Exemple #1
0
/**Function*************************************************************

  Synopsis    [Duplicate the AIG w/o POs and transforms to transit into init state.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Aig_Man_t * Inter_ManStartOneOutput( Aig_Man_t * p, int fAddFirstPo )
{
    Aig_Man_t * pNew;
    Aig_Obj_t * pObj, * pObjLi, * pObjLo;
    Aig_Obj_t * pCtrl = NULL; // Suppress "might be used uninitialized"
    int i;
    assert( Aig_ManRegNum(p) > 0 );
    // create the new manager
    pNew = Aig_ManStart( Aig_ManObjNumMax(p) );
    pNew->pName = Abc_UtilStrsav( p->pName );
    pNew->pSpec = Abc_UtilStrsav( p->pSpec );
    // create the PIs
    Aig_ManCleanData( p );
    Aig_ManConst1(p)->pData = Aig_ManConst1(pNew);
    Aig_ManForEachCi( p, pObj, i )
    {
        if ( i == Saig_ManPiNum(p) )
            pCtrl = Aig_ObjCreateCi( pNew );
        pObj->pData = Aig_ObjCreateCi( pNew );
    }
    // set registers
    pNew->nRegs    = fAddFirstPo? 0 : p->nRegs;
    pNew->nTruePis = fAddFirstPo? Aig_ManCiNum(p) + 1 : p->nTruePis + 1;
    pNew->nTruePos = fAddFirstPo + Saig_ManConstrNum(p);
    // duplicate internal nodes
    Aig_ManForEachNode( p, pObj, i )
        pObj->pData = Aig_And( pNew, Aig_ObjChild0Copy(pObj), Aig_ObjChild1Copy(pObj) );

    // create constraint outputs
    Saig_ManForEachPo( p, pObj, i )
    {
        if ( i < Saig_ManPoNum(p)-Saig_ManConstrNum(p) )
            continue;
        Aig_ObjCreateCo( pNew, Aig_Not( Aig_ObjChild0Copy(pObj) ) );
    }

    // add the PO
    if ( fAddFirstPo )
    {
        pObj = Aig_ManCo( p, 0 );
        Aig_ObjCreateCo( pNew, Aig_ObjChild0Copy(pObj) );
    }
    else
    {
        // create register inputs with MUXes
        Saig_ManForEachLiLo( p, pObjLi, pObjLo, i )
        {
            pObj = Aig_Mux( pNew, pCtrl, (Aig_Obj_t *)pObjLo->pData, Aig_ObjChild0Copy(pObjLi) );
    //        pObj = Aig_Mux( pNew, pCtrl, Aig_ManConst0(pNew), Aig_ObjChild0Copy(pObjLi) );
            Aig_ObjCreateCo( pNew, pObj );
        }
    }
Exemple #2
0
/**Function*************************************************************

  Synopsis    [Duplicate the AIG w/o POs.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Aig_Man_t * Inter_ManStartDuplicated( Aig_Man_t * p )
{
    Aig_Man_t * pNew;
    Aig_Obj_t * pObj;
    int i;
    assert( Aig_ManRegNum(p) > 0 );
    // create the new manager
    pNew = Aig_ManStart( Aig_ManObjNumMax(p) );
    pNew->pName = Abc_UtilStrsav( p->pName );
    pNew->pSpec = Abc_UtilStrsav( p->pSpec );
    // create the PIs
    Aig_ManCleanData( p );
    Aig_ManConst1(p)->pData = Aig_ManConst1(pNew);
    Aig_ManForEachCi( p, pObj, i )
        pObj->pData = Aig_ObjCreateCi( pNew );
    // set registers
    pNew->nTruePis = p->nTruePis;
    pNew->nTruePos = Saig_ManConstrNum(p);
    pNew->nRegs    = p->nRegs;
    // duplicate internal nodes
    Aig_ManForEachNode( p, pObj, i )
        pObj->pData = Aig_And( pNew, Aig_ObjChild0Copy(pObj), Aig_ObjChild1Copy(pObj) );

