Exemple #1
0
void SkTextView::onDraw(SkCanvas* canvas)
{
	this->INHERITED::onDraw(canvas);

	if (fText.size() == 0)
		return;

	SkPaint::Align	align = fPaint.getTextAlign();
	SkScalar		x, y;

	switch (align) {
	case SkPaint::kLeft_Align:
		x = fMargin.fX;
		break;
	case SkPaint::kCenter_Align:
		x = SkScalarHalf(this->width());
		break;
	default:
		SkASSERT(align == SkPaint::kRight_Align);
		x = this->width() - fMargin.fX;
		break;
	}

	fPaint.measureText(nil, 0, &y, nil);
	y = fMargin.fY - y;

	if (fInterp)
	{
		if (fInterp->draw(canvas, fText, x, y, fPaint))
			this->inval(nil);
		else
		{
			delete fInterp;
			fInterp = nil;
		}
	}
	else
		canvas->drawText(fText.c_str(), fText.size(), x, y, fPaint);
}
Exemple #2
0
//      quadApprox - makes an approximation, which we hope is faster
static void quadApprox(SkPath &fPath, const SkPoint &p0, const SkPoint &p1, const SkPoint &p2)
{
    //divide the cubic up into two cubics, then convert them into quadratics
    //define our points
    SkPoint c,j,k,l,m,n,o,p,q, mid;
    fPath.getLastPt(&c);
    midPt(j, p0, c);
    midPt(k, p0, p1);
    midPt(l, p1, p2);
    midPt(o, j, k);
    midPt(p, k, l);
    midPt(q, o, p);
    //compute the first half
    m.set(SkScalarHalf(3*j.fX - c.fX), SkScalarHalf(3*j.fY - c.fY));
    n.set(SkScalarHalf(3*o.fX -q.fX), SkScalarHalf(3*o.fY - q.fY));
    midPt(mid,m,n);
    fPath.quadTo(mid,q);
    c = q;
    //compute the second half
    m.set(SkScalarHalf(3*p.fX - c.fX), SkScalarHalf(3*p.fY - c.fY));
    n.set(SkScalarHalf(3*l.fX -p2.fX),SkScalarHalf(3*l.fY -p2.fY));
    midPt(mid,m,n);
    fPath.quadTo(mid,p2);
}
Exemple #3
0
    bool init(const SkPath& src, SkPath* dst, SkStrokeRec* rec,
              int intervalCount, SkScalar intervalLength) {
        if (rec->isHairlineStyle() || !src.isLine(fPts)) {
            return false;
        }

        // can relax this in the future, if we handle square and round caps
        if (SkPaint::kButt_Cap != rec->getCap()) {
            return false;
        }

        SkScalar pathLength = SkPoint::Distance(fPts[0], fPts[1]);

        fTangent = fPts[1] - fPts[0];
        if (fTangent.isZero()) {
            return false;
        }

        fPathLength = pathLength;
        fTangent.scale(SkScalarInvert(pathLength));
        fTangent.rotateCCW(&fNormal);
        fNormal.scale(SkScalarHalf(rec->getWidth()));

        // now estimate how many quads will be added to the path
        //     resulting segments = pathLen * intervalCount / intervalLen
        //     resulting points = 4 * segments

        SkScalar ptCount = SkScalarMulDiv(pathLength,
                                          SkIntToScalar(intervalCount),
                                          intervalLength);
        ptCount = SkTMin(ptCount, SkDashPath::kMaxDashCount);
        int n = SkScalarCeilToInt(ptCount) << 2;
        dst->incReserve(n);

        // we will take care of the stroking
        rec->setFillStyle();
        return true;
    }
static const SkPicture* make_tri_picture() {
    SkPath tri = make_tri_path(SkScalarHalf(kTriSide), 0);

    SkPaint fill;
    fill.setStyle(SkPaint::kFill_Style);
    fill.setColor(SK_ColorLTGRAY);;

    SkPaint stroke;
    stroke.setStyle(SkPaint::kStroke_Style);
    stroke.setStrokeWidth(3);

    SkPictureRecorder recorder;

    SkCanvas* canvas = recorder.beginRecording(SkIntToScalar(kPicWidth),
                                               SkIntToScalar(kPicHeight));
    // The saveLayer/restore block is to exercise layer hoisting
    canvas->saveLayer(NULL, NULL);
        canvas->drawPath(tri, fill);
        canvas->drawPath(tri, stroke);
    canvas->restore();

    return recorder.endRecording();
}
int Font::offsetForPositionForComplexText(const TextRun& run, int x,
                                          bool includePartialGlyphs) const
{
    SkPaint                         paint;
    int                             count = run.length();
    SkAutoSTMalloc<64, SkScalar>    storage(count);
    SkScalar*                       widths = storage.get();

    primaryFont()->platformData().setupPaint(&paint);

    count = paint.getTextWidths(run.characters(), count << 1, widths);

    if (count > 0)
    {
        SkScalar pos = 0;
        for (int i = 0; i < count; i++)
        {
            if (x < SkScalarRound(pos + SkScalarHalf(widths[i])))
                return i;
            pos += widths[i];
        }
    }
    return count;
}
void SkStroke::strokePath(const SkPath& src, SkPath* dst) const {
    SkASSERT(&src != NULL && dst != NULL);

    SkScalar radius = SkScalarHalf(fWidth);

    AutoTmpPath tmp(src, &dst);

    if (radius <= 0) {
        return;
    }

    // If src is really a rect, call our specialty strokeRect() method
    {
        bool isClosed;
        SkPath::Direction dir;
        if (src.isRect(&isClosed, &dir) && isClosed) {
            this->strokeRect(src.getBounds(), dst, dir);
            // our answer should preserve the inverseness of the src
            if (src.isInverseFillType()) {
                SkASSERT(!dst->isInverseFillType());
                dst->toggleInverseFillType();
            }
            return;
        }
    }

    SkAutoConicToQuads converter;
    const SkScalar conicTol = SK_Scalar1 / 4;

    SkPathStroker   stroker(src, radius, fMiterLimit, this->getCap(),
                            this->getJoin());
    SkPath::Iter    iter(src, false);
    SkPath::Verb    lastSegment = SkPath::kMove_Verb;

    for (;;) {
        SkPoint  pts[4];
        switch (iter.next(pts, false)) {
            case SkPath::kMove_Verb:
                stroker.moveTo(pts[0]);
                break;
            case SkPath::kLine_Verb:
                stroker.lineTo(pts[1]);
                lastSegment = SkPath::kLine_Verb;
                break;
            case SkPath::kQuad_Verb:
                stroker.quadTo(pts[1], pts[2]);
                lastSegment = SkPath::kQuad_Verb;
                break;
            case SkPath::kConic_Verb: {
                // todo: if we had maxcurvature for conics, perhaps we should
                // natively extrude the conic instead of converting to quads.
                const SkPoint* quadPts =
                    converter.computeQuads(pts, iter.conicWeight(), conicTol);
                for (int i = 0; i < converter.countQuads(); ++i) {
                    stroker.quadTo(quadPts[1], quadPts[2]);
                    quadPts += 2;
                }
                lastSegment = SkPath::kQuad_Verb;
            } break;
            case SkPath::kCubic_Verb:
                stroker.cubicTo(pts[1], pts[2], pts[3]);
                lastSegment = SkPath::kCubic_Verb;
                break;
            case SkPath::kClose_Verb:
                stroker.close(lastSegment == SkPath::kLine_Verb);
                break;
            case SkPath::kDone_Verb:
                goto DONE;
        }
    }
DONE:
    stroker.done(dst, lastSegment == SkPath::kLine_Verb);

    if (fDoFill) {
        if (src.cheapIsDirection(SkPath::kCCW_Direction)) {
            dst->reverseAddPath(src);
        } else {
            dst->addPath(src);
        }
    } else {
        //  Seems like we can assume that a 2-point src would always result in
        //  a convex stroke, but testing has proved otherwise.
        //  TODO: fix the stroker to make this assumption true (without making
        //  it slower that the work that will be done in computeConvexity())
#if 0
        // this test results in a non-convex stroke :(
        static void test(SkCanvas* canvas) {
            SkPoint pts[] = { 146.333328,  192.333328, 300.333344, 293.333344 };
            SkPaint paint;
            paint.setStrokeWidth(7);
            paint.setStrokeCap(SkPaint::kRound_Cap);
            canvas->drawLine(pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, paint);
        }
#endif
#if 0
        if (2 == src.countPoints()) {
            dst->setIsConvex(true);
        }
#endif
    }
static SkScalar center_align_proc(SkScalar childLimit, SkScalar parentLimit) { return SkScalarHalf(parentLimit - childLimit); }
Exemple #8
0
void TextArtView::onDrawContent(SkCanvas* canvas)
{
	const std::string TEXT = "Helpo TextArt Effects";
	SkTypeface* typeface = SkTypeface::CreateFromName("Georgia", SkTypeface::kBold);

	if (!initialized)
	{
		initialized = true;

		WarpFrameT	warpFrame;
		SkMatrix	warpMatrix;
		warpMatrix.setIdentity();

		getWarpParams(warpFrame, warpMatrix);

		bSkeleton_ = warpFrame[0];
		if (warpFrame.size()>1)
			tSkeleton_ = warpFrame[1];

		TextArt::EnvelopeWarp textArt(bSkeleton_, warpMatrix);	
		textArt.setTopSkeleton(tSkeleton_);
		textArt.setIsNormalRotated(getIsNormalRotated());
		textArt.setIsSymmetric(getIsSymmetric());
		textArt.setIsTopBased(getIsTopBased());
		
		path_ = textArt.warp(TEXT, typeface);
	}

    SkPaint paint;
    paint.setAntiAlias(true);
	paint.setTextSize(SkIntToScalar(64));
    paint.setStyle(SkPaint::kStroke_Style);
	paint.setTypeface(typeface);

	canvas->save();

	//center path on the cnavas
	const SkRect& pathBounds = path_.getBounds();
	SkISize screenSize = canvas->getDeviceSize();

	SkScalar xOffset = SkScalarHalf( SkIntToScalar(screenSize.width()) ) - pathBounds.centerX();
	SkScalar yOffset = SkScalarHalf( SkIntToScalar(screenSize.height()) ) - pathBounds.centerY();

	canvas->translate(xOffset, yOffset);

	paint.setColor(0x33FF3333);
//	canvas->drawRect(pathBounds, paint);


/*
	paint.setColor(SK_ColorGREEN);
	canvas->drawPath(textArt.bSkeleton_, paint);
	canvas->drawPath(textArt.bWarped_, paint);

	paint.setColor(SK_ColorCYAN);
	canvas->drawPath(textArt.tSkeleton_, paint);
	canvas->drawPath(textArt.tWarped_, paint);
*/
	//draw the skeleton path
	paint.setColor(SK_ColorBLUE);
	canvas->drawPath(bSkeleton_, paint);
	canvas->drawPath(tSkeleton_, paint);

