int main( int argc , char * argv[] ) { int do_norm=0 , qdet=2 , have_freq=0 , do_automask=0 ; float dt=0.0f , fbot=0.0f,ftop=999999.9f , blur=0.0f ; MRI_IMARR *ortar=NULL ; MRI_IMAGE *ortim=NULL ; THD_3dim_dataset **ortset=NULL ; int nortset=0 ; THD_3dim_dataset *inset=NULL , *outset=NULL; char *prefix="RSFC" ; byte *mask=NULL ; int mask_nx=0,mask_ny=0,mask_nz=0,nmask , verb=1 , nx,ny,nz,nvox , nfft=0 , kk ; float **vec , **ort=NULL ; int nort=0 , vv , nopt , ntime ; MRI_vectim *mrv ; float pvrad=0.0f ; int nosat=0 ; int do_despike=0 ; // @@ non-BP variables float fbotALL=0.0f, ftopALL=999999.9f; // do full range version int NumDen = 0; // switch for doing numerator or denom THD_3dim_dataset *outsetALL=NULL ; int m, mm; float delf; // harmonics int ind_low,ind_high,N_ny, ctr; float sqnt,nt_fac; gsl_fft_real_wavetable *real1, *real2; // GSL stuff gsl_fft_real_workspace *work; double *series1, *series2; double *xx1,*xx2; float numer,denom,val; float *alff=NULL,*malff=NULL,*falff=NULL, *rsfa=NULL,*mrsfa=NULL,*frsfa=NULL; // values float meanALFF=0.0f,meanRSFA=0.0f; // will be for mean in brain region THD_3dim_dataset *outsetALFF=NULL; THD_3dim_dataset *outsetmALFF=NULL; THD_3dim_dataset *outsetfALFF=NULL; THD_3dim_dataset *outsetRSFA=NULL; THD_3dim_dataset *outsetmRSFA=NULL; THD_3dim_dataset *outsetfRSFA=NULL; char out_lff[300]; char out_alff[300]; char out_malff[300]; char out_falff[300]; char out_rsfa[300]; char out_mrsfa[300]; char out_frsfa[300]; char out_unBP[300]; int SERIES_OUT = 1; int UNBP_OUT = 0; int DO_RSFA = 1; int BP_LAST = 0; // option for only doing filter to LFFs at very end of proc float de_rsfa=0.0f,nu_rsfa=0.0f; double pow1=0.0,pow2=0.0; /*-- help? --*/ if( argc < 2 || strcmp(argv[1],"-help") == 0 ){ printf( "\n Program to calculate common resting state functional connectivity (RSFC)\n" " parameters (ALFF, mALFF, fALFF, RSFA, etc.) for resting state time\n" " series. This program is **heavily** based on the existing\n" " 3dBandPass by RW Cox, with the amendments to calculate RSFC\n" " parameters written by PA Taylor (July, 2012).\n" " This program is part of FATCAT (Taylor & Saad, 2013) in AFNI. Importantly,\n" " its functionality can be included in the `afni_proc.py' processing-script \n" " generator; see that program's help file for an example including RSFC\n" " and spectral parameter calculation via the `-regress_RSFC' option.\n" "\n" "* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\n" "\n" " All options of 3dBandPass may be used here (with a couple other\n" " parameter options, as well): essentially, the motivation of this\n" " program is to produce ALFF, etc. values of the actual RSFC time\n" " series that you calculate. Therefore, all the 3dBandPass processing\n" " you normally do en route to making your final `resting state time\n" " series' is done here to generate your LFFs, from which the\n" " amplitudes in the LFF band are calculated at the end. In order to\n" " calculate fALFF, the same initial time series are put through the\n" " same processing steps which you have chosen but *without* the\n" " bandpass part; the spectrum of this second time series is used to\n" " calculate the fALFF denominator.\n" " \n" " For more information about each RSFC parameter, see, e.g.: \n" " ALFF/mALFF -- Zang et al. (2007),\n" " fALFF -- Zou et al. (2008),\n" " RSFA -- Kannurpatti & Biswal (2008).\n" "\n" "* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\n" "\n" " + USAGE: 3dRSFC [options] fbot ftop dataset\n" "\n" "* One function of this program is to prepare datasets for input\n" " to 3dSetupGroupInCorr. Other uses are left to your imagination.\n" "\n" "* 'dataset' is a 3D+time sequence of volumes\n" " ++ This must be a single imaging run -- that is, no discontinuities\n" " in time from 3dTcat-ing multiple datasets together.\n" "\n" "* fbot = lowest frequency in the passband, in Hz\n" " ++ fbot can be 0 if you want to do a lowpass filter only;\n" " HOWEVER, the mean and Nyquist freq are always removed.\n" "\n" "* ftop = highest frequency in the passband (must be > fbot)\n" " ++ if ftop > Nyquist freq, then it's a highpass filter only.\n" "\n" "* Set fbot=0 and ftop=99999 to do an 'allpass' filter.\n" " ++ Except for removal of the 0 and Nyquist frequencies, that is.\n" "\n" "* You cannot construct a 'notch' filter with this program!\n" " ++ You could use 3dRSFC followed by 3dcalc to get the same effect.\n" " ++ If you are understand what you are doing, that is.\n" " ++ Of course, that is the AFNI way -- if you don't want to\n" " understand what you are doing, use Some other PrograM, and\n" " you can still get Fine StatisticaL maps.\n" "\n" "* 3dRSFC will fail if fbot and ftop are too close for comfort.\n" " ++ Which means closer than one frequency grid step df,\n" " where df = 1 / (nfft * dt) [of course]\n" "\n" "* The actual FFT length used will be printed, and may be larger\n" " than the input time series length for the sake of efficiency.\n" " ++ The program will use a power-of-2, possibly multiplied by\n" " a power of 3 and/or 5 (up to and including the 3rd power of\n" " each of these: 3, 9, 27, and 5, 25, 125).\n" "\n" "* Note that the results of combining 3dDetrend and 3dRSFC will\n" " depend on the order in which you run these programs. That's why\n" " 3dRSFC has the '-ort' and '-dsort' options, so that the\n" " time series filtering can be done properly, in one place.\n" "\n" "* The output dataset is stored in float format.\n" "\n" "* The order of processing steps is the following (most are optional), and\n" " for the LFFs, the bandpass is done between the specified fbot and ftop,\n" " while for the `whole spectrum' (i.e., fALFF denominator) the bandpass is:\n" " done only to exclude the time series mean and the Nyquist frequency:\n" " (0) Check time series for initial transients [does not alter data]\n" " (1) Despiking of each time series\n" " (2) Removal of a constant+linear+quadratic trend in each time series\n" " (3) Bandpass of data time series\n" " (4) Bandpass of -ort time series, then detrending of data\n" " with respect to the -ort time series\n" " (5) Bandpass and de-orting of the -dsort dataset,\n" " then detrending of the data with respect to -dsort\n" " (6) Blurring inside the mask [might be slow]\n" " (7) Local PV calculation [WILL be slow!]