static double path_length(Int_Arraylist *path, int width, int height, double zscale) { if (path->length < 2) { return 0.0; } coordinate_3d_t coord1, coord2; int sub[3]; Stack_Util_Coord(path->array[0], width, height, sub, sub+1, sub+2); Set_Coordinate_3d(coord1, sub[0], sub[1], sub[2]); double dist = 0.0; int k; for (k = 1; k < path->length; k++) { Stack_Util_Coord(path->array[k], width, height, sub, sub+1, sub+2); Set_Coordinate_3d(coord2, sub[0], sub[1], sub[2]); dist += Coordinate_3d_Distance(coord1, coord2); Coordinate_3d_Copy(coord1, coord2); } return dist; }
int Stack_Label_Object_Dist_N(Stack *stack, IMatrix *chord, int seed, int flag, int label, double max_dist, int n_nbr) { BOOL is_owner = FALSE; if (chord == NULL) { chord = Make_3d_IMatrix(stack->width, stack->height, stack->depth); is_owner = TRUE; } else { if (chord->ndim != 3) { THROW(ERROR_DATA_TYPE); } if ((stack->width != chord->dim[0]) || (stack->height != chord->dim[1]) || (stack->depth != chord->dim[2])) { THROW(ERROR_DATA_COMPTB); } } if (flag >= 0) { if (stack->array[seed] != flag) { TZ_WARN(ERROR_OTHER); fprintf(stderr, "The seed does not have the right flag.\n"); return 0; } } int npixel = Get_Stack_Size(stack); int i; int c = seed; /* center pixel */ int nb; /* neighobr pixel */ for (i = 0; i < npixel; i++) { chord->array[i] = -1; } int obj_size = 0; int next = c; BOOL do_label = TRUE; double max_dist_square = max_dist * max_dist; stack->array[seed] = label; int neighbor[26]; Stack_Neighbor_Offset(n_nbr, stack->width, stack->height, neighbor); #define STACK_LABEL_OBJECT_DIST_N_UPDATE_QUEUE \ { \ nb = c + neighbor[i]; \ Stack_Util_Coord(nb, stack->width, stack->height, &nx, &ny, &nz); \ /*process unlabeled white neighbors*/ \ dx = nx - cx; \ dy = ny - cy; \ dz = nz - cz; \ if (dx * dx + dy * dy + dz * dz > max_dist_square) { \ do_label = FALSE; \ } else { \ do_label = TRUE; \ } \ \ if ((((flag < 0) && (stack->array[nb] != label)) || \ (stack->array[nb] == flag)) && \ (chord->array[nb] == -1) && (do_label == TRUE)) { \ chord->array[next] = nb; \ next = nb; \ stack->array[nb] = label; \ } \ } int x, y, z; int cx, cy, cz; int nx, ny, nz; int dx, dy, dz; int is_in_bound[26]; int n_in_bound = 0; int cwidth = stack->width - 1; int cheight = stack->height - 1; int cdepth = stack->depth - 1; Stack_Util_Coord(seed, stack->width, stack->height, &cx, &cy, &cz); do { Stack_Util_Coord(c, stack->width, stack->height, &x, &y, &z); n_in_bound = Stack_Neighbor_Bound_Test(n_nbr, cwidth, cheight, cdepth, x, y, z, is_in_bound); /* add all unlabeled neighbors to the queue*/ if (n_in_bound == n_nbr) { /* no boundary check required */ for (i = 0; i < n_nbr; i++) { STACK_LABEL_OBJECT_DIST_N_UPDATE_QUEUE; } } else { for (i = 0; i < n_nbr; i++) { if (is_in_bound[i]) { STACK_LABEL_OBJECT_DIST_N_UPDATE_QUEUE; } } } c = chord->array[c]; /* move to next voxel */ obj_size++; } while (c >= 0); if (is_owner == TRUE) { Kill_IMatrix(chord); } return obj_size; }
void Stack_Build_Seed_Graph(Stack *stack, int *seed, int nseed, uint8_t **connmat, Objlabel_Workspace *ow) { if (stack->kind != GREY16) { PRINT_EXCEPTION("Unsupported stack kind", "The stack must be GREY16"); return; } STACK_OBJLABEL_OPEN_WORKSPACE(stack, ow); int i, j, k; int nvoxel = Stack_Voxel_Number(stack); if (ow->init_chord == TRUE) { for (i = 0; i < nvoxel; i++) { ow->chord->array[i] = -1; } } uint16 *mask = (uint16 *) stack->array; const int conn = 26; /* each seed has a queue */ int *queue_head = iarray_malloc(nseed); /* queue_head malloced */ int *queue_tail = iarray_malloc(nseed); /* queue_head malloced */ int *queue_length = iarray_malloc(nseed); /* queue_length malloced */ /* At the beginning, each queue has one element, the corresponding seed */ iarraycpy(queue_head, seed, 0, nseed); iarraycpy(queue_tail, seed, 0, nseed); for (i = 0; i < nseed; i++) { queue_length[i] = 1; } int neighbor[26]; int bound[26]; int nbound; int cwidth = stack->width - 1; int cheight = stack->height - 1; int cdepth = stack->depth - 1; BOOL stop = FALSE; int x, y, z; Stack_Neighbor_Offset(conn, stack->width, stack->height, neighbor); #define STACK_SEED_GRAPH_UPDATE_QUEUE(test) \ for (k = 0; k < conn; k++) { \ if (test) { \ int checking_voxel = queue_head[i] + neighbor[k]; \ if ((mask[checking_voxel] > 0) && (mask[checking_voxel] != label)) { \ if (mask[checking_voxel] == 1) { \ ow->chord->array[queue_tail[i]] = checking_voxel; \ queue_tail[i] = checking_voxel; \ mask[checking_voxel] = label; \ queue_length[i]++; \ } else { \ if (mask[checking_voxel] > label) { \ connmat[i][mask[checking_voxel] - 2] = 1; \ } else { \ connmat[mask[checking_voxel] - 2][i] = 1; \ } \ } \ } \ } \ } while (stop == FALSE) { stop = TRUE; for (i = 0; i < nseed; i++) { if (queue_length[i] > 0) { int label = i + 2; for (j = 0; j < queue_length[i]; j++) { Stack_Util_Coord(queue_head[i], stack->width, stack->height, &x, &y, &z); nbound = Stack_Neighbor_Bound_Test(conn, cwidth, cheight, cdepth, x, y, z, bound); if (nbound == conn) { STACK_SEED_GRAPH_UPDATE_QUEUE(1); /* for (k = 0; k < conn; k++) { if (1) { int checking_voxel = queue_head[i] + neighbor[k]; if ((mask[checking_voxel] > 0) && (mask[checking_voxel] != label)) { if (mask[checking_voxel] == 1) { ow->chord->array[queue_tail[i]] = checking_voxel; queue_tail[i] = checking_voxel; mask[checking_voxel] = label; queue_length[i]++; } else { if (mask[checking_voxel] > label) { connmat[mask[checking_voxel] - 2][i] = 1; } else { connmat[i][mask[checking_voxel] - 2] = 1; } } } } } */ } else { STACK_SEED_GRAPH_UPDATE_QUEUE(bound[k]); } } queue_head[i] = ow->chord->array[queue_head[i]]; queue_length[i]--; stop = FALSE; } } } free(queue_head); /* queue_head freed */ free(queue_tail); /* queue_head freed */ free(queue_length); /* queue_length freed */ STACK_OBJLABEL_CLOSE_WORKSPACE(ow); }
int Stack_Label_Object_Level_Nw(Stack *stack, int seed, int flag, int label, Stack *code, int max, Objlabel_Workspace *ow) { STACK_OBJLABEL_OPEN_WORKSPACE(stack, ow); if (stack->array[seed] != flag) { TZ_WARN(ERROR_OTHER); fprintf(stderr, "The seed does not have the right flag.\n"); return 0; } IMatrix *chord = ow->chord; int npixel = Get_Stack_Size(stack); int i; int c = seed; /* center pixel */ int nb; /* neighobr pixel */ for (i = 0; i < npixel; i++) { chord->array[i] = -1; } int obj_size = 0; int next = c; uint16 *code_array = NULL; BOOL do_label = TRUE; if (code != NULL) { code_array = (uint16 *)code->array; } stack->array[seed] = label; int n_nbr = ow->conn; int neighbor[26]; Stack_Neighbor_Offset(n_nbr, stack->width, stack->height, neighbor); int x, y, z; int is_in_bound[26]; int n_in_bound = 0; int cwidth = stack->width - 1; int cheight = stack->height - 1; int cdepth = stack->depth - 1; do { Stack_Util_Coord(c, stack->width, stack->height, &x, &y, &z); n_in_bound = Stack_Neighbor_Bound_Test(n_nbr, cwidth, cheight, cdepth, x, y, z, is_in_bound); /* add all unlabeled neighbors to the queue*/ if (n_in_bound == n_nbr) { /* no boundary check required */ for (i = 0; i < n_nbr; i++) { STACK_LABEL_OBJECT_CONSTRAINT_N_UPDATE_QUEUE(stack->array); } } else { for (i = 0; i < n_nbr; i++) { if (is_in_bound[i]) { STACK_LABEL_OBJECT_CONSTRAINT_N_UPDATE_QUEUE(stack->array); } } } c = chord->array[c]; /* move to next voxel */ obj_size++; if (code == NULL) { if (obj_size >= max) { break; } } } while (c >= 0); STACK_OBJLABEL_CLOSE_WORKSPACE(ow); return obj_size; }
int Stack_Label_Object_Level_N(Stack *stack, IMatrix *chord, int seed, int flag, int label, Stack *code, int max, int n_nbr) { BOOL is_owner = FALSE; if (chord == NULL) { chord = Make_3d_IMatrix(stack->width, stack->height, stack->depth); is_owner = TRUE; } else { if (chord->ndim != 3) { THROW(ERROR_DATA_TYPE); } if ((stack->width != chord->dim[0]) || (stack->height != chord->dim[1]) || (stack->depth != chord->dim[2])) { THROW(ERROR_DATA_COMPTB); } } if (stack->array[seed] != flag) { TZ_WARN(ERROR_OTHER); fprintf(stderr, "The seed does not have the right flag.\n"); return 0; } int npixel = Get_Stack_Size(stack); int i; int c = seed; /* center pixel */ int nb; /* neighobr pixel */ for (i = 0; i < npixel; i++) { chord->array[i] = -1; } int obj_size = 0; int next = c; uint16 *code_array = NULL; BOOL do_label = TRUE; if (code != NULL) { code_array = (uint16 *)code->array; } stack->array[seed] = label; int neighbor[26]; Stack_Neighbor_Offset(n_nbr, stack->width, stack->height, neighbor); int x, y, z; int is_in_bound[26]; int n_in_bound = 0; int cwidth = stack->width - 1; int cheight = stack->height - 1; int cdepth = stack->depth - 1; do { Stack_Util_Coord(c, stack->width, stack->height, &x, &y, &z); n_in_bound = Stack_Neighbor_Bound_Test(n_nbr, cwidth, cheight, cdepth, x, y, z, is_in_bound); /* add all unlabeled neighbors to the queue*/ if (n_in_bound == n_nbr) { /* no boundary check required */ for (i = 0; i < n_nbr; i++) { STACK_LABEL_OBJECT_CONSTRAINT_N_UPDATE_QUEUE(stack->array); } } else { for (i = 0; i < n_nbr; i++) { if (is_in_bound[i]) { STACK_LABEL_OBJECT_CONSTRAINT_N_UPDATE_QUEUE(stack->array); } } } c = chord->array[c]; /* move to next voxel */ obj_size++; if (code == NULL) { if (obj_size >= max) { break; } } } while (c >= 0); if (is_owner == TRUE) { Kill_IMatrix(chord); } return obj_size; }
/** * Stack_Build_Seed_Graph_Gg() allows users to build a seed graph using * approximate geodesdic distances. The workspace should be created by * Make_Objlabel_Workspace_Gg() and initialized by Init_Objlabel_Workspace_Gg() * if necessary. */ Graph* Stack_Build_Seed_Graph_Gg(Stack *stack, int *seed, int nseed, BOOL weighted, Objlabel_Workspace *ow) { if (stack->kind != GREY16) { PRINT_EXCEPTION("Unsupported stack kind", "The stack must be GREY16"); return NULL; } int i, j, k; uint16 *level = (uint16 *) ow->u; uint16 *mask = (uint16 *) stack->array; const int conn = 26; /* each seed has a queue */ int *queue_head = iarray_malloc(nseed); /* queue_head malloced */ int *queue_tail = iarray_malloc(nseed); /* queue_head malloced */ int *queue_length = iarray_malloc(nseed); /* queue_length malloced */ /* At the beginning, each queue has one element, the