Exemple #1
0
unsigned int PerformSTF(const unsigned int opcode)
{
   unsigned int *pBase, *pAddress, *pFinal, nRc = 1,
     write_back = WRITE_BACK(opcode);
   
   //printk("PerformSTF(0x%08x), Fd = 0x%08x\n",opcode,getFd(opcode));
   SetRoundingMode(ROUND_TO_NEAREST);
   
   pBase = (unsigned int*)readRegister(getRn(opcode));
   if (REG_PC == getRn(opcode))
   {
     pBase += 2;
     write_back = 0;
   }

   pFinal = pBase;
   if (BIT_UP_SET(opcode))
     pFinal += getOffset(opcode);
   else
     pFinal -= getOffset(opcode);

   if (PREINDEXED(opcode)) pAddress = pFinal; else pAddress = pBase;

   switch (opcode & MASK_TRANSFER_LENGTH)
   {
      case TRANSFER_SINGLE  : storeSingle(getFd(opcode),pAddress);   break;
      case TRANSFER_DOUBLE  : storeDouble(getFd(opcode),pAddress);   break;
      case TRANSFER_EXTENDED: storeExtended(getFd(opcode),pAddress); break;
      default: nRc = 0;
   }
   
   if (write_back) writeRegister(getRn(opcode),(unsigned int)pFinal);
   return nRc;
}
unsigned int PerformFIX(const unsigned int opcode)
{
    FPA11 *fpa11 = GET_FPA11();
    unsigned int Fn = getFm(opcode);

    SetRoundingMode(opcode);

    switch (fpa11->fType[Fn]) {
    case typeSingle:
    {
        writeRegister(getRd(opcode), float32_to_int32(fpa11->fpreg[Fn].fSingle));
    }
    break;

    case typeDouble:
    {
        writeRegister(getRd(opcode), float64_to_int32(fpa11->fpreg[Fn].fDouble));
    }
    break;

#ifdef CONFIG_FPE_NWFPE_XP
    case typeExtended:
    {
        writeRegister(getRd(opcode), floatx80_to_int32(fpa11->fpreg[Fn].fExtended));
    }
    break;
#endif

    default:
        return 0;
    }

    return 1;
}
Exemple #3
0
void nwfpe_init_fpa(union fp_state *fp)
{
	FPA11 *fpa11 = (FPA11 *)fp;
#ifdef NWFPE_DEBUG
	printk("NWFPE: setting up state.\n");
#endif
 	memset(fpa11, 0, sizeof(FPA11));
	resetFPA11();
	SetRoundingMode(ROUND_TO_NEAREST);
	SetRoundingPrecision(ROUND_EXTENDED);
	fpa11->initflag = 1;
}
Exemple #4
0
unsigned int PerformSTF(const unsigned int opcode)
{
	unsigned int __user *pBase, *pAddress, *pFinal;
	unsigned int nRc = 1, write_back = WRITE_BACK(opcode);
	struct roundingData roundData;

	roundData.mode = SetRoundingMode(opcode);
	roundData.precision = SetRoundingPrecision(opcode);
	roundData.exception = 0;

	pBase = (unsigned int __user *) readRegister(getRn(opcode));
	if (REG_PC == getRn(opcode)) {
		pBase += 2;
		write_back = 0;
	}

	pFinal = pBase;
	if (BIT_UP_SET(opcode))
		pFinal += getOffset(opcode);
	else
		pFinal -= getOffset(opcode);

	if (PREINDEXED(opcode))
		pAddress = pFinal;
	else
		pAddress = pBase;

	switch (opcode & MASK_TRANSFER_LENGTH) {
	case TRANSFER_SINGLE:
		storeSingle(&roundData, getFd(opcode), pAddress);
		break;
	case TRANSFER_DOUBLE:
		storeDouble(&roundData, getFd(opcode), pAddress);
		break;
#ifdef CONFIG_FPE_NWFPE_XP
	case TRANSFER_EXTENDED:
		storeExtended(getFd(opcode), pAddress);
		break;
#endif
	default:
		nRc = 0;
	}