    // create constraint outputs
    Saig_ManForEachPo( p, pObj, i )
    {
        if ( i < Saig_ManPoNum(p)-Saig_ManConstrNum(p) )
            continue;
        Aig_ObjCreateCo( pNew, Aig_Not( Aig_ObjChild0Copy(pObj) ) );
    }

    // create register inputs with MUXes
    Saig_ManForEachLi( p, pObj, i )
        Aig_ObjCreateCo( pNew, Aig_ObjChild0Copy(pObj) );
    Aig_ManCleanup( pNew );
    return pNew;
}
Exemple #3
0
ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Constructs initialized timeframes with constraints as POs.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Aig_Man_t * Ssw_FramesWithConstraints( Aig_Man_t * p, int nFrames )
{
    Aig_Man_t * pFrames;
    Aig_Obj_t * pObj, * pObjLi, * pObjLo;
    int i, f;
//    assert( Saig_ManConstrNum(p) > 0 );
    assert( Aig_ManRegNum(p) > 0 );
    assert( Aig_ManRegNum(p) < Aig_ManCiNum(p) );
    // start the fraig package
    pFrames = Aig_ManStart( Aig_ManObjNumMax(p) * nFrames );
    // create latches for the first frame
    Saig_ManForEachLo( p, pObj, i )
        Aig_ObjSetCopy( pObj, Aig_ManConst0(pFrames) );
    // add timeframes
    for ( f = 0; f < nFrames; f++ )
    {
        // map constants and PIs
        Aig_ObjSetCopy( Aig_ManConst1(p), Aig_ManConst1(pFrames) );
        Saig_ManForEachPi( p, pObj, i )
            Aig_ObjSetCopy( pObj, Aig_ObjCreateCi(pFrames) );
        // add internal nodes of this frame
        Aig_ManForEachNode( p, pObj, i )
            Aig_ObjSetCopy( pObj, Aig_And( pFrames, Aig_ObjChild0Copy(pObj), Aig_ObjChild1Copy(pObj) ) );
        // transfer to the primary output
        Aig_ManForEachCo( p, pObj, i )
            Aig_ObjSetCopy( pObj, Aig_ObjChild0Copy(pObj) );
        // create constraint outputs
        Saig_ManForEachPo( p, pObj, i )
        {
            if ( i < Saig_ManPoNum(p) - Saig_ManConstrNum(p) )
                continue;
            Aig_ObjCreateCo( pFrames, Aig_Not( Aig_ObjCopy(pObj) ) );
        }
        // transfer latch inputs to the latch outputs
        Saig_ManForEachLiLo( p, pObjLi, pObjLo, i )
            Aig_ObjSetCopy( pObjLo, Aig_ObjCopy(pObjLi) );
    }
    // remove dangling nodes
    Aig_ManCleanup( pFrames );
    return pFrames;
}
ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////

////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    [Create timeframes of the manager for interpolation.]