	//draw the path
	paint.setColor(SK_ColorBLACK);
	paint.setStyle(SkPaint::kFill_Style);
	canvas->drawPath(path_, paint);
/*
	paint.setColor(SK_ColorRED);
	canvas->drawPath(textArt.normal, paint);
	canvas->drawPath(textArt.tFlattern, paint);
	for(int i=0; i<textArt.intersections.size(); ++i)
	{
		canvas->drawCircle(textArt.intersections[i].fX, textArt.intersections[i].fY, 1.5, paint);
	}
*/
	canvas->restore();
}
Exemple #9
0
void GrBitmapTextContext::onDrawText(const GrPaint& paint, const SkPaint& skPaint,
                                     const char text[], size_t byteLength,
                                     SkScalar x, SkScalar y) {
    SkASSERT(byteLength == 0 || text != NULL);

    // nothing to draw
    if (text == NULL || byteLength == 0 /*|| fRC->isEmpty()*/) {
        return;
    }

    this->init(paint, skPaint);

    SkDrawCacheProc glyphCacheProc = fSkPaint.getDrawCacheProc();

    SkAutoGlyphCache    autoCache(fSkPaint, &fDeviceProperties, &fContext->getMatrix());
    SkGlyphCache*       cache = autoCache.getCache();
    GrFontScaler*       fontScaler = GetGrFontScaler(cache);

    // transform our starting point
    {
        SkPoint loc;
        fContext->getMatrix().mapXY(x, y, &loc);
        x = loc.fX;
        y = loc.fY;
    }

    // need to measure first
    int numGlyphs;
    if (fSkPaint.getTextAlign() != SkPaint::kLeft_Align) {
        SkVector    stopVector;
        numGlyphs = MeasureText(cache, glyphCacheProc, text, byteLength, &stopVector);

        SkScalar    stopX = stopVector.fX;
        SkScalar    stopY = stopVector.fY;

        if (fSkPaint.getTextAlign() == SkPaint::kCenter_Align) {
            stopX = SkScalarHalf(stopX);
            stopY = SkScalarHalf(stopY);
        }
        x -= stopX;
        y -= stopY;
    } else {
        numGlyphs = fSkPaint.textToGlyphs(text, byteLength, NULL);
    }
    fTotalVertexCount = kVerticesPerGlyph*numGlyphs;

    const char* stop = text + byteLength;

    SkAutoKern autokern;

    SkFixed fxMask = ~0;
    SkFixed fyMask = ~0;
    SkFixed halfSampleX, halfSampleY;
    if (cache->isSubpixel()) {
        halfSampleX = halfSampleY = (SK_FixedHalf >> SkGlyph::kSubBits);
        SkAxisAlignment baseline = SkComputeAxisAlignmentForHText(fContext->getMatrix());
        if (kX_SkAxisAlignment == baseline) {
            fyMask = 0;
            halfSampleY = SK_FixedHalf;
        } else if (kY_SkAxisAlignment == baseline) {
            fxMask = 0;
            halfSampleX = SK_FixedHalf;
        }
    } else {
static void MiterJoiner(SkPath* outer, SkPath* inner, const SkVector& beforeUnitNormal,
                        const SkPoint& pivot, const SkVector& afterUnitNormal,
                        SkScalar radius, SkScalar invMiterLimit,
                        bool prevIsLine, bool currIsLine)
{
    // negate the dot since we're using normals instead of tangents
    SkScalar    dotProd = SkPoint::DotProduct(beforeUnitNormal, afterUnitNormal);
    AngleType   angleType = Dot2AngleType(dotProd);
    SkVector    before = beforeUnitNormal;
    SkVector    after = afterUnitNormal;
    SkVector    mid;
    SkScalar    sinHalfAngle;
    bool        ccw;

    if (angleType == kNearlyLine_AngleType)
        return;
    if (angleType == kNearly180_AngleType)
    {
        currIsLine = false;
        goto DO_BLUNT;
    }

    ccw = !is_clockwise(before, after);
    if (ccw)
    {
        SkTSwap<SkPath*>(outer, inner);
        before.negate();
        after.negate();
    }

    /*  Before we enter the world of square-roots and divides,
        check if we're trying to join an upright right angle
        (common case for stroking rectangles). If so, special case
        that (for speed an accuracy).
        Note: we only need to check one normal if dot==0
    */
    if (0 == dotProd && invMiterLimit <= kOneOverSqrt2)
    {
        mid.set(SkScalarMul(before.fX + after.fX, radius),
                SkScalarMul(before.fY + after.fY, radius));
        goto DO_MITER;
    }

    /*  midLength = radius / sinHalfAngle
        if (midLength > miterLimit * radius) abort
        if (radius / sinHalf > miterLimit * radius) abort
        if (1 / sinHalf > miterLimit) abort
        if (1 / miterLimit > sinHalf) abort
        My dotProd is opposite sign, since it is built from normals and not tangents
        hence 1 + dot instead of 1 - dot in the formula
    */
    sinHalfAngle = SkScalarSqrt(SkScalarHalf(SK_Scalar1 + dotProd));
    if (sinHalfAngle < invMiterLimit)
    {
        currIsLine = false;
        goto DO_BLUNT;
    }

    // choose the most accurate way to form the initial mid-vector
    if (angleType == kSharp_AngleType)
    {
        mid.set(after.fY - before.fY, before.fX - after.fX);
        if (ccw)
            mid.negate();
    }
    else
        mid.set(before.fX + after.fX, before.fY + after.fY);

    mid.setLength(SkScalarDiv(radius, sinHalfAngle));
DO_MITER:
    if (prevIsLine)
        outer->setLastPt(pivot.fX + mid.fX, pivot.fY + mid.fY);
    else
        outer->lineTo(pivot.fX + mid.fX, pivot.fY + mid.fY);

DO_BLUNT:
    after.scale(radius);
    if (!currIsLine)
        outer->lineTo(pivot.fX + after.fX, pivot.fY + after.fY);
    HandleInnerJoin(inner, pivot, after);
}
void SkStroke::strokePath(const SkPath& src, SkPath* dst) const {
    SkASSERT(&src != NULL && dst != NULL);

    SkScalar radius = SkScalarHalf(fWidth);

    dst->reset();
    if (radius <= 0) {
        return;
    }
    
#ifdef SK_SCALAR_IS_FIXED
    void (*proc)(SkPoint pts[], int count) = identity_proc;
    if (needs_to_shrink(src)) {
        proc = shift_down_2_proc;
        radius >>= 2;
        if (radius == 0) {
            return;
        }
    }
#endif

    SkPathStroker   stroker(radius, fMiterLimit, this->getCap(),
                            this->getJoin());

    SkPath::Iter    iter(src, false);
    SkPoint         pts[4];
    SkPath::Verb    verb, lastSegment = SkPath::kMove_Verb;

    while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
        switch (verb) {
            case SkPath::kMove_Verb:
                APPLY_PROC(proc, &pts[0], 1);
                stroker.moveTo(pts[0]);
                break;
            case SkPath::kLine_Verb:
                APPLY_PROC(proc, &pts[1], 1);
                stroker.lineTo(pts[1]);
                lastSegment = verb;
                break;
            case SkPath::kQuad_Verb:
                APPLY_PROC(proc, &pts[1], 2);
                stroker.quadTo(pts[1], pts[2]);
                lastSegment = verb;
                break;
            case SkPath::kCubic_Verb:
                APPLY_PROC(proc, &pts[1], 3);
                stroker.cubicTo(pts[1], pts[2], pts[3]);
                lastSegment = verb;
                break;
            case SkPath::kClose_Verb:
                stroker.close(lastSegment == SkPath::kLine_Verb);
                break;
            default:
                break;
        }
    }
    stroker.done(dst, lastSegment == SkPath::kLine_Verb);

#ifdef SK_SCALAR_IS_FIXED
    // undo our previous down_shift
    if (shift_down_2_proc == proc) {
        // need a real shift methid on path. antialias paths could use this too
        SkMatrix matrix;
        matrix.setScale(SkIntToScalar(4), SkIntToScalar(4));
        dst->transform(matrix);
    }
#endif

    if (fDoFill) {
        if (src.cheapIsDirection(SkPath::kCCW_Direction)) {
            dst->reverseAddPath(src);
        } else {
            dst->addPath(src);
        }
    } else {
        //  Seems like we can assume that a 2-point src would always result in
        //  a convex stroke, but testing has proved otherwise.
        //  TODO: fix the stroker to make this assumption true (without making
        //  it slower that the work that will be done in computeConvexity())
#if 0
        // this test results in a non-convex stroke :(
        static void test(SkCanvas* canvas) {
            SkPoint pts[] = { 146.333328,  192.333328, 300.333344, 293.333344 };
            SkPaint paint;
            paint.setStrokeWidth(7);
            paint.setStrokeCap(SkPaint::kRound_Cap);
            canvas->drawLine(pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, paint);
        }        
#endif
#if 0
        if (2 == src.countPoints()) {
            dst->setIsConvex(true);
        }
#endif
    }
Exemple #12
0
void GrTextUtils::DrawDFText(GrAtlasTextBlob* blob, int runIndex,
                             GrBatchFontCache* fontCache, const SkSurfaceProps& props,
                             const SkPaint& skPaint, GrColor color,
                             const SkMatrix& viewMatrix,
                             const char text[], size_t byteLength,
                             SkScalar x, SkScalar y) {
    SkASSERT(byteLength == 0 || text != nullptr);

    // nothing to draw
    if (text == nullptr || byteLength == 0) {
        return;
    }

    SkPaint::GlyphCacheProc glyphCacheProc = skPaint.getGlyphCacheProc(true);
    SkAutoDescriptor desc;
    skPaint.getScalerContextDescriptor(&desc, props, SkPaint::FakeGamma::Off, nullptr);
    SkGlyphCache* origPaintCache = SkGlyphCache::DetachCache(skPaint.getTypeface(),
                                                             desc.getDesc());

    SkTArray<SkScalar> positions;

    const char* textPtr = text;
    SkFixed stopX = 0;
    SkFixed stopY = 0;
    SkFixed origin = 0;
    switch (skPaint.getTextAlign()) {
        case SkPaint::kRight_Align: origin = SK_Fixed1; break;
        case SkPaint::kCenter_Align: origin = SK_FixedHalf; break;
        case SkPaint::kLeft_Align: origin = 0; break;
    }

    SkAutoKern autokern;
    const char* stop = text + byteLength;
    while (textPtr < stop) {
        // don't need x, y here, since all subpixel variants will have the
        // same advance
        const SkGlyph& glyph = glyphCacheProc(origPaintCache, &textPtr);