	if (roundData.exception)
		float_raise(roundData.exception);

	if (write_back)
		writeRegister(getRn(opcode), (unsigned long) pFinal);
	return nRc;
}
Exemple #5
0
unsigned int PerformFLT(const unsigned int opcode)
{
    FPA11 *fpa11 = GET_FPA11();
    struct roundingData roundData;

    roundData.mode = SetRoundingMode(opcode);
    roundData.precision = SetRoundingPrecision(opcode);
    roundData.exception = 0;

    switch (opcode & MASK_ROUNDING_PRECISION) {
    case ROUND_SINGLE:
        {
            fpa11->fType[getFn(opcode)] = typeSingle;
            fpa11->fpreg[getFn(opcode)].fSingle = int32_to_float32(&roundData, readRegister(getRd(opcode)));
        }
        break;

    case ROUND_DOUBLE:
        {
            fpa11->fType[getFn(opcode)] = typeDouble;
            fpa11->fpreg[getFn(opcode)].fDouble = int32_to_float64(readRegister(getRd(opcode)));
        }
        break;

#ifdef CONFIG_FPE_NWFPE_XP
    case ROUND_EXTENDED:
        {
            fpa11->fType[getFn(opcode)] = typeExtended;
            fpa11->fpreg[getFn(opcode)].fExtended = int32_to_floatx80(readRegister(getRd(opcode)));
        }
        break;
#endif

    default:
        return 0;
    }

    if (roundData.exception)
        float_raise(roundData.exception);

    return 1;
}
Exemple #6
0
unsigned int PerformFIX(const unsigned int opcode)
{
    FPA11 *fpa11 = GET_FPA11();
    unsigned int Fn = getFm(opcode);
    struct roundingData roundData;

    roundData.mode = SetRoundingMode(opcode);
    roundData.precision = SetRoundingPrecision(opcode);
    roundData.exception = 0;

    switch (fpa11->fType[Fn]) {
    case typeSingle:
        {
            writeRegister(getRd(opcode), float32_to_int32(&roundData, fpa11->fpreg[Fn].fSingle));
        }
        break;

    case typeDouble:
        {
            writeRegister(getRd(opcode), float64_to_int32(&roundData, fpa11->fpreg[Fn].fDouble));
        }
        break;

#ifdef CONFIG_FPE_NWFPE_XP
    case typeExtended:
        {
            writeRegister(getRd(opcode), floatx80_to_int32(&roundData, fpa11->fpreg[Fn].fExtended));
        }
        break;
#endif

    default:
        return 0;
    }

    if (roundData.exception)
        float_raise(roundData.exception);

    return 1;
}
Exemple #7
0
unsigned int EmulateCPDO(const unsigned int opcode)
{
    FPA11 *fpa11 = GET_FPA11();
    FPREG *rFd;
    unsigned int nType, nDest, nRc;
    struct roundingData roundData;

    /* Get the destination size.  If not valid let Linux perform
       an invalid instruction trap. */
    nDest = getDestinationSize(opcode);
    if (typeNone == nDest)
        return 0;

    roundData.mode = SetRoundingMode(opcode);
    roundData.precision = SetRoundingPrecision(opcode);
    roundData.exception = 0;

    /* Compare the size of the operands in Fn and Fm.
       Choose the largest size and perform operations in that size,
       in order to make use of all the precision of the operands.
       If Fm is a constant, we just grab a constant of a size
       matching the size of the operand in Fn. */
    if (MONADIC_INSTRUCTION(opcode))
        nType = nDest;
    else
        nType = fpa11->fType[getFn(opcode)];

    if (!CONSTANT_FM(opcode)) {
        register unsigned int Fm = getFm(opcode);
        if (nType < fpa11->fType[Fm]) {
            nType = fpa11->fType[Fm];
        }
    }

    rFd = &fpa11->fpreg[getFd(opcode)];

    switch (nType) {
    case typeSingle:
        nRc = SingleCPDO(&roundData, opcode, rFd);
        break;
    case typeDouble:
        nRc = DoubleCPDO(&roundData, opcode, rFd);
        break;
#ifdef CONFIG_FPE_NWFPE_XP
    case typeExtended:
        nRc = ExtendedCPDO(&roundData, opcode, rFd);
        break;
#endif
    default:
        nRc = 0;
    }