  Description [The resulting manager is combinational. The primary inputs
  corresponding to register outputs are ordered first. The only POs of the 
  manager is the property output of the last timeframe.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Aig_Man_t * Inter_ManFramesInter( Aig_Man_t * pAig, int nFrames, int fAddRegOuts )
{
    Aig_Man_t * pFrames;
    Aig_Obj_t * pObj, * pObjLi, * pObjLo;
    int i, f;
    assert( Saig_ManRegNum(pAig) > 0 );
    assert( Saig_ManPoNum(pAig)-Saig_ManConstrNum(pAig) == 1 );
    pFrames = Aig_ManStart( Aig_ManNodeNum(pAig) * nFrames );
    // map the constant node
    Aig_ManConst1(pAig)->pData = Aig_ManConst1( pFrames );
    // create variables for register outputs
    if ( fAddRegOuts )
    {
        Saig_ManForEachLo( pAig, pObj, i )
            pObj->pData = Aig_ManConst0( pFrames );
    }
    else
    {
        Saig_ManForEachLo( pAig, pObj, i )
            pObj->pData = Aig_ObjCreatePi( pFrames );
    }
    // add timeframes
    for ( f = 0; f < nFrames; f++ )
    {
        // create PI nodes for this frame
        Saig_ManForEachPi( pAig, pObj, i )
            pObj->pData = Aig_ObjCreatePi( pFrames );
        // add internal nodes of this frame
        Aig_ManForEachNode( pAig, pObj, i )
            pObj->pData = Aig_And( pFrames, Aig_ObjChild0Copy(pObj), Aig_ObjChild1Copy(pObj) );
        // add outputs for constraints
        Saig_ManForEachPo( pAig, pObj, i )
        {
            if ( i < Saig_ManPoNum(pAig)-Saig_ManConstrNum(pAig) )
                continue;
            Aig_ObjCreatePo( pFrames, Aig_Not( Aig_ObjChild0Copy(pObj) ) );
        }
        if ( f == nFrames - 1 )
            break;
        // save register inputs
        Saig_ManForEachLi( pAig, pObj, i )
            pObj->pData = Aig_ObjChild0Copy(pObj);
        // transfer to register outputs
        Saig_ManForEachLiLo(  pAig, pObjLi, pObjLo, i )
            pObjLo->pData = pObjLi->pData;
    }
    // create POs for each register output
    if ( fAddRegOuts )
    {
        Saig_ManForEachLi( pAig, pObj, i )
            Aig_ObjCreatePo( pFrames, Aig_ObjChild0Copy(pObj) );
    }
    // create the only PO of the manager
    else
    {
        pObj = Aig_ManPo( pAig, 0 );
        Aig_ObjCreatePo( pFrames, Aig_ObjChild0Copy(pObj) );
    }
    Aig_ManCleanup( pFrames );
    return pFrames;
}
/**Function*************************************************************

  Synopsis    [Interplates while the number of conflicts is not exceeded.]

  Description [Returns 1 if proven. 0 if failed. -1 if undecided.]
               
  SideEffects [Does not check the property in 0-th frame.]

  SeeAlso     []

***********************************************************************/
int Inter_ManPerformInterpolation( Aig_Man_t * pAig, Inter_ManParams_t * pPars, int * piFrame )
{
    extern int Inter_ManCheckInductiveContainment( Aig_Man_t * pTrans, Aig_Man_t * pInter, int nSteps, int fBackward );
    Inter_Man_t * p;
    Inter_Check_t * pCheck = NULL;
    Aig_Man_t * pAigTemp;
    int s, i, RetValue, Status;
    abctime clk, clk2, clkTotal = Abc_Clock(), timeTemp = 0;
    abctime nTimeNewOut = pPars->nSecLimit ? pPars->nSecLimit * CLOCKS_PER_SEC + Abc_Clock() : 0;

    // enable ORing of the interpolants, if containment check is performed inductively with K > 1
    if ( pPars->nFramesK > 1 )
        pPars->fTransLoop = 1;

    // sanity checks
    assert( Saig_ManRegNum(pAig) > 0 );
    assert( Saig_ManPiNum(pAig) > 0 );
    assert( Saig_ManPoNum(pAig)-Saig_ManConstrNum(pAig) == 1 );
    if ( pPars->fVerbose && Saig_ManConstrNum(pAig) )
        printf( "Performing interpolation with %d constraints...\n", Saig_ManConstrNum(pAig) );

    if ( Inter_ManCheckInitialState(pAig) )
    {
        *piFrame = -1;
        printf( "Property trivially fails in the initial state.\n" );
        return 0;
    }
/*
    if ( Inter_ManCheckAllStates(pAig) )
    {
        printf( "Property trivially holds in all states.\n" );
        return 1;
    }
*/
    // create interpolation manager
    // can perform SAT sweeping and/or rewriting of this AIG...
    p = Inter_ManCreate( pAig, pPars );
    if ( pPars->fTransLoop )
        p->pAigTrans = Inter_ManStartOneOutput( pAig, 0 );
    else
        p->pAigTrans = Inter_ManStartDuplicated( pAig );
    // derive CNF for the transformed AIG
clk = Abc_Clock();
    p->pCnfAig = Cnf_Derive( p->pAigTrans, Aig_ManRegNum(p->pAigTrans) ); 
p->timeCnf += Abc_Clock() - clk;    
    if ( pPars->fVerbose )
    { 
        printf( "AIG: PI/PO/Reg = %d/%d/%d. And = %d. Lev = %d.  CNF: Var/Cla = %d/%d.\n",
            Saig_ManPiNum(pAig), Saig_ManPoNum(pAig), Saig_ManRegNum(pAig), 
            Aig_ManAndNum(pAig), Aig_ManLevelNum(pAig),
            p->pCnfAig->nVars, p->pCnfAig->nClauses );
    }
 
