status_t SurfaceTexture::setBufferCount(int bufferCount) {
    ST_LOGV("setBufferCount: count=%d", bufferCount);
    Mutex::Autolock lock(mMutex);

    if (mAbandoned) {
        ST_LOGE("setBufferCount: SurfaceTexture has been abandoned!");
        return NO_INIT;
    }
    if (bufferCount > NUM_BUFFER_SLOTS) {
        ST_LOGE("setBufferCount: bufferCount larger than slots available");
        return BAD_VALUE;
    }

    // Error out if the user has dequeued buffers
    for (int i=0 ; i<mBufferCount ; i++) {
        if (mSlots[i].mBufferState == BufferSlot::DEQUEUED) {
            ST_LOGE("setBufferCount: client owns some buffers");
            return -EINVAL;
        }
    }

    const int minBufferSlots = mSynchronousMode ?
            MIN_SYNC_BUFFER_SLOTS : MIN_ASYNC_BUFFER_SLOTS;
    if (bufferCount == 0) {
        mClientBufferCount = 0;
        bufferCount = (mServerBufferCount >= minBufferSlots) ?
                mServerBufferCount : minBufferSlots;
        return setBufferCountServerLocked(bufferCount);
    }

    if (bufferCount < minBufferSlots) {
        ST_LOGE("setBufferCount: requested buffer count (%d) is less than "
                "minimum (%d)", bufferCount, minBufferSlots);
        return BAD_VALUE;
    }

    // here we're guaranteed that the client doesn't have dequeued buffers
    // and will release all of its buffer references.
    freeAllBuffersLocked();
    mBufferCount = bufferCount;
    mClientBufferCount = bufferCount;
    mCurrentTexture = INVALID_BUFFER_SLOT;
    mQueue.clear();
    mDequeueCondition.signal();
    return OK;
}
status_t BufferQueue::consumerConnect(const sp<ConsumerListener>& consumerListener) {
    ST_LOGV("consumerConnect");
    Mutex::Autolock lock(mMutex);

    if (mAbandoned) {
        ST_LOGE("consumerConnect: BufferQueue has been abandoned!");
        return NO_INIT;
    }
    if (consumerListener == NULL) {
        ST_LOGE("consumerConnect: consumerListener may not be NULL");
        return BAD_VALUE;
    }

    mConsumerListener = consumerListener;

    return NO_ERROR;
}
Exemple #3
0
status_t BufferQueue::requestBuffer(int slot, sp<GraphicBuffer>* buf) {
    ATRACE_CALL();
    ST_LOGV("requestBuffer: slot=%d", slot);
    Mutex::Autolock lock(mMutex);
    if (mAbandoned) {
        ST_LOGE("requestBuffer: SurfaceTexture has been abandoned!");
        return NO_INIT;
    }
    if (slot < 0 || mBufferCount <= slot) {
        ST_LOGE("requestBuffer: slot index out of range [0, %d]: %d",
                mBufferCount, slot);
        return BAD_VALUE;
    }
    mSlots[slot].mRequestBufferCalled = true;
    *buf = mSlots[slot].mGraphicBuffer;
    return NO_ERROR;
}
status_t GLConsumer::updateTexImage() {
    ATRACE_CALL();
    ST_LOGV("updateTexImage");
    Mutex::Autolock lock(mMutex);

    if (mAbandoned) {
        ST_LOGE("updateTexImage: GLConsumer is abandoned!");
        return NO_INIT;
    }

    // Make sure the EGL state is the same as in previous calls.
    status_t err = checkAndUpdateEglStateLocked();
    if (err != NO_ERROR) {
        return err;
    }

    BufferQueue::BufferItem item;

    // Acquire the next buffer.
    // In asynchronous mode the list is guaranteed to be one buffer
    // deep, while in synchronous mode we use the oldest buffer.
    err = acquireBufferLocked(&item, 0);
    if (err != NO_ERROR) {
        if (err == BufferQueue::NO_BUFFER_AVAILABLE) {
            // We always bind the texture even if we don't update its contents.
            ST_LOGV("updateTexImage: no buffers were available");
            glBindTexture(mTexTarget, mTexName);
            err = NO_ERROR;
        } else {
            ST_LOGE("updateTexImage: acquire failed: %s (%d)",
                strerror(-err), err);
        }
        return err;
    }

    // Release the previous buffer.
    err = updateAndReleaseLocked(item);
    if (err != NO_ERROR) {
        // We always bind the texture.
        glBindTexture(mTexTarget, mTexName);
        return err;
    }

