hMatrix Jacobian_hMatrix(double *theta, double *alpha, double *a, double *d) { hMatrix T01(4,4), T02(4,4), T03(4,4), T04(4,4), T05(4,4), T06(4,4), T07(4,4); T01 = T_hMatrix(&theta[0], &alpha[0], &a[0], &d[0], 1); T02 = T_hMatrix(&theta[0], &alpha[0], &a[0], &d[0], 2); T03 = T_hMatrix(&theta[0], &alpha[0], &a[0], &d[0], 3); T04 = T_hMatrix(&theta[0], &alpha[0], &a[0], &d[0], 4); T05 = T_hMatrix(&theta[0], &alpha[0], &a[0], &d[0], 5); T06 = T_hMatrix(&theta[0], &alpha[0], &a[0], &d[0], 6); T07 = T_hMatrix(&theta[0], &alpha[0], &a[0], &d[0], 7); double k[3] = {0,0,1}; double z1[3] = { T01.element(0,2),T01.element(1,2), T01.element(2,2)}; double z2[3] = { T02.element(0,2),T02.element(1,2), T02.element(2,2)}; double z3[3] = { T03.element(0,2),T03.element(1,2), T03.element(2,2)}; double z4[3] = { T04.element(0,2),T04.element(1,2), T04.element(2,2)}; double z5[3] = { T05.element(0,2),T05.element(1,2), T05.element(2,2)}; double z6[3] = { T06.element(0,2),T06.element(1,2), T06.element(2,2)}; double o1[3] = {T01.element(0,3), T01.element(1,3), T01.element(2,3)}; double o2[3] = {T02.element(0,3), T02.element(1,3), T02.element(2,3)}; double o3[3] = {T03.element(0,3), T03.element(1,3), T03.element(2,3)}; double o4[3] = {T04.element(0,3), T04.element(1,3), T04.element(2,3)}; double o5[3] = {T05.element(0,3), T05.element(1,3), T05.element(2,3)}; double o6[3] = {T06.element(0,3), T06.element(1,3), T06.element(2,3)}; double o7[3] = {T07.element(0,3), T07.element(1,3), T07.element(2,3)}; double O1[3] ={o7[0],o7[1],o7[2]}; double O2[3] ={o7[0]-o1[0],o7[1]-o1[1],o7[2]-o1[2]}; double O3[3] ={o7[0]-o2[0],o7[1]-o2[1],o7[2]-o2[2]}; double O4[3] ={o7[0]-o3[0],o7[1]-o3[1],o7[2]-o3[2]}; double O5[3] ={o7[0]-o4[0],o7[1]-o4[1],o7[2]-o4[2]}; double O6[3] ={o7[0]-o5[0],o7[1]-o5[1],o7[2]-o5[2]}; double O7[3] ={o7[0]-o6[0],o7[1]-o6[1],o7[2]-o6[2]}; hMatrix c1(1,3),c2(1,3),c3(1,3),c4(1,3),c5(1,3),c6(1,3),c7(1,3); c1 = cross(&k[0],&O1[0]); c2 = cross(&z1[0],&O2[0]); c3 = cross(&z2[0],&O3[0]); c4 = cross(&z3[0],&O4[0]); c5 = cross(&z4[0],&O5[0]); c6 = cross(&z5[0],&O6[0]); c7 = cross(&z6[0],&O7[0]); double J[42] = { c1.element(0,0), c2.element(0,0), c3.element(0,0), c4.element(0,0), c5.element(0,0), c6.element(0,0), c7.element(0,0), c1.element(0,1), c2.element(0,1), c3.element(0,1), c4.element(0,1), c5.element(0,1), c6.element(0,1), c7.element(0,1), c1.element(0,2), c2.element(0,2), c3.element(0,2), c4.element(0,2), c5.element(0,2), c6.element(0,2), c7.element(0,2), k[0],z1[0],z2[0],z3[0],z4[0],z5[0],z6[0], k[1],z1[1],z2[1],z3[1],z4[1],z5[1],z6[1], k[2],z1[2],z2[2],z3[2],z4[2],z5[2],z6[2]}; hMatrix Jacobian(6,7); Jacobian.SET(6,7,&J[0]); return Jacobian; }
enum parseType T() { char *save = next; if (!T04()) { next = save; if (!T02()) { next = save; if (!T03()) { next = save; if (!T01()) { return tERR; } else return tT01; } else return tT03; } else return tT02; } else return tT04; return tERR; }