Exemple #1
0
/*MC
      TSRK - ODE and DAE solver using Runge-Kutta schemes

  The user should provide the right hand side of the equation
  using TSSetRHSFunction().

  Notes:
  The default is TSRK3, it can be changed with TSRKSetType() or -ts_rk_type

  Level: beginner

.seealso:  TSCreate(), TS, TSSetType(), TSRKSetType(), TSRKGetType(), TSRKSetFullyImplicit(), TSRK2D, TTSRK2E, TSRK3,
           TSRK4, TSRK5, TSRKPRSSP2, TSRKBPR3, TSRKType, TSRKRegister()

M*/
PETSC_EXTERN PetscErrorCode TSCreate_RK(TS ts)
{
  TS_RK          *rk;
  PetscErrorCode ierr;

  PetscFunctionBegin;
  ierr = TSRKInitializePackage();CHKERRQ(ierr);

  ts->ops->reset          = TSReset_RK;
  ts->ops->destroy        = TSDestroy_RK;
  ts->ops->view           = TSView_RK;
  ts->ops->load           = TSLoad_RK;
  ts->ops->setup          = TSSetUp_RK;
  ts->ops->adjointsetup   = TSAdjointSetUp_RK;
  ts->ops->step           = TSStep_RK;
  ts->ops->interpolate    = TSInterpolate_RK;
  ts->ops->evaluatestep   = TSEvaluateStep_RK;
  ts->ops->rollback       = TSRollBack_RK;
  ts->ops->setfromoptions = TSSetFromOptions_RK;
  ts->ops->getstages      = TSGetStages_RK;
  ts->ops->adjointstep    = TSAdjointStep_RK;

  ts->ops->adjointintegral = TSAdjointCostIntegral_RK;
  ts->ops->forwardintegral = TSForwardCostIntegral_RK;

  ierr = PetscNewLog(ts,&rk);CHKERRQ(ierr);
  ts->data = (void*)rk;

  ierr = PetscObjectComposeFunction((PetscObject)ts,"TSRKGetType_C",TSRKGetType_RK);CHKERRQ(ierr);
  ierr = PetscObjectComposeFunction((PetscObject)ts,"TSRKSetType_C",TSRKSetType_RK);CHKERRQ(ierr);

  ierr = TSRKSetType(ts,TSRKDefault);CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
Exemple #2
0
PetscErrorCode  TSRKGetType_RK(TS ts,TSRKType *rktype)
{
  TS_RK     *rk = (TS_RK*)ts->data;
  PetscErrorCode ierr;

  PetscFunctionBegin;
  if (!rk->tableau) {
    ierr = TSRKSetType(ts,TSRKDefault);CHKERRQ(ierr);
  }
  *rktype = rk->tableau->name;
  PetscFunctionReturn(0);
}
Exemple #3
0
static PetscErrorCode TSSetFromOptions_RK(PetscOptionItems *PetscOptionsObject,TS ts)
{
  TS_RK         *rk = (TS_RK*)ts->data;
  PetscErrorCode ierr;

  PetscFunctionBegin;
  ierr = PetscOptionsHead(PetscOptionsObject,"RK ODE solver options");CHKERRQ(ierr);
  {
    RKTableauLink  link;
    PetscInt       count,choice;
    PetscBool      flg;
    const char   **namelist;
    for (link=RKTableauList,count=0; link; link=link->next,count++) ;
    ierr = PetscMalloc1(count,&namelist);CHKERRQ(ierr);
    for (link=RKTableauList,count=0; link; link=link->next,count++) namelist[count] = link->tab.name;
    ierr = PetscOptionsEList("-ts_rk_type","Family of RK method","TSRKSetType",(const char*const*)namelist,count,rk->tableau->name,&choice,&flg);CHKERRQ(ierr);
    if (flg) {ierr = TSRKSetType(ts,namelist[choice]);CHKERRQ(ierr);}
    ierr = PetscFree(namelist);CHKERRQ(ierr);
  }
  ierr = PetscOptionsTail();CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
Exemple #4
0
static PetscErrorCode TSSetFromOptions_RK(PetscOptions *PetscOptionsObject,TS ts)
{
  PetscErrorCode ierr;
  char           rktype[256];