        SkFixed width = glyph.fAdvanceX + autokern.adjust(glyph);
        positions.push_back(SkFixedToScalar(stopX + SkFixedMul(origin, width)));

        SkFixed height = glyph.fAdvanceY;
        positions.push_back(SkFixedToScalar(stopY + SkFixedMul(origin, height)));

        stopX += width;
        stopY += height;
    }
    SkASSERT(textPtr == stop);

    SkGlyphCache::AttachCache(origPaintCache);

    // now adjust starting point depending on alignment
    SkScalar alignX = SkFixedToScalar(stopX);
    SkScalar alignY = SkFixedToScalar(stopY);
    if (skPaint.getTextAlign() == SkPaint::kCenter_Align) {
        alignX = SkScalarHalf(alignX);
        alignY = SkScalarHalf(alignY);
    } else if (skPaint.getTextAlign() == SkPaint::kLeft_Align) {
        alignX = 0;
        alignY = 0;
    }
    x -= alignX;
    y -= alignY;
    SkPoint offset = SkPoint::Make(x, y);

    DrawDFPosText(blob, runIndex, fontCache, props, skPaint, color, viewMatrix, text, byteLength,
                  positions.begin(), 2, offset);
}
Exemple #13
0
// Need a quick way to know a maximum distance between drawText calls to know if
// they are part of the same logical phrase when searching.  By crude
// inspection, half the point size seems a good guess at the width of a space
// character.
static inline SkScalar approximateSpaceWidth(const SkPaint& paint) {
    return SkScalarHalf(paint.getTextSize());
}
Exemple #14
0
// Test out the basic API entry points
static void test_round_rect_basic(skiatest::Reporter* reporter) {
    // Test out initialization methods
    SkPoint zeroPt = { 0, 0 };
    SkRRect empty;

    empty.setEmpty();

    REPORTER_ASSERT(reporter, SkRRect::kEmpty_Type == empty.type());
    REPORTER_ASSERT(reporter, empty.rect().isEmpty());

    for (int i = 0; i < 4; ++i) {
        REPORTER_ASSERT(reporter, zeroPt == empty.radii((SkRRect::Corner) i));
    }

    //----
    SkRect rect = SkRect::MakeLTRB(0, 0, kWidth, kHeight);

    SkRRect rr1;
    rr1.setRect(rect);

    REPORTER_ASSERT(reporter, SkRRect::kRect_Type == rr1.type());
    REPORTER_ASSERT(reporter, rr1.rect() == rect);

    for (int i = 0; i < 4; ++i) {
        REPORTER_ASSERT(reporter, zeroPt == rr1.radii((SkRRect::Corner) i));
    }
    SkRRect rr1_2; // construct the same RR using the most general set function
    SkVector rr1_2_radii[4] = { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } };
    rr1_2.setRectRadii(rect, rr1_2_radii);
    REPORTER_ASSERT(reporter, rr1_2 == rr1 && rr1_2.getType() == rr1.getType());
    SkRRect rr1_3;  // construct the same RR using the nine patch set function
    rr1_3.setNinePatch(rect, 0, 0, 0, 0);
    REPORTER_ASSERT(reporter, rr1_3 == rr1 && rr1_3.getType() == rr1.getType());

    //----
    SkPoint halfPoint = { SkScalarHalf(kWidth), SkScalarHalf(kHeight) };
    SkRRect rr2;
    rr2.setOval(rect);

    REPORTER_ASSERT(reporter, SkRRect::kOval_Type == rr2.type());
    REPORTER_ASSERT(reporter, rr2.rect() == rect);

    for (int i = 0; i < 4; ++i) {
        REPORTER_ASSERT(reporter,
                        rr2.radii((SkRRect::Corner) i).equalsWithinTolerance(halfPoint));
    }
    SkRRect rr2_2;  // construct the same RR using the most general set function
    SkVector rr2_2_radii[4] = { { halfPoint.fX, halfPoint.fY }, { halfPoint.fX, halfPoint.fY },
                                { halfPoint.fX, halfPoint.fY }, { halfPoint.fX, halfPoint.fY } };
    rr2_2.setRectRadii(rect, rr2_2_radii);
    REPORTER_ASSERT(reporter, rr2_2 == rr2 && rr2_2.getType() == rr2.getType());
    SkRRect rr2_3;  // construct the same RR using the nine patch set function
    rr2_3.setNinePatch(rect, halfPoint.fX, halfPoint.fY, halfPoint.fX, halfPoint.fY);
    REPORTER_ASSERT(reporter, rr2_3 == rr2 && rr2_3.getType() == rr2.getType());

    //----
    SkPoint p = { 5, 5 };
    SkRRect rr3;
    rr3.setRectXY(rect, p.fX, p.fY);

    REPORTER_ASSERT(reporter, SkRRect::kSimple_Type == rr3.type());
    REPORTER_ASSERT(reporter, rr3.rect() == rect);

    for (int i = 0; i < 4; ++i) {
        REPORTER_ASSERT(reporter, p == rr3.radii((SkRRect::Corner) i));
    }
    SkRRect rr3_2; // construct the same RR using the most general set function
    SkVector rr3_2_radii[4] = { { 5, 5 }, { 5, 5 }, { 5, 5 }, { 5, 5 } };
    rr3_2.setRectRadii(rect, rr3_2_radii);
    REPORTER_ASSERT(reporter, rr3_2 == rr3 && rr3_2.getType() == rr3.getType());
    SkRRect rr3_3;  // construct the same RR using the nine patch set function
    rr3_3.setNinePatch(rect, 5, 5, 5, 5);
    REPORTER_ASSERT(reporter, rr3_3 == rr3 && rr3_3.getType() == rr3.getType());

    //----
    test_9patch_rrect(reporter, rect, 10, 9, 8, 7, true);

    {
        // Test out the rrect from skia:3466
        SkRect rect2 = SkRect::MakeLTRB(0.358211994f, 0.755430222f, 0.872866154f, 0.806214333f);

        test_9patch_rrect(reporter,
                          rect2,
                          0.926942348f, 0.642850280f, 0.529063463f, 0.587844372f,
                          false);
    }

    //----
    SkPoint radii2[4] = { { 0, 0 }, { 0, 0 }, { 50, 50 }, { 20, 50 } };

    SkRRect rr5;
    rr5.setRectRadii(rect, radii2);

    REPORTER_ASSERT(reporter, SkRRect::kComplex_Type == rr5.type());
    REPORTER_ASSERT(reporter, rr5.rect() == rect);

    for (int i = 0; i < 4; ++i) {
        REPORTER_ASSERT(reporter, radii2[i] == rr5.radii((SkRRect::Corner) i));
    }

    // Test out == & !=
    REPORTER_ASSERT(reporter, empty != rr3);
    REPORTER_ASSERT(reporter, rr3 != rr5);
}
void SkTextBox::draw(SkCanvas* canvas, const char text[], size_t len, const SkPaint& paint)
{
    SkASSERT(canvas && &paint && (text || len == 0));

    SkScalar marginWidth = fBox.width();

    if (marginWidth <= 0 || len == 0)
        return;

    const char* textStop = text + len;

    SkScalar                x, y, scaledSpacing, height, fontHeight;
    SkPaint::FontMetrics    metrics;

    switch (paint.getTextAlign()) {
    case SkPaint::kLeft_Align:
        x = 0;
        break;
    case SkPaint::kCenter_Align:
        x = SkScalarHalf(marginWidth);
        break;
    default:
        x = marginWidth;
        break;
    }
    x += fBox.fLeft;

    fontHeight = paint.getFontMetrics(&metrics);
    scaledSpacing = SkScalarMul(fontHeight, fSpacingMul) + fSpacingAdd;
    height = fBox.height();

    //  compute Y position for first line
    {
        SkScalar textHeight = fontHeight;

        if (fMode == kLineBreak_Mode && fSpacingAlign != kStart_SpacingAlign)
        {
            int count = SkTextLineBreaker::CountLines(text, textStop - text, paint, marginWidth);
            SkASSERT(count > 0);
            textHeight += scaledSpacing * (count - 1);
        }

        switch (fSpacingAlign) {
        case kStart_SpacingAlign:
            y = 0;
            break;
        case kCenter_SpacingAlign:
            y = SkScalarHalf(height - textHeight);
            break;
        default:
            SkASSERT(fSpacingAlign == kEnd_SpacingAlign);
            y = height - textHeight;
            break;
        }
        y += fBox.fTop - metrics.fAscent;
    }

    for (;;)
    {
        len = linebreak(text, textStop, paint, marginWidth);
        if (y + metrics.fDescent + metrics.fLeading > 0)
            canvas->drawText(text, len, x, y, paint);
        text += len;
        if (text >= textStop)
            break;
        y += scaledSpacing;
        if (y + metrics.fAscent >= height)
            break;
    } 
}
Exemple #16
0
 SkRSXform asRSXform() const {
     return SkRSXform::MakeFromRadians(fScale, fRadian, fCenter.x(), fCenter.y(),
                                       SkScalarHalf(kCellSize), SkScalarHalf(kCellSize));
 }
Exemple #17
0
void SkRRect::setNinePatch(const SkRect& rect, SkScalar leftRad, SkScalar topRad,
                           SkScalar rightRad, SkScalar bottomRad) {
    fRect = rect;
    fRect.sort();

    if (fRect.isEmpty() || !fRect.isFinite()) {
        this->setEmpty();
        return;
    }

    const SkScalar array[4] = { leftRad, topRad, rightRad, bottomRad };
    if (!SkScalarsAreFinite(array, 4)) {
        this->setRect(rect);    // devolve into a simple rect
        return;
    }

    leftRad = SkMaxScalar(leftRad, 0);
    topRad = SkMaxScalar(topRad, 0);
    rightRad = SkMaxScalar(rightRad, 0);
    bottomRad = SkMaxScalar(bottomRad, 0);

    SkScalar scale = SK_Scalar1;
    if (leftRad + rightRad > fRect.width()) {
        scale = fRect.width() / (leftRad + rightRad);
    }
    if (topRad + bottomRad > fRect.height()) {
        scale = SkMinScalar(scale, fRect.height() / (topRad + bottomRad));
    }

    if (scale < SK_Scalar1) {
        leftRad = SkScalarMul(leftRad, scale);
        topRad = SkScalarMul(topRad, scale);
        rightRad = SkScalarMul(rightRad, scale);
        bottomRad = SkScalarMul(bottomRad, scale);
    }

    if (leftRad == rightRad && topRad == bottomRad) {
        if (leftRad >= SkScalarHalf(fRect.width()) && topRad >= SkScalarHalf(fRect.height())) {
            fType = kOval_Type;
        } else if (0 == leftRad || 0 == topRad) {
            // If the left and (by equality check above) right radii are zero then it is a rect.
            // Same goes for top/bottom.
            fType = kRect_Type;
            leftRad = 0;
            topRad = 0;
            rightRad = 0;
            bottomRad = 0;
        } else {
            fType = kSimple_Type;
        }
    } else {
        fType = kNinePatch_Type;
    }

    fRadii[kUpperLeft_Corner].set(leftRad, topRad);
    fRadii[kUpperRight_Corner].set(rightRad, topRad);
    fRadii[kLowerRight_Corner].set(rightRad, bottomRad);
    fRadii[kLowerLeft_Corner].set(leftRad, bottomRad);