corresponding seed */ iarraycpy(queue_head, seed, 0, nseed); iarraycpy(queue_tail, seed, 0, nseed); for (i = 0; i < nseed; i++) { queue_length[i] = 1; } int neighbor[26]; int bound[26]; int nbound; int cwidth = stack->width - 1; int cheight = stack->height - 1; int cdepth = stack->depth - 1; BOOL stop = FALSE; int x, y, z; Stack_Neighbor_Offset(conn, stack->width, stack->height, neighbor); #define STACK_SEED_GRAPH_UPDATE_QUEUE_GG(test) \ for (k = 0; k < conn; k++) { \ if (test) { \ int checking_voxel = queue_head[i] + neighbor[k]; \ if ((mask[checking_voxel] > 0) && (mask[checking_voxel] != label)) { \ if (mask[checking_voxel] == 1) { \ ow->chord->array[queue_tail[i]] = checking_voxel; \ queue_tail[i] = checking_voxel; \ mask[checking_voxel] = label; \ level[checking_voxel] = level[queue_head[i]] + 1; \ queue_length[i]++; \ } else { \ int v1, v2, tmp; \ v1 = i; \ v2 = mask[checking_voxel] - 2; \ ASSERT(v1 != v2, "Bug in Stack_Build_Seed_Graph_G()"); \ if (v1 > v2) { \ SWAP2(v1, v2, tmp); \ } \ if (Graph_Edge_Index(v1, v2, gw) < 0) { \ if (weighted == TRUE) { \ /*double dist = Stack_Util_Voxel_Distance(seed[v1], seed[v2], stack->width, stack->height);*/ \ double dist = level[checking_voxel] + level[queue_head[i]]; \ Graph_Add_Weighted_Edge(graph, v1, v2, dist); \ } else { \ Graph_Add_Edge(graph, v1, v2); \ } \ Graph_Expand_Edge_Table(v1, v2, graph->nedge -1, gw); \ } \ } \ } \ } \ } Graph *graph = Make_Graph(nseed, nseed, weighted); Graph_Workspace *gw = New_Graph_Workspace(); while (stop == FALSE) { stop = TRUE; for (i = 0; i < nseed; i++) { if (queue_length[i] > 0) { int label = i + 2; for (j = 0; j < queue_length[i]; j++) { Stack_Util_Coord(queue_head[i], stack->width, stack->height, &x, &y, &z); nbound = Stack_Neighbor_Bound_Test(conn, cwidth, cheight, cdepth, x, y, z, bound); if (nbound == conn) { STACK_SEED_GRAPH_UPDATE_QUEUE_GG(1); } else { STACK_SEED_GRAPH_UPDATE_QUEUE_GG(bound[k]); } } queue_head[i] = ow->chord->array[queue_head[i]]; queue_length[i]--; stop = FALSE; } } } free(queue_head); /* queue_head freed */ free(queue_tail); /* queue_head freed */ free(queue_length); /* queue_length freed */ return graph; }
int main(int argc, char *argv[]) { #if 0 Stack *stack = Read_Stack("../data/fly_neuron.tif"); Stretch_Stack_Value_Q(stack, 0.99); Translate_Stack(stack, GREY, 1); Write_Stack("../data/test.tif", stack); Kill_Stack(stack); #endif #if 0 int idx1, idx2, width, height; idx1 = 33332; idx2 = 65535; width = 111; height = 112; printf("%g\n", Stack_Util_Voxel_Distance(idx1, idx2, width, height)); int x1, y1, z1, x2, y2, z2; Stack_Util_Coord(idx1, width, height, &x1, &y1, &z1); Stack_Util_Coord(idx2, width, height, &x2, &y2, &z2); printf("%d, %d, %d\n", x1 - x2, y1 - y2, z1 - z2); #endif #if 0 Stack *stack = Read_Stack("../data/fly_neuron.tif"); //Translate_Stack(stack, GREY16, 1); Image *image = Proj_Stack_Zmax(stack); Write_Image("../data/test.tif", image); #endif #if 0 Stack *stack = Read_Stack("../data/fly_neuron_a1_org.tif"); //stack = Crop_Stack(stack, 256, 256, 0, 512, 512, 170, NULL); int i; Stack stack2; stack2.width = stack->width; stack2.height = stack->height; stack2.kind = stack->kind; stack2.depth = 1; for (i = 0; i < stack->depth; i++) { stack2.array = stack->array + i * stack->width * stack->height; //Stack *locmax = Stack_Locmax_Region(&stack2, 8); Stack *locmax = Stack_Local_Max(&stack2, NULL, STACK_LOCMAX_SINGLE); int *hist = Stack_Hist_M(&stack2, locmax); int low, high; Int_Histogram_Range(hist, &low, &high); int thre = Int_Histogram_Triangle_Threshold(hist, low, high); printf("Threshold: %d\n", thre); Stack_Threshold_Binarize(&stack2, thre); Kill_Stack(locmax); free(hist); } //Stack_Bc_Autoadjust(result); /* Translate_Stack(stack, COLOR, 1); Stack_Blend_Mc(stack, result, 0.1); */ Write_Stack("../data/test.tif", stack); #endif #if 1 Stack *stack = Read_Stack("../data/fly_neuron_crop.tif"); Filter_3d *filter = Gaussian_Filter_3d(1.0, 1.0, 0.5); Stack *out = Filter_Stack(stack, filter); Kill_FMatrix(filter) Write_Stack("../data/test.tif", out); #endif #if 0 Stack *stack = Read_Stack("../data/fly_neuron_a2_org.tif"); Stack *locmax = Stack_Locmax_Region(stack, 18); Stack *mask = Read_Stack("../data/fly_neuron_a2_org/threshold_s.tif"); //Stack_And(locmax, mask, locmax); Object_3d_List *objs = Stack_Find_Object_N(locmax, NULL, 1, 0, 18); Zero_Stack(locmax); int objnum = 0; while (objs != NULL) { Object_3d *obj = objs->data; Voxel_t center; Object_3d_Central_Voxel(obj, center); Set_Stack_Pixel(locmax, center[0], center[1], center[2], 0, 1); objs = objs->next; objnum++; } Write_Stack("../data/fly_neuron_a2_org/locmax.tif", locmax); printf("objnum: %d\n", objnum); U8Matrix mat; mat.ndim = 3; mat.dim[0] = stack->width; mat.dim[1] = stack->height; mat.dim[2] = stack->depth; mat.array = locmax->array; dim_type bdim[3]; bdim[0] = 7; bdim[1] = 7; bdim[2] = 5; U8Matrix *mat2 = U8Matrix_Blocksum(&mat, bdim, NULL); int offset[3]; offset[0] = bdim[0] / 2; offset[1] = bdim[1] / 2; offset[2] = bdim[2] / 