    // derive interpolant
    *piFrame = -1;
    p->nFrames = 1;
    for ( s = 0; ; s++ )
    {
        Cnf_Dat_t * pCnfInter2;

clk2 = Abc_Clock();
        // initial state
        if ( pPars->fUseBackward )
            p->pInter = Inter_ManStartOneOutput( pAig, 1 );
        else
            p->pInter = Inter_ManStartInitState( Aig_ManRegNum(pAig) );
        assert( Aig_ManCoNum(p->pInter) == 1 );
clk = Abc_Clock();
        p->pCnfInter = Cnf_Derive( p->pInter, 0 );  
p->timeCnf += Abc_Clock() - clk;    
        // timeframes
        p->pFrames = Inter_ManFramesInter( pAig, p->nFrames, pPars->fUseBackward, pPars->fUseTwoFrames );
clk = Abc_Clock();
        if ( pPars->fRewrite )
        {
            p->pFrames = Dar_ManRwsat( pAigTemp = p->pFrames, 1, 0 );
            Aig_ManStop( pAigTemp );
//        p->pFrames = Fra_FraigEquivence( pAigTemp = p->pFrames, 100, 0 );
//        Aig_ManStop( pAigTemp );
        }
p->timeRwr += Abc_Clock() - clk;
        // can also do SAT sweeping on the timeframes...
clk = Abc_Clock();
        if ( pPars->fUseBackward )
            p->pCnfFrames = Cnf_Derive( p->pFrames, Aig_ManCoNum(p->pFrames) );  
        else
//            p->pCnfFrames = Cnf_Derive( p->pFrames, 0 );  
            p->pCnfFrames = Cnf_DeriveSimple( p->pFrames, 0 );  
p->timeCnf += Abc_Clock() - clk;    
        // report statistics
        if ( pPars->fVerbose )
        {
            printf( "Step = %2d. Frames = 1 + %d. And = %5d. Lev = %5d.  ", 
                s+1, p->nFrames, Aig_ManNodeNum(p->pFrames), Aig_ManLevelNum(p->pFrames) );
            ABC_PRT( "Time", Abc_Clock() - clk2 );
        }


        //////////////////////////////////////////
        // start containment checking
        if ( !(pPars->fTransLoop || pPars->fUseBackward || pPars->nFramesK > 1) )
        {
            pCheck = Inter_CheckStart( p->pAigTrans, pPars->nFramesK );
            // try new containment check for the initial state
clk = Abc_Clock();
            pCnfInter2 = Cnf_Derive( p->pInter, 1 );  
p->timeCnf += Abc_Clock() - clk;    
clk = Abc_Clock();
            RetValue = Inter_CheckPerform( pCheck, pCnfInter2, nTimeNewOut );
p->timeEqu += Abc_Clock() - clk;
//            assert( RetValue == 0 );
            Cnf_DataFree( pCnfInter2 );
            if ( p->vInters )
                Vec_PtrPush( p->vInters, Aig_ManDupSimple(p->pInter) );
        }
        //////////////////////////////////////////

        // iterate the interpolation procedure
        for ( i = 0; ; i++ )
        {
            if ( pPars->nFramesMax && p->nFrames + i >= pPars->nFramesMax )
            { 
                if ( pPars->fVerbose )
                    printf( "Reached limit (%d) on the number of timeframes.\n", pPars->nFramesMax );
                p->timeTotal = Abc_Clock() - clkTotal;
                Inter_ManStop( p, 0 );
                Inter_CheckStop( pCheck );
                return -1;
            }