\n" " (8) L2 normalization [will be fast.]\n" " (9) Calculate spectrum and amplitudes, for RSFC parameters.\n" "\n" "* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\n" "--------\n" "OPTIONS:\n" "--------\n" " -despike = Despike each time series before other processing.\n" " ++ Hopefully, you don't actually need to do this,\n" " which is why it is optional.\n" " -ort f.1D = Also orthogonalize input to columns in f.1D\n" " ++ Multiple '-ort' options are allowed.\n" " -dsort fset = Orthogonalize each voxel to the corresponding\n" " voxel time series in dataset 'fset', which must\n" " have the same spatial and temporal grid structure\n" " as the main input dataset.\n" " ++ At present, only one '-dsort' option is allowed.\n" " -nodetrend = Skip the quadratic detrending of the input that\n" " occurs before the FFT-based bandpassing.\n" " ++ You would only want to do this if the dataset\n" " had been detrended already in some other program.\n" " -dt dd = set time step to 'dd' sec [default=from dataset header]\n" " -nfft N = set the FFT length to 'N' [must be a legal value]\n" " -norm = Make all output time series have L2 norm = 1\n" " ++ i.e., sum of squares = 1\n" " -mask mset = Mask dataset\n" " -automask = Create a mask from the input dataset\n" " -blur fff = Blur (inside the mask only) with a filter\n" " width (FWHM) of 'fff' millimeters.\n" " -localPV rrr = Replace each vector by the local Principal Vector\n" " (AKA first singular vector) from a neighborhood\n" " of radius 'rrr' millimiters.\n" " ++ Note that the PV time series is L2 normalized.\n" " ++ This option is mostly for Bob Cox to have fun with.\n" "\n" " -input dataset = Alternative way to specify input dataset.\n" " -band fbot ftop = Alternative way to specify passband frequencies.\n" "\n" " -prefix ppp = Set prefix name of output dataset. Name of filtered time\n" " series would be, e.g., ppp_LFF+orig.*, and the parameter\n" " outputs are named with obvious suffices.\n" " -quiet = Turn off the fun and informative messages. (Why?)\n" " -no_rs_out = Don't output processed time series-- just output\n" " parameters (not recommended, since the point of\n" " calculating RSFC params here is to have them be quite\n" " related to the time series themselves which are used for\n" " further analysis)." " -un_bp_out = Output the un-bandpassed series as well (default is not \n" " to). Name would be, e.g., ppp_unBP+orig.* .\n" " with suffix `_unBP'.\n" " -no_rsfa = If you don't want RSFA output (default is to do so).\n" " -bp_at_end = A (probably unnecessary) switch to have bandpassing be \n" " the very last processing step that is done in the\n" " sequence of steps listed above; at Step 3 above, only \n" " the time series mean and nyquist are BP'ed out, and then\n" " the LFF series is created only after Step 9. NB: this \n" " probably makes only very small changes for most\n" " processing sequences (but maybe not, depending usage).\n" "\n" " -notrans = Don't check for initial positive transients in the data:\n" " *OR* ++ The test is a little slow, so skipping it is OK,\n" " -nosat if you KNOW the data time series are transient-free.\n" " ++ Or set AFNI_SKIP_SATCHECK to YES.\n" " ++ Initial transients won't be handled well by the\n" " bandpassing algorithm, and in addition may seriously\n" " contaminate any further processing, such as inter-\n" " voxel correlations via InstaCorr.\n" " ++ No other tests are made [yet] for non-stationary \n" " behavior in the time series data.\n" "\n" "* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\n" "\n" " If you use this program, please reference the introductory/description\n" " paper for the FATCAT toolbox:\n" " Taylor PA, Saad ZS (2013). FATCAT: (An Efficient) Functional\n" " And Tractographic Connectivity Analysis Toolbox. Brain \n" " Connectivity 3(5):523-535.\n" "____________________________________________________________________________\n" ); PRINT_AFNI_OMP_USAGE( " 3dRSFC" , " * At present, the only part of 3dRSFC that is parallelized is the\n" " '-blur' option, which processes each sub-brick independently.\n" ) ; PRINT_COMPILE_DATE ; exit(0) ; } /*-- startup --*/ mainENTRY("3dRSFC"); machdep(); AFNI_logger("3dRSFC",argc,argv); PRINT_VERSION("3dRSFC (from 3dBandpass by RW Cox): version THETA"); AUTHOR("PA Taylor"); nosat = AFNI_yesenv("AFNI_SKIP_SATCHECK") ; nopt = 1 ; while( nopt < argc && argv[nopt][0] == '-' ){ if( strcmp(argv[nopt],"-despike") == 0 ){ /* 08 Oct 2010 */ do_despike++ ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-nfft") == 0 ){ int nnup ; if( ++nopt >= argc ) ERROR_exit("need an argument after -nfft!") ; nfft = (int)strtod(argv[nopt],NULL) ; nnup = csfft_nextup_even(nfft) ; if( nfft < 16 || nfft != nnup ) ERROR_exit("value %d after -nfft is illegal! Next legal value = %d",nfft,nnup) ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-blur") == 0 ){ if( ++nopt >= argc ) ERROR_exit("need an argument after -blur!") ; blur = strtod(argv[nopt],NULL) ; if( blur <= 0.0f ) WARNING_message("non-positive blur?!") ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-localPV") == 0 ){ if( ++nopt >= argc ) ERROR_exit("need an argument after -localpv!") ; pvrad = strtod(argv[nopt],NULL) ; if( pvrad <= 0.0f ) WARNING_message("non-positive -localpv?!") ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-prefix") == 0 ){ if( ++nopt >= argc ) ERROR_exit("need an argument after -prefix!") ; prefix = strdup(argv[nopt]) ; if( !THD_filename_ok(prefix) ) ERROR_exit("bad -prefix option!") ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-automask") == 0 ){ if( mask != NULL ) ERROR_exit("Can't use -mask AND -automask!") ; do_automask = 1 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-mask") == 0 ){ THD_3dim_dataset *mset ; if( ++nopt >= argc ) ERROR_exit("Need argument after '-mask'") ; if( mask != NULL || do_automask ) ERROR_exit("Can't have two mask inputs") ; mset = THD_open_dataset( argv[nopt] ) ; CHECK_OPEN_ERROR(mset,argv[nopt]) ; DSET_load(mset) ; CHECK_LOAD_ERROR(mset) ; mask_nx = DSET_NX(mset); mask_ny = DSET_NY(mset); mask_nz = DSET_NZ(mset); mask = THD_makemask( mset , 0 , 0.5f, 0.0f ) ; DSET_delete(mset) ; if( mask == NULL ) ERROR_exit("Can't make mask from dataset '%s'",argv[nopt]) ; nmask = THD_countmask( mask_nx*mask_ny*mask_nz , mask ) ; if( verb ) INFO_message("Number of voxels in mask = %d",nmask) ; if( nmask < 1 ) ERROR_exit("Mask is too small to process") ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-norm") == 0 ){ do_norm = 1 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-quiet") == 0 ){ verb = 0 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-no_rs_out") == 0 ){ // @@ SERIES_OUT = 0 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-un_bp_out") == 0 ){ // @@ UNBP_OUT = 1 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-no_rsfa") == 0 ){ // @@ DO_RSFA = 0 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-bp_at_end") == 0 ){ // @@ BP_LAST = 1 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-notrans") == 0 || strcmp(argv[nopt],"-nosat") == 0 ){ nosat = 1 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-ort") == 0 ){ if( ++nopt >= argc ) ERROR_exit("need an argument after -ort!") ; if( ortar == NULL ) INIT_IMARR(ortar) ; ortim = mri_read_1D( argv[nopt] ) ; if( ortim == NULL ) ERROR_exit("can't read from -ort '%s'",argv[nopt]) ; mri_add_name(argv[nopt],ortim) ; ADDTO_IMARR(ortar,ortim) ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-dsort") == 0 ){ THD_3dim_dataset *qset ; if( ++nopt >= argc ) ERROR_exit("need an argument after -dsort!") ; if( nortset > 0 ) ERROR_exit("only 1 -dsort option is allowed!") ; qset = THD_open_dataset(argv[nopt]) ; CHECK_OPEN_ERROR(qset,argv[nopt]) ; ortset = (THD_3dim_dataset **)realloc(ortset, sizeof(THD_3dim_dataset *)*(nortset+1)) ; ortset[nortset++] = qset ; nopt++ ; continue ; } if( strncmp(argv[nopt],"-nodetrend",6) == 0 ){ qdet = 0 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-dt") == 0 ){ if( ++nopt >= argc ) ERROR_exit("need an argument after -dt!") ; dt = (float)strtod(argv[nopt],NULL) ; if( dt <= 0.0f ) WARNING_message("value after -dt illegal!") ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-input") == 0 ){ if( inset != NULL ) ERROR_exit("Can't have 2 -input options!") ; if( ++nopt >= argc ) ERROR_exit("need an argument after -input!") ; inset = THD_open_dataset(argv[nopt]) ; CHECK_OPEN_ERROR(inset,argv[nopt]) ; nopt++ ; continue ; } if( strncmp(argv[nopt],"-band",5) == 0 ){ if( ++nopt >= argc-1 ) ERROR_exit("need 2 arguments after -band!") ; if( have_freq ) WARNING_message("second -band option replaces first one!") ; fbot = strtod(argv[nopt++],NULL) ; ftop = strtod(argv[nopt++],NULL) ; have_freq = 1 ; continue ; } ERROR_exit("Unknown option: '%s'",argv[nopt]) ; } /** check inputs for reasonablositiness **/ if( !have_freq ){ if( nopt+1 >= argc ) ERROR_exit("Need frequencies on command line after options!") ; fbot = (float)strtod(argv[nopt++],NULL) ; ftop = (float)strtod(argv[nopt++],NULL) ; } if( inset == NULL ){ if( nopt >= argc ) ERROR_exit("Need input dataset name on command line after options!") ; inset = THD_open_dataset(argv[nopt]) ; CHECK_OPEN_ERROR(inset,argv[nopt]) ; nopt++ ; } DSET_UNMSEC(inset) ; if( fbot < 0.0f ) ERROR_exit("fbot value can't be negative!") ; if( ftop <= fbot ) ERROR_exit("ftop value %g must be greater than fbot value %g!",ftop,fbot) ; ntime = DSET_NVALS(inset) ; if( ntime < 9 ) ERROR_exit("Input dataset is too short!") ; if( nfft <= 0 ){ nfft = csfft_nextup_even(ntime) ; if( verb ) INFO_message("Data length = %d FFT length = %d",ntime,nfft) ; (void)THD_bandpass_set_nfft(nfft) ; } else if( nfft < ntime ){ ERROR_exit("-nfft %d is less than data length = %d",nfft,ntime) ; } else { kk = THD_bandpass_set_nfft(nfft) ; if( kk != nfft && verb ) INFO_message("Data length = %d FFT length = %d",ntime,kk) ; } if( dt <= 0.0f ){ dt = DSET_TR(inset) ; if( dt <= 0.0f ){ WARNING_message("Setting dt=1.0 since input dataset lacks a time axis!") ; dt = 1.0f ; } } ftopALL = 1./dt ;// Aug,2016: should solve problem of a too-large // value for THD_bandpass_vectors(), while still // being >f_{Nyquist} if( !THD_bandpass_OK(ntime,dt,fbot,ftop,1) ) ERROR_exit("Can't continue!") ; nx = DSET_NX(inset); ny = DSET_NY(inset); nz = DSET_NZ(inset); nvox = nx*ny*nz; /* check mask, or create it */ if( verb ) INFO_message("Loading input dataset time series" ) ; DSET_load(inset) ; if( mask != NULL ){ if( mask_nx != nx || mask_ny != ny || mask_nz != nz ) ERROR_exit("-mask dataset grid doesn't match input dataset") ; } else if( do_automask ){ mask = THD_automask( inset ) ; if( mask == NULL ) ERROR_message("Can't create -automask from input dataset?") ; nmask = THD_countmask( DSET_NVOX(inset) , mask ) ; if( verb ) INFO_message("Number of voxels in automask = %d",nmask); if( nmask < 1 ) ERROR_exit("Automask is too small to process") ; } else { mask = (byte *)malloc(sizeof(byte)*nvox) ; nmask = nvox ; memset(mask,1,sizeof(byte)*nvox) ; // if( verb ) // @@ alert if aaaalllllll vox are going to be analyzed! INFO_message("No mask ==> processing all %d voxels",nvox); } /* A simple check of dataset quality [08 Feb 2010] */ if( !nosat ){ float val ; INFO_message( "Checking dataset for initial transients [use '-notrans' to skip this test]") ; val = THD_saturation_check(inset,mask,0,0) ; kk = (int)(val+0.54321f) ; if( kk > 0 ) ININFO_message( "Looks like there %s %d non-steady-state initial time point%s :-(" , ((kk==1) ? "is" : "are") , kk , ((kk==1) ? " " : "s") ) ; else if( val > 0.3210f ) /* don't ask where this threshold comes from! */ ININFO_message( "MAYBE there's an initial positive transient of 1 point, but it's hard to tell\n") ; else ININFO_message("No widespread initial positive transient detected :-)") ; } /* check -dsort inputs for match to inset */ for( kk=0 ; kk < nortset ; kk++ ){ if( DSET_NX(ortset[kk]) != nx || DSET_NY(ortset[kk]) != ny || DSET_NZ(ortset[kk]) != nz || DSET_NVALS(ortset[kk]) != ntime ) ERROR_exit("-dsort %s doesn't match input dataset grid" , DSET_BRIKNAME(ortset[kk]) ) ; } /* convert