  PetscFunctionBegin;
  ierr = PetscOptionsHead(PetscOptionsObject,"RK ODE solver options");CHKERRQ(ierr);
  {
    RKTableauLink  link;
    PetscInt       count,choice;
    PetscBool      flg;
    const char   **namelist;
    ierr = PetscStrncpy(rktype,TSRKDefault,sizeof(rktype));CHKERRQ(ierr);
    for (link=RKTableauList,count=0; link; link=link->next,count++) ;
    ierr = PetscMalloc1(count,&namelist);CHKERRQ(ierr);
    for (link=RKTableauList,count=0; link; link=link->next,count++) namelist[count] = link->tab.name;
    ierr      = PetscOptionsEList("-ts_rk_type","Family of RK method","TSRKSetType",(const char*const*)namelist,count,rktype,&choice,&flg);CHKERRQ(ierr);
    ierr      = TSRKSetType(ts,flg ? namelist[choice] : rktype);CHKERRQ(ierr);
    ierr      = PetscFree(namelist);CHKERRQ(ierr);
  }
  ierr = PetscOptionsTail();CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
Exemple #5
0
static PetscErrorCode TSSetUp_RK(TS ts)
{
  TS_RK         *rk = (TS_RK*)ts->data;
  RKTableau      tab;
  PetscInt       s;
  PetscErrorCode ierr;
  DM             dm;

  PetscFunctionBegin;
  if (!rk->tableau) {
    ierr = TSRKSetType(ts,TSRKDefault);CHKERRQ(ierr);
  }
  tab  = rk->tableau;
  s    = tab->s;
  ierr = VecDuplicateVecs(ts->vec_sol,s,&rk->Y);CHKERRQ(ierr);
  ierr = VecDuplicateVecs(ts->vec_sol,s,&rk->YdotRHS);CHKERRQ(ierr);
  ierr = PetscMalloc1(s,&rk->work);CHKERRQ(ierr);
  ierr = TSGetDM(ts,&dm);CHKERRQ(ierr);
  if (dm) {
    ierr = DMCoarsenHookAdd(dm,DMCoarsenHook_TSRK,DMRestrictHook_TSRK,ts);CHKERRQ(ierr);
    ierr = DMSubDomainHookAdd(dm,DMSubDomainHook_TSRK,DMSubDomainRestrictHook_TSRK,ts);CHKERRQ(ierr);
  }
  PetscFunctionReturn(0);
}
Exemple #6
0
/*
 * time_step solves for the time_dependence of the system
 * that was previously setup using the add_to_ham and add_lin
 * routines. Solver selection and parameters can be controlled via PETSc
 * command line options. Default solver is TSRK3BS
 *
 * Inputs:
 *       Vec     x:       The density matrix, with appropriate inital conditions
 *       double dt:       initial timestep. For certain explicit methods, this timestep
 *                        can be changed, as those methods have adaptive time steps
 *       double time_max: the maximum time to integrate to
 *       int steps_max:   max number of steps to take
 */
void time_step(Vec x, PetscReal init_time, PetscReal time_max,PetscReal dt,PetscInt steps_max){
  PetscViewer    mat_view;
  TS             ts; /* timestepping context */
  PetscInt       i,j,Istart,Iend,steps,row,col;
  PetscScalar    mat_tmp;
  PetscReal      tmp_real;
  Mat            AA;
  PetscInt       nevents,direction;
  PetscBool      terminate;
  operator       op;
  int            num_pop;
  double         *populations;
  Mat            solve_A,solve_stiff_A;


  PetscLogStagePop();
  PetscLogStagePush(solve_stage);
  if (_lindblad_terms) {
    if (nid==0) {
      printf("Lindblad terms found, using Lindblad solver.\n");
    }
    solve_A = full_A;
    if (_stiff_solver) {
      if(nid==0) printf("ERROR! Lindblad-stiff solver untested.");
      exit(0);
    }
  } else {
    if (nid==0) {
      printf("No Lindblad terms found, using (more efficient) Schrodinger solver.\n");
    }
    solve_A = ham_A;
    solve_stiff_A = ham_stiff_A;
    if (_num_time_dep&&_stiff_solver) {
      if(nid==0) printf("ERROR! Schrodinger-stiff + timedep solver untested.");
      exit(0);
    }
  }

  /* Possibly print dense ham. No stabilization is needed? */
  if (nid==0) {
    /* Print dense ham, if it was asked for */
    if (_print_dense_ham){
      FILE *fp_ham;
      fp_ham = fopen("ham","w");

      if (nid==0){
        for (i=0;i<total_levels;i++){
          for (j=0;j<total_levels;j++){
            fprintf(fp_ham,"%e %e ",PetscRealPart(_hamiltonian[i][j]),PetscImaginaryPart(_hamiltonian[i][j]));
          }
          fprintf(fp_ham,"\n");
        }
      }
      fclose(fp_ham);
      for (i=0;i<total_levels;i++){
        free(_hamiltonian[i]);
      }
      free(_hamiltonian);
      _print_dense_ham = 0;
    }
  }