    // Bind the new buffer to the GL texture, and wait until it's ready.
    return bindTextureImageLocked();
}
Exemple #5
0
status_t BufferQueue::disconnect(int api) {
    ATRACE_CALL();
    ST_LOGV("disconnect: api=%d", api);

    int err = NO_ERROR;
    sp<ConsumerListener> listener;

    { // Scope for the lock
        Mutex::Autolock lock(mMutex);

        if (mAbandoned) {
            // it is not really an error to disconnect after the surface
            // has been abandoned, it should just be a no-op.
            return NO_ERROR;
        }

        switch (api) {
            case NATIVE_WINDOW_API_EGL:
            case NATIVE_WINDOW_API_CPU:
            case NATIVE_WINDOW_API_MEDIA:
            case NATIVE_WINDOW_API_CAMERA:
                if (mConnectedApi == api) {
                    drainQueueAndFreeBuffersLocked();
                    mConnectedApi = NO_CONNECTED_API;
                    mDequeueCondition.broadcast();
                    listener = mConsumerListener;
                } else {
                    ST_LOGE("disconnect: connected to another api (cur=%d, req=%d)",
                            mConnectedApi, api);
                    err = -EINVAL;
                }
                break;
            default:
                ST_LOGE("disconnect: unknown API %d", api);
                err = -EINVAL;
                break;
        }
    }

    if (listener != NULL) {
        listener->onBuffersReleased();
    }

    return err;
}
status_t BufferQueue::acquireBuffer(BufferItem *buffer) {
    ATRACE_CALL();
    Mutex::Autolock _l(mMutex);

    // Check that the consumer doesn't currently have the maximum number of
    // buffers acquired.  We allow the max buffer count to be exceeded by one
    // buffer, so that the consumer can successfully set up the newly acquired
    // buffer before releasing the old one.
    int numAcquiredBuffers = 0;
    for (int i = 0; i < NUM_BUFFER_SLOTS; i++) {
        if (mSlots[i].mBufferState == BufferSlot::ACQUIRED) {
            numAcquiredBuffers++;
        }
    }
    if (numAcquiredBuffers >= mMaxAcquiredBufferCount+1) {
        ST_LOGE("acquireBuffer: max acquired buffer count reached: %d (max=%d)",
                numAcquiredBuffers, mMaxAcquiredBufferCount);
        return INVALID_OPERATION;
    }

    // check if queue is empty
    // In asynchronous mode the list is guaranteed to be one buffer
    // deep, while in synchronous mode we use the oldest buffer.
    if (!mQueue.empty()) {
        Fifo::iterator front(mQueue.begin());
        int buf = *front;

        ATRACE_BUFFER_INDEX(buf);

        if (mSlots[buf].mAcquireCalled) {
            buffer->mGraphicBuffer = NULL;
        } else {
            buffer->mGraphicBuffer = mSlots[buf].mGraphicBuffer;
        }
        buffer->mCrop = mSlots[buf].mCrop;
        buffer->mTransform = mSlots[buf].mTransform;
        buffer->mScalingMode = mSlots[buf].mScalingMode;
        buffer->mFrameNumber = mSlots[buf].mFrameNumber;
        buffer->mTimestamp = mSlots[buf].mTimestamp;
        buffer->mBuf = buf;
        buffer->mFence = mSlots[buf].mFence;

        mSlots[buf].mAcquireCalled = true;
        mSlots[buf].mNeedsCleanupOnRelease = false;
        mSlots[buf].mBufferState = BufferSlot::ACQUIRED;
        mSlots[buf].mFence = Fence::NO_FENCE;

        mQueue.erase(front);
        mDequeueCondition.broadcast();

        ATRACE_INT(mConsumerName.string(), mQueue.size());
    } else {
        return NO_BUFFER_AVAILABLE;
    }