input dataset to a vectim, which is more fun */ // @@ convert BP'ing ftop/bot into indices for the DFT (below) delf = 1.0/(ntime*dt); ind_low = (int) rint(fbot/delf); ind_high = (int) rint(ftop/delf); if( ntime % 2 ) // nyquist number N_ny = (ntime-1)/2; else N_ny = ntime/2; sqnt = sqrt(ntime); nt_fac = sqrt(ntime*(ntime-1)); // @@ if BP_LAST==0: // now we go through twice, doing LFF bandpass for NumDen==0 and // `full spectrum' processing for NumDen==1. // if BP_LAST==1: // now we go through once, doing only `full spectrum' processing for( NumDen=0 ; NumDen<2 ; NumDen++) { //if( NumDen==1 ){ // full spectrum // fbot = fbotALL; // ftop = ftopALL; //} // essentially, just doesn't BP here, and the perfect filtering at end // is used for both still; this makes the final output spectrum // contain only frequencies in range of 0.01-0.08 if( BP_LAST==1 ) INFO_message("Only doing filtering to LFFs at end!"); mrv = THD_dset_to_vectim( inset , mask , 0 ) ; if( mrv == NULL ) ERROR_exit("Can't load time series data!?") ; if( NumDen==1 ) DSET_unload(inset) ; // @@ only unload on 2nd pass /* similarly for the ort vectors */ if( ortar != NULL ){ for( kk=0 ; kk < IMARR_COUNT(ortar) ; kk++ ){ ortim = IMARR_SUBIM(ortar,kk) ; if( ortim->nx < ntime ) ERROR_exit("-ort file %s is shorter than input dataset time series", ortim->name ) ; ort = (float **)realloc( ort , sizeof(float *)*(nort+ortim->ny) ) ; for( vv=0 ; vv < ortim->ny ; vv++ ) ort[nort++] = MRI_FLOAT_PTR(ortim) + ortim->nx * vv ; } } /* all the real work now */ if( do_despike ){ int_pair nsp ; if( verb ) INFO_message("Testing data time series for spikes") ; nsp = THD_vectim_despike9( mrv ) ; if( verb ) ININFO_message(" -- Squashed %d spikes from %d voxels",nsp.j,nsp.i) ; } if( verb ) INFO_message("Bandpassing data time series") ; if( (BP_LAST==0) && (NumDen==0) ) (void)THD_bandpass_vectim( mrv , dt,fbot,ftop , qdet , nort,ort ) ; else (void)THD_bandpass_vectim( mrv , dt,fbotALL,ftopALL, qdet,nort,ort ) ; /* OK, maybe a little more work */ if( nortset == 1 ){ MRI_vectim *orv ; orv = THD_dset_to_vectim( ortset[0] , mask , 0 ) ; if( orv == NULL ){ ERROR_message("Can't load -dsort %s",DSET_BRIKNAME(ortset[0])) ; } else { float *dp , *mvv , *ovv , ff ; if( verb ) INFO_message("Orthogonalizing to bandpassed -dsort") ; //(void)THD_bandpass_vectim( orv , dt,fbot,ftop , qdet , nort,ort ) ; //@@ if( (BP_LAST==0) && (NumDen==0) ) (void)THD_bandpass_vectim(orv,dt,fbot,ftop,qdet,nort,ort); else (void)THD_bandpass_vectim(orv,dt,fbotALL,ftopALL,qdet,nort,ort); THD_vectim_normalize( orv ) ; dp = malloc(sizeof(float)*mrv->nvec) ; THD_vectim_vectim_dot( mrv , orv , dp ) ; for( vv=0 ; vv < mrv->nvec ; vv++ ){ ff = dp[vv] ; if( ff != 0.0f ){ mvv = VECTIM_PTR(mrv,vv) ; ovv = VECTIM_PTR(orv,vv) ; for( kk=0 ; kk < ntime ; kk++ ) mvv[kk] -= ff*ovv[kk] ; } } VECTIM_destroy(orv) ; free(dp) ; } } if( blur > 0.0f ){ if( verb ) INFO_message("Blurring time series data spatially; FWHM=%.2f",blur) ; mri_blur3D_vectim( mrv , blur ) ; } if( pvrad > 0.0f ){ if( verb ) INFO_message("Local PV-ing time series data spatially; radius=%.2f",pvrad) ; THD_vectim_normalize( mrv ) ; THD_vectim_localpv( mrv , pvrad ) ; } if( do_norm && pvrad <= 0.0f ){ if( verb ) INFO_message("L2 normalizing time series data") ; THD_vectim_normalize( mrv ) ; } /* create output dataset, populate it, write it, then quit */ if( (NumDen==0) ) { // @@ BP'ed version; will do filt if BP_LAST if(BP_LAST) // do bandpass here for BP_LAST (void)THD_bandpass_vectim(mrv,dt,fbot,ftop,qdet,0,NULL); if( verb ) INFO_message("Creating output dataset in memory, then writing it") ; outset = EDIT_empty_copy(inset) ; if(SERIES_OUT){ sprintf(out_lff,"%s_LFF",prefix); EDIT_dset_items( outset , ADN_prefix,out_lff , ADN_none ) ; tross_Copy_History( inset , outset ) ; tross_Make_History( "3dBandpass" , argc,argv , outset ) ; } for( vv=0 ; vv < ntime ; vv++ ) EDIT_substitute_brick( outset , vv , MRI_float , NULL ) ; #if 1 THD_vectim_to_dset( mrv , outset ) ; #else AFNI_OMP_START ; #pragma omp parallel { float *far , *var ; int *ivec=mrv->ivec ; int vv,kk ; #pragma omp for for( vv=0 ; vv < ntime ; vv++ ){ far = DSET_BRICK_ARRAY(outset,vv) ; var = mrv->fvec + vv ; for( kk=0 ; kk < nmask ; kk++ ) far[ivec[kk]] = var[kk*ntime] ; } } AFNI_OMP_END ; #endif VECTIM_destroy(mrv) ; if(SERIES_OUT){ // @@ DSET_write(outset) ; if( verb ) WROTE_DSET(outset) ; } } else{ // @@ non-BP'ed version if( verb ) INFO_message("Creating output dataset 2 in memory") ; // do this here because LFF version was also BP'ed at end. if(BP_LAST) // do bandpass here for BP_LAST (void)THD_bandpass_vectim(mrv,dt,fbotALL,ftopALL,qdet,0,NULL); outsetALL = EDIT_empty_copy(inset) ; if(UNBP_OUT){ sprintf(out_unBP,"%s_unBP",prefix); EDIT_dset_items( outsetALL, ADN_prefix, out_unBP, ADN_none ); tross_Copy_History( inset , outsetALL ) ; tross_Make_History( "3dRSFC" , argc,argv , outsetALL ) ; } for( vv=0 ; vv < ntime ; vv++ ) EDIT_substitute_brick( outsetALL , vv , MRI_float , NULL ) ; #if 1 THD_vectim_to_dset( mrv , outsetALL ) ; #else AFNI_OMP_START ; #pragma omp parallel { float *far , *var ; int *ivec=mrv->ivec ; int vv,kk ; #pragma omp for for( vv=0 ; vv < ntime ; vv++ ){ far = DSET_BRICK_ARRAY(outsetALL,vv) ; var = mrv->fvec + vv ; for( kk=0 ; kk < nmask ; kk++ ) far[ivec[kk]] = var[kk*ntime] ; } } AFNI_OMP_END ; #endif VECTIM_destroy(mrv) ; if(UNBP_OUT){ DSET_write(outsetALL) ; if( verb ) WROTE_DSET(outsetALL) ; } } }// end of NumDen loop // @@ INFO_message("Starting the (f)ALaFFel calcs") ; // allocations series1 = (double *)calloc(ntime,sizeof(double)); series2 = (double *)calloc(ntime,sizeof(double)); xx1 = (double *)calloc(2*ntime,sizeof(double)); xx2 = (double *)calloc(2*ntime,sizeof(double)); alff = (float *)calloc(nvox,sizeof(float)); malff = (float *)calloc(nvox,sizeof(float)); falff = (float *)calloc(nvox,sizeof(float)); if( (series1 == NULL) || (series2 == NULL) || (xx1 == NULL) || (xx2 == NULL) || (alff == NULL) || (malff == NULL) || (falff == NULL)) { fprintf(stderr, "\n\n MemAlloc failure.