Exemple #1
0
static void
gen6_update_sol_surfaces(struct brw_context *brw)
{
   struct gl_context *ctx = &brw->ctx;
   /* BRW_NEW_TRANSFORM_FEEDBACK */
   struct gl_transform_feedback_object *xfb_obj =
      ctx->TransformFeedback.CurrentObject;
   /* BRW_NEW_VERTEX_PROGRAM */
   const struct gl_shader_program *shaderprog =
      ctx->Shader.CurrentVertexProgram;
   const struct gl_transform_feedback_info *linked_xfb_info =
      &shaderprog->LinkedTransformFeedback;
   int i;

   for (i = 0; i < BRW_MAX_SOL_BINDINGS; ++i) {
      const int surf_index = SURF_INDEX_GEN6_SOL_BINDING(i);
      if (_mesa_is_xfb_active_and_unpaused(ctx) &&
          i < linked_xfb_info->NumOutputs) {
         unsigned buffer = linked_xfb_info->Outputs[i].OutputBuffer;
         unsigned buffer_offset =
            xfb_obj->Offset[buffer] / 4 +
            linked_xfb_info->Outputs[i].DstOffset;
         brw_update_sol_surface(
            brw, xfb_obj->Buffers[buffer], &brw->ff_gs.surf_offset[surf_index],
            linked_xfb_info->Outputs[i].NumComponents,
            linked_xfb_info->BufferStride[buffer], buffer_offset);
      } else {
         brw->ff_gs.surf_offset[surf_index] = 0;
      }
   }

   brw->state.dirty.brw |= BRW_NEW_SURFACES;
}
Exemple #2
0
static void
gen6_update_sol_surfaces(struct brw_context *brw)
{
   struct gl_context *ctx = &brw->ctx;
   /* BRW_NEW_TRANSFORM_FEEDBACK */
   struct gl_transform_feedback_object *xfb_obj =
      ctx->TransformFeedback.CurrentObject;
   const struct gl_shader_program *shaderprog;
   const struct gl_transform_feedback_info *linked_xfb_info;
   int i;

   if (brw->geometry_program) {
      /* BRW_NEW_GEOMETRY_PROGRAM */
      shaderprog =
         ctx->_Shader->CurrentProgram[MESA_SHADER_GEOMETRY];
   } else {
      /* BRW_NEW_VERTEX_PROGRAM */
      shaderprog =
         ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX];
   }
   linked_xfb_info = &shaderprog->LinkedTransformFeedback;

   for (i = 0; i < BRW_MAX_SOL_BINDINGS; ++i) {
      const int surf_index = SURF_INDEX_GEN6_SOL_BINDING(i);
      if (_mesa_is_xfb_active_and_unpaused(ctx) &&
          i < linked_xfb_info->NumOutputs) {
         unsigned buffer = linked_xfb_info->Outputs[i].OutputBuffer;
         unsigned buffer_offset =
            xfb_obj->Offset[buffer] / 4 +
            linked_xfb_info->Outputs[i].DstOffset;
         if (brw->geometry_program) {
            brw_update_sol_surface(
               brw, xfb_obj->Buffers[buffer],
               &brw->gs.base.surf_offset[surf_index],
               linked_xfb_info->Outputs[i].NumComponents,
               linked_xfb_info->Buffers[buffer].Stride, buffer_offset);
         } else {
            brw_update_sol_surface(
               brw, xfb_obj->Buffers[buffer],
               &brw->ff_gs.surf_offset[surf_index],
               linked_xfb_info->Outputs[i].NumComponents,
               linked_xfb_info->Buffers[buffer].Stride, buffer_offset);
         }
      } else {
         if (!brw->geometry_program)
            brw->ff_gs.surf_offset[surf_index] = 0;
         else
            brw->gs.base.surf_offset[surf_index] = 0;
      }
   }

   brw->ctx.NewDriverState |= BRW_NEW_SURFACES;
}
Exemple #3
0
/**
 * Generate the geometry shader program used on Gen6 to perform stream output
 * (transform feedback).
 */
void
gen6_sol_program(struct brw_ff_gs_compile *c, struct brw_ff_gs_prog_key *key,
	         unsigned num_verts, bool check_edge_flags)
{
   struct brw_codegen *p = &c->func;
   brw_inst *inst;
   c->prog_data.svbi_postincrement_value = num_verts;

   brw_ff_gs_alloc_regs(c, num_verts, true);
   brw_ff_gs_initialize_header(c);

   if (key->num_transform_feedback_bindings > 0) {
      unsigned vertex, binding;
      struct brw_reg destination_indices_uw =
         vec8(retype(c->reg.destination_indices, BRW_REGISTER_TYPE_UW));