    return NO_ERROR;
}
status_t SurfaceTexture::setTransform(uint32_t transform) {
    ST_LOGV("setTransform: xform=%#x", transform);
    Mutex::Autolock lock(mMutex);
    if (mAbandoned) {
        ST_LOGE("setTransform: SurfaceTexture has been abandoned!");
        return NO_INIT;
    }
    mNextTransform = transform;
    return OK;
}
void SurfaceTexture::setReleaseFence(int fenceFd) {
    sp<Fence> fence(new Fence(fenceFd));
    if (fenceFd == -1 || mCurrentTexture == BufferQueue::INVALID_BUFFER_SLOT)
        return;
    status_t err = addReleaseFence(mCurrentTexture, fence);
    if (err != OK) {
        ST_LOGE("setReleaseFence: failed to add the fence: %s (%d)",
                strerror(-err), err);
    }
}
void GLConsumer::setReleaseFence(const sp<Fence>& fence) {
    if (fence->isValid() &&
            mCurrentTexture != BufferQueue::INVALID_BUFFER_SLOT) {
        status_t err = addReleaseFence(mCurrentTexture, fence);
        if (err != OK) {
            ST_LOGE("setReleaseFence: failed to add the fence: %s (%d)",
                    strerror(-err), err);
        }
    }
}
status_t GLConsumer::checkAndUpdateEglStateLocked() {
    EGLDisplay dpy = eglGetCurrentDisplay();
    EGLContext ctx = eglGetCurrentContext();

    if ((mEglDisplay != dpy && mEglDisplay != EGL_NO_DISPLAY) ||
            dpy == EGL_NO_DISPLAY) {
        ST_LOGE("checkAndUpdateEglState: invalid current EGLDisplay");
        return INVALID_OPERATION;
    }

    if ((mEglContext != ctx && mEglContext != EGL_NO_CONTEXT) ||
            ctx == EGL_NO_CONTEXT) {
        ST_LOGE("checkAndUpdateEglState: invalid current EGLContext");
        return INVALID_OPERATION;
    }

    mEglDisplay = dpy;
    mEglContext = ctx;
    return NO_ERROR;
}
status_t SurfaceTexture::setCrop(const Rect& crop) {
    ST_LOGV("setCrop: crop=[%d,%d,%d,%d]", crop.left, crop.top, crop.right,
            crop.bottom);

    Mutex::Autolock lock(mMutex);
    if (mAbandoned) {
        ST_LOGE("setCrop: SurfaceTexture has been abandoned!");
        return NO_INIT;
    }
    mNextCrop = crop;
    return OK;
}
Exemple #12
0
status_t BufferQueue::connect(int api, QueueBufferOutput* output) {
    ATRACE_CALL();
    ST_LOGV("connect: api=%d", api);
    Mutex::Autolock lock(mMutex);

    if (mAbandoned) {
        ST_LOGE("connect: BufferQueue has been abandoned!");
        return NO_INIT;
    }

    if (mConsumerListener == NULL) {
        ST_LOGE("connect: BufferQueue has no consumer!");
        return NO_INIT;
    }

    int err = NO_ERROR;
    switch (api) {
        case NATIVE_WINDOW_API_EGL:
        case NATIVE_WINDOW_API_CPU:
        case NATIVE_WINDOW_API_MEDIA:
        case NATIVE_WINDOW_API_CAMERA:
            if (mConnectedApi != NO_CONNECTED_API) {
                ST_LOGE("connect: already connected (cur=%d, req=%d)",
                        mConnectedApi, api);
                err = -EINVAL;
            } else {
                mConnectedApi = api;
                output->inflate(mDefaultWidth, mDefaultHeight, mTransformHint,
                        mQueue.size());
            }
            break;
        default:
            err = -EINVAL;
            break;
    }

    mBufferHasBeenQueued = false;

    return err;
}
void SurfaceTexture::cancelBuffer(int buf) {
    ST_LOGV("cancelBuffer: slot=%d", buf);
    Mutex::Autolock lock(mMutex);

    if (mAbandoned) {
        ST_LOGW("cancelBuffer: SurfaceTexture has been abandoned!");
        return;
    }

    if (buf < 0 || buf >= mBufferCount) {
        ST_LOGE("cancelBuffer: slot index out of range [0, %d]: %d",
                mBufferCount, buf);
        return;
    } else if (mSlots[buf].mBufferState != BufferSlot::DEQUEUED) {
        ST_LOGE("cancelBuffer: slot %d is not owned by the client (state=%d)",
                buf, mSlots[buf].mBufferState);
        return;
    }
    mSlots[buf].mBufferState = BufferSlot::FREE;
    mSlots[buf].mFrameNumber = 0;
    mDequeueCondition.signal();
}
status_t SurfaceTexture::doGLFenceWaitLocked() const {