2; Crop_U8Matrix(mat2, offset, mat.dim, &mat); Write_Stack("../data/fly_neuron_a2_org/locmax_sum.tif", locmax); Stack_Threshold_Binarize(locmax, 6); Stack *clear_stack = Stack_Majority_Filter_R(locmax, NULL, 26, 4); Struct_Element *se = Make_Cuboid_Se(3, 3, 3); Stack *dilate_stack = Stack_Dilate(clear_stack, NULL, se); Stack *fill_stack = Stack_Fill_Hole_N(dilate_stack, NULL, 1, 4, NULL); Kill_Stack(dilate_stack); Stack_Not(fill_stack, fill_stack); Stack_And(fill_stack, mask, mask); Write_Stack("../data/test.tif", mask); #endif #if 0 Stack *stack = Read_Stack("../data/fly_neuron_t1.tif"); Stack *locmax = Stack_Locmax_Region(stack, 6); Stack_Label_Objects_Ns(locmax, NULL, 1, 2, 3, 6); int nvoxel = Stack_Voxel_Number(locmax); int i; int s[26]; for (i = 0; i < nvoxel; i++) { if (locmax->array[i] < 3) { locmax->array[i] = 0; } else { locmax->array[i] = 1; printf("%u\n", stack->array[i]); Stack_Neighbor_Sampling_I(stack, 6, i, -1, s); iarray_print2(s, 6, 1); } } //Stack *locmax = Stack_Local_Max(stack, NULL, STACK_LOCMAX_SINGLE); Write_Stack("../data/test.tif", locmax); #endif #if 0 Stack *stack = Read_Stack("../data/fly_neuron_n1.tif"); Stack *stack2 = Flip_Stack_Y(stack, NULL); Flip_Stack_Y(stack2, stack2); if (!Stack_Identical(stack, stack2)) { printf("bug found\n"); } Write_Stack("../data/test.tif", stack); #endif #if 0 Mc_Stack *stack = Read_Mc_Stack("../data/benchmark/L3_12bit.lsm", -1); Mc_Stack_Grey16_To_8(stack, 3); Write_Mc_Stack("../data/test.lsm", stack, "../data/benchmark/L3_12bit.lsm"); #endif #if 0 //Stack *stack = Read_Stack("../data/C2-Slice06_R1_GR1_B1_L18.tif"); Stack *stack = Read_Stack("../data/fly_neuron_n1/traced.tif"); Print_Stack_Info(stack); #endif #if 0 Mc_Stack *stack = Make_Mc_Stack(GREY, 1024, 1024, 1024, 5); /* stack.width = 1024; stack.height = 1024; stack.depth = 1024; stack.kind = GREY; stack.nchannel = 5; printf("%zd\n", ((size_t)stack.kind * stack.width * stack.height * stack.depth * stack.nchannel)); */ #endif #if 0 Stack *stack = Make_Stack(GREY, 1, 1, 1); printf("stack usage: %d\n", Stack_Usage()); uint8 *data = stack->array; stack->array = NULL; Kill_Stack(stack); stack = Read_Stack("../data/benchmark/line.tif"); free(data); printf("stack usage: %d\n", Stack_Usage()); #endif #if 0 Stack *stack = Read_Stack("../data/test.tif"); int *hist = Stack_Hist(stack); Print_Int_Histogram(hist); #endif #if 0 Stack *stack = Read_Stack("../data/benchmark/mouse_neuron_single/stack.tif"); Stack dst; dst.text = "\0"; dst.array = stack->array; Crop_Stack(stack, 0, 0, 0, stack->width - 100, stack->height - 100, stack->depth - 30, &dst); Write_Stack("../data/test.tif", &dst); #endif #if 0 Stack *stack = Make_Stack(GREY, 5, 5, 3); Zero_Stack(stack); Set_Stack_Pixel(stack, 2, 2, 1, 0, 1.0); Print_Stack_Value(stack); Stack *out = Stack_Running_Max(stack, 0, NULL); out = Stack_Running_Max(out, 1, out); out = Stack_Running_Max(out, 2, out); Print_Stack_Value(out); #endif #if 0 Stack *stack = Read_Stack("../data/benchmark/stack_graph/fork/fork.tif"); Stack *out = Stack_Running_Median(stack, 0, NULL); Stack_Running_Median(out, 1, out); //Stack_Running_Max(stack, 0, out); //Stack_Running_Max(out, 1, out); Write_Stack("../data/test.tif", out); Stack *out2 = Stack_Running_Median(stack, 0, NULL); Stack *out3 = Stack_Running_Median(out2, 1, NULL); if (Stack_Identical(out, out3)) { printf("Same in-place and out-place\n"); } #endif #if 0 Stack *stack = Read_Stack_U("../data/diadem_d1_147.xml"); printf("%d\n", Stack_Threshold_Quantile(stack, 0.9)); #endif #if 0 const char *filepath = "/Users/zhaot/Data/Julie/All_tiled_nsyb5_Sum.lsm"; char filename[100]; fname(filepath, filename); Mc_Stack *stack = Read_Mc_Stack(filepath, -1); Print_Mc_Stack_Info(stack); Mc_Stack *tmpstack = Make_Mc_Stack(stack->kind, stack->width, stack->height, stack->depth / 8, stack->nchannel); size_t channel_size = stack->kind * stack->width *stack->height * stack->depth; size_t channel_size2 = tmpstack->kind * tmpstack->width *tmpstack->height * tmpstack->depth; int i; int k; uint8_t *array = stack->array; for (k = 0; k < 8; k++) { int offset = 0; int offset2 = 0; for (i = 0; i < stack->nchannel; i++) { memcpy(tmpstack->array + offset2, array + offset, channel_size2); offset += channel_size; offset2 += channel_size2; } array += channel_size2; char outpath[500]; sprintf(outpath, "../data/test/%s_%03d.lsm", filename, k); Write_Mc_Stack(outpath, tmpstack, filepath); } #endif #if 0 Stack *stack = Index_Stack(GREY16, 5, 5, 1); Set_Stack_Pixel(stack, 1, 1, 0, 0, 0); Set_Stack_Pixel(stack, 1, 2, 0, 0, 0); Print_Stack_Value(stack); Stack *out = Stack_Neighbor_Median(stack, 8, NULL); Print_Stack_Value(out); #endif #if 0 Stack *stack = Make_Stack(GREY, 10, 10, 3); Zero_Stack(stack); Cuboid_I bound_box; Set_Stack_Pixel(stack, 1, 1, 1, 0, 1); Set_Stack_Pixel(stack, 1, 2, 1, 0, 1); Set_Stack_Pixel(stack, 3, 1, 2, 0, 1); Stack_Bound_Box(stack, &bound_box); Print_Cuboid_I(&bound_box); #endif #if 0 Stack_Document *doc = Xml_Read_Stack_Document("../data/test.xml"); File_List *list = (File_List*) doc->ci; Cuboid_I