      /* Note: since we use the binding table to keep track of buffer offsets
       * and stride, the GS doesn't need to keep track of a separate pointer
       * into each buffer; it uses a single pointer which increments by 1 for
       * each vertex.  So we use SVBI0 for this pointer, regardless of whether
       * transform feedback is in interleaved or separate attribs mode.
       *
       * Make sure that the buffers have enough room for all the vertices.
       */
      brw_ADD(p, get_element_ud(c->reg.temp, 0),
	         get_element_ud(c->reg.SVBI, 0), brw_imm_ud(num_verts));
      brw_CMP(p, vec1(brw_null_reg()), BRW_CONDITIONAL_LE,
	         get_element_ud(c->reg.temp, 0),
	         get_element_ud(c->reg.SVBI, 4));
      brw_IF(p, BRW_EXECUTE_1);

      /* Compute the destination indices to write to.  Usually we use SVBI[0]
       * + (0, 1, 2).  However, for odd-numbered triangles in tristrips, the
       * vertices come down the pipeline in reversed winding order, so we need
       * to flip the order when writing to the transform feedback buffer.  To
       * ensure that flatshading accuracy is preserved, we need to write them
       * in order SVBI[0] + (0, 2, 1) if we're using the first provoking
       * vertex convention, and in order SVBI[0] + (1, 0, 2) if we're using
       * the last provoking vertex convention.
       *
       * Note: since brw_imm_v can only be used in instructions in
       * packed-word execution mode, and SVBI is a double-word, we need to
       * first move the appropriate immediate constant ((0, 1, 2), (0, 2, 1),
       * or (1, 0, 2)) to the destination_indices register, and then add SVBI
       * using a separate instruction.  Also, since the immediate constant is
       * expressed as packed words, and we need to load double-words into
       * destination_indices, we need to intersperse zeros to fill the upper
       * halves of each double-word.
       */
      brw_MOV(p, destination_indices_uw,
              brw_imm_v(0x00020100)); /* (0, 1, 2) */
      if (num_verts == 3) {
         /* Get primitive type into temp register. */
         brw_AND(p, get_element_ud(c->reg.temp, 0),
                 get_element_ud(c->reg.R0, 2), brw_imm_ud(0x1f));

         /* Test if primitive type is TRISTRIP_REVERSE.  We need to do this as
          * an 8-wide comparison so that the conditional MOV that follows
          * moves all 8 words correctly.
          */
         brw_CMP(p, vec8(brw_null_reg()), BRW_CONDITIONAL_EQ,
                 get_element_ud(c->reg.temp, 0),
                 brw_imm_ud(_3DPRIM_TRISTRIP_REVERSE));

         /* If so, then overwrite destination_indices_uw with the appropriate
          * reordering.
          */
         inst = brw_MOV(p, destination_indices_uw,
                        brw_imm_v(key->pv_first ? 0x00010200    /* (0, 2, 1) */
                                                : 0x00020001)); /* (1, 0, 2) */
         brw_inst_set_pred_control(p->devinfo, inst, BRW_PREDICATE_NORMAL);
      }

      assert(c->reg.destination_indices.width == BRW_EXECUTE_4);
      brw_push_insn_state(p);
      brw_set_default_exec_size(p, BRW_EXECUTE_4);
      brw_ADD(p, c->reg.destination_indices,
              c->reg.destination_indices, get_element_ud(c->reg.SVBI, 0));
      brw_pop_insn_state(p);
      /* For each vertex, generate code to output each varying using the
       * appropriate binding table entry.
       */
      for (vertex = 0; vertex < num_verts; ++vertex) {
         /* Set up the correct destination index for this vertex */
         brw_MOV(p, get_element_ud(c->reg.header, 5),
                 get_element_ud(c->reg.destination_indices, vertex));