    SkDEBUGCODE(this->validate();)
}
void GrStencilAndCoverTextContext::TextRun::setText(const char text[], size_t byteLength,
        SkScalar x, SkScalar y) {
    SkASSERT(byteLength == 0 || text != nullptr);

    SkGlyphCache* glyphCache = this->getGlyphCache();
    SkDrawCacheProc glyphCacheProc = fFont.getDrawCacheProc();

    fTotalGlyphCount = fFont.countText(text, byteLength);
    fInstanceData.reset(InstanceData::Alloc(GrPathRendering::kTranslate_PathTransformType,
                                            fTotalGlyphCount));

    const char* stop = text + byteLength;

    // Measure first if needed.
    if (fFont.getTextAlign() != SkPaint::kLeft_Align) {
        SkFixed    stopX = 0;
        SkFixed    stopY = 0;

        const char* textPtr = text;
        while (textPtr < stop) {
            // We don't need x, y here, since all subpixel variants will have the
            // same advance.
            const SkGlyph& glyph = glyphCacheProc(glyphCache, &textPtr, 0, 0);

            stopX += glyph.fAdvanceX;
            stopY += glyph.fAdvanceY;
        }
        SkASSERT(textPtr == stop);

        SkScalar alignX = SkFixedToScalar(stopX) * fTextRatio;
        SkScalar alignY = SkFixedToScalar(stopY) * fTextRatio;

        if (fFont.getTextAlign() == SkPaint::kCenter_Align) {
            alignX = SkScalarHalf(alignX);
            alignY = SkScalarHalf(alignY);
        }

        x -= alignX;
        y -= alignY;
    }

    SkAutoKern autokern;

    SkFixed fixedSizeRatio = SkScalarToFixed(fTextRatio);

    SkFixed fx = SkScalarToFixed(x);
    SkFixed fy = SkScalarToFixed(y);
    FallbackBlobBuilder fallback;
    while (text < stop) {
        const SkGlyph& glyph = glyphCacheProc(glyphCache, &text, 0, 0);
        fx += SkFixedMul(autokern.adjust(glyph), fixedSizeRatio);
        if (glyph.fWidth) {
            this->appendGlyph(glyph, SkPoint::Make(SkFixedToScalar(fx), SkFixedToScalar(fy)),
                              &fallback);
        }

        fx += SkFixedMul(glyph.fAdvanceX, fixedSizeRatio);
        fy += SkFixedMul(glyph.fAdvanceY, fixedSizeRatio);
    }

    fFallbackTextBlob.reset(fallback.buildIfNeeded(&fFallbackGlyphCount));
}
static void test_intersectline(skiatest::Reporter* reporter) {
    static const SkScalar L = 0;
    static const SkScalar T = 0;
    static const SkScalar R = SkIntToScalar(100);
    static const SkScalar B = SkIntToScalar(100);
    static const SkScalar CX = SkScalarHalf(L + R);
    static const SkScalar CY = SkScalarHalf(T + B);
    static const SkRect gR = { L, T, R, B };

    size_t i;
    SkPoint dst[2];

    static const SkPoint gEmpty[] = {
        // sides
        { L, CY }, { L - 10, CY },
        { R, CY }, { R + 10, CY },
        { CX, T }, { CX, T - 10 },
        { CX, B }, { CX, B + 10 },
        // corners
        { L, T }, { L - 10, T - 10 },
        { L, B }, { L - 10, B + 10 },
        { R, T }, { R + 10, T - 10 },
        { R, B }, { R + 10, B + 10 },
    };
    for (i = 0; i < SK_ARRAY_COUNT(gEmpty); i += 2) {
        bool valid = SkLineClipper::IntersectLine(&gEmpty[i], gR, dst);
        if (valid) {
            SkDebugf("----- [%d] %g %g -> %g %g\n", i/2, dst[0].fX, dst[0].fY, dst[1].fX, dst[1].fY);
        }
        REPORTER_ASSERT(reporter, !valid);
    }

    static const SkPoint gFull[] = {
        // diagonals, chords
        { L, T }, { R, B },
        { L, B }, { R, T },
        { CX, T }, { CX, B },
        { L, CY }, { R, CY },
        { CX, T }, { R, CY },
        { CX, T }, { L, CY },
        { L, CY }, { CX, B },
        { R, CY }, { CX, B },
        // edges
        { L, T }, { L, B },
        { R, T }, { R, B },
        { L, T }, { R, T },
        { L, B }, { R, B },
    };
    for (i = 0; i < SK_ARRAY_COUNT(gFull); i += 2) {
        bool valid = SkLineClipper::IntersectLine(&gFull[i], gR, dst);
        if (!valid || memcmp(&gFull[i], dst, sizeof(dst))) {
            SkDebugf("++++ [%d] %g %g -> %g %g\n", i/2, dst[0].fX, dst[0].fY, dst[1].fX, dst[1].fY);
        }
        REPORTER_ASSERT(reporter, valid && !memcmp(&gFull[i], dst, sizeof(dst)));
    }

    static const SkPoint gPartial[] = {
        { L - 10, CY }, { CX, CY }, { L, CY }, { CX, CY },
        { CX, T - 10 }, { CX, CY }, { CX, T }, { CX, CY },
        { R + 10, CY }, { CX, CY }, { R, CY }, { CX, CY },
        { CX, B + 10 }, { CX, CY }, { CX, B }, { CX, CY },
        // extended edges
        { L, T - 10 }, { L, B + 10 }, { L, T }, { L, B },
        { R, T - 10 }, { R, B + 10 }, { R, T }, { R, B },
        { L - 10, T }, { R + 10, T }, { L, T }, { R, T },
        { L - 10, B }, { R + 10, B }, { L, B }, { R, B },
    };
    for (i = 0; i < SK_ARRAY_COUNT(gPartial); i += 4) {
        bool valid = SkLineClipper::IntersectLine(&gPartial[i], gR, dst);
        if (!valid || memcmp(&gPartial[i+2], dst, sizeof(dst))) {
            SkDebugf("++++ [%d] %g %g -> %g %g\n", i/2, dst[0].fX, dst[0].fY, dst[1].fX, dst[1].fY);
        }
        REPORTER_ASSERT(reporter, valid &&
                                  !memcmp(&gPartial[i+2], dst, sizeof(dst)));
    }

}
void GrDistanceFieldTextContext::onDrawText(GrRenderTarget* rt, const GrClip& clip,
                                            const GrPaint& paint,
                                            const SkPaint& skPaint, const SkMatrix& viewMatrix,
                                            const char text[], size_t byteLength,
                                            SkScalar x, SkScalar y,
                                            const SkIRect& regionClipBounds) {
    SkASSERT(byteLength == 0 || text != NULL);

    // nothing to draw
    if (text == NULL || byteLength == 0) {
        return;
    }

    fViewMatrix = viewMatrix;
    SkDrawCacheProc          glyphCacheProc = skPaint.getDrawCacheProc();
    SkAutoGlyphCache         autoCache(skPaint, &fDeviceProperties, NULL);
    SkGlyphCache*            cache = autoCache.getCache();

    SkTArray<SkScalar> positions;

    const char* textPtr = text;
    SkFixed stopX = 0;
    SkFixed stopY = 0;
    SkFixed origin;
    switch (skPaint.getTextAlign()) {
        case SkPaint::kRight_Align: origin = SK_Fixed1; break;
        case SkPaint::kCenter_Align: origin = SK_FixedHalf; break;
        case SkPaint::kLeft_Align: origin = 0; break;
        default: SkFAIL("Invalid paint origin"); return;
    }

    SkAutoKern autokern;
    const char* stop = text + byteLength;
    while (textPtr < stop) {
        // don't need x, y here, since all subpixel variants will have the
        // same advance
        const SkGlyph& glyph = glyphCacheProc(cache, &textPtr, 0, 0);

        SkFixed width = glyph.fAdvanceX + autokern.adjust(glyph);
        positions.push_back(SkFixedToScalar(stopX + SkFixedMul(origin, width)));

        SkFixed height = glyph.fAdvanceY;
        positions.push_back(SkFixedToScalar(stopY + SkFixedMul(origin, height)));

        stopX += width;
        stopY += height;
    }
    SkASSERT(textPtr == stop);

    // now adjust starting point depending on alignment
    SkScalar alignX = SkFixedToScalar(stopX);
    SkScalar alignY = SkFixedToScalar(stopY);
    if (skPaint.getTextAlign() == SkPaint::kCenter_Align) {
        alignX = SkScalarHalf(alignX);
        alignY = SkScalarHalf(alignY);
    } else if (skPaint.getTextAlign() == SkPaint::kLeft_Align) {
        alignX = 0;
        alignY = 0;
    }
    x -= alignX;
    y -= alignY;
    SkPoint offset = SkPoint::Make(x, y);

    this->onDrawPosText(rt, clip, paint, skPaint, viewMatrix, text, byteLength, positions.begin(),
                        2, offset, regionClipBounds);
}
Exemple #21
0
SkPath TextArt::EnvelopeWarp::warp(const std::string& text, SkTypeface* typeface)
{
	SkPath				warpedPath;

	if (text.empty())
		return warpedPath;

	//prepare paint
	SkPaint paint;
	paint.setTextSize(SkIntToScalar(64));
	paint.setTypeface(typeface);
	paint.setTextAlign(SkPaint::kCenter_Align);

	//measure Bottom path to center text on it
	SkPathMeasure   bMeasure(bSkeleton_, false);
	SkScalar        hBOffset = 0;

    if (paint.getTextAlign() != SkPaint::kLeft_Align)
	{
        SkScalar pathLen = bMeasure.getLength();
        if (paint.getTextAlign() == SkPaint::kCenter_Align)
		{
            pathLen = SkScalarHalf(pathLen);
        }
        hBOffset += pathLen;
    }

	//get text boundaries on normal(non-warped) state
	{
		SkMatrix scaleMartix;
		scaleMartix.setIdentity();

		SkTextToPathIter	iter(text.c_str(), text.size(), paint, true);
		const SkPath*   glypthPath;
		SkScalar        xpos;

		SkScalar        scale = iter.getPathScale();
		scaleMartix.setScale(scale, scale);

		while (iter.next(&glypthPath, &xpos))
		{
			if (glypthPath)
			{
				//prepare resulting transformatiom Matrix
				SkMatrix	compositeMatrix(scaleMartix);
				compositeMatrix.postTranslate(xpos + hBOffset, 0);
				