    /* The CPDO functions used to always set the destination type
       to be the same as their working size. */

    if (nRc != 0) {
        /* If the operation succeeded, check to see if the result in the
           destination register is the correct size.  If not force it
           to be. */

        fpa11->fType[getFd(opcode)] = nDest;

#ifdef CONFIG_FPE_NWFPE_XP
        if (nDest != nType) {
            switch (nDest) {
            case typeSingle:
                {
                    if (typeDouble == nType)
                        rFd->fSingle = float64_to_float32(&roundData, rFd->fDouble);
                    else
                        rFd->fSingle = floatx80_to_float32(&roundData, rFd->fExtended);
                }
                break;

            case typeDouble:
                {
                    if (typeSingle == nType)
                        rFd->fDouble = float32_to_float64(rFd->fSingle);
                    else
                        rFd->fDouble = floatx80_to_float64(&roundData, rFd->fExtended);
                }
                break;

            case typeExtended:
                {
                    if (typeSingle == nType)
                        rFd->fExtended = float32_to_floatx80(rFd->fSingle);
                    else
                        rFd->fExtended = float64_to_floatx80(rFd->fDouble);
                }
                break;
            }
        }
#else
        if (nDest != nType) {
            if (nDest == typeSingle)
                rFd->fSingle = float64_to_float32(&roundData, rFd->fDouble);
            else
                rFd->fDouble = float32_to_float64(rFd->fSingle);
        }
#endif
    }

    if (roundData.exception)
        float_raise(roundData.exception);

    return nRc;
}
Exemple #8
0
unsigned int EmulateCPDO(const unsigned int opcode)
{
   FPA11 *fpa11 = GET_FPA11();
   unsigned int Fd, nType, nDest, nRc = 1;

   //printk("EmulateCPDO(0x%08x)\n",opcode);

   /* Get the destination size.  If not valid let Linux perform
      an invalid instruction trap. */
   nDest = getDestinationSize(opcode);
   if (typeNone == nDest) return 0;

   SetRoundingMode(opcode);

   /* Compare the size of the operands in Fn and Fm.
      Choose the largest size and perform operations in that size,
      in order to make use of all the precision of the operands.
      If Fm is a constant, we just grab a constant of a size
      matching the size of the operand in Fn. */
   if (MONADIC_INSTRUCTION(opcode))
     nType = nDest;
   else
     nType = fpa11->fType[getFn(opcode)];

   if (!CONSTANT_FM(opcode))
   {
     register unsigned int Fm = getFm(opcode);
     if (nType < fpa11->fType[Fm])
     {
        nType = fpa11->fType[Fm];
     }
   }

   switch (nType)
   {
      case typeSingle   : nRc = SingleCPDO(opcode);   break;
      case typeDouble   : nRc = DoubleCPDO(opcode);   break;
      case typeExtended : nRc = ExtendedCPDO(opcode); break;
      default           : nRc = 0;
   }

   /* If the operation succeeded, check to see if the result in the
      destination register is the correct size.  If not force it
      to be. */
   Fd = getFd(opcode);
   nType = fpa11->fType[Fd];
   if ((0 != nRc) && (nDest != nType))
   {
     switch (nDest)
     {
       case typeSingle:
       {
         if (typeDouble == nType)
           fpa11->fpreg[Fd].fSingle =
              float64_to_float32(fpa11->fpreg[Fd].fDouble, &fpa11->fp_status);
         else
           fpa11->fpreg[Fd].fSingle =
              floatx80_to_float32(fpa11->fpreg[Fd].fExtended, &fpa11->fp_status);
       }
       break;