\n\n"); exit(122); } if(DO_RSFA) { rsfa = (float *)calloc(nvox,sizeof(float)); mrsfa = (float *)calloc(nvox,sizeof(float)); frsfa = (float *)calloc(nvox,sizeof(float)); if( (rsfa == NULL) || (mrsfa == NULL) || (frsfa == NULL)) { fprintf(stderr, "\n\n MemAlloc failure.\n\n"); exit(123); } } work = gsl_fft_real_workspace_alloc (ntime); real1 = gsl_fft_real_wavetable_alloc (ntime); real2 = gsl_fft_real_wavetable_alloc (ntime); gsl_complex_packed_array compl_freqs1 = xx1; gsl_complex_packed_array compl_freqs2 = xx2; // ********************************************************************* // ********************************************************************* // ************** Falafelling = ALFF/fALFF calcs ***************** // ********************************************************************* // ********************************************************************* // Be now have the BP'ed data set (outset) and the non-BP'ed one // (outsetALL). now we'll FFT both, get amplitudes in appropriate // ranges, and calculate: ALFF, mALFF, fALFF, ctr = 0; for( kk=0; kk<nvox ; kk++) { if(mask[kk]) { // BP one, and unBP one, either for BP_LAST or !BP_LAST for( m=0 ; m<ntime ; m++ ) { series1[m] = THD_get_voxel(outset,kk,m); series2[m] = THD_get_voxel(outsetALL,kk,m); } mm = gsl_fft_real_transform(series1, 1, ntime, real1, work); mm = gsl_fft_halfcomplex_unpack(series1, compl_freqs1, 1, ntime); mm = gsl_fft_real_transform(series2, 1, ntime, real2, work); mm = gsl_fft_halfcomplex_unpack(series2, compl_freqs2, 1, ntime); numer = 0.0f; denom = 0.0f; de_rsfa = 0.0f; nu_rsfa = 0.0f; for( m=1 ; m<N_ny ; m++ ) { mm = 2*m; pow2 = compl_freqs2[mm]*compl_freqs2[mm] + compl_freqs2[mm+1]*compl_freqs2[mm+1]; // power //pow2*=2;// factor of 2 since ampls are even funcs denom+= (float) sqrt(pow2); // amplitude de_rsfa+= (float) pow2; if( ( m>=ind_low ) && ( m<=ind_high ) ){ pow1 = compl_freqs1[mm]*compl_freqs1[mm]+ compl_freqs1[mm+1]*compl_freqs1[mm+1]; //pow1*=2; numer+= (float) sqrt(pow1); nu_rsfa+= (float) pow1; } } if( denom>0.000001 ) falff[kk] = numer/denom; else falff[kk] = 0.; alff[kk] = 2*numer/sqnt;// factor of 2 since ampl is even funct meanALFF+= alff[kk]; if(DO_RSFA){ nu_rsfa = sqrt(2*nu_rsfa); // factor of 2 since ampls de_rsfa = sqrt(2*de_rsfa); // are even funcs if( de_rsfa>0.000001 ) frsfa[kk] = nu_rsfa/de_rsfa; else frsfa[kk]=0.; rsfa[kk] = nu_rsfa/nt_fac; meanRSFA+= rsfa[kk]; } ctr+=1; } } meanALFF/= ctr; meanRSFA/= ctr; gsl_fft_real_wavetable_free(real1); gsl_fft_real_wavetable_free(real2); gsl_fft_real_workspace_free(work); // ALFFs divided by mean of brain value for( kk=0 ; kk<nvox ; kk++ ) if(mask[kk]){ malff[kk] = alff[kk]/meanALFF; if(DO_RSFA) mrsfa[kk] = rsfa[kk]/meanRSFA; } // ************************************************************** // ************************************************************** // Store and output // ************************************************************** // ************************************************************** outsetALFF = EDIT_empty_copy( inset ) ; sprintf(out_alff,"%s_ALFF",prefix); EDIT_dset_items( outsetALFF, ADN_nvals, 1, ADN_datum_all , MRI_float , ADN_prefix , out_alff, ADN_none ) ; if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetALFF)) ) ERROR_exit("Can't overwrite existing dataset '%s'", DSET_HEADNAME(outsetALFF)); EDIT_substitute_brick(outsetALFF, 0, MRI_float, alff); alff=NULL; THD_load_statistics(outsetALFF); tross_Make_History("3dRSFC", argc, argv, outsetALFF); THD_write_3dim_dataset(NULL, NULL, outsetALFF, True); outsetfALFF = EDIT_empty_copy( inset ) ; sprintf(out_falff,"%s_fALFF",prefix); EDIT_dset_items( outsetfALFF, ADN_nvals, 1, ADN_datum_all , MRI_float , ADN_prefix , out_falff, ADN_none ) ; if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetfALFF)) ) ERROR_exit("Can't overwrite existing dataset '%s'", DSET_HEADNAME(outsetfALFF)); EDIT_substitute_brick(outsetfALFF, 0, MRI_float, falff); falff=NULL; THD_load_statistics(outsetfALFF); tross_Make_History("3dRSFC", argc, argv, outsetfALFF); THD_write_3dim_dataset(NULL, NULL, outsetfALFF, True); outsetmALFF = EDIT_empty_copy( inset ) ; sprintf(out_malff,"%s_mALFF",prefix); EDIT_dset_items( outsetmALFF, ADN_nvals, 1, ADN_datum_all , MRI_float , ADN_prefix , out_malff, ADN_none ) ; if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetmALFF)) ) ERROR_exit("Can't overwrite existing dataset '%s'", DSET_HEADNAME(outsetmALFF)); EDIT_substitute_brick(outsetmALFF, 0, MRI_float, malff); malff=NULL; THD_load_statistics(outsetmALFF); tross_Make_History("3dRSFC", argc, argv, outsetmALFF); THD_write_3dim_dataset(NULL, NULL, outsetmALFF, True); if(DO_RSFA){ outsetRSFA = EDIT_empty_copy( inset ) ; sprintf(out_rsfa,"%s_RSFA",prefix); EDIT_dset_items( outsetRSFA, ADN_nvals, 1, ADN_datum_all , MRI_float , ADN_prefix , out_rsfa, ADN_none ) ; if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetRSFA)) ) ERROR_exit("Can't overwrite existing dataset '%s'", DSET_HEADNAME(outsetRSFA)); EDIT_substitute_brick(outsetRSFA, 0, MRI_float, rsfa); rsfa=NULL; THD_load_statistics(outsetRSFA); tross_Make_History("3dRSFC", argc, argv, outsetRSFA); THD_write_3dim_dataset(NULL, NULL, outsetRSFA, True); outsetfRSFA = EDIT_empty_copy( inset ) ; sprintf(out_frsfa,"%s_fRSFA",prefix); EDIT_dset_items( outsetfRSFA, ADN_nvals, 1, ADN_datum_all , MRI_float , ADN_prefix , out_frsfa, ADN_none ) ; if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetfRSFA)) ) ERROR_exit("Can't overwrite existing dataset '%s'", DSET_HEADNAME(outsetfRSFA)); EDIT_substitute_brick(outsetfRSFA, 0, MRI_float, frsfa); frsfa=NULL; THD_load_statistics(outsetfRSFA); tross_Make_History("3dRSFC", argc, argv, outsetfRSFA); THD_write_3dim_dataset(NULL, NULL, outsetfRSFA, True); outsetmRSFA = EDIT_empty_copy( inset ) ; sprintf(out_mrsfa,"%s_mRSFA",prefix); EDIT_dset_items( outsetmRSFA, ADN_nvals, 1, ADN_datum_all , MRI_float , ADN_prefix , out_mrsfa, ADN_none ) ; if( !THD_ok_overwrite() && THD_is_ondisk(DSET_HEADNAME(outsetmRSFA)) ) ERROR_exit("Can't overwrite existing dataset '%s'", DSET_HEADNAME(outsetmRSFA)); EDIT_substitute_brick(outsetmRSFA, 0, MRI_float, mrsfa); mrsfa=NULL; THD_load_statistics(outsetmRSFA); tross_Make_History("3dRSFC", argc, argv, outsetmRSFA); THD_write_3dim_dataset(NULL, NULL, outsetmRSFA, True); } // ************************************************************ // ************************************************************ // Freeing // ************************************************************ // ************************************************************ DSET_delete(inset); DSET_delete(outsetALL); DSET_delete(outset); DSET_delete(outsetALFF); DSET_delete(outsetmALFF); DSET_delete(outsetfALFF); DSET_delete(outsetRSFA); DSET_delete(outsetmRSFA); DSET_delete(outsetfRSFA); free(inset); free(outsetALL); free(outset); free(outsetALFF); free(outsetmALFF); free(outsetfALFF); free(outsetRSFA); free(outsetmRSFA); free(outsetfRSFA); free(rsfa); free(mrsfa); free(frsfa); free(alff); free(malff); free(falff); free(mask); free(series1); free(series2); free(xx1); free(xx2); exit(0) ; }