				SkPath p;
				(*glypthPath).transform(compositeMatrix, &p);
				//get normal(without any warps) text boundaries
				boundsRect_.join( p.getBounds() );
			}
		}
	}

	//center text on Top skeleton
	SkPathMeasure   tMeasure(tSkeleton_, false);
	SkScalar        hTOffset = 0;	
	{
		if (paint.getTextAlign() != SkPaint::kLeft_Align)
		{
			SkScalar pathLen = tMeasure.getLength();
			if (paint.getTextAlign() == SkPaint::kCenter_Align)
			{
				pathLen = SkScalarHalf(pathLen);
			}
			hTOffset += pathLen;
		}
	}		
	
	//warp text on Bottom and Top skeletons
	{
		SkTextToPathIter	iter(text.c_str(), text.size(), paint, true);
		SkScalar        xpos;

		SkMatrix        scaleMartix;
		SkScalar        scale = iter.getPathScale();
		scaleMartix.setScale(scale, scale);

		SkPath line;
		line.lineTo(SkIntToScalar(100), SkIntToScalar(0));
		SkPathMeasure   lineMeasure(line, false);

		SkPathCrossing bCrossing(bSkeleton_);
		SkPathCrossing tCrossing(tSkeleton_);

		const SkPath*   glypthPathOrig;
		while (iter.next(&glypthPathOrig, &xpos))
		{
			if (glypthPathOrig)
			{
				SkPath glypthPath;
				SkRect glypthBound;
				glypthBound = (*glypthPathOrig).getBounds();
				glypthPathOrig->offset(-glypthBound.fLeft, 0, &glypthPath);

				morph(bSkeleton_, bMeasure, bCrossing,
						tSkeleton_, tMeasure, tCrossing,
						glypthPath, lineMeasure, scaleMartix,
						xpos, hBOffset, hTOffset, warpedPath);

			}
		}
	}
	
	return warpedPath;
}
Exemple #22
0
SkScalar SkTextBox::visit(Visitor& visitor, const char text[], size_t len,
                          const SkPaint& paint) const {
    SkScalar marginWidth = fBox.width();

    if (marginWidth <= 0 || len == 0) {
        return fBox.top();
    }

    const char* textStop = text + len;

    SkScalar                x, y, scaledSpacing, height, fontHeight;
    SkPaint::FontMetrics    metrics;

    switch (paint.getTextAlign()) {
    case SkPaint::kLeft_Align:
        x = 0;
        break;
    case SkPaint::kCenter_Align:
        x = SkScalarHalf(marginWidth);
        break;
    default:
        x = marginWidth;
        break;
    }
    x += fBox.fLeft;

    fontHeight = paint.getFontMetrics(&metrics);
    scaledSpacing = SkScalarMul(fontHeight, fSpacingMul) + fSpacingAdd;
    height = fBox.height();

    //  compute Y position for first line
    {
        SkScalar textHeight = fontHeight;

        if (fMode == kLineBreak_Mode && fSpacingAlign != kStart_SpacingAlign) {
            int count = SkTextLineBreaker::CountLines(text, textStop - text, paint, marginWidth);
            SkASSERT(count > 0);
            textHeight += scaledSpacing * (count - 1);
        }

        switch (fSpacingAlign) {
        case kStart_SpacingAlign:
            y = 0;
            break;
        case kCenter_SpacingAlign:
            y = SkScalarHalf(height - textHeight);
            break;
        default:
            SkASSERT(fSpacingAlign == kEnd_SpacingAlign);
            y = height - textHeight;
            break;
        }
        y += fBox.fTop - metrics.fAscent;
    }

    for (;;) {
        size_t trailing;
        len = linebreak(text, textStop, paint, marginWidth, &trailing);
        if (y + metrics.fDescent + metrics.fLeading > 0) {
            visitor(text, len - trailing, x, y, paint);
        }
        text += len;
        if (text >= textStop) {
            break;
        }
        y += scaledSpacing;
        if (y + metrics.fAscent >= fBox.fBottom) {
            break;
        }
    }
    return y + metrics.fDescent + metrics.fLeading;
}
void GrStencilAndCoverTextContext::onDrawText(GrDrawContext* drawContext, GrRenderTarget* rt,
                                              const GrClip& clip,
                                              const GrPaint& paint,
                                              const SkPaint& skPaint,
                                              const SkMatrix& viewMatrix,
                                              const char text[],
                                              size_t byteLength,
                                              SkScalar x, SkScalar y,
                                              const SkIRect& regionClipBounds) {
    SkASSERT(byteLength == 0 || text != NULL);

    if (text == NULL || byteLength == 0 /*|| fRC->isEmpty()*/) {
        return;
    }

    // This is the slow path, mainly used by Skia unit tests.  The other
    // backends (8888, gpu, ...) use device-space dependent glyph caches. In
    // order to match the glyph positions that the other code paths produce, we
    // must also use device-space dependent glyph cache. This has the
    // side-effect that the glyph shape outline will be in device-space,
    // too. This in turn has the side-effect that NVPR can not stroke the paths,
    // as the stroke in NVPR is defined in object-space.
    // NOTE: here we have following coincidence that works at the moment:
    // - When using the device-space glyphs, the transforms we pass to NVPR
    // instanced drawing are the global transforms, and the view transform is
    // identity. NVPR can not use non-affine transforms in the instanced
    // drawing. This is taken care of by SkDraw::ShouldDrawTextAsPaths since it
    // will turn off the use of device-space glyphs when perspective transforms
    // are in use.

    this->init(rt, clip, paint, skPaint, byteLength, kMaxAccuracy_RenderMode, viewMatrix,
               regionClipBounds);

    // Transform our starting point.
    if (fUsingDeviceSpaceGlyphs) {
        SkPoint loc;
        fContextInitialMatrix.mapXY(x, y, &loc);
        x = loc.fX;
        y = loc.fY;
    }

    SkDrawCacheProc glyphCacheProc = fSkPaint.getDrawCacheProc();

    const char* stop = text + byteLength;

    // Measure first if needed.
    if (fSkPaint.getTextAlign() != SkPaint::kLeft_Align) {
        SkFixed    stopX = 0;
        SkFixed    stopY = 0;

        const char* textPtr = text;
        while (textPtr < stop) {
            // We don't need x, y here, since all subpixel variants will have the
            // same advance.
            const SkGlyph& glyph = glyphCacheProc(fGlyphCache, &textPtr, 0, 0);

            stopX += glyph.fAdvanceX;
            stopY += glyph.fAdvanceY;
        }
        SkASSERT(textPtr == stop);

        SkScalar alignX = SkFixedToScalar(stopX) * fTextRatio;
        SkScalar alignY = SkFixedToScalar(stopY) * fTextRatio;

        if (fSkPaint.getTextAlign() == SkPaint::kCenter_Align) {
            alignX = SkScalarHalf(alignX);
            alignY = SkScalarHalf(alignY);
        }

        x -= alignX;
        y -= alignY;
    }

    SkAutoKern autokern;

    SkFixed fixedSizeRatio = SkScalarToFixed(fTextRatio);

    SkFixed fx = SkScalarToFixed(x);
    SkFixed fy = SkScalarToFixed(y);
    while (text < stop) {
        const SkGlyph& glyph = glyphCacheProc(fGlyphCache, &text, 0, 0);
        fx += SkFixedMul(autokern.adjust(glyph), fixedSizeRatio);
        if (glyph.fWidth) {
            this->appendGlyph(drawContext, glyph, 
                              SkPoint::Make(SkFixedToScalar(fx), SkFixedToScalar(fy)));
        }

        fx += SkFixedMul(glyph.fAdvanceX, fixedSizeRatio);
        fy += SkFixedMul(glyph.fAdvanceY, fixedSizeRatio);
    }

    this->finish(drawContext);
}
void GrBitmapTextContext::onDrawText(GrRenderTarget* rt, const GrClip& clip,
                                     const GrPaint& paint, const SkPaint& skPaint,
                                     const SkMatrix& viewMatrix,
                                     const char text[], size_t byteLength,
                                     SkScalar x, SkScalar y) {
    SkASSERT(byteLength == 0 || text != NULL);

    // nothing to draw
    if (text == NULL || byteLength == 0 /*|| fRC->isEmpty()*/) {
        return;
    }

    this->init(rt, clip, paint, skPaint);

    SkDrawCacheProc glyphCacheProc = fSkPaint.getDrawCacheProc();

    SkAutoGlyphCache    autoCache(fSkPaint, &fDeviceProperties, &viewMatrix);
    SkGlyphCache*       cache = autoCache.getCache();
    GrFontScaler*       fontScaler = GetGrFontScaler(cache);

    // transform our starting point
    {
        SkPoint loc;
        viewMatrix.mapXY(x, y, &loc);
        x = loc.fX;
        y = loc.fY;
    }

    // need to measure first
    int numGlyphs;
    if (fSkPaint.getTextAlign() != SkPaint::kLeft_Align) {
        SkVector    stopVector;
        numGlyphs = MeasureText(cache, glyphCacheProc, text, byteLength, &stopVector);

        SkScalar    stopX = stopVector.fX;
        SkScalar    stopY = stopVector.fY;

        if (fSkPaint.getTextAlign() == SkPaint::kCenter_Align) {
            stopX = SkScalarHalf(stopX);
            stopY = SkScalarHalf(stopY);
        }
        x -= stopX;
        y -= stopY;
    } else {
        numGlyphs = fSkPaint.textToGlyphs(text, byteLength, NULL);
    }
    fTotalVertexCount = kVerticesPerGlyph*numGlyphs;

    const char* stop = text + byteLength;

    SkAutoKern autokern;

    SkFixed fxMask = ~0;
    SkFixed fyMask = ~0;
    SkScalar halfSampleX, halfSampleY;
    if (cache->isSubpixel()) {
        halfSampleX = halfSampleY = SkFixedToScalar(SkGlyph::kSubpixelRound);
        SkAxisAlignment baseline = SkComputeAxisAlignmentForHText(viewMatrix);
        if (kX_SkAxisAlignment == baseline) {
            fyMask = 0;
            halfSampleY = SK_ScalarHalf;
        } else if (kY_SkAxisAlignment == baseline) {
            fxMask = 0;
            halfSampleX = SK_ScalarHalf;
        }
    } else {
        halfSampleX = halfSampleY = SK_ScalarHalf;
    }

    Sk48Dot16 fx = SkScalarTo48Dot16(x + halfSampleX);
    Sk48Dot16 fy = SkScalarTo48Dot16(y + halfSampleY);