         for (binding = 0; binding < key->num_transform_feedback_bindings;
              ++binding) {
            unsigned char varying =
               key->transform_feedback_bindings[binding];
            unsigned char slot = c->vue_map.varying_to_slot[varying];
            /* From the Sandybridge PRM, Volume 2, Part 1, Section 4.5.1:
             *
             *   "Prior to End of Thread with a URB_WRITE, the kernel must
             *   ensure that all writes are complete by sending the final
             *   write as a committed write."
             */
            bool final_write =
               binding == key->num_transform_feedback_bindings - 1 &&
               vertex == num_verts - 1;
            struct brw_reg vertex_slot = c->reg.vertex[vertex];
            vertex_slot.nr += slot / 2;
            vertex_slot.subnr = (slot % 2) * 16;
            /* gl_PointSize is stored in VARYING_SLOT_PSIZ.w. */
            vertex_slot.swizzle = varying == VARYING_SLOT_PSIZ
               ? BRW_SWIZZLE_WWWW : key->transform_feedback_swizzles[binding];
            brw_set_default_access_mode(p, BRW_ALIGN_16);
            brw_push_insn_state(p);
            brw_set_default_exec_size(p, BRW_EXECUTE_4);

            brw_MOV(p, stride(c->reg.header, 4, 4, 1),
                    retype(vertex_slot, BRW_REGISTER_TYPE_UD));
            brw_pop_insn_state(p);

            brw_set_default_access_mode(p, BRW_ALIGN_1);
            brw_svb_write(p,
                          final_write ? c->reg.temp : brw_null_reg(), /* dest */
                          1, /* msg_reg_nr */
                          c->reg.header, /* src0 */
                          SURF_INDEX_GEN6_SOL_BINDING(binding), /* binding_table_index */
                          final_write); /* send_commit_msg */
         }
      }
      brw_ENDIF(p);

      /* Now, reinitialize the header register from R0 to restore the parts of
       * the register that we overwrote while streaming out transform feedback
       * data.
       */
      brw_ff_gs_initialize_header(c);

      /* Finally, wait for the write commit to occur so that we can proceed to
       * other things safely.
       *
       * From the Sandybridge PRM, Volume 4, Part 1, Section 3.3:
       *
       *   The write commit does not modify the destination register, but
       *   merely clears the dependency associated with the destination
       *   register. Thus, a simple “mov” instruction using the register as a
       *   source is sufficient to wait for the write commit to occur.
       */
      brw_MOV(p, c->reg.temp, c->reg.temp);
   }

   brw_ff_gs_ff_sync(c, 1);

   brw_ff_gs_overwrite_header_dw2_from_r0(c);
   switch (num_verts) {
   case 1:
      brw_ff_gs_offset_header_dw2(c,
                                  URB_WRITE_PRIM_START | URB_WRITE_PRIM_END);
      brw_ff_gs_emit_vue(c, c->reg.vertex[0], true);
      break;
   case 2:
      brw_ff_gs_offset_header_dw2(c, URB_WRITE_PRIM_START);
      brw_ff_gs_emit_vue(c, c->reg.vertex[0], false);
      brw_ff_gs_offset_header_dw2(c,
                                  URB_WRITE_PRIM_END - URB_WRITE_PRIM_START);
      brw_ff_gs_emit_vue(c, c->reg.vertex[1], true);
      break;
   case 3:
      if (check_edge_flags) {
         /* Only emit vertices 0 and 1 if this is the first triangle of the
          * polygon.  Otherwise they are redundant.
          */
         brw_AND(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
                 get_element_ud(c->reg.R0, 2),
                 brw_imm_ud(BRW_GS_EDGE_INDICATOR_0));
         brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
         brw_IF(p, BRW_EXECUTE_1);
      }
      brw_ff_gs_offset_header_dw2(c, URB_WRITE_PRIM_START);
      brw_ff_gs_emit_vue(c, c->reg.vertex[0], false);
      brw_ff_gs_offset_header_dw2(c, -URB_WRITE_PRIM_START);
      brw_ff_gs_emit_vue(c, c->reg.vertex[1], false);
      if (check_edge_flags) {
         brw_ENDIF(p);
         /* Only emit vertex 2 in PRIM_END mode if this is the last triangle
          * of the polygon.  Otherwise leave the primitive incomplete because
          * there are more polygon vertices coming.
          */
         brw_AND(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
                 get_element_ud(c->reg.R0, 2),
                 brw_imm_ud(BRW_GS_EDGE_INDICATOR_1));
         brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
         brw_set_default_predicate_control(p, BRW_PREDICATE_NORMAL);
      }
      brw_ff_gs_offset_header_dw2(c, URB_WRITE_PRIM_END);
      brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
      brw_ff_gs_emit_vue(c, c->reg.vertex[2], true);
      break;
   }
}