int main( int argc , char * argv[] ) { int do_norm=0 , qdet=2 , have_freq=0 , do_automask=0 ; float dt=0.0f , fbot=0.0f,ftop=999999.9f , blur=0.0f ; MRI_IMARR *ortar=NULL ; MRI_IMAGE *ortim=NULL ; THD_3dim_dataset **ortset=NULL ; int nortset=0 ; THD_3dim_dataset *inset=NULL , *outset ; char *prefix="bandpass" ; byte *mask=NULL ; int mask_nx=0,mask_ny=0,mask_nz=0,nmask , verb=1 , nx,ny,nz,nvox , nfft=0 , kk ; float **vec , **ort=NULL ; int nort=0 , vv , nopt , ntime ; MRI_vectim *mrv ; float pvrad=0.0f ; int nosat=0 ; int do_despike=0 ; /*-- help? --*/ AFNI_SETUP_OMP(0) ; /* 24 Jun 2013 */ if( argc < 2 || strcmp(argv[1],"-help") == 0 ){ printf( "\n" "** NOTA BENE: For the purpose of preparing resting-state FMRI datasets **\n" "** for analysis (e.g., with 3dGroupInCorr), this program is now mostly **\n" "** superseded by the afni_proc.py script. See the 'afni_proc.py -help' **\n" "** section 'Resting state analysis (modern)' to get our current rs-FMRI **\n" "** pre-processing recommended sequence of steps. -- RW Cox, et alii. **\n" "\n" "Usage: 3dBandpass [options] fbot ftop dataset\n" "\n" "* One function of this program is to prepare datasets for input\n" " to 3dSetupGroupInCorr. Other uses are left to your imagination.\n" "\n" "* 'dataset' is a 3D+time sequence of volumes\n" " ++ This must be a single imaging run -- that is, no discontinuities\n" " in time from 3dTcat-ing multiple datasets together.\n" "\n" "* fbot = lowest frequency in the passband, in Hz\n" " ++ fbot can be 0 if you want to do a lowpass filter only;\n" " HOWEVER, the mean and Nyquist freq are always removed.\n" "\n" "* ftop = highest frequency in the passband (must be > fbot)\n" " ++ if ftop > Nyquist freq, then it's a highpass filter only.\n" "\n" "* Set fbot=0 and ftop=99999 to do an 'allpass' filter.\n" " ++ Except for removal of the 0 and Nyquist frequencies, that is.\n" "\n" "* You cannot construct a 'notch' filter with this program!\n" " ++ You could use 3dBandpass followed by 3dcalc to get the same effect.\n" " ++ If you are understand what you are doing, that is.\n" " ++ Of course, that is the AFNI way -- if you don't want to\n" " understand what you are doing, use Some other PrograM, and\n" " you can still get Fine StatisticaL maps.\n" "\n" "* 3dBandpass will fail if fbot and ftop are too close for comfort.\n" " ++ Which means closer than one frequency grid step df,\n" " where df = 1 / (nfft * dt) [of course]\n" "\n" "* The actual FFT length used will be printed, and may be larger\n" " than the input time series length for the sake of efficiency.\n" " ++ The program will use a power-of-2, possibly multiplied by\n" " a power of 3 and/or 5 (up to and including the 3rd power of\n" " each of these: 3, 9, 27, and 5, 25, 125).\n" "\n" "* Note that the results of combining 3dDetrend and 3dBandpass will\n" " depend on the order in which you run these programs. That's why\n" " 3dBandpass has the '-ort' and '-dsort' options, so that the\n" " time series filtering can be done properly, in one place.\n" "\n" "* The output dataset is stored in float format.\n" "\n" "* The order of processing steps is the following (most are optional):\n" " (0) Check time series for initial transients [does not alter data]\n" " (1) Despiking of each time series\n" " (2) Removal of a constant+linear+quadratic trend in each time series\n" " (3) Bandpass of data time series\n" " (4) Bandpass of -ort time series, then detrending of data\n" " with respect to the -ort time series\n" " (5) Bandpass and de-orting of the -dsort dataset,\n" " then detrending of the data with respect to -dsort\n" " (6) Blurring inside the mask [might be slow]\n" " (7) Local PV calculation [WILL be slow!]\n" " (8) L2 normalization [will be fast.]\n" "\n" "--------\n" "OPTIONS:\n" "--------\n" " -despike = Despike each time series before other processing.\n" " ++ Hopefully, you don't actually need to do this,\n" " which is why it is optional.\n" " -ort f.1D = Also orthogonalize input to columns in f.1D\n" " ++ Multiple '-ort' options are allowed.\n" " -dsort fset = Orthogonalize each voxel to the corresponding\n" " voxel time series in dataset 'fset', which must\n" " have the same spatial and temporal grid structure\n" " as the main input dataset.\n" " ++ At present, only one '-dsort' option is allowed.\n" " -nodetrend = Skip the quadratic detrending of the input that\n" " occurs before the FFT-based bandpassing.\n" " ++ You would only want to do this if the dataset\n" " had been detrended already in some other program.\n" " -dt dd = set time step to 'dd' sec [default=from dataset header]\n" " -nfft N = set the FFT length to 'N' [must be a legal value]\n" " -norm = Make all output time series have L2 norm = 1\n" " ++ i.e., sum of squares = 1\n" " -mask mset = Mask dataset\n" " -automask = Create a mask from the input dataset\n" " -blur fff = Blur (inside the mask only) with a filter\n" " width (FWHM) of 'fff' millimeters.\n" " -localPV rrr = Replace each vector by the local Principal Vector\n" " (AKA first singular vector) from a neighborhood\n" " of radius 'rrr' millimiters.\n" " ++ Note that the PV time series is L2 normalized.\n" " ++ This option is mostly for Bob Cox to have fun with.