bound_box; Stack_Bound_Box_F(list, &bound_box); Print_Cuboid_I(&bound_box); #endif #if 0 Stack_Document *doc = Xml_Read_Stack_Document("../data/test.xml"); File_List *list = (File_List*) doc->ci; Print_File_List(list); Stack *stack = Read_Image_List_Bounded(list); Stack *out = stack; out = Stack_Region_Expand(stack, 8, 1, NULL); out = Downsample_Stack(out, 4, 4, 0); Write_Stack("../data/test.tif", out); #endif #if 0 Stack_Document *doc = Xml_Read_Stack_Document( "../data/ting_example_stack/test.xml"); File_List *list = (File_List*) doc->ci; Print_File_List(list); int i; for (i = 0; i < list->file_number; i++) { Stack *stack = Read_Stack_U(list->file_path[i]); Stack *ds = Downsample_Stack(stack, 39, 39, 0); char file_path[500]; sprintf(file_path, "../data/ting_example_stack/thumbnails/tb%05d.tif", i); Write_Stack(file_path, ds); Free_Stack(stack); } #endif #if 0 Stack *stack = Read_Stack("../data/test2.tif"); Stack_Threshold_Binarize(stack, 6); Objlabel_Workspace ow; STACK_OBJLABEL_OPEN_WORKSPACE(stack, (&ow)); Object_3d *obj = Stack_Find_Largest_Object_N(stack, ow.chord, 1, 26); //Print_Object_3d(obj); //printf("%llu\n", obj->size); double vec[3]; Object_3d_Orientation(obj, vec, MAJOR_AXIS); double center[3]; Object_3d_Centroid(obj, center); darray_print2(vec, 3, 1); double span[2] = {100000, -100000}; for (int i = 0; i < obj->size; i++) { double proj = Geo3d_Dot_Product(vec[0], vec[1], vec[2], (double) obj->voxels[i][0] - center[0], (double) obj->voxels[i][1] - center[1], (double) obj->voxels[i][2] - center[2]); if (proj < span[0]) { span[0] = proj; } if (proj > span[1]) { span[1] = proj; } } darray_print2(span, 2, 1); double vec2[3]; Object_3d_Orientation(obj, vec2, PLANE_NORMAL); darray_print2(vec2, 3, 1); double span2[2] = {100000, -100000}; for (int i = 0; i < obj->size; i++) { double proj = Geo3d_Dot_Product(vec2[0], vec2[1], vec2[2], (double) obj->voxels[i][0] - center[0], (double) obj->voxels[i][1] - center[1], (double) obj->voxels[i][2] - center[2]); if (proj < span2[0]) { span2[0] = proj; } if (proj > span2[1]) { span2[1] = proj; } } darray_print2(span2, 2, 1); double vec3[3]; Geo3d_Cross_Product(vec[0], vec[1], vec[2], vec2[0], vec2[1], vec2[2], vec3, vec3+1, vec3+2); double span3[2] = {100000, -100000}; int i; for (i = 0; i < obj->size; i++) { double proj = Geo3d_Dot_Product(vec3[0], vec3[1], vec3[2], (double) obj->voxels[i][0] - center[0], (double) obj->voxels[i][1] - center[1], (double) obj->voxels[i][2] - center[2]); if (proj < span3[0]) { span3[0] = proj; } if (proj > span3[1]) { span3[1] = proj; } } darray_print2(span3, 2, 1); coordinate_3d_t vertex[8]; for (i = 0; i < 8; i++) { Coordinate_3d_Copy(vertex[i], center); int j; for (j = 0; j < 3; j++) { vertex[i][j] += span[0] * vec[j] + span2[0] * vec2[j] + span3[0] * vec3[j]; } } for (i = 0; i < 3; i++) { vertex[1][i] += (span[1] - span[0]) * vec[i]; vertex[2][i] += (span2[1] - span2[0]) * vec2[i]; vertex[3][i] += (span3[1] - span3[0]) * vec3[i]; vertex[4][i] = vertex[1][i] + (span2[1] - span2[0]) * vec2[i]; vertex[5][i] = vertex[2][i] + (span3[1] - span3[0]) * vec3[i]; vertex[6][i] = vertex[3][i] + (span[1] - span[0]) * vec[i]; vertex[7][i] = vertex[5][i] + (span[1] - span[0]) * vec[i]; } FILE *fp = fopen("../data/test.swc", "w"); fprintf(fp, "%d %d %g %g %g %g %d\n", 1, 2, vertex[0][0], vertex[0][1], vertex[0][2], 3.0, -1); fprintf(fp, "%d %d %g %g %g %g %d\n", 2, 2, vertex[1][0], vertex[1][1], vertex[1][2], 3.0, 1); fprintf(fp, "%d %d %g %g %g %g %d\n", 3, 2, vertex[2][0], vertex[2][1], vertex[2][2], 3.0, 1); fprintf(fp, "%d %d %g %g %g %g %d\n", 4, 2, vertex[3][0], vertex[3][1], vertex[3][2], 3.0, 1); fprintf(fp, "%d %d %g %g %g %g %d\n", 5, 2, vertex[4][0], vertex[4][1], vertex[4][2], 3.0, 2); fprintf(fp, "%d %d %g %g %g %g %d\n", 6, 2, vertex[5][0], vertex[5][1], vertex[5][2], 3.0, 3); fprintf(fp, "%d %d %g %g %g %g %d\n", 7, 2, vertex[6][0], vertex[6][1], vertex[6][2], 3.0, 4); fprintf(fp, "%d %d %g %g %g %g %d\n", 8, 2, vertex[7][0], vertex[7][1], vertex[7][2], 3.0, 7); fprintf(fp, "%d %d %g %g %g %g %d\n", 9, 2, vertex[4][0], vertex[4][1], vertex[4][2], 3.0, 8); fprintf(fp, "%d %d %g %g %g %g %d\n", 10, 2, vertex[4][0], vertex[4][1], vertex[4][2], 3.0, 3); fprintf(fp, "%d %d %g %g %g %g %d\n", 11, 2, vertex[5][0], vertex[5][1], vertex[5][2], 3.0, 8); fprintf(fp, "%d %d %g %g %g %g %d\n", 12, 2, vertex[5][0], vertex[5][1], vertex[5][2], 3.0, 4); fprintf(fp, "%d %d %g %g %g %g %d\n", 13, 2, vertex[6][0], vertex[6][1], vertex[6][2], 3.0, 2); /* Geo3d_Scalar_Field *field = Make_Geo3d_Scalar_Field(6); field->points[0][0] = span[0] * vec[0] + center[0]; field->points[0][1] = span[0] * vec[1] + center[1]; field->points[0][2] = span[0] * vec[2] + center[2]; field->points[1][0] = span[1] * vec[0] + center[0]; field->points[1][1] = span[1] * vec[1] + center[1]; field->points[1][2] = span[1] * vec[2] + center[2]; field->points[2][0] = span2[0] * vec2[0] + center[0]; field->points[2][1] = span2[0] * vec2[1] + center[1]; field->points[2][2] = span2[0] * vec2[2] + center[2]; field->points[3][0] = span2[1] * vec2[0] + center[0]; field->points[3][1] = span2[1] * vec2[1] + center[1]; field->points[3][2] = span2[1] * vec2[2] + center[2]; field->points[4][0] = span3[0] * vec3[0] + center[0]; field->points[4][1] = span3[0] * vec3[1] + center[1]; field->points[4][2] = span3[0] * vec3[2] + center[2]; field->points[5][0] = span3[1] * vec3[0] + center[0]; field->points[5][1] = span3[1] * vec3[1] + center[1]; field->points[5][2] = span3[1] * vec3[2] + center[2]; coordinate_3d_t