       case typeDouble:
       {
         if (typeSingle == nType)
           fpa11->fpreg[Fd].fDouble =
              float32_to_float64(fpa11->fpreg[Fd].fSingle, &fpa11->fp_status);
         else
           fpa11->fpreg[Fd].fDouble =
              floatx80_to_float64(fpa11->fpreg[Fd].fExtended, &fpa11->fp_status);
       }
       break;

       case typeExtended:
       {
         if (typeSingle == nType)
           fpa11->fpreg[Fd].fExtended =
              float32_to_floatx80(fpa11->fpreg[Fd].fSingle, &fpa11->fp_status);
         else
           fpa11->fpreg[Fd].fExtended =
              float64_to_floatx80(fpa11->fpreg[Fd].fDouble, &fpa11->fp_status);
       }
       break;
     }

     fpa11->fType[Fd] = nDest;
   }

   return nRc;
}
Exemple #9
0
void Jit::Comp_mxc1(MIPSOpcode op)
{
	CONDITIONAL_DISABLE;

	int fs = _FS;
	MIPSGPReg rt = _RT;

	switch((op >> 21) & 0x1f) 
	{
	case 0: // R(rt) = FI(fs); break; //mfc1
		if (rt != MIPS_REG_ZERO) {
			fpr.MapReg(fs, true, false);  // TODO: Seems the V register becomes dirty here? It shouldn't.
			gpr.MapReg(rt, false, true);
			MOVD_xmm(gpr.R(rt), fpr.RX(fs));
		}
		break;

	case 2: // R(rt) = currentMIPS->ReadFCR(fs); break; //cfc1
		if (fs == 31) {
			bool wasImm = gpr.IsImm(MIPS_REG_FPCOND);
			if (!wasImm) {
				gpr.Lock(rt, MIPS_REG_FPCOND);
				gpr.MapReg(MIPS_REG_FPCOND, true, false);
			}
			gpr.MapReg(rt, false, true);
			MOV(32, gpr.R(rt), M(&mips_->fcr31));
			if (wasImm) {
				if (gpr.GetImm(MIPS_REG_FPCOND) & 1) {
					OR(32, gpr.R(rt), Imm32(1 << 23));
				} else {
					AND(32, gpr.R(rt), Imm32(~(1 << 23)));
				}
			} else {
				AND(32, gpr.R(rt), Imm32(~(1 << 23)));
				MOV(32, R(EAX), gpr.R(MIPS_REG_FPCOND));
				AND(32, R(EAX), Imm32(1));
				SHL(32, R(EAX), Imm8(23));
				OR(32, gpr.R(rt), R(EAX));
			}
			gpr.UnlockAll();
		} else if (fs == 0) {
			gpr.SetImm(rt, MIPSState::FCR0_VALUE);
		} else {
			Comp_Generic(op);
		}
		return;

	case 4: //FI(fs) = R(rt);	break; //mtc1
		gpr.MapReg(rt, true, false);
		fpr.MapReg(fs, false, true);
		MOVD_xmm(fpr.RX(fs), gpr.R(rt));
		return;

	case 6: //currentMIPS->WriteFCR(fs, R(rt)); break; //ctc1
		if (fs == 31) {
			ClearRoundingMode();
			if (gpr.IsImm(rt)) {
				gpr.SetImm(MIPS_REG_FPCOND, (gpr.GetImm(rt) >> 23) & 1);
				MOV(32, M(&mips_->fcr31), Imm32(gpr.GetImm(rt) & 0x0181FFFF));
				if ((gpr.GetImm(rt) & 0x1000003) == 0) {
					// Default nearest / no-flush mode, just leave it cleared.
				} else {
					SetRoundingMode();
				}
			} else {
Exemple #10
0
 void SetRoundingMode(mxcsr::Rounding mode, bool withUpdate/*= false*/) {
     SetRoundingMode((unsigned)mode, withUpdate);
 }