC_OK) { free_state (sd); return 0; } /* CPU specific initialization. */ for (i = 0; i < MAX_NR_PROCESSORS; ++i) { SIM_CPU *cpu = STATE_CPU (sd, i); bfin_initialize_cpu (sd, cpu); } return sd; }
void bfin_syscall (SIM_CPU *cpu) { SIM_DESC sd = CPU_STATE (cpu); const char * const *argv = (void *)STATE_PROG_ARGV (sd); host_callback *cb = STATE_CALLBACK (sd); bu32 args[6]; CB_SYSCALL sc; char *p; char _tbuf[1024 * 3], *tbuf = _tbuf, tstr[1024]; int fmt_ret_hex = 0; CB_SYSCALL_INIT (&sc); if (STATE_ENVIRONMENT (sd) == USER_ENVIRONMENT) { /* Linux syscall. */ sc.func = PREG (0); sc.arg1 = args[0] = DREG (0); sc.arg2 = args[1] = DREG (1); sc.arg3 = args[2] = DREG (2); sc.arg4 = args[3] = DREG (3); /*sc.arg5 =*/ args[4] = DREG (4); /*sc.arg6 =*/ args[5] = DREG (5); } else { /* libgloss syscall. */ sc.func = PREG (0); sc.arg1 = args[0] = GET_LONG (DREG (0)); sc.arg2 = args[1] = GET_LONG (DREG (0) + 4); sc.arg3 = args[2] = GET_LONG (DREG (0) + 8); sc.arg4 = args[3] = GET_LONG (DREG (0) + 12); /*sc.arg5 =*/ args[4] = GET_LONG (DREG (0) + 16); /*sc.arg6 =*/ args[5] = GET_LONG (DREG (0) + 20); } sc.p1 = (PTR) sd; sc.p2 = (PTR) cpu; sc.read_mem = sim_syscall_read_mem; sc.write_mem = sim_syscall_write_mem; /* Common cb_syscall() handles most functions. */ switch (cb_target_to_host_syscall (cb, sc.func)) { case CB_SYS_exit: tbuf += sprintf (tbuf, "exit(%i)", args[0]); sim_engine_halt (sd, cpu, NULL, PCREG, sim_exited, sc.arg1); #ifdef CB_SYS_argc case CB_SYS_argc: tbuf += sprintf (tbuf, "argc()"); sc.result = count_argc (argv); break; case CB_SYS_argnlen: { tbuf += sprintf (tbuf, "argnlen(%u)", args[0]); if (sc.arg1 < count_argc (argv)) sc.result = strlen (argv[sc.arg1]); else sc.result = -1; } break; case CB_SYS_argn: { tbuf += sprintf (tbuf, "argn(%u)", args[0]); if (sc.arg1 < count_argc (argv)) { const char *argn = argv[sc.arg1]; int len = strlen (argn); int written = sc.write_mem (cb, &sc, sc.arg2, argn, len + 1); if (written == len + 1) sc.result = sc.arg2; else sc.result = -1; } else sc.result = -1; } break; #endif case CB_SYS_gettimeofday: { struct timeval _tv, *tv = &_tv; struct timezone _tz, *tz = &_tz; tbuf += sprintf (tbuf, "gettimeofday(%#x, %#x)", args[0], args[1]); if (sc.arg1 == 0) tv = NULL; if (sc.arg2 == 0) tz = NULL; sc.result = gettimeofday (tv, tz); if (sc.result == 0) { bu32 t; if (tv) { t = tv->tv_sec; sc.write_mem (cb, &sc, sc.arg1, (void *)&t, 4); t = tv->tv_usec; sc.write_mem (cb, &sc, sc.arg1 + 4, (void *)&t, 4); } if (sc.arg2) { t = tz->tz_minuteswest; sc.write_mem (cb, &sc, sc.arg1, (void *)&t, 4); t = tz->tz_dsttime; sc.write_mem (cb, &sc, sc.arg1 + 4, (void *)&t, 4); } } else goto sys_finish; } break; case CB_SYS_ioctl: /* XXX: hack just enough to get basic stdio w/uClibc ... */ tbuf += sprintf (tbuf, "ioctl(%i, %#x, %u)", args[0], args[1], args[2]); if (sc.arg2 == 0x5401) { sc.result = !isatty (sc.arg1); sc.errcode = 0; } else { sc.result = -1; sc.errcode = TARGET_EINVAL; } break; case CB_SYS_mmap2: { static bu32 heap = BFIN_DEFAULT_MEM_SIZE / 2; fmt_ret_hex = 1; tbuf += sprintf (tbuf, "mmap2(%#x, %u, %#x, %#x, %i, %u)", args[0], args[1], args[2], args[3], args[4], args[5]); sc.errcode = 0; if (sc.arg4 & 0x20 /*MAP_ANONYMOUS*/) /* XXX: We don't handle zeroing, but default is all zeros. */; else if (args[4] >= MAX_CALLBACK_FDS) sc.errcode = TARGET_ENOSYS; else { #ifdef HAVE_PREAD char *data = xmalloc (sc.arg2); /* XXX: Should add a cb->pread. */ if (pread (cb->fdmap[args[4]], data, sc.arg2, args[5] << 12) == sc.arg2) sc.write_mem (cb, &sc, heap, data, sc.arg2); else sc.errcode = TARGET_EINVAL; free (data); #else sc.errcode = TARGET_ENOSYS; #endif } if (sc.errcode) { sc.result = -1; break; } sc.result = heap; heap += sc.arg2; /* Keep it page aligned. */ heap = ALIGN (heap, 4096); break; } case CB_SYS_munmap: /* XXX: meh, just lie for mmap(). */ tbuf += sprintf (tbuf, "munmap(%#x, %u)", args[0], args[1]); sc.result = 0; break; case CB_SYS_dup2: tbuf += sprintf (tbuf, "dup2(%i, %i)", args[0], args[1]); if (sc.arg1 >= MAX_CALLBACK_FDS || sc.arg2 >= MAX_CALLBACK_FDS) { sc.result = -1; sc.errcode = TARGET_EINVAL; } else { sc.result = dup2 (cb->fdmap[sc.arg1], cb->fdmap[sc.arg2]); goto sys_finish; } break; case CB_SYS__llseek: tbuf += sprintf (tbuf, "llseek(%i, %u, %u, %#x, %u)", args[0], args[1], args[2], args[3], args[4]); sc.func = TARGET_LINUX_SYS_lseek; if (sc.arg2) { sc.result = -1; sc.errcode = TARGET_EINVAL; } else { sc.arg2 = sc.arg3; sc.arg3 = args[4]; cb_syscall (cb, &sc); if (sc.result != -1) { bu32 z = 0; sc.write_mem (cb, &sc, args[3], (void *)&sc.result, 4); sc.write_mem (cb, &sc, args[3] + 4, (void *)&z, 4); } } break; /* XXX: Should add a cb->pread. */ case CB_SYS_pread: tbuf += sprintf (tbuf, "pread(%i, %#x, %u, %i)", args[0], args[1], args[2], args[3]); if (sc.arg1 >= MAX_CALLBACK_FDS) { sc.result = -1; sc.errcode = TARGET_EINVAL; } else { long old_pos, read_result, read_errcode; /* Get current filepos. */ sc.func = TARGET_LINUX_SYS_lseek; sc.arg2 = 0; sc.arg3 = SEEK_CUR; cb_syscall (cb, &sc); if (sc.result == -1) break; old_pos = sc.result; /* Move to the new pos. */ sc.func = TARGET_LINUX_SYS_lseek; sc.arg2 = args[3]; sc.arg3 = SEEK_SET; cb_syscall (cb, &sc); if (sc.result == -1) break; /* Read the data. */ sc.func = TARGET_LINUX_SYS_read; sc.arg2 = args[1]; sc.arg3 = args[2]; cb_syscall (cb, &sc); read_result = sc.result; read_errcode = sc.errcode; /* Move back to the old pos. */ sc.func = TARGET_LINUX_SYS_lseek; sc.arg2 = old_pos; sc.arg3 = SEEK_SET; cb_syscall (cb, &sc); sc.result = read_result; sc.errcode = read_errcode; } break; case CB_SYS_getcwd: tbuf += sprintf (tbuf, "getcwd(%#x, %u)", args[0], args[1]); p = alloca (sc.arg2); if (getcwd (p, sc.arg2) == NULL) { sc.result = -1; sc.errcode = TARGET_EINVAL; } else { sc.write_mem (cb, &sc, sc.arg1, p, sc.arg2); sc.result = sc.arg1; } break; case CB_SYS_stat64: if (cb_get_string (cb, &sc, tstr, sizeof (tstr), args[0])) strcpy (tstr, "???"); tbuf += sprintf (tbuf, "stat64(%#x:\"%s\", %u)", args[0], tstr, args[1]); cb->stat_map = stat_map_64; sc.func = TARGET_LINUX_SYS_stat; cb_syscall (cb, &sc); cb->stat_map = stat_map_32; break; case CB_SYS_lstat64: if (cb_get_string (cb, &sc, tstr, sizeof (tstr), args[0])) strcpy (tstr, "???"); tbuf += sprintf (tbuf, "lstat64(%#x:\"%s\", %u)", args[0], tstr, args[1]); cb->stat_map = stat_map_64; sc.func = TARGET_LINUX_SYS_lstat; cb_syscall (cb, &sc); cb->stat_map = stat_map_32; break; case CB_SYS_fstat64: tbuf += sprintf (tbuf, "fstat64(%#x, %u)", args[0], args[1]); cb->stat_map = stat_map_64; sc.func = TARGET_LINUX_SYS_fstat; cb_syscall (cb, &sc); cb->stat_map = stat_map_32; break; case CB_SYS_ftruncate64: tbuf += sprintf (tbuf, "ftruncate64(%u, %u)", args[0], args[1]); sc.func = TARGET_LINUX_SYS_ftruncate; cb_syscall (cb, &sc); break; case CB_SYS_getuid: case CB_SYS_getuid32: tbuf += sprintf (tbuf, "getuid()"); sc.result = getuid (); goto sys_finish; case CB_SYS_getgid: case CB_SYS_getgid32: tbuf += sprintf (tbuf, "getgid()"); sc.result = getgid (); goto sys_finish; case CB_SYS_setuid: sc.arg1 &= 0xffff; case CB_SYS_setuid32: tbuf += sprintf (tbuf, "setuid(%u)", args[0]); sc.result = setuid (sc.arg1); goto sys_finish; case CB_SYS_setgid: sc.arg1 &= 0xffff; case CB_SYS_setgid32: tbuf += sprintf (tbuf, "setgid(%u)", args[0]); sc.result = setgid (sc.arg1); goto sys_finish; case CB_SYS_getpid: tbuf += sprintf (tbuf, "getpid()"); sc.result = getpid (); goto sys_finish; case CB_SYS_kill: tbuf += sprintf (tbuf, "kill(%u, %i)", args[0], args[1]); /* Only let the app kill itself. */ if (sc.arg1 != getpid ()) { sc.result = -1; sc.errcode = TARGET_EPERM; } else { #ifdef HAVE_KILL sc.result = kill (sc.arg1, sc.arg2); goto sys_finish; #else sc.result = -1; sc.errcode = TARGET_ENOSYS; #endif } break; case CB_SYS_open: if (cb_get_string (cb, &sc, tstr, sizeof (tstr), args[0])) strcpy (tstr, "???"); tbuf += sprintf (tbuf, "open(%#x:\"%s\", %#x, %o)", args[0], tstr, args[1], args[2]); goto case_default; case CB_SYS_close: tbuf += sprintf (tbuf, "close(%i)", args[0]); goto case_default; case CB_SYS_read: tbuf += sprintf (tbuf, "read(%i, %#x, %u)", args[0], args[1], args[2]); goto case_default; case CB_SYS_write: if (cb_get_string (cb, &sc, tstr, sizeof (tstr), args[1])) strcpy (tstr, "???"); tbuf += sprintf (tbuf, "write(%i, %#x:\"%s\", %u)", args[0], args[1], tstr, args[2]); goto case_default; case CB_SYS_lseek: tbuf += sprintf (tbuf, "lseek(%i, %i, %i)", args[0], args[1], args[2]); goto case_default; case CB_SYS_unlink: if (cb_get_string (cb, &sc, tstr, sizeof (tstr), args[0])) strcpy (tstr, "???"); tbuf += sprintf (tbuf, "unlink(%#x:\"%s\")", args[0], tstr); goto case_default; case CB_SYS_truncate: if (cb_get_string (cb, &sc, tstr, sizeof (tstr), args[0])) strcpy (tstr, "???"); tbuf += sprintf (tbuf, "truncate(%#x:\"%s\", %i)", args[0], tstr, args[1]); goto case_default; case CB_SYS_ftruncate: tbuf += sprintf (tbuf, "ftruncate(%i, %i)", args[0], args[1]); goto case_default; case CB_SYS_rename: if (cb_get_string (cb, &sc, tstr, sizeof (tstr), args[0])) strcpy (tstr, "???"); tbuf += sprintf (tbuf, "rename(%#x:\"%s\", ", args[0], tstr); if (cb_get_string (cb, &sc, tstr, sizeof (tstr), args[1])) strcpy (tstr, "???"); tbuf += sprintf (tbuf, "%#x:\"%s\")", args[1], tstr); goto case_default; case CB_SYS_stat: if (cb_get_string (cb, &sc, tstr, sizeof (tstr), args[0])) strcpy (tstr, "???"); tbuf += sprintf (tbuf, "stat(%#x:\"%s\", %#x)", args[0], tstr, args[1]); goto case_default; case CB_SYS_fstat: tbuf += sprintf (tbuf, "fstat(%i, %#x)", args[0], args[1]); goto case_default; case CB_SYS_lstat: if (cb_get_string (cb, &sc, tstr, sizeof (tstr), args[0])) strcpy (tstr, "???"); tbuf += sprintf (tbuf, "lstat(%#x:\"%s\", %#x)", args[0], tstr, args[1]); goto case_default; case CB_SYS_pipe: tbuf += sprintf (tbuf, "pipe(%#x, %#x)", args[0], args[1]); goto case_default; default: tbuf += sprintf (tbuf, "???_%i(%#x, %#x, %#x, %#x, %#x, %#x)", sc.func, args[0], args[1], args[2], args[3], args[4], args[5]); case_default: cb_syscall (cb, &sc); break; sys_finish: if (sc.result == -1) { cb->last_errno = errno; sc.errcode = cb->get_errno (cb); } } TRACE_EVENTS (cpu, "syscall_%i(%#x, %#x, %#x, %#x, %#x, %#x) = %li (error = %i)", sc.func, args[0], args[1], args[2], args[3], args[4], args[5], sc.result, sc.errcode); tbuf += sprintf (tbuf, " = "); if (STATE_ENVIRONMENT (sd) == USER_ENVIRONMENT) { if (sc.result == -1) { tbuf += sprintf (tbuf, "-1 (error = %i)", sc.errcode); if (sc.errcode == cb_host_to_target_errno (cb, ENOSYS)) { sim_io_eprintf (sd, "bfin-sim: %#x: unimplemented syscall %i\n", PCREG, sc.func); } SET_DREG (0, -sc.errcode); } else { if (fmt_ret_hex) tbuf += sprintf (tbuf, "%#lx", sc.result); else tbuf += sprintf (tbuf, "%lu", sc.result); SET_DREG (0, sc.result); } } else { tbuf += sprintf (tbuf, "%lu (error = %i)", sc.result, sc.errcode); SET_DREG (0, sc.result); SET_DREG (1, sc.result2); SET_DREG (2, sc.errcode); } TRACE_SYSCALL (cpu, "%s", _tbuf); }
SIM_DESC sim_open (SIM_OPEN_KIND kind, host_callback *callback, bfd *abfd, char **argv) { SIM_DESC sd; sim_cpu *cpu; sd = sim_state_alloc (kind, callback); cpu = STATE_CPU (sd, 0); SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER); /* for compatibility */ current_alignment = NONSTRICT_ALIGNMENT; current_target_byte_order = BIG_ENDIAN; cpu_initialize (sd, cpu); if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK) { free_state (sd); return 0; } /* getopt will print the error message so we just have to exit if this fails. FIXME: Hmmm... in the case of gdb we need getopt to call print_filtered. */ if (sim_parse_args (sd, argv) != SIM_RC_OK) { /* Uninstall the modules to avoid memory leaks, file descriptor leaks, etc. */ free_state (sd); return 0; } /* Check for/establish the a reference program image. */ if (sim_analyze_program (sd, (STATE_PROG_ARGV (sd) != NULL ? *STATE_PROG_ARGV (sd) : NULL), abfd) != SIM_RC_OK) { free_state (sd); return 0; } /* Establish any remaining configuration options. */ if (sim_config (sd) != SIM_RC_OK) { free_state (sd); return 0; } if (sim_post_argv_init (sd) != SIM_RC_OK) { /* Uninstall the modules to avoid memory leaks, file descriptor leaks, etc. */ free_state (sd); return 0; } if (sim_prepare_for_program (sd, abfd) != SIM_RC_OK) { free_state (sd); return 0; } /* Fudge our descriptor. */ return sd; }