  /* Remove stabilization if it was previously added */
  if (stab_added){
    if (nid==0) printf("Removing stabilization...\n");
    /*
     * We add 1.0 in the 0th spot and every n+1 after
     */
    if (nid==0) {
      row = 0;
      for (i=0;i<total_levels;i++){
        col = i*(total_levels+1);
        mat_tmp = -1.0 + 0.*PETSC_i;
        MatSetValue(full_A,row,col,mat_tmp,ADD_VALUES);
      }
    }
  }

  MatGetOwnershipRange(solve_A,&Istart,&Iend);
  /*
   * Explicitly add 0.0 to all diagonal elements;
   * this fixes a 'matrix in wrong state' message that PETSc
   * gives if the diagonal was never initialized.
   */
  //if (nid==0) printf("Adding 0 to diagonal elements...\n");
  for (i=Istart;i<Iend;i++){
    mat_tmp = 0 + 0.*PETSC_i;
    MatSetValue(solve_A,i,i,mat_tmp,ADD_VALUES);
  }
  if(_stiff_solver){
    MatGetOwnershipRange(solve_stiff_A,&Istart,&Iend);
    for (i=Istart;i<Iend;i++){
      mat_tmp = 0 + 0.*PETSC_i;
      MatSetValue(solve_stiff_A,i,i,mat_tmp,ADD_VALUES);
    }

  }

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -*
   *       Create the timestepping solver and set various options       *
   *- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

  /*
   * Create timestepping solver context
   */
  TSCreate(PETSC_COMM_WORLD,&ts);
  TSSetProblemType(ts,TS_LINEAR);


  /*
   * Set function to get information at every timestep
   */
  if (_ts_monitor!=NULL){
    TSMonitorSet(ts,_ts_monitor,_tsctx,NULL);
  }
  /*
   * Set up ODE system
   */

  TSSetRHSFunction(ts,NULL,TSComputeRHSFunctionLinear,NULL);

  if(_stiff_solver) {
    /* TSSetIFunction(ts,NULL,TSComputeRHSFunctionLinear,NULL); */
    if (nid==0) {
      printf("Stiff solver not implemented!\n");
      exit(0);
    }
    if(nid==0) printf("Using stiff solver - TSROSW\n");
  }

  if(_num_time_dep+_num_time_dep_lin) {

    for(i=0;i<_num_time_dep;i++){
      tmp_real = 0.0;
      _add_ops_to_mat_ham(tmp_real,solve_A,_time_dep_list[i].num_ops,_time_dep_list[i].ops);
    }

    for(i=0;i<_num_time_dep_lin;i++){
      tmp_real = 0.0;
      _add_ops_to_mat_lin(tmp_real,solve_A,_time_dep_list_lin[i].num_ops,_time_dep_list_lin[i].ops);
    }

    /* Tell PETSc to assemble the matrix */
    MatAssemblyBegin(solve_A,MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(solve_A,MAT_FINAL_ASSEMBLY);
    if (nid==0) printf("Matrix Assembled.\n");

    MatDuplicate(solve_A,MAT_COPY_VALUES,&AA);
    MatAssemblyBegin(AA,MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(AA,MAT_FINAL_ASSEMBLY);

    TSSetRHSJacobian(ts,AA,AA,_RHS_time_dep_ham_p,NULL);
  } else {
    /* Tell PETSc to assemble the matrix */
    MatAssemblyBegin(solve_A,MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(solve_A,MAT_FINAL_ASSEMBLY);
    if (_stiff_solver){
      MatAssemblyBegin(solve_stiff_A,MAT_FINAL_ASSEMBLY);
      MatAssemblyEnd(solve_stiff_A,MAT_FINAL_ASSEMBLY);
      /* TSSetIJacobian(ts,solve_stiff_A,solve_stiff_A,TSComputeRHSJacobianConstant,NULL); */
      if (nid==0) {
        printf("Stiff solver not implemented!\n");
        exit(0);
      }
    }
    if (nid==0) printf("Matrix Assembled.\n");
    TSSetRHSJacobian(ts,solve_A,solve_A,TSComputeRHSJacobianConstant,NULL);
  }