\n" "\n" " -input dataset = Alternative way to specify input dataset.\n" " -band fbot ftop = Alternative way to specify passband frequencies.\n" "\n" " -prefix ppp = Set prefix name of output dataset.\n" " -quiet = Turn off the fun and informative messages. (Why?)\n" "\n" " -notrans = Don't check for initial positive transients in the data:\n" " *OR* ++ The test is a little slow, so skipping it is OK,\n" " -nosat if you KNOW the data time series are transient-free.\n" " ++ Or set AFNI_SKIP_SATCHECK to YES.\n" " ++ Initial transients won't be handled well by the\n" " bandpassing algorithm, and in addition may seriously\n" " contaminate any further processing, such as inter-voxel\n" " correlations via InstaCorr.\n" " ++ No other tests are made [yet] for non-stationary behavior\n" " in the time series data.\n" ) ; PRINT_AFNI_OMP_USAGE( "3dBandpass" , "* At present, the only part of 3dBandpass that is parallelized is the\n" " '-blur' option, which processes each sub-brick independently.\n" ) ; PRINT_COMPILE_DATE ; exit(0) ; } /*-- startup --*/ mainENTRY("3dBandpass"); machdep(); AFNI_logger("3dBandpass",argc,argv); PRINT_VERSION("3dBandpass"); AUTHOR("RW Cox"); nosat = AFNI_yesenv("AFNI_SKIP_SATCHECK") ; nopt = 1 ; while( nopt < argc && argv[nopt][0] == '-' ){ if( strcmp(argv[nopt],"-despike") == 0 ){ /* 08 Oct 2010 */ do_despike++ ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-nfft") == 0 ){ int nnup ; if( ++nopt >= argc ) ERROR_exit("need an argument after -nfft!") ; nfft = (int)strtod(argv[nopt],NULL) ; nnup = csfft_nextup_even(nfft) ; if( nfft < 16 || nfft != nnup ) ERROR_exit("value %d after -nfft is illegal! Next legal value = %d",nfft,nnup) ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-blur") == 0 ){ if( ++nopt >= argc ) ERROR_exit("need an argument after -blur!") ; blur = strtod(argv[nopt],NULL) ; if( blur <= 0.0f ) WARNING_message("non-positive blur?!") ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-localPV") == 0 ){ if( ++nopt >= argc ) ERROR_exit("need an argument after -localpv!") ; pvrad = strtod(argv[nopt],NULL) ; if( pvrad <= 0.0f ) WARNING_message("non-positive -localpv?!") ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-prefix") == 0 ){ if( ++nopt >= argc ) ERROR_exit("need an argument after -prefix!") ; prefix = strdup(argv[nopt]) ; if( !THD_filename_ok(prefix) ) ERROR_exit("bad -prefix option!") ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-automask") == 0 ){ if( mask != NULL ) ERROR_exit("Can't use -mask AND -automask!") ; do_automask = 1 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-mask") == 0 ){ THD_3dim_dataset *mset ; if( ++nopt >= argc ) ERROR_exit("Need argument after '-mask'") ; if( mask != NULL || do_automask ) ERROR_exit("Can't have two mask inputs") ; mset = THD_open_dataset( argv[nopt] ) ; CHECK_OPEN_ERROR(mset,argv[nopt]) ; DSET_load(mset) ; CHECK_LOAD_ERROR(mset) ; mask_nx = DSET_NX(mset); mask_ny = DSET_NY(mset); mask_nz = DSET_NZ(mset); mask = THD_makemask( mset , 0 , 0.5f, 0.0f ) ; DSET_delete(mset) ; if( mask == NULL ) ERROR_exit("Can't make mask from dataset '%s'",argv[nopt]) ; nmask = THD_countmask( mask_nx*mask_ny*mask_nz , mask ) ; if( verb ) INFO_message("Number of voxels in mask = %d",nmask) ; if( nmask < 1 ) ERROR_exit("Mask is too small to process") ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-norm") == 0 ){ do_norm = 1 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-quiet") == 0 ){ verb = 0 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-notrans") == 0 || strcmp(argv[nopt],"-nosat") == 0 ){ nosat = 1 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-ort") == 0 ){ if( ++nopt >= argc ) ERROR_exit("need an argument after -ort!") ; if( ortar == NULL ) INIT_IMARR(ortar) ; ortim = mri_read_1D( argv[nopt] ) ; if( ortim == NULL ) ERROR_exit("can't read from -ort '%s'",argv[nopt]) ; mri_add_name(argv[nopt],ortim) ; ADDTO_IMARR(ortar,ortim) ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-dsort") == 0 ){ THD_3dim_dataset *qset ; if( ++nopt >= argc ) ERROR_exit("need an argument after -dsort!") ; if( nortset > 0 ) ERROR_exit("only 1 -dsort option is allowed!") ; qset = THD_open_dataset(argv[nopt]) ; CHECK_OPEN_ERROR(qset,argv[nopt]) ; ortset = (THD_3dim_dataset **)realloc(ortset, sizeof(THD_3dim_dataset *)*(nortset+1)) ; ortset[nortset++] = qset ; nopt++ ; continue ; } if( strncmp(argv[nopt],"-nodetrend",6) == 0 ){ qdet = 0 ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-dt") == 0 ){ if( ++nopt >= argc ) ERROR_exit("need an argument after -dt!") ; dt = (float)strtod(argv[nopt],NULL) ; if( dt <= 0.0f ) WARNING_message("value after -dt illegal!") ; nopt++ ; continue ; } if( strcmp(argv[nopt],"-input") == 0 ){ if( inset != NULL ) ERROR_exit("Can't have 2 -input options!") ; if( ++nopt >= argc ) ERROR_exit("need an argument after -input!") ; inset = THD_open_dataset(argv[nopt]) ; CHECK_OPEN_ERROR(inset,argv[nopt]) ; nopt++ ; continue ; } if( strncmp(argv[nopt],"-band",5) == 0 ){ if( ++nopt >= argc-1 ) ERROR_exit("need 2 arguments after -band!") ; if( have_freq ) WARNING_message("second -band option replaces first one!") ; fbot = strtod(argv[nopt++],NULL) ; ftop = strtod(argv[nopt++],NULL) ; have_freq = 1 ; continue ; } ERROR_exit("Unknown option: '%s'",argv[nopt]) ; } /** check inputs for reasonablositiness **/ if( !have_freq ){ if( nopt+1 >= argc ) ERROR_exit("Need frequencies on command line after options!") ; fbot = (float)strtod(argv[nopt++],NULL) ; ftop = (float)strtod(argv[nopt++],NULL) ; } if( inset == NULL ){ if( nopt >= argc ) ERROR_exit("Need input dataset name on command line after options!") ; inset = THD_open_dataset(argv[nopt]) ; CHECK_OPEN_ERROR(inset,argv[nopt]) ; nopt++ ; } DSET_UNMSEC(inset) ; if( fbot < 0.0f ) ERROR_exit("fbot value can't be negative!") ; if( ftop <= fbot ) ERROR_exit("ftop value %g must be greater than fbot value %g!",ftop,fbot) ; ntime = DSET_NVALS(inset) ; if( ntime < 9 ) ERROR_exit("Input dataset is too short!") ; if( nfft <= 0 ){ nfft = csfft_nextup_even(ntime) ; if( verb ) INFO_message("Data length = %d FFT length = %d",ntime,nfft) ; (void)THD_bandpass_set_nfft(nfft) ; } else