            // perform interpolation
            clk = Abc_Clock();
#ifdef ABC_USE_LIBRARIES
            if ( pPars->fUseMiniSat )
            {
                assert( !pPars->fUseBackward );
                RetValue = Inter_ManPerformOneStepM114p( p, pPars->fUsePudlak, pPars->fUseOther );
            }
            else 
#endif
                RetValue = Inter_ManPerformOneStep( p, pPars->fUseBias, pPars->fUseBackward, nTimeNewOut );

            if ( pPars->fVerbose )
            {
                printf( "   I = %2d. Bmc =%3d. IntAnd =%6d. IntLev =%5d. Conf =%6d.  ", 
                    i+1, i + 1 + p->nFrames, Aig_ManNodeNum(p->pInter), Aig_ManLevelNum(p->pInter), p->nConfCur );
                ABC_PRT( "Time", Abc_Clock() - clk );
            }
            // remember the number of timeframes completed
            pPars->iFrameMax = i - 1 + p->nFrames;
            if ( RetValue == 0 ) // found a (spurious?) counter-example
            {
                if ( i == 0 ) // real counterexample
                {
                    if ( pPars->fVerbose )
                        printf( "Found a real counterexample in frame %d.\n", p->nFrames );
                    p->timeTotal = Abc_Clock() - clkTotal;
                    *piFrame = p->nFrames;
//                    pAig->pSeqModel = (Abc_Cex_t *)Inter_ManGetCounterExample( pAig, p->nFrames+1, pPars->fVerbose );
                    {
                        int RetValue;
                        Saig_ParBmc_t ParsBmc, * pParsBmc = &ParsBmc;
                        Saig_ParBmcSetDefaultParams( pParsBmc );
                        pParsBmc->nConfLimit = 100000000;
                        pParsBmc->nStart     = p->nFrames;
                        pParsBmc->fVerbose   = pPars->fVerbose;
                        RetValue = Saig_ManBmcScalable( pAig, pParsBmc );
                        if ( RetValue == 1 )
                            printf( "Error: The problem should be SAT but it is UNSAT.\n" );
                        else if ( RetValue == -1 )
                            printf( "Error: The problem timed out.\n" );
                    }
                    Inter_ManStop( p, 0 );
                    Inter_CheckStop( pCheck );
                    return 0;
                }
                // likely spurious counter-example
                p->nFrames += i;
                Inter_ManClean( p ); 
                break;
            }
            else if ( RetValue == -1 ) 
            {
                if ( pPars->nSecLimit && Abc_Clock() > nTimeNewOut ) // timed out
                {
                    if ( pPars->fVerbose )
                        printf( "Reached timeout (%d seconds).\n",  pPars->nSecLimit );
                }
                else
                {
                    assert( p->nConfCur >= p->nConfLimit );
                    if ( pPars->fVerbose )
                        printf( "Reached limit (%d) on the number of conflicts.\n", p->nConfLimit );
                }
                p->timeTotal = Abc_Clock() - clkTotal;
                Inter_ManStop( p, 0 );
                Inter_CheckStop( pCheck );
                return -1;
            }
            assert( RetValue == 1 ); // found new interpolant
            // compress the interpolant
clk = Abc_Clock();
            if ( p->pInterNew )
            {
                // save the timeout value
                p->pInterNew->Time2Quit = nTimeNewOut;
//                Ioa_WriteAiger( p->pInterNew, "interpol.aig", 0, 0 );
                p->pInterNew = Dar_ManRwsat( pAigTemp = p->pInterNew, 1, 0 );
//                p->pInterNew = Dar_ManRwsat( pAigTemp = p->pInterNew, 0, 0 );
                Aig_ManStop( pAigTemp );
                if ( p->pInterNew == NULL )
                {
                    printf( "Reached timeout (%d seconds) during rewriting.\n",  pPars->nSecLimit );
                    p->timeTotal = Abc_Clock() - clkTotal;
                    Inter_ManStop( p, 1 );
                    Inter_CheckStop( pCheck );
                    return -1;
                }
            }
p->timeRwr += Abc_Clock() - clk;