  /* Print information about the matrix. */
  PetscViewerASCIIOpen(PETSC_COMM_WORLD,NULL,&mat_view);
  PetscViewerPushFormat(mat_view,PETSC_VIEWER_ASCII_INFO);
  /* PetscViewerPushFormat(mat_view,PETSC_VIEWER_ASCII_MATLAB); */
  /* MatView(solve_A,mat_view); */

  /* PetscInt          ncols; */
  /* const PetscInt    *cols; */
  /* const PetscScalar *vals; */

  /* for(i=0;i<total_levels*total_levels;i++){ */
  /*   MatGetRow(solve_A,i,&ncols,&cols,&vals); */
  /*   for (j=0;j<ncols;j++){ */

  /*     if(PetscAbsComplex(vals[j])>1e-5){ */
  /*       printf("%d %d %lf %lf\n",i,cols[j],vals[j]); */
  /*     } */
  /*   } */
  /*   MatRestoreRow(solve_A,i,&ncols,&cols,&vals); */
  /* } */

  if(_stiff_solver){
    MatView(solve_stiff_A,mat_view);
  }
  PetscViewerPopFormat(mat_view);
  PetscViewerDestroy(&mat_view);

  TSSetTimeStep(ts,dt);

  /*
   * Set default options, can be changed at runtime
   */

  TSSetMaxSteps(ts,steps_max);
  TSSetMaxTime(ts,time_max);
  TSSetTime(ts,init_time);
  TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);
  if (_stiff_solver) {
    TSSetType(ts,TSROSW);
  } else {
    TSSetType(ts,TSRK);
    TSRKSetType(ts,TSRK3BS);
  }

  /* If we have gates to apply, set up the event handler. */
  if (_num_quantum_gates > 0) {
    nevents   =  1; //Only one event for now (did we cross a gate?)
    direction = -1; //We only want to count an event if we go from positive to negative
    terminate = PETSC_FALSE; //Keep time stepping after we passed our event
    /* Arguments are: ts context, nevents, direction of zero crossing, whether to terminate,
     * a function to check event status, a function to apply events, private data context.
     */
    TSSetEventHandler(ts,nevents,&direction,&terminate,_QG_EventFunction,_QG_PostEventFunction,NULL);
  }

  if (_num_circuits > 0) {
    nevents   =  1; //Only one event for now (did we cross a gate?)
    direction = -1; //We only want to count an event if we go from positive to negative
    terminate = PETSC_FALSE; //Keep time stepping after we passed our event
    /* Arguments are: ts context, nevents, direction of zero crossing, whether to terminate,
     * a function to check event status, a function to apply events, private data context.
     */
    TSSetEventHandler(ts,nevents,&direction,&terminate,_QC_EventFunction,_QC_PostEventFunction,NULL);
  }

  if (_discrete_ec > 0) {
    nevents   =  1; //Only one event for now (did we cross an ec step?)
    direction = -1; //We only want to count an event if we go from positive to negative
    terminate = PETSC_FALSE; //Keep time stepping after we passed our event
    /* Arguments are: ts context, nevents, direction of zero crossing, whether to terminate,
     * a function to check event status, a function to apply events, private data context.
     */
    TSSetEventHandler(ts,nevents,&direction,&terminate,_DQEC_EventFunction,_DQEC_PostEventFunction,NULL);
  }

  /* if (_lindblad_terms) { */
  /*   nevents   =  1; //Only one event for now (did we cross a gate?) */
  /*   direction =  0; //We only want to count an event if we go from positive to negative */
  /*   terminate = PETSC_FALSE; //Keep time stepping after we passed our event */
  /*   TSSetEventHandler(ts,nevents,&direction,&terminate,_Normalize_EventFunction,_Normalize_PostEventFunction,NULL); */
  /* } */
  TSSetFromOptions(ts);
  TSSolve(ts,x);
  TSGetStepNumber(ts,&steps);

  num_pop = get_num_populations();
  populations = malloc(num_pop*sizeof(double));
  get_populations(x,&populations);
  /* if(nid==0){ */
  /*   printf("Final populations: "); */
  /*   for(i=0;i<num_pop;i++){ */
  /*     printf(" %e ",populations[i]); */
  /*   } */
  /*   printf("\n"); */
  /* } */

  /* PetscPrintf(PETSC_COMM_WORLD,"Steps %D\n",steps); */

  /* Free work space */
  TSDestroy(&ts);
  if(_num_time_dep+_num_time_dep_lin){
    MatDestroy(&AA);
  }
  free(populations);
  PetscLogStagePop();
  PetscLogStagePush(post_solve_stage);

  return;
}