    EGLDisplay dpy = eglGetCurrentDisplay();
    EGLContext ctx = eglGetCurrentContext();

    if (mEglDisplay != dpy || mEglDisplay == EGL_NO_DISPLAY) {
        ST_LOGE("doGLFenceWait: invalid current EGLDisplay");
        return INVALID_OPERATION;
    }

    if (mEglContext != ctx || mEglContext == EGL_NO_CONTEXT) {
        ST_LOGE("doGLFenceWait: invalid current EGLContext");
        return INVALID_OPERATION;
    }

    if (mCurrentFence != NULL) {
        if (useWaitSync) {
            // Create an EGLSyncKHR from the current fence.
            int fenceFd = mCurrentFence->dup();
            if (fenceFd == -1) {
                ST_LOGE("doGLFenceWait: error dup'ing fence fd: %d", errno);
                return -errno;
            }
            EGLint attribs[] = {
                EGL_SYNC_NATIVE_FENCE_FD_ANDROID, fenceFd,
                EGL_NONE
            };
            EGLSyncKHR sync = eglCreateSyncKHR(dpy,
                    EGL_SYNC_NATIVE_FENCE_ANDROID, attribs);
            if (sync == EGL_NO_SYNC_KHR) {
                close(fenceFd);
                ST_LOGE("doGLFenceWait: error creating EGL fence: %#x",
                        eglGetError());
                return UNKNOWN_ERROR;
            }

            // XXX: The spec draft is inconsistent as to whether this should
            // return an EGLint or void.  Ignore the return value for now, as
            // it's not strictly needed.
            eglWaitSyncANDROID(dpy, sync, 0);
            EGLint eglErr = eglGetError();
            eglDestroySyncKHR(dpy, sync);
            if (eglErr != EGL_SUCCESS) {
                ST_LOGE("doGLFenceWait: error waiting for EGL fence: %#x",
                        eglErr);
                return UNKNOWN_ERROR;
            }
        } else {
            status_t err = mCurrentFence->waitForever(1000,
                    "SurfaceTexture::doGLFenceWaitLocked");
            if (err != NO_ERROR) {
                ST_LOGE("doGLFenceWait: error waiting for fence: %d", err);
                return err;
            }
        }
    }

    return NO_ERROR;
}
Exemple #15
0
status_t BufferQueue::consumerConnect(const sp<ConsumerListener>& consumerListener) {
    ST_LOGV("consumerConnect");
    Mutex::Autolock lock(mMutex);

    if (mAbandoned) {
        ST_LOGE("consumerConnect: BufferQueue has been abandoned!");
        return NO_INIT;
    }

    mConsumerListener = consumerListener;

    return OK;
}
SurfaceTexture::SurfaceTexture(GLuint tex, bool allowSynchronousMode,
        GLenum texTarget, bool useFenceSync, const sp<BufferQueue> &bufferQueue) :
    mCurrentTransform(0),
    mCurrentTimestamp(0),
    mFilteringEnabled(true),
    mTexName(tex),
#ifdef USE_FENCE_SYNC
    mUseFenceSync(useFenceSync),
#else
    mUseFenceSync(false),
#endif
    mTexTarget(texTarget),
    mEglDisplay(EGL_NO_DISPLAY),
    mEglContext(EGL_NO_CONTEXT),
    mAbandoned(false),
    mCurrentTexture(BufferQueue::INVALID_BUFFER_SLOT),
    mAttached(true)
{
    // Choose a name using the PID and a process-unique ID.
    mName = String8::format("unnamed-%d-%d", getpid(), createProcessUniqueId());
    ST_LOGV("SurfaceTexture");
    if (bufferQueue == 0) {
        ST_LOGV("Creating a new BufferQueue");
        mBufferQueue = new BufferQueue(allowSynchronousMode);
    }
    else {
        mBufferQueue = bufferQueue;
    }

    memcpy(mCurrentTransformMatrix, mtxIdentity,
            sizeof(mCurrentTransformMatrix));

    // Note that we can't create an sp<...>(this) in a ctor that will not keep a
    // reference once the ctor ends, as that would cause the refcount of 'this'
    // dropping to 0 at the end of the ctor.  Since all we need is a wp<...>
    // that's what we create.
    wp<BufferQueue::ConsumerListener> listener;
    sp<BufferQueue::ConsumerListener> proxy;
    listener = static_cast<BufferQueue::ConsumerListener*>(this);
    proxy = new BufferQueue::ProxyConsumerListener(listener);

    status_t err = mBufferQueue->consumerConnect(proxy);
    if (err != NO_ERROR) {
        ST_LOGE("SurfaceTexture: error connecting to BufferQueue: %s (%d)",
                strerror(-err), err);
    } else {
        mBufferQueue->setConsumerName(mName);
        mBufferQueue->setConsumerUsageBits(DEFAULT_USAGE_FLAGS);
    }
}
Exemple #17
0
status_t BufferQueue::setDefaultBufferSize(uint32_t w, uint32_t h)
{
    ST_LOGV("setDefaultBufferSize: w=%d, h=%d", w, h);
    if (!w || !h) {
        ST_LOGE("setDefaultBufferSize: dimensions cannot be 0 (w=%d, h=%d)",
                w, h);
        return BAD_VALUE;
    }