    // if we have RGB, then we won't have any SkShaders so no need to use a localmatrix, but for
    // performance reasons we just invert here instead
    if (!viewMatrix.invert(&fLocalMatrix)) {
        SkDebugf("Cannot invert viewmatrix\n");
        return;
    }

    while (text < stop) {
        const SkGlyph& glyph = glyphCacheProc(cache, &text, fx & fxMask, fy & fyMask);

        fx += autokern.adjust(glyph);

        if (glyph.fWidth) {
            this->appendGlyph(GrGlyph::Pack(glyph.getGlyphID(),
                                            glyph.getSubXFixed(),
                                            glyph.getSubYFixed(),
                                            GrGlyph::kCoverage_MaskStyle),
                              Sk48Dot16FloorToInt(fx),
                              Sk48Dot16FloorToInt(fy),
                              fontScaler);
        }

        fx += glyph.fAdvanceX;
        fy += glyph.fAdvanceY;
    }

    this->finish();
}
Exemple #25
0
// Test out the basic API entry points
static void test_round_rect_basic(skiatest::Reporter* reporter) {
    // Test out initialization methods
    SkPoint zeroPt = { 0, 0 };
    SkRRect empty;

    empty.setEmpty();

    REPORTER_ASSERT(reporter, SkRRect::kEmpty_Type == empty.type());
    REPORTER_ASSERT(reporter, empty.rect().isEmpty());

    for (int i = 0; i < 4; ++i) {
        REPORTER_ASSERT(reporter, zeroPt == empty.radii((SkRRect::Corner) i));
    }

    //----
    SkRect rect = SkRect::MakeLTRB(0, 0, kWidth, kHeight);

    SkRRect rr1;
    rr1.setRect(rect);

    REPORTER_ASSERT(reporter, SkRRect::kRect_Type == rr1.type());
    REPORTER_ASSERT(reporter, rr1.rect() == rect);

    for (int i = 0; i < 4; ++i) {
        REPORTER_ASSERT(reporter, zeroPt == rr1.radii((SkRRect::Corner) i));
    }

    //----
    SkPoint halfPoint = { SkScalarHalf(kWidth), SkScalarHalf(kHeight) };
    SkRRect rr2;
    rr2.setOval(rect);

    REPORTER_ASSERT(reporter, SkRRect::kOval_Type == rr2.type());
    REPORTER_ASSERT(reporter, rr2.rect() == rect);

    for (int i = 0; i < 4; ++i) {
        REPORTER_ASSERT(reporter,
                        rr2.radii((SkRRect::Corner) i).equalsWithinTolerance(halfPoint));
    }

    //----
    SkPoint p = { 5, 5 };
    SkRRect rr3;
    rr3.setRectXY(rect, p.fX, p.fY);

    REPORTER_ASSERT(reporter, SkRRect::kSimple_Type == rr3.type());
    REPORTER_ASSERT(reporter, rr3.rect() == rect);

    for (int i = 0; i < 4; ++i) {
        REPORTER_ASSERT(reporter, p == rr3.radii((SkRRect::Corner) i));
    }

    //----
    SkPoint radii[4] = { { 5, 5 }, { 5, 5 }, { 5, 5 }, { 5, 5 } };

    SkRRect rr4;
    rr4.setRectRadii(rect, radii);

    REPORTER_ASSERT(reporter, SkRRect::kSimple_Type == rr4.type());
    REPORTER_ASSERT(reporter, rr4.rect() == rect);

    for (int i = 0; i < 4; ++i) {
        REPORTER_ASSERT(reporter, radii[i] == rr4.radii((SkRRect::Corner) i));
    }

    //----
    SkPoint radii2[4] = { { 0, 0 }, { 0, 0 }, { 50, 50 }, { 20, 50 } };

    SkRRect rr5;
    rr5.setRectRadii(rect, radii2);

    REPORTER_ASSERT(reporter, SkRRect::kComplex_Type == rr5.type());
    REPORTER_ASSERT(reporter, rr5.rect() == rect);

    for (int i = 0; i < 4; ++i) {
        REPORTER_ASSERT(reporter, radii2[i] == rr5.radii((SkRRect::Corner) i));
    }

    // Test out == & !=
    REPORTER_ASSERT(reporter, empty != rr3);
    REPORTER_ASSERT(reporter, rr3 == rr4);
    REPORTER_ASSERT(reporter, rr4 != rr5);
}
bool GrStrokePathRenderer::onDrawPath(const SkPath& origPath,
                                      const SkStrokeRec& stroke,
                                      GrDrawTarget* target,
                                      bool antiAlias) {
    if (origPath.isEmpty()) {
        return true;
    }

    SkScalar width = stroke.getWidth();
    if (width <= 0) {
        return false;
    }

    // Get the join type
    SkPaint::Join join = stroke.getJoin();
    SkScalar miterLimit = stroke.getMiter();
    SkScalar sqMiterLimit = SkScalarMul(miterLimit, miterLimit);
    if ((join == SkPaint::kMiter_Join) && (miterLimit <= SK_Scalar1)) {
        // If the miter limit is small, treat it as a bevel join
        join = SkPaint::kBevel_Join;
    }
    const bool isMiter       = (join == SkPaint::kMiter_Join);
    const bool isBevel       = (join == SkPaint::kBevel_Join);
    SkScalar invMiterLimit   = isMiter ? SK_Scalar1 / miterLimit : 0;
    SkScalar invMiterLimitSq = SkScalarMul(invMiterLimit, invMiterLimit);

    // Allocate vertices
    const int nbQuads     = origPath.countPoints() + 1; // Could be "-1" if path is not closed
    const int extraVerts  = isMiter || isBevel ? 1 : 0;
    const int maxVertexCount = nbQuads * (4 + extraVerts);
    const int maxIndexCount  = nbQuads * (6 + extraVerts * 3); // Each extra vert adds a triangle
    target->drawState()->setDefaultVertexAttribs();
    GrDrawTarget::AutoReleaseGeometry arg(target, maxVertexCount, maxIndexCount);
    if (!arg.succeeded()) {
        return false;
    }
    SkPoint* verts = reinterpret_cast<SkPoint*>(arg.vertices());
    uint16_t* idxs = reinterpret_cast<uint16_t*>(arg.indices());
    int vCount = 0, iCount = 0;

    // Transform the path into a list of triangles
    SkPath::Iter iter(origPath, false);
    SkPoint pts[4];
    const SkScalar radius = SkScalarMul(width, 0.5f);
    SkPoint *firstPt = verts, *lastPt = NULL;
    SkVector firstDir, dir;
    firstDir.set(0, 0);
    dir.set(0, 0);
    bool isOpen = true;
    for(SkPath::Verb v = iter.next(pts); v != SkPath::kDone_Verb; v = iter.next(pts)) {
        switch(v) {
            case SkPath::kMove_Verb:
                // This will already be handled as pts[0] of the 1st line
                break;
            case SkPath::kClose_Verb:
                isOpen = (lastPt == NULL);
                break;
            case SkPath::kLine_Verb:
            {
                SkVector v0 = dir;
                dir = pts[1] - pts[0];
                if (dir.setLength(radius)) {
                    SkVector dirT;
                    dirT.set(dir.fY, -dir.fX); // Get perpendicular direction
                    SkPoint l1a = pts[0]+dirT, l1b = pts[1]+dirT,
                            l2a = pts[0]-dirT, l2b = pts[1]-dirT;
                    SkPoint miterPt[2];
                    bool useMiterPoint = false;
                    int idx0(-1), idx1(-1);
                    if (NULL == lastPt) {
                        firstDir = dir;
                    } else {
                        SkVector v1 = dir;
                        if (v0.normalize() && v1.normalize()) {
                            SkScalar dotProd = v0.dot(v1);
                            // No need for bevel or miter join if the angle
                            // is either 0 or 180 degrees
                            if (!SkScalarNearlyZero(dotProd + SK_Scalar1) &&
                                !SkScalarNearlyZero(dotProd - SK_Scalar1)) {
                                bool ccw = !is_clockwise(v0, v1);
                                int offset = ccw ? 1 : 0;
                                idx0 = vCount-2+offset;
                                idx1 = vCount+offset;
                                const SkPoint* pt0 = &(lastPt[offset]);
                                const SkPoint* pt1 = ccw ? &l2a : &l1a;
                                switch(join) {
                                    case SkPaint::kMiter_Join:
                                    {
                                        // *Note : Logic is from MiterJoiner

                                        // FIXME : Special case if we have a right angle ?
                                        // if (SkScalarNearlyZero(dotProd)) {...}

                                        SkScalar sinHalfAngleSq =
                                                SkScalarHalf(SK_Scalar1 + dotProd);
                                        if (sinHalfAngleSq >= invMiterLimitSq) {
                                            // Find the miter point (or points if it is further
                                            // than the miter limit)
                                            const SkPoint pt2 = *pt0+v0, pt3 = *pt1+v1;
                                            if (intersection(*pt0, pt2, *pt1, pt3, miterPt[0]) !=
                                                kNone_IntersectionType) {
                                                SkPoint miterPt0 = miterPt[0] - *pt0;
                                                SkPoint miterPt1 = miterPt[0] - *pt1;
                                                SkScalar sqDist0 = miterPt0.dot(miterPt0);
                                                SkScalar sqDist1 = miterPt1.dot(miterPt1);
                                                const SkScalar rSq =
                                                        SkScalarDiv(SkScalarMul(radius, radius),
                                                                    sinHalfAngleSq);
                                                const SkScalar sqRLimit =
                                                        SkScalarMul(sqMiterLimit, rSq);
                                                if (sqDist0 > sqRLimit || sqDist1 > sqRLimit) {
                                                    if (sqDist1 > sqRLimit) {
                                                        v1.setLength(SkScalarSqrt(sqRLimit));
                                                        miterPt[1] = *pt1+v1;
                                                    } else {
                                                        miterPt[1] = miterPt[0];
                                                    }
                                                    if (sqDist0 > sqRLimit) {
                                                        v0.setLength(SkScalarSqrt(sqRLimit));
                                                        miterPt[0] = *pt0+v0;
                                                    }
                                                } else {
                                                    miterPt[1] = miterPt[0];
                                                }
                                                useMiterPoint = true;
                                            }
                                        }
                                        if (useMiterPoint && (miterPt[1] == miterPt[0])) {
                                            break;
                                        }
                                    }
                                    default:
                                    case SkPaint::kBevel_Join:
                                    {
                                        // Note : This currently causes some overdraw where both
                                        //        lines initially intersect. We'd need to add
                                        //        another line intersection check here if the
                                        //        overdraw becomes an issue instead of using the
                                        //        current point directly.