SIM_DESC sim_open (SIM_OPEN_KIND kind, host_callback *cb, struct bfd *abfd, char **argv) { int i; SIM_DESC sd = sim_state_alloc (kind, cb); mn10300_callback = cb; SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER); /* The cpu data is kept in a separately allocated chunk of memory. */ if (sim_cpu_alloc_all (sd, 1, /*cgen_cpu_max_extra_bytes ()*/0) != SIM_RC_OK) return 0; /* for compatibility */ simulator = sd; /* FIXME: should be better way of setting up interrupts. For moment, only support watchpoints causing a breakpoint (gdb halt). */ STATE_WATCHPOINTS (sd)->pc = &(PC); STATE_WATCHPOINTS (sd)->sizeof_pc = sizeof (PC); STATE_WATCHPOINTS (sd)->interrupt_handler = NULL; STATE_WATCHPOINTS (sd)->interrupt_names = NULL; if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK) return 0; sim_add_option_table (sd, NULL, mn10300_options); /* Allocate core managed memory */ sim_do_command (sd, "memory region 0,0x100000"); sim_do_command (sd, "memory region 0x40000000,0x200000"); /* getopt will print the error message so we just have to exit if this fails. FIXME: Hmmm... in the case of gdb we need getopt to call print_filtered. */ if (sim_parse_args (sd, argv) != SIM_RC_OK) { /* Uninstall the modules to avoid memory leaks, file descriptor leaks, etc. */ sim_module_uninstall (sd); return 0; } if ( NULL != board && (strcmp(board, BOARD_AM32) == 0 ) ) { /* environment */ STATE_ENVIRONMENT (sd) = OPERATING_ENVIRONMENT; sim_do_command (sd, "memory region 0x44000000,0x40000"); sim_do_command (sd, "memory region 0x48000000,0x400000"); /* device support for mn1030002 */ /* interrupt controller */ sim_hw_parse (sd, "/mn103int@0x34000100/reg 0x34000100 0x7C 0x34000200 0x8 0x34000280 0x8"); /* DEBUG: NMI input's */ sim_hw_parse (sd, "/glue@0x30000000/reg 0x30000000 12"); sim_hw_parse (sd, "/glue@0x30000000 > int0 nmirq /mn103int"); sim_hw_parse (sd, "/glue@0x30000000 > int1 watchdog /mn103int"); sim_hw_parse (sd, "/glue@0x30000000 > int2 syserr /mn103int"); /* DEBUG: ACK input */ sim_hw_parse (sd, "/glue@0x30002000/reg 0x30002000 4"); sim_hw_parse (sd, "/glue@0x30002000 > int ack /mn103int"); /* DEBUG: LEVEL output */ sim_hw_parse (sd, "/glue@0x30004000/reg 0x30004000 8"); sim_hw_parse (sd, "/mn103int > nmi int0 /glue@0x30004000"); sim_hw_parse (sd, "/mn103int > level int1 /glue@0x30004000"); /* DEBUG: A bunch of interrupt inputs */ sim_hw_parse (sd, "/glue@0x30006000/reg 0x30006000 32"); sim_hw_parse (sd, "/glue@0x30006000 > int0 irq-0 /mn103int"); sim_hw_parse (sd, "/glue@0x30006000 > int1 irq-1 /mn103int"); sim_hw_parse (sd, "/glue@0x30006000 > int2 irq-2 /mn103int"); sim_hw_parse (sd, "/glue@0x30006000 > int3 irq-3 /mn103int"); sim_hw_parse (sd, "/glue@0x30006000 > int4 irq-4 /mn103int"); sim_hw_parse (sd, "/glue@0x30006000 > int5 irq-5 /mn103int"); sim_hw_parse (sd, "/glue@0x30006000 > int6 irq-6 /mn103int"); sim_hw_parse (sd, "/glue@0x30006000 > int7 irq-7 /mn103int"); /* processor interrupt device */ /* the device */ sim_hw_parse (sd, "/mn103cpu@0x20000000"); sim_hw_parse (sd, "/mn103cpu@0x20000000/reg 0x20000000 0x42"); /* DEBUG: ACK output wired upto a glue device */ sim_hw_parse (sd, "/glue@0x20002000"); sim_hw_parse (sd, "/glue@0x20002000/reg 0x20002000 4"); sim_hw_parse (sd, "/mn103cpu > ack int0 /glue@0x20002000"); /* DEBUG: RESET/NMI/LEVEL wired up to a glue device */ sim_hw_parse (sd, "/glue@0x20004000"); sim_hw_parse (sd, "/glue@0x20004000/reg 0x20004000 12"); sim_hw_parse (sd, "/glue@0x20004000 > int0 reset /mn103cpu"); sim_hw_parse (sd, "/glue@0x20004000 > int1 nmi /mn103cpu"); sim_hw_parse (sd, "/glue@0x20004000 > int2 level /mn103cpu"); /* REAL: The processor wired up to the real interrupt controller */ sim_hw_parse (sd, "/mn103cpu > ack ack /mn103int"); sim_hw_parse (sd, "/mn103int > level level /mn103cpu"); sim_hw_parse (sd, "/mn103int > nmi nmi /mn103cpu"); /* PAL */ /* the device */ sim_hw_parse (sd, "/pal@0x31000000"); sim_hw_parse (sd, "/pal@0x31000000/reg 0x31000000 64"); sim_hw_parse (sd, "/pal@0x31000000/poll? true"); /* DEBUG: PAL wired up to a glue device */ sim_hw_parse (sd, "/glue@0x31002000"); sim_hw_parse (sd, "/glue@0x31002000/reg 0x31002000 16"); sim_hw_parse (sd, "/pal@0x31000000 > countdown int0 /glue@0x31002000"); sim_hw_parse (sd, "/pal@0x31000000 > timer int1 /glue@0x31002000"); sim_hw_parse (sd, "/pal@0x31000000 > int int2 /glue@0x31002000"); sim_hw_parse (sd, "/glue@0x31002000 > int0 int3 /glue@0x31002000"); sim_hw_parse (sd, "/glue@0x31002000 > int1 int3 /glue@0x31002000"); sim_hw_parse (sd, "/glue@0x31002000 > int2 int3 /glue@0x31002000"); /* REAL: The PAL wired up to the real interrupt controller */ sim_hw_parse (sd, "/pal@0x31000000 > countdown irq-0 /mn103int"); sim_hw_parse (sd, "/pal@0x31000000 > timer irq-1 /mn103int"); sim_hw_parse (sd, "/pal@0x31000000 > int irq-2 /mn103int"); /* 8 and 16 bit timers */ sim_hw_parse (sd, "/mn103tim@0x34001000/reg 0x34001000 36 0x34001080 100 0x34004000 16"); /* Hook timer interrupts up to interrupt controller */ sim_hw_parse (sd, "/mn103tim > timer-0-underflow timer-0-underflow /mn103int"); sim_hw_parse (sd, "/mn103tim > timer-1-underflow timer-1-underflow /mn103int"); sim_hw_parse (sd, "/mn103tim > timer-2-underflow timer-2-underflow /mn103int"); sim_hw_parse (sd, "/mn103tim > timer-3-underflow timer-3-underflow /mn103int"); sim_hw_parse (sd, "/mn103tim > timer-4-underflow timer-4-underflow /mn103int"); sim_hw_parse (sd, "/mn103tim > timer-5-underflow timer-5-underflow /mn103int"); sim_hw_parse (sd, "/mn103tim > timer-6-underflow timer-6-underflow /mn103int"); sim_hw_parse (sd, "/mn103tim > timer-6-compare-a timer-6-compare-a /mn103int"); sim_hw_parse (sd, "/mn103tim > timer-6-compare-b timer-6-compare-b /mn103int"); /* Serial devices 0,1,2 */ sim_hw_parse (sd, "/mn103ser@0x34000800/reg 0x34000800 48"); sim_hw_parse (sd, "/mn103ser@0x34000800/poll? true"); /* Hook serial interrupts up to interrupt controller */ sim_hw_parse (sd, "/mn103ser > serial-0-receive serial-0-receive /mn103int"); sim_hw_parse (sd, "/mn103ser > serial-0-transmit serial-0-transmit /mn103int"); sim_hw_parse (sd, "/mn103ser > serial-1-receive serial-1-receive /mn103int"); sim_hw_parse (sd, "/mn103ser > serial-1-transmit serial-1-transmit /mn103int"); sim_hw_parse (sd, "/mn103ser > serial-2-receive serial-2-receive /mn103int"); sim_hw_parse (sd, "/mn103ser > serial-2-transmit serial-2-transmit /mn103int"); sim_hw_parse (sd, "/mn103iop@0x36008000/reg 0x36008000 8 0x36008020 8 0x36008040 0xc 