if( nfft < ntime ){ ERROR_exit("-nfft %d is less than data length = %d",nfft,ntime) ; } else { kk = THD_bandpass_set_nfft(nfft) ; if( kk != nfft && verb ) INFO_message("Data length = %d FFT length = %d",ntime,kk) ; } if( dt <= 0.0f ){ dt = DSET_TR(inset) ; if( dt <= 0.0f ){ WARNING_message("Setting dt=1.0 since input dataset lacks a time axis!") ; dt = 1.0f ; } } if( !THD_bandpass_OK(ntime,dt,fbot,ftop,1) ) ERROR_exit("Can't continue!") ; nx = DSET_NX(inset); ny = DSET_NY(inset); nz = DSET_NZ(inset); nvox = nx*ny*nz; /* check mask, or create it */ if( verb ) INFO_message("Loading input dataset time series" ) ; DSET_load(inset) ; if( mask != NULL ){ if( mask_nx != nx || mask_ny != ny || mask_nz != nz ) ERROR_exit("-mask dataset grid doesn't match input dataset") ; } else if( do_automask ){ mask = THD_automask( inset ) ; if( mask == NULL ) ERROR_message("Can't create -automask from input dataset?") ; nmask = THD_countmask( DSET_NVOX(inset) , mask ) ; if( verb ) INFO_message("Number of voxels in automask = %d",nmask); if( nmask < 1 ) ERROR_exit("Automask is too small to process") ; } else { mask = (byte *)malloc(sizeof(byte)*nvox) ; nmask = nvox ; memset(mask,1,sizeof(byte)*nvox) ; if( verb ) INFO_message("No mask ==> processing all %d voxels",nvox); } /* A simple check of dataset quality [08 Feb 2010] */ if( !nosat ){ float val ; INFO_message( "Checking dataset for initial transients [use '-notrans' to skip this test]") ; val = THD_saturation_check(inset,mask,0,0) ; kk = (int)(val+0.54321f) ; if( kk > 0 ) ININFO_message( "Looks like there %s %d non-steady-state initial time point%s :-(" , ((kk==1) ? "is" : "are") , kk , ((kk==1) ? " " : "s") ) ; else if( val > 0.3210f ) /* don't ask where this threshold comes from! */ ININFO_message( "MAYBE there's an initial positive transient of 1 point, but it's hard to tell\n") ; else ININFO_message("No widespread initial positive transient detected :-)") ; } /* check -dsort inputs for match to inset */ for( kk=0 ; kk < nortset ; kk++ ){ if( DSET_NX(ortset[kk]) != nx || DSET_NY(ortset[kk]) != ny || DSET_NZ(ortset[kk]) != nz || DSET_NVALS(ortset[kk]) != ntime ) ERROR_exit("-dsort %s doesn't match input dataset grid" , DSET_BRIKNAME(ortset[kk]) ) ; } /* convert input dataset to a vectim, which is more fun */ mrv = THD_dset_to_vectim( inset , mask , 0 ) ; if( mrv == NULL ) ERROR_exit("Can't load time series data!?") ; DSET_unload(inset) ; /* similarly for the ort vectors */ if( ortar != NULL ){ for( kk=0 ; kk < IMARR_COUNT(ortar) ; kk++ ){ ortim = IMARR_SUBIM(ortar,kk) ; if( ortim->nx < ntime ) ERROR_exit("-ort file %s is shorter than input dataset time series", ortim->name ) ; ort = (float **)realloc( ort , sizeof(float *)*(nort+ortim->ny) ) ; for( vv=0 ; vv < ortim->ny ; vv++ ) ort[nort++] = MRI_FLOAT_PTR(ortim) + ortim->nx * vv ; } } /* check whether processing leaves any DoF remaining 18 Mar 2015 [rickr] */ { int nbprem = THD_bandpass_remain_dim(ntime, dt, fbot, ftop, 1); int bpused, nremain; int wlimit; /* warning limit */ bpused = ntime - nbprem; /* #dim lost in bandpass step */ nremain = nbprem - nort; /* #dim left in output */ if( nortset == 1 ) nremain--; nremain -= (qdet+1); if( verb ) INFO_message("%d dimensional data reduced to %d by:\n" " %d (bandpass), %d (-ort), %d (-dsort), %d (detrend)", ntime, nremain, bpused, nort, nortset?1:0, qdet+1); /* possibly warn (if 95% lost) user or fail */ wlimit = ntime/20; if( wlimit < 3 ) wlimit = 3; if( nremain < wlimit && nremain > 0 ) WARNING_message("dimensionality reduced from %d to %d, be careful!", ntime, nremain); if( nremain <= 0 ) /* FAILURE */ ERROR_exit("dimensionality reduced from %d to %d, failing!", ntime, nremain); } /* all the real work now */ if( do_despike ){ int_pair nsp ; if( verb ) INFO_message("Testing data time series for spikes") ; nsp = THD_vectim_despike9( mrv ) ; if( verb ) ININFO_message(" -- Squashed %d spikes from %d voxels",nsp.j,nsp.i) ; } if( verb ) INFO_message("Bandpassing data time series") ; (void)THD_bandpass_vectim( mrv , dt,fbot,ftop , qdet , nort,ort ) ; /* OK, maybe a little more work */ if( nortset == 1 ){ MRI_vectim *orv ; orv = THD_dset_to_vectim( ortset[0] , mask , 0 ) ; if( orv == NULL ){ ERROR_message("Can't load -dsort %s",DSET_BRIKNAME(ortset[0])) ; } else { float *dp , *mvv , *ovv , ff ; if( verb ) INFO_message("Orthogonalizing to bandpassed -dsort") ; (void)THD_bandpass_vectim( orv , dt,fbot,ftop , qdet , nort,ort ) ; THD_vectim_normalize( orv ) ; dp = malloc(sizeof(float)*mrv->nvec) ; THD_vectim_vectim_dot( mrv , orv , dp ) ; for( vv=0 ; vv < mrv->nvec ; vv++ ){ ff = dp[vv] ; if( ff != 0.0f ){ mvv = VECTIM_PTR(mrv,vv) ; ovv = VECTIM_PTR(orv,vv) ; for( kk=0 ; kk < ntime ; kk++ ) mvv[kk] -= ff*ovv[kk] ; } } VECTIM_destroy(orv) ; free(dp) ; } } if( blur > 0.0f ){ if( verb ) INFO_message("Blurring time series data spatially; FWHM=%.2f",blur) ; mri_blur3D_vectim( mrv , blur ) ; } if( pvrad > 0.0f ){ if( verb ) INFO_message("Local PV-ing time series data spatially; radius=%.2f",pvrad) ; THD_vectim_normalize( mrv ) ; THD_vectim_localpv( mrv , pvrad ) ; } if( do_norm && pvrad <= 0.0f ){ if( verb ) INFO_message("L2 normalizing time series data") ; THD_vectim_normalize( mrv ) ; } /* create output dataset, populate it, write it, then quit */ if( verb ) INFO_message("Creating output dataset in memory, then writing it") ; outset = EDIT_empty_copy(inset) ; /* do not copy scalars 11 Sep 2015 [rickr] */ EDIT_dset_items( outset , ADN_prefix,prefix , ADN_brick_fac,NULL , ADN_none ) ; tross_Copy_History( inset , outset ) ; tross_Make_History( "3dBandpass" , argc,argv , outset ) ; for( vv=0 ; vv < ntime ; vv++ ) EDIT_substitute_brick( outset , vv , MRI_float , NULL ) ; #if 1 THD_vectim_to_dset( mrv , outset ) ; #else AFNI_OMP_START ; #pragma omp parallel { float *far , *var ; int *ivec=mrv->ivec ; int vv,kk ; #pragma omp for for( vv=0 ; vv < ntime ; vv++ ){ far = DSET_BRICK_ARRAY(outset,vv) ; var = mrv->fvec + vv ; for( kk=0 ; kk < nmask ; kk++ ) far[ivec[kk]] = var[kk*ntime] ; } } AFNI_OMP_END ; #endif VECTIM_destroy(mrv) ; DSET_write(outset) ; if( verb ) WROTE_DSET(outset) ; exit(0) ; }