    Mutex::Autolock lock(mMutex);
    mDefaultWidth = w;
    mDefaultHeight = h;
    return OK;
}
status_t BufferQueue::setMaxAcquiredBufferCount(int maxAcquiredBuffers) {
    ATRACE_CALL();
    Mutex::Autolock lock(mMutex);
    if (maxAcquiredBuffers < 1 || maxAcquiredBuffers > MAX_MAX_ACQUIRED_BUFFERS) {
        ST_LOGE("setMaxAcquiredBufferCount: invalid count specified: %d",
                maxAcquiredBuffers);
        return BAD_VALUE;
    }
    if (mConnectedApi != NO_CONNECTED_API) {
        return INVALID_OPERATION;
    }
    mMaxAcquiredBufferCount = maxAcquiredBuffers;
    return NO_ERROR;
}
status_t GLConsumer::bindTextureImageLocked() {
    if (mEglDisplay == EGL_NO_DISPLAY) {
        ALOGE("bindTextureImage: invalid display");
        return INVALID_OPERATION;
    }

    GLint error;
    while ((error = glGetError()) != GL_NO_ERROR) {
        ST_LOGW("bindTextureImage: clearing GL error: %#04x", error);
    }

    glBindTexture(mTexTarget, mTexName);
    if (mCurrentTexture == BufferQueue::INVALID_BUFFER_SLOT) {
        if (mCurrentTextureBuf == NULL) {
            ST_LOGE("bindTextureImage: no currently-bound texture");
            return NO_INIT;
        }
        status_t err = bindUnslottedBufferLocked(mEglDisplay);
        if (err != NO_ERROR) {
            return err;
        }
    } else {
        EGLImageKHR image = mEglSlots[mCurrentTexture].mEglImage;

        glEGLImageTargetTexture2DOES(mTexTarget, (GLeglImageOES)image);

        while ((error = glGetError()) != GL_NO_ERROR) {
            ST_LOGE("bindTextureImage: error binding external texture image %p"
                    ": %#04x", image, error);
            return UNKNOWN_ERROR;
        }
    }

    // Wait for the new buffer to be ready.
    return doGLFenceWaitLocked();

}
status_t SurfaceTexture::syncForReleaseLocked(EGLDisplay dpy) {
    ST_LOGV("syncForReleaseLocked");

    if (mUseFenceSync && mCurrentTexture != BufferQueue::INVALID_BUFFER_SLOT) {
        EGLSyncKHR fence = mEGLSlots[mCurrentTexture].mFence;
        if (fence != EGL_NO_SYNC_KHR) {
            // There is already a fence for the current slot.  We need to wait
            // on that before replacing it with another fence to ensure that all
            // outstanding buffer accesses have completed before the producer
            // accesses it.
            EGLint result = eglClientWaitSyncKHR(dpy, fence, 0, 1000000000);
            if (result == EGL_FALSE) {
                ST_LOGE("syncForReleaseLocked: error waiting for previous "
                        "fence: %#x", eglGetError());
                return UNKNOWN_ERROR;
            } else if (result == EGL_TIMEOUT_EXPIRED_KHR) {
                ST_LOGE("syncForReleaseLocked: timeout waiting for previous "
                        "fence");
                return TIMED_OUT;
            }
            eglDestroySyncKHR(dpy, fence);
        }

        // Create a fence for the outstanding accesses in the current OpenGL ES
        // context.
        fence = eglCreateSyncKHR(dpy, EGL_SYNC_FENCE_KHR, NULL);
        if (fence == EGL_NO_SYNC_KHR) {
            ST_LOGE("syncForReleaseLocked: error creating fence: %#x",
                    eglGetError());
            return UNKNOWN_ERROR;
        }
        glFlush();
        mEGLSlots[mCurrentTexture].mFence = fence;
    }