corner[2]; Geo3d_Scalar_Field_Boundbox(field, corner); darray_print2(corner[0], 3, 1); darray_print2(corner[1], 3, 1); fprintf(fp, "%d %d %g %g %g %g %d\n", 1, 2, corner[0][0], corner[0][1], corner[0][2], 3.0, -1); fprintf(fp, "%d %d %g %g %g %g %d\n", 2, 2, corner[1][0], corner[0][1], corner[0][2], 3.0, 1); fprintf(fp, "%d %d %g %g %g %g %d\n", 3, 2, corner[1][0], corner[1][1], corner[0][2], 3.0, 2); fprintf(fp, "%d %d %g %g %g %g %d\n", 4, 2, corner[0][0], corner[1][1], corner[0][2], 3.0, 3); fprintf(fp, "%d %d %g %g %g %g %d\n", 5, 2, corner[0][0], corner[0][1], corner[0][2], 3.0, 4); fprintf(fp, "%d %d %g %g %g %g %d\n", 6, 2, corner[0][0], corner[0][1], corner[1][2], 3.0, -1); fprintf(fp, "%d %d %g %g %g %g %d\n", 7, 2, corner[1][0], corner[0][1], corner[1][2], 3.0, 6); fprintf(fp, "%d %d %g %g %g %g %d\n", 8, 2, corner[1][0], corner[1][1], corner[1][2], 3.0, 7); fprintf(fp, "%d %d %g %g %g %g %d\n", 9, 2, corner[0][0], corner[1][1], corner[1][2], 3.0, 8); fprintf(fp, "%d %d %g %g %g %g %d\n", 10, 2, corner[0][0], corner[0][1], corner[1][2], 3.0, 9); fprintf(fp, "%d %d %g %g %g %g %d\n", 11, 2, corner[0][0], corner[0][1], corner[1][2], 3.0, 1); fprintf(fp, "%d %d %g %g %g %g %d\n", 12, 2, corner[1][0], corner[0][1], corner[1][2], 3.0, 2); fprintf(fp, "%d %d %g %g %g %g %d\n", 13, 2, corner[1][0], corner[1][1], corner[1][2], 3.0, 3); fprintf(fp, "%d %d %g %g %g %g %d\n", 14, 2, corner[0][0], corner[1][1], corner[1][2], 3.0, 4); */ /* fprintf(fp, "%d %d %g %g %g %g %d\n", 5, 2, corner[1][0], corner[1][1], corner[1][2], 3.0, -1); fprintf(fp, "%d %d %g %g %g %g %d\n", 6, 2, corner[0][0], corner[1][1], corner[1][2], 3.0, 6); fprintf(fp, "%d %d %g %g %g %g %d\n", 7, 2, corner[1][0], corner[0][1], corner[1][2], 3.0, 7); fprintf(fp, "%d %d %g %g %g %g %d\n", 8, 2, corner[1][0], corner[1][1], corner[0][2], 3.0, 7); fprintf(fp, "%d %d %g %g %g %g %d\n", 12, 2, corner[1][0], corner[1][1], corner[0][2], 3.0, 2); fprintf(fp, "%d %d %g %g %g %g %d\n", 9, 2, corner[1][0], corner[1][1], corner[1][2], 3.0, 6); fprintf(fp, "%d %d %g %g %g %g %d\n", 10, 2, corner[0][0], corner[1][1], corner[1][2], 3.0, 3); fprintf(fp, "%d %d %g %g %g %g %d\n", 11, 2, corner[1][0], corner[0][1], corner[1][2], 3.0, 4); fprintf(fp, "%d %d %g %g %g %g %d\n", 12, 2, corner[1][0], corner[1][1], corner[0][2], 3.0, -1); */ fprintf(fp, "%d %d %g %g %g %g %d\n", 21, 2, span[0] * vec[0] + center[0], span[0] * vec[1] + center[1], span[0] * vec[2] + center[2], 3.0, -1); fprintf(fp, "%d %d %g %g %g %g %d\n", 22, 2, span[1] * vec[0] + center[0], span[1] * vec[1] + center[1], span[1] * vec[2] + center[2], 3.0, 21); fprintf(fp, "%d %d %g %g %g %g %d\n", 23, 2, span2[0] * vec2[0] + center[0], span2[0] * vec2[1] + center[1], span2[0] * vec2[2] + center[2], 3.0, -1); fprintf(fp, "%d %d %g %g %g %g %d\n", 24, 2, span2[1] * vec2[0] + center[0], span2[1] * vec2[1] + center[1], span2[1] * vec2[2] + center[2], 3.0, 23); fprintf(fp, "%d %d %g %g %g %g %d\n", 25, 2, span3[0] * vec3[0] + center[0], span3[0] * vec3[1] + center[1], span3[0] * vec3[2] + center[2], 3.0, -1); fprintf(fp, "%d %d %g %g %g %g %d\n", 26, 2, span3[1] * vec3[0] + center[0], span3[1] * vec3[1] + center[1], span3[1] * vec3[2] + center[2], 3.0, 25); fclose(fp); //double corner[6]; /* FILE *fp = fopen("../data/test.swc", "w"); fprintf(fp, "%d %d %g %g %g %g %d\n", 1, 2, span[0] * vec[0] + center[0], span[0] * vec[1] + center[1], span[0] * vec[2] + center[2], 3.0, -1); fprintf(fp, "%d %d %g %g %g %g %d\n", 2, 2, span[1] * vec[0] + center[0], span[1] * vec[1] + center[1], span[1] * vec[2] + center[2], 3.0, 1); fprintf(fp, "%d %d %g %g %g %g %d\n", 3, 2, span2[0] * vec2[0] + center[0], span2[0] * vec2[1] + center[1], span2[0] * vec2[2] + center[2], 3.0, -1); fprintf(fp, "%d %d %g %g %g %g %d\n", 4, 2, span2[1] * vec2[0] + center[0], span2[1] * vec2[1] + center[1], span2[1] * vec2[2] + center[2], 3.0, 3); fprintf(fp, "%d %d %g %g %g %g %d\n", 5, 2, span3[0] * vec3[0] + center[0], span3[0] * vec3[1] + center[1], span3[0] * vec3[2] + center[2], 3.0, -1); fprintf(fp, "%d %d %g %g %g %g %d\n", 6, 2, span3[1] * vec3[0] + center[0], span3[1] * vec3[1] + center[1], span3[1] * vec3[2] + center[2], 3.0, 5); fclose(fp); */ //calculate corners //Draw the six line of the corners /* Stack *stack2 = Copy_Stack(stack); Zero_Stack(stack2); int i = 0; for (i = 0; i < obj->size; i++) { stack2->array[Stack_Util_Offset(obj->voxels[i][0], obj->voxels[i][1], obj->voxels[i][2], stack->width, stack->height, stack->depth)] = 1; } Write_Stack("../data/test.tif", stack2); */ #endif #if 0 Stack *stack = Read_Stack("../data/test2.tif"); Stack_Threshold_Binarize(stack, 6); Objlabel_Workspace ow; STACK_OBJLABEL_OPEN_WORKSPACE(stack, (&ow)); ow.conn = 26; ow.init_chord = TRUE; int obj_size = Stack_Label_Largest_Object_W(stack, 1, 2, &ow); Object_3d *obj = Make_Object_3d(obj_size, ow.conn); extract_object(ow.chord, ow.seed, obj); //Print_Object_3d(obj); /* STACK_OBJLABEL_CLOSE_WORKSPACE((&ow)); Objlabel_Workspace *ow = New_Objlabel_Workspace(); ow->conn = 26; ow->init_chord = TRUE; STACK_OBJLABEL_OPEN_WORKSPACE(stack, ow); Stack_Label_Largest_Object_W(stack, 1, 2, ow); */ Write_Stack("../data/test3.tif", stack); #endif #if 0 Mc_Stack *stack = Read_Mc_Stack("../data/test2.tif", -1); Print_Mc_Stack_Info(stack); size_t offset; size_t voxelNumber = Mc_Stack_Voxel_Number(stack); uint8_t* arrayc[3] = {NULL, NULL, NULL}; arrayc[0] = stack->array; arrayc[1] = stack->array + voxelNumber; arrayc[2] = stack->array + voxelNumber * 2; for (offset = 0; offset < voxelNumber; ++offset) { if ((arrayc[0][offset] != 128) || (arrayc[1][offset] != 6) || (arrayc[2][offset] != 0)) { arrayc[0][offset] = 0; arrayc[1][offset] = 0; arrayc[2][offset] = 0; } } Write_Mc_Stack("../data/test.tif", stack, NULL); Kill_Mc_Stack(stack); #endif #if 0 Mc_Stack *stack = Read_Mc_Stack("../data/flyem/TEM/slice_figure/segmentation/selected_body.tif", -1); Print_Mc_Stack_Info(stack); size_t offset; size_t voxelNumber = Mc_Stack_Voxel_Number(stack); Stack *mask = Make_Stack(GREY, stack->width, stack->height, stack->depth); uint8_t* arrayc[4] = {NULL, NULL, NULL, NULL}; int i; for (i = 0; i < 4; ++i) { arrayc[i] = stack->array + voxelNumber * i; } for (offset = 0; offset < voxelNumber; ++offset) { if ((arrayc[0][offset] > 0) || (arrayc[1][offset] > 0) || (arrayc[2][offset] > 0) || (arrayc[3][offset] > 0)) { mask->array[offset] = 1; } else { mask->array[offset] = 0; } } mask = Downsample_Stack_Max(mask, 7, 7, 0, NULL); Write_Stack("../data/test.tif", mask); #endif #if 0 Stack *stack = Read_Stack("../data/test2.tif"); size_t offset; size_t voxelNumber = Stack_Voxel_Number(stack); color_t *arrayc = (color_t*) stack->array; for (offset = 0; offset < voxelNumber; ++offset) { if ((arrayc[offset][0] != 128) || (arrayc[offset][1] != 6) || (arrayc[offset][2] != 0)) { arrayc[offset][0] = 0; arrayc[offset][1] = 0; arrayc[offset][2] = 0; } } Write_Stack("../data/test.tif", stack); #endif #if 0 Stack *stack = Read_Stack("../data/flyem/TEM/slice_figure/segmentation/selected_body_volume.tif"); Stack *out = Make_Stack(COLOR, stack->width, stack->height, stack->depth); Zero_Stack(out); Object_3d_List *objs = Stack_Find_Object_N(stack, NULL, 255, 0, 26); Print_Object_3d_List_Compact(objs); uint8_t color[] = {0, 200, 50, 200, 0, 0}; uint8_t *color2 = color; while (objs != NULL) { Object_3d *obj = objs->data; Stack_Draw_Object_C(out, obj, color2[0], color2[1], color2[2]); color2 += 3; objs = objs->next; break; } Write_Stack("../data/test.tif", out); #endif #if 0 //Stack *stack = Read_Stack("../data/benchmark/binary/2d/btrig2.tif"); Stack *stack = Make_Stack(GREY, 3, 3, 3); One_Stack(stack); //Zero_Stack(stack); //Set_Stack_Pixel(stack, 0, 1, 1, 1, 1); Set_Stack_Pixel(stack, 0, 1, 1, 1, 0); Set_Stack_Pixel(stack, 0, 1, 1, 0, 0); Set_Stack_Pixel(stack, 0, 0, 0, 0, 0); Set_Stack_Pixel(stack, 0, 0, 2, 0, 0); Set_Stack_Pixel(stack, 0, 2, 0, 0, 0); Set_Stack_Pixel(stack, 0, 2, 2, 0, 0); Set_Stack_Pixel(stack, 0, 0, 0, 2, 0); Set_Stack_Pixel(stack, 0, 0, 2, 2, 0); Set_Stack_Pixel(stack, 0, 2, 0, 2, 0); Set_Stack_Pixel(stack, 0, 2, 2, 2, 0); //Set_Stack_Pixel(stack, 0, 1, 1, 2, 0); Stack_Graph_Workspace *sgw = New_Stack_Graph_Workspace(); //Default_Stack_Graph_Workspace(sgw); sgw->signal_mask = stack; Graph *graph = Stack_Graph_W(stack, sgw); sgw->signal_mask = NULL; //Print_Graph(graph); //Graph_To_Dot_File(graph, "../data/test.dot"); if (Graph_Has_Hole(graph) == TRUE) { printf("The graph has a hole.\n"); } #endif #if 0 Stack *stack = Read_Stack("../data/flyem/skeletonization/session3/T1_207.tif"); size_t voxel_number = Stack_Voxel_Number(stack); size_t i; for (i = 0; i < voxel_number; ++i) { if (stack->array[i] == 1) { stack->array[i] = 255; } } Filter_3d *filter = Gaussian_Filter_3d(0.5, 0.5, 0.5); Stack *out = Filter_Stack(stack, filter); Write_Stack("../data/test2.tif", out); #endif #if 0 Stack *stack = Make_Stack(GREY, 3, 3, 3); Zero_Stack(stack); Cuboid_I cuboid; Cuboid_I_Set_S(&cuboid, 0, 0, 0, 4, 2, 3); Cuboid_I_Label_Stack(&cuboid, 1, stack); Print_Stack_Value(stack); #endif #if 0 Stack *stack = Make_Stack(GREY, 3, 3, 1); Zero_Stack(stack); Set_Stack_Pixel(stack, 1, 1, 0, 0, 1); Print_Stack_Value(stack); Stack *out = Downsample_Stack_Max(stack, 2, 2, 2, NULL); Print_Stack_Value(out); #endif #if 0 double t[3] = {1, 2 * 256 + 12, 255 * 256}; printf("%g\n", Stack_Voxel_Weight_C(t)); #endif #if 0 Stack *stack = Read_Stack_U("../data/vr/label.tif"); Stack_Binarize_Level(stack, 1); Stack_Label_Large_Objects_N(stack, NULL, 1, 2, 2000, 4); Stack_Threshold_Binarize(stack, 