                                        // Add center point
                                        *verts++ = pts[0]; // Use current point directly
                                        // This idx is passed the current point so increment it
                                        ++idx1;
                                        // Add center triangle
                                        *idxs++ = idx0;
                                        *idxs++ = vCount;
                                        *idxs++ = idx1;
                                        vCount++;
                                        iCount += 3;
                                    }
                                    break;
                                }
                            }
                        }
                    }
                    *verts++ = l1a;
                    *verts++ = l2a;
                    lastPt   = verts;
                    *verts++ = l1b;
                    *verts++ = l2b;

                    if (useMiterPoint && (idx0 >= 0) && (idx1 >= 0)) {
                        firstPt[idx0] = miterPt[0];
                        firstPt[idx1] = miterPt[1];
                    }

                    // 1st triangle
                    *idxs++  = vCount+0;
                    *idxs++  = vCount+2;
                    *idxs++  = vCount+1;
                    // 2nd triangle
                    *idxs++  = vCount+1;
                    *idxs++  = vCount+2;
                    *idxs++  = vCount+3;

                    vCount += 4;
                    iCount += 6;
                }
            }
                break;
            case SkPath::kQuad_Verb:
            case SkPath::kCubic_Verb:
                SkDEBUGFAIL("Curves not supported!");
            default:
                // Unhandled cases
                SkASSERT(false);
        }
    }

    if (isOpen) {
        // Add caps
        switch (stroke.getCap()) {
            case SkPaint::kSquare_Cap:
                firstPt[0] -= firstDir;
                firstPt[1] -= firstDir;
                lastPt [0] += dir;
                lastPt [1] += dir;
                break;
            case SkPaint::kRound_Cap:
                SkDEBUGFAIL("Round caps not supported!");
            default: // No cap
                break;
        }
    }

    SkASSERT(vCount <= maxVertexCount);
    SkASSERT(iCount <= maxIndexCount);

    if (vCount > 0) {
        target->drawIndexed(kTriangles_GrPrimitiveType,
                            0,        // start vertex
                            0,        // start index
                            vCount,
                            iCount);
    }

    return true;
}
Exemple #27
0
    void onOnceBeforeDraw() override {
        {
            SkPath* lineAnglesPath = &fPaths.push_back();
            enum {
                kNumAngles = 15,
                kRadius = 40,
            };
            for (int i = 0; i < kNumAngles; ++i) {
                SkScalar angle = SK_ScalarPI * SkIntToScalar(i) / kNumAngles;
                SkScalar x = kRadius * SkScalarCos(angle);
                SkScalar y = kRadius * SkScalarSin(angle);
                lineAnglesPath->moveTo(x, y);
                lineAnglesPath->lineTo(-x, -y);
            }
        }

        {
            SkPath* kindaTightQuad = &fPaths.push_back();
            kindaTightQuad->moveTo(0, -10 * SK_Scalar1);
            kindaTightQuad->quadTo(SkIntToScalar(100), SkIntToScalar(100), -10 * SK_Scalar1, 0);
        }

        {
            SkPath* tightQuad = &fPaths.push_back();
            tightQuad->moveTo(0, -5 * SK_Scalar1);
            tightQuad->quadTo(SkIntToScalar(100), SkIntToScalar(100), -5 * SK_Scalar1, 0);
        }

        {
            SkPath* tighterQuad = &fPaths.push_back();
            tighterQuad->moveTo(0, -2 * SK_Scalar1);
            tighterQuad->quadTo(SkIntToScalar(100), SkIntToScalar(100), -2 * SK_Scalar1, 0);
        }

        {
            SkPath* unevenTighterQuad = &fPaths.push_back();
            unevenTighterQuad->moveTo(0, -1 * SK_Scalar1);
            SkPoint p;
            p.set(-2 * SK_Scalar1 + 3 * SkIntToScalar(102) / 4, SkIntToScalar(75));
            unevenTighterQuad->quadTo(SkIntToScalar(100), SkIntToScalar(100), p.fX, p.fY);
        }

        {
            SkPath* reallyTightQuad = &fPaths.push_back();
            reallyTightQuad->moveTo(0, -1 * SK_Scalar1);
            reallyTightQuad->quadTo(SkIntToScalar(100), SkIntToScalar(100), -1 * SK_Scalar1, 0);
        }

        {
            SkPath* closedQuad = &fPaths.push_back();
            closedQuad->moveTo(0, -0);
            closedQuad->quadTo(SkIntToScalar(100), SkIntToScalar(100), 0, 0);
        }

        {
            SkPath* unevenClosedQuad = &fPaths.push_back();
            unevenClosedQuad->moveTo(0, -0);
            unevenClosedQuad->quadTo(SkIntToScalar(100), SkIntToScalar(100),
                                     SkIntToScalar(75), SkIntToScalar(75));
        }

        // Two problem cases for gpu hairline renderer found by shapeops testing. These used
        // to assert that the computed bounding box didn't contain all the vertices.
        {
            SkPath* problem1 = &fPaths.push_back();
            problem1->moveTo(SkIntToScalar(4), SkIntToScalar(6));
            problem1->cubicTo(SkIntToScalar(5), SkIntToScalar(6),
                              SkIntToScalar(5), SkIntToScalar(4),
                              SkIntToScalar(4), SkIntToScalar(0));
            problem1->close();
        }

        {
            SkPath* problem2 = &fPaths.push_back();
            problem2->moveTo(SkIntToScalar(5), SkIntToScalar(1));
            problem2->lineTo(4.32787323f, 1.67212653f);
            problem2->cubicTo(2.75223875f, 3.24776125f,
                              3.00581908f, 4.51236057f,
                              3.7580452f, 4.37367964f);
            problem2->cubicTo(4.66472578f, 3.888381f,
                              5.f, 2.875f,
                              5.f, 1.f);
            problem2->close();
        }

        // Three paths that show the same bug (missing end caps)
        {
            // A caret (crbug.com/131770)
            SkPath* bug0 = &fPaths.push_back();
            bug0->moveTo(6.5f,5.5f);
            bug0->lineTo(3.5f,0.5f);
            bug0->moveTo(0.5f,5.5f);
            bug0->lineTo(3.5f,0.5f);
        }

        {
            // An X (crbug.com/137317)
            SkPath* bug1 = &fPaths.push_back();

            bug1->moveTo(1, 1);
            bug1->lineTo(6, 6);
            bug1->moveTo(1, 6);
            bug1->lineTo(6, 1);
        }

        {
            // A right angle (crbug.com/137465 and crbug.com/256776)
            SkPath* bug2 = &fPaths.push_back();

            bug2->moveTo(5.5f, 5.5f);
            bug2->lineTo(5.5f, 0.5f);
            bug2->lineTo(0.5f, 0.5f);
        }

        {
            // Arc example to test imperfect truncation bug (crbug.com/295626)
            static const SkScalar kRad = SkIntToScalar(2000);
            static const SkScalar kStartAngle = 262.59717f;
            static const SkScalar kSweepAngle = SkScalarHalf(17.188717f);

            SkPath* bug = &fPaths.push_back();

            // Add a circular arc
            SkRect circle = SkRect::MakeLTRB(-kRad, -kRad, kRad, kRad);
            bug->addArc(circle, kStartAngle, kSweepAngle);

            // Now add the chord that should cap the circular arc
            SkScalar cosV, sinV = SkScalarSinCos(SkDegreesToRadians(kStartAngle), &cosV);

            SkPoint p0 = SkPoint::Make(kRad * cosV, kRad * sinV);

            sinV = SkScalarSinCos(SkDegreesToRadians(kStartAngle + kSweepAngle), &cosV);

            SkPoint p1 = SkPoint::Make(kRad * cosV, kRad * sinV);

            bug->moveTo(p0);
            bug->lineTo(p1);
        }
    }
void PlatformGraphicsContextSkia::drawLine(const IntPoint& point1,
                                       const IntPoint& point2)
{
    StrokeStyle style = m_state->strokeStyle;
    if (style == NoStroke)
        return;

    SkPaint paint;
    SkCanvas* canvas = mCanvas;
    const int idx = SkAbs32(point2.x() - point1.x());
    const int idy = SkAbs32(point2.y() - point1.y());

    // Special-case horizontal and vertical lines that are really just dots
    if (setupPaintStroke(&paint, 0, !idy) && (!idx || !idy)) {
        const SkScalar diameter = paint.getStrokeWidth();
        const SkScalar radius = SkScalarHalf(diameter);
        SkScalar x = SkIntToScalar(SkMin32(point1.x(), point2.x()));
        SkScalar y = SkIntToScalar(SkMin32(point1.y(), point2.y()));
        SkScalar dx, dy;
        int count;
        SkRect bounds;

        if (!idy) { // Horizontal
            bounds.set(x, y - radius, x + SkIntToScalar(idx), y + radius);
            x += radius;
            dx = diameter * 2;
            dy = 0;
            count = idx;
        } else { // Vertical
            bounds.set(x - radius, y, x + radius, y + SkIntToScalar(idy));
            y += radius;
            dx = 0;
            dy = diameter * 2;
            count = idy;
        }

        // The actual count is the number of ONs we hit alternating
        // ON(diameter), OFF(diameter), ...
        {
            SkScalar width = SkScalarDiv(SkIntToScalar(count), diameter);
            // Now compute the number of cells (ON and OFF)
            count = SkScalarRound(width);
            // Now compute the number of ONs
            count = (count + 1) >> 1;
        }

        SkAutoMalloc storage(count * sizeof(SkPoint));
        SkPoint* verts = (SkPoint*)storage.get();
        // Now build the array of vertices to past to drawPoints
        for (int i = 0; i < count; i++) {
            verts[i].set(x, y);
            x += dx;
            y += dy;
        }

        paint.setStyle(SkPaint::kFill_Style);
        paint.setPathEffect(0);

        // Clipping to bounds is not required for correctness, but it does
        // allow us to reject the entire array of points if we are completely
        // offscreen. This is common in a webpage for android, where most of
        // the content is clipped out. If drawPoints took an (optional) bounds
        // parameter, that might even be better, as we would *just* use it for
        // culling, and not both wacking the canvas' save/restore stack.
        canvas->save(SkCanvas::kClip_SaveFlag);
        canvas->clipRect(bounds);
        canvas->drawPoints(SkCanvas::kPoints_PointMode, count, verts, paint);
        canvas->restore();
    } else {
// Currently asPoints is more restrictive then it needs to be. In the future
// we need to:
//      allow kRound_Cap capping (could allow rotations in the matrix with this)
//      allow paths to be returned
bool SkDashPathEffect::asPoints(PointData* results,
                                const SkPath& src,
                                const SkStrokeRec& rec,
                                const SkMatrix& matrix,
                                const SkRect* cullRect) const {
    // width < 0 -> fill && width == 0 -> hairline so requiring width > 0 rules both out
    if (fInitialDashLength < 0 || 0 >= rec.getWidth()) {
        return false;
    }

    // TODO: this next test could be eased up. We could allow any number of
    // intervals as long as all the ons match and all the offs match.
    // Additionally, they do not necessarily need to be integers.
    // We cannot allow arbitrary intervals since we want the returned points
    // to be uniformly sized.
    if (fCount != 2 ||
        !SkScalarNearlyEqual(fIntervals[0], fIntervals[1]) ||
        !SkScalarIsInt(fIntervals[0]) ||
        !SkScalarIsInt(fIntervals[1])) {
        return false;
    }