    return OK;
}
EGLImageKHR SurfaceTexture::createImage(EGLDisplay dpy,
        const sp<GraphicBuffer>& graphicBuffer) {
    EGLClientBuffer cbuf = (EGLClientBuffer)graphicBuffer->getNativeBuffer();
    EGLint attrs[] = {
        EGL_IMAGE_PRESERVED_KHR,    EGL_TRUE,
        EGL_NONE,
    };
    EGLImageKHR image = eglCreateImageKHR(dpy, EGL_NO_CONTEXT,
            EGL_NATIVE_BUFFER_ANDROID, cbuf, attrs);
    if (image == EGL_NO_IMAGE_KHR) {
        EGLint error = eglGetError();
        ST_LOGE("error creating EGLImage: %#x", error);
    }
    return image;
}
status_t SurfaceTexture::disconnect(int api) {
    ST_LOGV("disconnect: api=%d", api);
    Mutex::Autolock lock(mMutex);

    if (mAbandoned) {
        // it is not really an error to disconnect after the surface
        // has been abandoned, it should just be a no-op.
        return NO_ERROR;
    }

    int err = NO_ERROR;
    switch (api) {
        case NATIVE_WINDOW_API_EGL:
        case NATIVE_WINDOW_API_CPU:
        case NATIVE_WINDOW_API_MEDIA:
        case NATIVE_WINDOW_API_CAMERA:
            if (mConnectedApi == api) {
                drainQueueAndFreeBuffersLocked();
                mConnectedApi = NO_CONNECTED_API;
                mNextCrop.makeInvalid();
                mNextScalingMode = NATIVE_WINDOW_SCALING_MODE_FREEZE;
                mNextTransform = 0;
                mDequeueCondition.signal();
            } else {
                ST_LOGE("disconnect: connected to another api (cur=%d, req=%d)",
                        mConnectedApi, api);
                err = -EINVAL;
            }
            break;
        default:
            ST_LOGE("disconnect: unknown API %d", api);
            err = -EINVAL;
            break;
    }
    return err;
}
Exemple #23
0
status_t BufferQueue::consumerDisconnect() {
    ST_LOGV("consumerDisconnect");
    Mutex::Autolock lock(mMutex);

    if (mConsumerListener == NULL) {
        ST_LOGE("consumerDisconnect: No consumer is connected!");
        return -EINVAL;
    }

    mAbandoned = true;
    mConsumerListener = NULL;
    mQueue.clear();
    freeAllBuffersLocked();
    mDequeueCondition.broadcast();
    return OK;
}
status_t SurfaceTexture::setScalingMode(int mode) {
    ST_LOGV("setScalingMode: mode=%d", mode);

    switch (mode) {
        case NATIVE_WINDOW_SCALING_MODE_FREEZE:
        case NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW:
            break;
        default:
            ST_LOGE("unknown scaling mode: %d", mode);
            return BAD_VALUE;
    }

    Mutex::Autolock lock(mMutex);
    mNextScalingMode = mode;
    return OK;
}
void SurfaceTexture::setFilteringEnabled(bool enabled) {
    Mutex::Autolock lock(mMutex);
    if (mAbandoned) {
        ST_LOGE("setFilteringEnabled: SurfaceTexture is abandoned!");
        return;
    }
    bool needsRecompute = mFilteringEnabled != enabled;
    mFilteringEnabled = enabled;

    if (needsRecompute && mCurrentTextureBuf==NULL) {
        ST_LOGD("setFilteringEnabled called with mCurrentTextureBuf == NULL");
    }

    if (needsRecompute && mCurrentTextureBuf != NULL) {
        computeCurrentTransformMatrixLocked();
    }
}
Exemple #26
0
status_t BufferQueue::getReleasedBuffers(uint32_t* slotMask) {
    ST_LOGV("getReleasedBuffers");
    Mutex::Autolock lock(mMutex);

    if (mAbandoned) {
        ST_LOGE("getReleasedBuffers: BufferQueue has been abandoned!");
        return NO_INIT;
    }

    uint32_t mask = 0;
    for (int i = 0; i < NUM_BUFFER_SLOTS; i++) {
        if (!mSlots[i].mAcquireCalled) {
            mask |= 1 << i;
        }
    }
    *slotMask = mask;