2); Write_Stack("../data/vr/label1.tif", stack); #endif #if 0 Stack *stack = Read_Stack_U("../data/vr/label.tif"); Stack_Binarize_Level(stack, 5); Stack_Label_Large_Objects_N(stack, NULL, 1, 2, 5000, 4); Stack_Threshold_Binarize(stack, 2); Write_Stack("../data/vr/label5.tif", stack); #endif #if 0 Stack *stack = Read_Stack_U("../data/vr/original.tif"); /* Make mask */ Stack *mask = Make_Stack(GREY, Stack_Width(stack), Stack_Height(stack), Stack_Depth(stack)); Zero_Stack(mask); Stack *overallLabel = Copy_Stack(mask); Stack *labelStack[5]; size_t voxelNumber = Stack_Voxel_Number(mask); size_t k; Struct_Element *se = Make_Disc_Se(5); int i; char filePath[100]; for (i = 0; i < 5; ++i) { sprintf(filePath, "../data/vr/label%d.tif", i + 1); labelStack[i] = Read_Stack_U(filePath); //labelStack[i] = Stack_Erode_Fast(labelStack[i], NULL, se); Stack_Or(mask, labelStack[i], mask); for (k = 0; k < voxelNumber; ++k) { if (labelStack[i]->array[k] == 1) { overallLabel->array[k] = i + 1; } } } for (k = 0; k < voxelNumber; ++k) { if (mask->array[k] == 1) { mask->array[k] = SP_GROW_SOURCE; } } Sp_Grow_Workspace *sgw = New_Sp_Grow_Workspace(); sgw->size = voxelNumber; Sp_Grow_Workspace_Set_Mask(sgw, mask->array); sgw->wf = Stack_Voxel_Weight_C; sgw->sp_option = 1; tic(); Int_Arraylist *path = Stack_Sp_Grow(stack, NULL, 0, NULL, 0, sgw); printf("time: %llu\n", toc()); Kill_Int_Arraylist(path); for (k = 0; k < voxelNumber; ++k) { if (mask->array[k] == 0) { int idx = (int) k; while (overallLabel->array[idx] == 0) { idx = sgw->path[idx]; } int label = overallLabel->array[idx]; idx = (int) k; while (overallLabel->array[idx] == 0) { overallLabel->array[idx] = label; idx = sgw->path[idx]; } } } for (k = 0; k < voxelNumber; ++k) { if (overallLabel->array[k] == 1 || overallLabel->array[k] == 5) { overallLabel->array[k] = 0; } } Write_Stack("../data/test.tif", overallLabel); Kill_Stack(stack); #endif return 0; }
Int_Arraylist *Stack_Route(const Stack *stack, int start[], int end[], Stack_Graph_Workspace *sgw) { if (sgw->gw == NULL) { sgw->gw = New_Graph_Workspace(); } if (sgw->range == NULL) { double dist = Geo3d_Dist(start[0], start[1], start[2], end[0], end[1], end[2]); int margin[3]; int i = 0; for (i = 0; i < 3; ++i) { margin[i] = iround(dist - abs(end[i] - start[i] + 1)); if (margin[i] < 0) { margin[i] = 0; } } Stack_Graph_Workspace_Set_Range(sgw, start[0], end[0], start[1], end[1], start[2], end[2]); Stack_Graph_Workspace_Expand_Range(sgw, margin[0], margin[0], margin[1], margin[1], margin[2], margin[2]); Stack_Graph_Workspace_Validate_Range(sgw, stack->width, stack->height, stack->depth); } int swidth = sgw->range[1] - sgw->range[0] + 1; int sheight = sgw->range[3] - sgw->range[2] + 1; int sdepth = sgw->range[5] - sgw->range[4] + 1; int start_index = Stack_Util_Offset(start[0] - sgw->range[0], start[1] - sgw->range[2], start[2] - sgw->range[4], swidth, sheight, sdepth); int end_index = Stack_Util_Offset(end[0] - sgw->range[0], end[1] - sgw->range[2], end[2] - sgw->range[4], swidth, sheight, sdepth); if (start_index > end_index) { int tmp; SWAP2(start_index, end_index, tmp); } ASSERT(start_index >= 0, "Invalid starting index."); ASSERT(end_index >= 0, "Invalid ending index."); tic(); Graph *graph = Stack_Graph_W(stack, sgw); ptoc(); tic(); int *path = NULL; switch (sgw->sp_option) { case 0: path = Graph_Shortest_Path_E(graph, start_index, end_index, sgw->gw); break; case 1: { //printf("%g\n", sgw->intensity[start_index]); sgw->intensity[end_index] = 4012; sgw->intensity[start_index] = 4012; path = Graph_Shortest_Path_Maxmin(graph, start_index, end_index, sgw->intensity, sgw->gw); } break; } sgw->value = sgw->gw->dlist[end_index]; Kill_Graph(graph); if (isinf(sgw->value)) { return NULL; } #ifdef _DEBUG_2 { Graph_Update_Edge_Table(graph, sgw->gw); Stack *stack = Make_Stack(GREY, swidth, sheight, sdepth); Zero_Stack(stack); int nvoxel = (int) Stack_Voxel_Number(stack); int index = end_index; printf("%d -> %d\n", start_index, end_index); while (index >= 0) { if (index < nvoxel) { stack->array[index] = 255; } int x, y, z; Stack_Util_Coord(index, swidth, sheight, &x, &y, &z); printf("%d (%d, %d, %d), %g\n", index, x, y, z, sgw->gw->dlist[index]); index = path[index]; } Write_Stack("../data/test2.tif", stack); Kill_Stack(stack); } #endif Int_Arraylist *offset_path = Parse_Stack_Shortest_Path(path, start_index, end_index, stack->width, stack->height, sgw); int org_start = Stack_Util_Offset(start[0], start[1], start[2], stack->width, stack->height, stack->depth); if (org_start != offset_path->array[0]) { iarray_reverse(offset_path->array, offset_path->length); } int org_end = Stack_Util_Offset(end[0], end[1], end[2], stack->width, stack->height, stack->depth); //printf("%d, %d\n", org_end, offset_path->array[offset_path->length -]); ASSERT(org_start == offset_path->array[0], "Wrong path head."); if (org_end != offset_path->array[offset_path->length - 1]) { printf("debug here\n"); } ASSERT(org_end == offset_path->array[offset_path->length - 1], "Wrong path tail."); ptoc(); return offset_path; }