    SkPoint pts[2];

    if (!src.isLine(pts)) {
        return false;
    }

    // TODO: this test could be eased up to allow circles
    if (SkPaint::kButt_Cap != rec.getCap()) {
        return false;
    }

    // TODO: this test could be eased up for circles. Rotations could be allowed.
    if (!matrix.rectStaysRect()) {
        return false;
    }

    // See if the line can be limited to something plausible.
    if (!cull_line(pts, rec, matrix, cullRect, fIntervalLength)) {
        return false;
    }

    SkScalar length = SkPoint::Distance(pts[1], pts[0]);

    SkVector tangent = pts[1] - pts[0];
    if (tangent.isZero()) {
        return false;
    }

    tangent.scale(SkScalarInvert(length));

    // TODO: make this test for horizontal & vertical lines more robust
    bool isXAxis = true;
    if (SkScalarNearlyEqual(SK_Scalar1, tangent.fX) ||
        SkScalarNearlyEqual(-SK_Scalar1, tangent.fX)) {
        results->fSize.set(SkScalarHalf(fIntervals[0]), SkScalarHalf(rec.getWidth()));
    } else if (SkScalarNearlyEqual(SK_Scalar1, tangent.fY) ||
               SkScalarNearlyEqual(-SK_Scalar1, tangent.fY)) {
        results->fSize.set(SkScalarHalf(rec.getWidth()), SkScalarHalf(fIntervals[0]));
        isXAxis = false;
    } else if (SkPaint::kRound_Cap != rec.getCap()) {
        // Angled lines don't have axis-aligned boxes.
        return false;
    }

    if (results) {
        results->fFlags = 0;
        SkScalar clampedInitialDashLength = SkMinScalar(length, fInitialDashLength);

        if (SkPaint::kRound_Cap == rec.getCap()) {
            results->fFlags |= PointData::kCircles_PointFlag;
        }

        results->fNumPoints = 0;
        SkScalar len2 = length;
        if (clampedInitialDashLength > 0 || 0 == fInitialDashIndex) {
            SkASSERT(len2 >= clampedInitialDashLength);
            if (0 == fInitialDashIndex) {
                if (clampedInitialDashLength > 0) {
                    if (clampedInitialDashLength >= fIntervals[0]) {
                        ++results->fNumPoints;  // partial first dash
                    }
                    len2 -= clampedInitialDashLength;
                }
                len2 -= fIntervals[1];  // also skip first space
                if (len2 < 0) {
                    len2 = 0;
                }
            } else {
                len2 -= clampedInitialDashLength; // skip initial partial empty
            }
        }
        int numMidPoints = SkScalarFloorToInt(len2 / fIntervalLength);
        results->fNumPoints += numMidPoints;
        len2 -= numMidPoints * fIntervalLength;
        bool partialLast = false;
        if (len2 > 0) {
            if (len2 < fIntervals[0]) {
                partialLast = true;
            } else {
                ++numMidPoints;
                ++results->fNumPoints;
            }
        }

        results->fPoints = new SkPoint[results->fNumPoints];

        SkScalar    distance = 0;
        int         curPt = 0;

        if (clampedInitialDashLength > 0 || 0 == fInitialDashIndex) {
            SkASSERT(clampedInitialDashLength <= length);

            if (0 == fInitialDashIndex) {
                if (clampedInitialDashLength > 0) {
                    // partial first block
                    SkASSERT(SkPaint::kRound_Cap != rec.getCap()); // can't handle partial circles
                    SkScalar x = pts[0].fX + SkScalarMul(tangent.fX, SkScalarHalf(clampedInitialDashLength));
                    SkScalar y = pts[0].fY + SkScalarMul(tangent.fY, SkScalarHalf(clampedInitialDashLength));
                    SkScalar halfWidth, halfHeight;
                    if (isXAxis) {
                        halfWidth = SkScalarHalf(clampedInitialDashLength);
                        halfHeight = SkScalarHalf(rec.getWidth());
                    } else {
                        halfWidth = SkScalarHalf(rec.getWidth());
                        halfHeight = SkScalarHalf(clampedInitialDashLength);
                    }
                    if (clampedInitialDashLength < fIntervals[0]) {
                        // This one will not be like the others
                        results->fFirst.addRect(x - halfWidth, y - halfHeight,
                                                x + halfWidth, y + halfHeight);
                    } else {
                        SkASSERT(curPt < results->fNumPoints);
                        results->fPoints[curPt].set(x, y);
                        ++curPt;
                    }

                    distance += clampedInitialDashLength;
                }

                distance += fIntervals[1];  // skip over the next blank block too
            } else {
                distance += clampedInitialDashLength;
            }
        }

        if (0 != numMidPoints) {
            distance += SkScalarHalf(fIntervals[0]);

            for (int i = 0; i < numMidPoints; ++i) {
                SkScalar x = pts[0].fX + SkScalarMul(tangent.fX, distance);
                SkScalar y = pts[0].fY + SkScalarMul(tangent.fY, distance);

                SkASSERT(curPt < results->fNumPoints);
                results->fPoints[curPt].set(x, y);
                ++curPt;

                distance += fIntervalLength;
            }

            distance -= SkScalarHalf(fIntervals[0]);
        }

        if (partialLast) {
            // partial final block
            SkASSERT(SkPaint::kRound_Cap != rec.getCap()); // can't handle partial circles
            SkScalar temp = length - distance;
            SkASSERT(temp < fIntervals[0]);
            SkScalar x = pts[0].fX + SkScalarMul(tangent.fX, distance + SkScalarHalf(temp));
            SkScalar y = pts[0].fY + SkScalarMul(tangent.fY, distance + SkScalarHalf(temp));
            SkScalar halfWidth, halfHeight;
            if (isXAxis) {
                halfWidth = SkScalarHalf(temp);
                halfHeight = SkScalarHalf(rec.getWidth());
            } else {
                halfWidth = SkScalarHalf(rec.getWidth());
                halfHeight = SkScalarHalf(temp);
            }
            results->fLast.addRect(x - halfWidth, y - halfHeight,
                                   x + halfWidth, y + halfHeight);
        }

        SkASSERT(curPt == results->fNumPoints);
    }

    return true;
}
void RenderSkinMediaButton::Draw(SkCanvas* canvas, const IntRect& r,
                                 MediaButton buttonType, bool translucent,
                                 bool drawBackground, const IntRect& thumb)//4.2 Merge
{
    if (!gDecoded) {
        Decode();
    }

    if (!canvas)
        return;

    // If we failed to decode, do nothing.  This way the browser still works,
    // and webkit will still draw the label and layout space for us.
    if (gDecodingFailed)
        return;

    bool drawsNinePatch = false;
    bool drawsImage = true;

    int ninePatchIndex = 0;
    int imageIndex = 0;

    SkRect bounds(r);
    SkScalar imageMargin = 8;
    SkPaint paint;

    int alpha = 255;
    if (translucent)
        alpha = 190;

    SkColor backgroundColor = SkColorSetARGB(alpha, 34, 34, 34);
    SkColor trackBackgroundColor = SkColorSetARGB(255, 100, 100, 100);
    paint.setColor(backgroundColor);
//Android KITKAT Merge  - START
//    paint.setFlags(SkPaint::kFilterBitmap_Flag);
    //P140210-04273 : 
    // In D2 Device if we pass kMedium_FilterLevel image gets corrupted while drawing the image into the canvas. So loading icons was corrupting
    // kLow_FilterLevel works for other kitkat devices.
    //WAS paint.setFilterLevel(SkPaint::kMedium_FilterLevel);
    paint.setFilterLevel(SkPaint::kLow_FilterLevel);	
//Android KITKAT Merge  - END


    switch (buttonType) {
    case PAUSE:
    case PLAY:
    case MUTE:
    case REWIND:
    case FORWARD:
    case FULLSCREEN:
    {
         imageIndex = buttonType + 1;
         paint.setColor(backgroundColor);
         break;
    }
    case SPINNER_OUTER:
    case SPINNER_INNER:
    case VIDEO:
    {
         imageIndex = buttonType + 1;
         break;
    }
    case BACKGROUND_SLIDER:
    {
         drawsImage = false;
         break;
    }
    case SLIDER_TRACK:
    {
         drawsNinePatch = true;
         drawsImage = false;
         ninePatchIndex = buttonType + 1;
         break;
    }
    case SLIDER_THUMB:
    {
         imageMargin = 0;
         imageIndex = buttonType + 1;
         break;
    }
    default:
         return;
    }

    if (drawBackground) {
        canvas->drawRect(r, paint);
    }

    if (drawsNinePatch) {
        const PatchData& pd = gFiles[ninePatchIndex];
        int marginValue = pd.margin + pd.outset;

        SkIRect margin;
        margin.set(marginValue, marginValue, marginValue, marginValue);
        if (buttonType == SLIDER_TRACK) {
            // Cut the height in half (with some extra slop determined by trial
            // and error to get the placement just right.
            SkScalar quarterHeight = SkScalarHalf(SkScalarHalf(bounds.height()));
            bounds.fTop += quarterHeight + SkScalarHalf(3);
            bounds.fBottom += -quarterHeight + SK_ScalarHalf;
            if (!thumb.isEmpty()) {//4.2 Merge
                // Inset the track by half the width of the thumb, so the track
                // does not appear to go beyond the space where the thumb can
                // be.
                SkScalar thumbHalfWidth = SkIntToScalar(thumb.width()/2);
                bounds.fLeft += thumbHalfWidth;
                bounds.fRight -= thumbHalfWidth;
                if (thumb.x() > 0) {
                    // The video is past the starting point.  Show the area to
                    // left of the thumb as having been played.
                    SkScalar alreadyPlayed = SkIntToScalar(thumb.center().x() + r.x());
                    SkRect playedRect(bounds);
                    playedRect.fRight = alreadyPlayed;
                    SkNinePatch::DrawNine(canvas, playedRect, gButton[0], margin);
                    bounds.fLeft = alreadyPlayed;
                }

            }
        }
        SkNinePatch::DrawNine(canvas, bounds, gButton[ninePatchIndex], margin);
    }

    if (drawsImage) {
        SkScalar SIZE = gButton[imageIndex].width();
        SkScalar width = r.width();
        SkScalar scale = SkScalarDiv(width - 2*imageMargin, SIZE);
        int saveScaleCount = canvas->save();
        canvas->translate(bounds.fLeft + imageMargin, bounds.fTop + imageMargin);
        canvas->scale(scale, scale);
        canvas->drawBitmap(gButton[imageIndex], 0, 0, &paint);
        canvas->restoreToCount(saveScaleCount);
    }
}