    ST_LOGV("getReleasedBuffers: returning mask %#x", mask);
    return NO_ERROR;
}
EGLImageKHR GLConsumer::createImage(EGLDisplay dpy,
        const sp<GraphicBuffer>& graphicBuffer, const Rect& crop) {
    EGLClientBuffer cbuf = (EGLClientBuffer)graphicBuffer->getNativeBuffer();
    EGLint attrs[] = {
        EGL_IMAGE_PRESERVED_KHR,        EGL_TRUE,
        EGL_IMAGE_CROP_LEFT_ANDROID,    crop.left,
        EGL_IMAGE_CROP_TOP_ANDROID,     crop.top,
        EGL_IMAGE_CROP_RIGHT_ANDROID,   crop.right,
        EGL_IMAGE_CROP_BOTTOM_ANDROID,  crop.bottom,
        EGL_NONE,
    };
    if (!crop.isValid()) {
        // No crop rect to set, so terminate the attrib array before the crop.
        attrs[2] = EGL_NONE;
    } else if (!isEglImageCroppable(crop)) {
        // The crop rect is not at the origin, so we can't set the crop on the
        // EGLImage because that's not allowed by the EGL_ANDROID_image_crop
        // extension.  In the future we can add a layered extension that
        // removes this restriction if there is hardware that can support it.
        attrs[2] = EGL_NONE;
    }
    EGLImageKHR image = eglCreateImageKHR(dpy, EGL_NO_CONTEXT,
            EGL_NATIVE_BUFFER_ANDROID, cbuf, attrs);
    if (image == EGL_NO_IMAGE_KHR) {
        EGLint error = eglGetError();
        ST_LOGE("error creating EGLImage: %#x", error);
    }
#ifndef MTK_DEFAULT_AOSP
    else {
        // add log for eglImage created
        ST_LOGI("[%s]", __func__);
        ALOGD("    GraphicBuffer: gb=%p handle=%p fmt=%d",
            graphicBuffer.get(), graphicBuffer->handle, graphicBuffer->format);
        ALOGD("    EGLImage: dpy=%p, img=%p", mEglDisplay, image);
    }
#endif
    return image;
}
status_t SurfaceTexture::syncForReleaseLocked(EGLDisplay dpy) {
    ST_LOGV("syncForReleaseLocked");

    if (mCurrentTexture != BufferQueue::INVALID_BUFFER_SLOT) {
        if (useNativeFenceSync) {
            EGLSyncKHR sync = eglCreateSyncKHR(dpy,
                    EGL_SYNC_NATIVE_FENCE_ANDROID, NULL);
            if (sync == EGL_NO_SYNC_KHR) {
                ST_LOGE("syncForReleaseLocked: error creating EGL fence: %#x",
                        eglGetError());
                return UNKNOWN_ERROR;
            }
            glFlush();
            int fenceFd = eglDupNativeFenceFDANDROID(dpy, sync);
            eglDestroySyncKHR(dpy, sync);
            if (fenceFd == EGL_NO_NATIVE_FENCE_FD_ANDROID) {
                ST_LOGE("syncForReleaseLocked: error dup'ing native fence "
                        "fd: %#x", eglGetError());
                return UNKNOWN_ERROR;
            }
            sp<Fence> fence(new Fence(fenceFd));
            status_t err = addReleaseFenceLocked(mCurrentTexture, fence);
            if (err != OK) {
                ST_LOGE("syncForReleaseLocked: error adding release fence: "
                        "%s (%d)", strerror(-err), err);
                return err;
            }
        } else if (mUseFenceSync) {
            EGLSyncKHR fence = mEglSlots[mCurrentTexture].mEglFence;
            if (fence != EGL_NO_SYNC_KHR) {
                // There is already a fence for the current slot.  We need to
                // wait on that before replacing it with another fence to
                // ensure that all outstanding buffer accesses have completed
                // before the producer accesses it.
                EGLint result = eglClientWaitSyncKHR(dpy, fence, 0, 1000000000);
                if (result == EGL_FALSE) {
                    ST_LOGE("syncForReleaseLocked: error waiting for previous "
                            "fence: %#x", eglGetError());
                    return UNKNOWN_ERROR;
                } else if (result == EGL_TIMEOUT_EXPIRED_KHR) {
                    ST_LOGE("syncForReleaseLocked: timeout waiting for previous "
                            "fence");
                    return TIMED_OUT;
                }
                eglDestroySyncKHR(dpy, fence);
            }

            // Create a fence for the outstanding accesses in the current
            // OpenGL ES context.
            fence = eglCreateSyncKHR(dpy, EGL_SYNC_FENCE_KHR, NULL);
            if (fence == EGL_NO_SYNC_KHR) {
                ST_LOGE("syncForReleaseLocked: error creating fence: %#x",
                        eglGetError());
                return UNKNOWN_ERROR;
            }
            glFlush();
            mEglSlots[mCurrentTexture].mEglFence = fence;
        }
    }

    return OK;
}
status_t SurfaceTexture::attachToContext(GLuint tex) {
    ATRACE_CALL();
    ST_LOGV("attachToContext");
    Mutex::Autolock lock(mMutex);

    if (mAbandoned) {
        ST_LOGE("attachToContext: abandoned SurfaceTexture");
        return NO_INIT;
    }

    if (mAttached) {
        ST_LOGE("attachToContext: SurfaceTexture is already attached to a "
                "context");
        return INVALID_OPERATION;
    }