            // check if interpolant is trivial
            if ( p->pInterNew == NULL || Aig_ObjChild0(Aig_ManCo(p->pInterNew,0)) == Aig_ManConst0(p->pInterNew) )
            { 
//                printf( "interpolant is constant 0\n" );
                if ( pPars->fVerbose )
                    printf( "The problem is trivially true for all states.\n" );
                p->timeTotal = Abc_Clock() - clkTotal;
                Inter_ManStop( p, 1 );
                Inter_CheckStop( pCheck );
                return 1;
            }

            // check containment of interpolants
clk = Abc_Clock();
            if ( pPars->fCheckKstep ) // k-step unique-state induction
            {
                if ( Aig_ManCiNum(p->pInterNew) == Aig_ManCiNum(p->pInter) )
                {
                    if ( pPars->fTransLoop || pPars->fUseBackward || pPars->nFramesK > 1 )
                    {
clk2 = Abc_Clock();
                        Status = Inter_ManCheckInductiveContainment( p->pAigTrans, p->pInterNew, Abc_MinInt(i + 1, pPars->nFramesK), pPars->fUseBackward );
timeTemp = Abc_Clock() - clk2;
                    }
                    else
                    {   // new containment check
clk2 = Abc_Clock();
                        pCnfInter2 = Cnf_Derive( p->pInterNew, 1 );  
p->timeCnf += Abc_Clock() - clk2;
timeTemp = Abc_Clock() - clk2;
            
                        Status = Inter_CheckPerform( pCheck, pCnfInter2, nTimeNewOut );
                        Cnf_DataFree( pCnfInter2 );
                        if ( p->vInters )
                            Vec_PtrPush( p->vInters, Aig_ManDupSimple(p->pInterNew) );
                    }
                }
                else
                    Status = 0;
            }
            else // combinational containment
            {
                if ( Aig_ManCiNum(p->pInterNew) == Aig_ManCiNum(p->pInter) )
                    Status = Inter_ManCheckContainment( p->pInterNew, p->pInter );
                else
                    Status = 0;
            }
p->timeEqu += Abc_Clock() - clk - timeTemp;
            if ( Status ) // contained
            {
                if ( pPars->fVerbose )
                    printf( "Proved containment of interpolants.\n" );
                p->timeTotal = Abc_Clock() - clkTotal;
                Inter_ManStop( p, 1 );
                Inter_CheckStop( pCheck );
                return 1;
            }
            if ( pPars->nSecLimit && Abc_Clock() > nTimeNewOut )
            {
                printf( "Reached timeout (%d seconds).\n",  pPars->nSecLimit );
                p->timeTotal = Abc_Clock() - clkTotal;
                Inter_ManStop( p, 1 );
                Inter_CheckStop( pCheck );
                return -1;
            }
            // save interpolant and convert it into CNF
            if ( pPars->fTransLoop )
            {
                Aig_ManStop( p->pInter );
                p->pInter = p->pInterNew; 
            }
            else
            {
                if ( pPars->fUseBackward )
                {
                    p->pInter = Aig_ManCreateMiter( pAigTemp = p->pInter, p->pInterNew, 2 );
                    Aig_ManStop( pAigTemp );
                    Aig_ManStop( p->pInterNew );
                    // compress the interpolant
clk = Abc_Clock();
                    p->pInter = Dar_ManRwsat( pAigTemp = p->pInter, 1, 0 );
                    Aig_ManStop( pAigTemp );
p->timeRwr += Abc_Clock() - clk;
                }
                else // forward with the new containment checking (using only the frontier)
                {
                    Aig_ManStop( p->pInter );
                    p->pInter = p->pInterNew; 
                }
            }
            p->pInterNew = NULL;
            Cnf_DataFree( p->pCnfInter );
clk = Abc_Clock();
            p->pCnfInter = Cnf_Derive( p->pInter, 0 );  
p->timeCnf += Abc_Clock() - clk;
        }

        // start containment checking
        Inter_CheckStop( pCheck );
    }
    assert( 0 );
    return RetValue;
}