0x36008060 8 0x36008080 8"); /* Memory control registers */ sim_do_command (sd, "memory region 0x32000020,0x30"); /* Cache control register */ sim_do_command (sd, "memory region 0x20000070,0x4"); /* Cache purge regions */ sim_do_command (sd, "memory region 0x28400000,0x800"); sim_do_command (sd, "memory region 0x28401000,0x800"); /* DMA registers */ sim_do_command (sd, "memory region 0x32000100,0xF"); sim_do_command (sd, "memory region 0x32000200,0xF"); sim_do_command (sd, "memory region 0x32000400,0xF"); sim_do_command (sd, "memory region 0x32000800,0xF"); } else { if (board != NULL) { sim_io_eprintf (sd, "Error: Board `%s' unknown.\n", board); return 0; } } /* check for/establish the a reference program image */ if (sim_analyze_program (sd, (STATE_PROG_ARGV (sd) != NULL ? *STATE_PROG_ARGV (sd) : NULL), abfd) != SIM_RC_OK) { sim_module_uninstall (sd); return 0; } /* establish any remaining configuration options */ if (sim_config (sd) != SIM_RC_OK) { sim_module_uninstall (sd); return 0; } if (sim_post_argv_init (sd) != SIM_RC_OK) { /* Uninstall the modules to avoid memory leaks, file descriptor leaks, etc. */ sim_module_uninstall (sd); return 0; } /* set machine specific configuration */ /* STATE_CPU (sd, 0)->psw_mask = (PSW_NP | PSW_EP | PSW_ID | PSW_SAT */ /* | PSW_CY | PSW_OV | PSW_S | PSW_Z); */ /* CPU specific initialization. */ for (i = 0; i < MAX_NR_PROCESSORS; ++i) { SIM_CPU *cpu = STATE_CPU (sd, i); CPU_PC_FETCH (cpu) = mn10300_pc_get; CPU_PC_STORE (cpu) = mn10300_pc_set; } return sd; }
SIM_DESC sim_open (SIM_OPEN_KIND kind, host_callback *callback, bfd *abfd, char * const *argv) { int i; SIM_DESC sd; sim_cpu *cpu; sd = sim_state_alloc (kind, callback); SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER); /* The cpu data is kept in a separately allocated chunk of memory. */ if (sim_cpu_alloc_all (sd, 1, /*cgen_cpu_max_extra_bytes ()*/0) != SIM_RC_OK) { free_state (sd); return 0; } cpu = STATE_CPU (sd, 0); cpu_initialize (sd, cpu); if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK) { free_state (sd); return 0; } /* The parser will print an error message for us, so we silently return. */ if (sim_parse_args (sd, argv) != SIM_RC_OK) { /* Uninstall the modules to avoid memory leaks, file descriptor leaks, etc. */ free_state (sd); return 0; } /* Check for/establish the a reference program image. */ if (sim_analyze_program (sd, (STATE_PROG_ARGV (sd) != NULL ? *STATE_PROG_ARGV (sd) : NULL), abfd) != SIM_RC_OK) { free_state (sd); return 0; } /* Establish any remaining configuration options. */ if (sim_config (sd) != SIM_RC_OK) { free_state (sd); return 0; } if (sim_post_argv_init (sd) != SIM_RC_OK) { /* Uninstall the modules to avoid memory leaks, file descriptor leaks, etc. */ free_state (sd); return 0; } if (sim_prepare_for_program (sd, abfd) != SIM_RC_OK) { free_state (sd); return 0; } /* CPU specific initialization. */ for (i = 0; i < MAX_NR_PROCESSORS; ++i) { SIM_CPU *cpu = STATE_CPU (sd, i); CPU_REG_FETCH (cpu) = m68hc11_reg_fetch; CPU_REG_STORE (cpu) = m68hc11_reg_store; CPU_PC_FETCH (cpu) = m68hc11_pc_get; CPU_PC_STORE (cpu) = m68hc11_pc_set; } return sd; }