    EGLDisplay dpy = eglGetCurrentDisplay();
    EGLContext ctx = eglGetCurrentContext();

    if (dpy == EGL_NO_DISPLAY) {
        ST_LOGE("attachToContext: invalid current EGLDisplay");
        return INVALID_OPERATION;
    }

    if (ctx == EGL_NO_CONTEXT) {
        ST_LOGE("attachToContext: invalid current EGLContext");
        return INVALID_OPERATION;
    }

    // We need to bind the texture regardless of whether there's a current
    // buffer.
    glBindTexture(mTexTarget, tex);

    if (mCurrentTextureBuf != NULL) {
        // The EGLImageKHR that was associated with the slot was destroyed when
        // the SurfaceTexture was detached from the old context, so we need to
        // recreate it here.
        EGLImageKHR image = createImage(dpy, mCurrentTextureBuf);
        if (image == EGL_NO_IMAGE_KHR) {
            return UNKNOWN_ERROR;
        }

        // Attach the current buffer to the GL texture.
        glEGLImageTargetTexture2DOES(mTexTarget, (GLeglImageOES)image);

        GLint error;
        status_t err = OK;
        while ((error = glGetError()) != GL_NO_ERROR) {
            ST_LOGE("attachToContext: error binding external texture image %p "
                    "(slot %d): %#04x", image, mCurrentTexture, error);
            err = UNKNOWN_ERROR;
        }

        // We destroy the EGLImageKHR here because the current buffer may no
        // longer be associated with one of the buffer slots, so we have
        // nowhere to to store it.  If the buffer is still associated with a
        // slot then another EGLImageKHR will be created next time that buffer
        // gets acquired in updateTexImage.
        eglDestroyImageKHR(dpy, image);

        if (err != OK) {
            return err;
        }
    }

    mEglDisplay = dpy;
    mEglContext = ctx;
    mTexName = tex;
    mAttached = true;

    return OK;
}
status_t SurfaceTexture::detachFromContext() {
    ATRACE_CALL();
    ST_LOGV("detachFromContext");
    Mutex::Autolock lock(mMutex);

    if (mAbandoned) {
        ST_LOGE("detachFromContext: abandoned SurfaceTexture");
        return NO_INIT;
    }

    if (!mAttached) {
        ST_LOGE("detachFromContext: SurfaceTexture is not attached to a "
                "context");
        return INVALID_OPERATION;
    }

    EGLDisplay dpy = eglGetCurrentDisplay();
    EGLContext ctx = eglGetCurrentContext();

    if (mEglDisplay != dpy && mEglDisplay != EGL_NO_DISPLAY) {
        ST_LOGE("detachFromContext: invalid current EGLDisplay");
        return INVALID_OPERATION;
    }

    if (mEglContext != ctx && mEglContext != EGL_NO_CONTEXT) {
        ST_LOGE("detachFromContext: invalid current EGLContext");
        return INVALID_OPERATION;
    }

    if (dpy != EGL_NO_DISPLAY && ctx != EGL_NO_CONTEXT) {
        status_t err = syncForReleaseLocked(dpy);
        if (err != OK) {
            return err;
        }

        glDeleteTextures(1, &mTexName);
    }

    // Because we're giving up the EGLDisplay we need to free all the EGLImages
    // that are associated with it.  They'll be recreated when the
    // SurfaceTexture gets attached to a new OpenGL ES context (and thus gets a
    // new EGLDisplay).
    for (int i =0; i < BufferQueue::NUM_BUFFER_SLOTS; i++) {
        EGLImageKHR img = mEglSlots[i].mEglImage;
        if (img != EGL_NO_IMAGE_KHR) {
            eglDestroyImageKHR(mEglDisplay, img);
            mEglSlots[i].mEglImage = EGL_NO_IMAGE_KHR;
        }
    }

#ifdef STE_HARDWARE
    if (mBlitEngine) {
        copybit_close(mBlitEngine);
    }
#endif

    mEglDisplay = EGL_NO_DISPLAY;
    mEglContext = EGL_NO_CONTEXT;
    mAttached = false;

    return OK;
}