Exemple #1
0
PetscErrorCode TSTrajectoryGet_Basic(TSTrajectory tj,TS ts,PetscInt stepnum,PetscReal *t)
{
  Vec            Sol,*Y;
  PetscInt       Nr,i;
  PetscViewer    viewer;
  PetscReal      timepre;
  char           filename[PETSC_MAX_PATH_LEN];
  PetscErrorCode ierr;

  PetscFunctionBegin;
  ierr = TSGetTotalSteps(ts,&stepnum);CHKERRQ(ierr);
  ierr = PetscSNPrintf(filename,sizeof filename,"SA-data/SA-%06d.bin",stepnum);CHKERRQ(ierr);
  ierr = PetscViewerBinaryOpen(PETSC_COMM_WORLD,filename,FILE_MODE_READ,&viewer);CHKERRQ(ierr);

  ierr = TSGetSolution(ts,&Sol);CHKERRQ(ierr);
  ierr = VecLoad(Sol,viewer);CHKERRQ(ierr);

  ierr = PetscViewerBinaryRead(viewer,t,1,NULL,PETSC_REAL);CHKERRQ(ierr);

  if (stepnum != 0) {
    ierr = TSGetStages(ts,&Nr,&Y);CHKERRQ(ierr);
    for (i=0;i<Nr ;i++) {
      ierr = VecLoad(Y[i],viewer);CHKERRQ(ierr);
    }
    ierr = PetscViewerBinaryRead(viewer,&timepre,1,NULL,PETSC_REAL);CHKERRQ(ierr);
    ierr = TSSetTimeStep(ts,-(*t)+timepre);CHKERRQ(ierr);
  }

  ierr = PetscViewerDestroy(&viewer);CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
Exemple #2
0
PetscErrorCode RunTest(int nx, int ny, int nz, int loops, double *wt)
{
  Vec            x,f;
  TS             ts;
  AppCtx         _app,*app=&_app;
  double         t1,t2;
  PetscErrorCode ierr;
  PetscFunctionBegin;

  app->nx = nx; app->h[0] = 1./(nx-1);
  app->ny = ny; app->h[1] = 1./(ny-1);
  app->nz = nz; app->h[2] = 1./(nz-1);

  ierr = VecCreate(PETSC_COMM_SELF,&x);CHKERRQ(ierr);
  ierr = VecSetSizes(x,nx*ny*nz,nx*ny*nz);CHKERRQ(ierr);
  ierr = VecSetUp(x);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&f);CHKERRQ(ierr);

  ierr = TSCreate(PETSC_COMM_SELF,&ts);CHKERRQ(ierr);
  ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr);
  ierr = TSSetType(ts,TSTHETA);CHKERRQ(ierr);
  ierr = TSThetaSetTheta(ts,1.0);CHKERRQ(ierr);
  ierr = TSSetTimeStep(ts,0.01);CHKERRQ(ierr);
  ierr = TSSetTime(ts,0.0);CHKERRQ(ierr);
  ierr = TSSetDuration(ts,10,1.0);CHKERRQ(ierr);

  ierr = TSSetSolution(ts,x);CHKERRQ(ierr);
  ierr = TSSetIFunction(ts,f,FormFunction,app);CHKERRQ(ierr);
  ierr = PetscOptionsSetValue("-snes_mf","1");CHKERRQ(ierr);
  {
    SNES snes;
    KSP  ksp;
    ierr = TSGetSNES(ts,&snes);CHKERRQ(ierr);
    ierr = SNESGetKSP(snes,&ksp);CHKERRQ(ierr);
    ierr = KSPSetType(ksp,KSPCG);CHKERRQ(ierr);
  }
  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);
  ierr = TSSetUp(ts);CHKERRQ(ierr);

  *wt = 1e300;
  while (loops-- > 0) {
    ierr = FormInitial(0.0,x,app);CHKERRQ(ierr);
    ierr = PetscGetTime(&t1);CHKERRQ(ierr);
    ierr = TSSolve(ts,x,PETSC_NULL);CHKERRQ(ierr);
    ierr = PetscGetTime(&t2);CHKERRQ(ierr);
    *wt = PetscMin(*wt,t2-t1);
  }

  ierr = VecDestroy(&x);CHKERRQ(ierr);
  ierr = VecDestroy(&f);CHKERRQ(ierr);
  ierr = TSDestroy(&ts);CHKERRQ(ierr);
  
  PetscFunctionReturn(0);
}
Exemple #3
0
/*
 * This is a modified version of PETSc/src/ts/examples/tutorials/ex15.c
 * to demonstrate how MOOSE interact with an external solver package
 */
PetscErrorCode
externalPETScDiffusionFDMSolve(TS ts, Vec u, PetscReal dt, PetscReal time)
{
  PetscErrorCode ierr;
#if !PETSC_VERSION_LESS_THAN(3, 8, 0)
  PetscInt current_step;
#endif
  DM da;

  PetscFunctionBeginUser;

  ierr = TSGetDM(ts, &da);
  CHKERRQ(ierr);

#if !PETSC_VERSION_LESS_THAN(3, 7, 0)
  PetscOptionsSetValue(NULL, "-ts_monitor", NULL);
  PetscOptionsSetValue(NULL, "-snes_monitor", NULL);
  PetscOptionsSetValue(NULL, "-ksp_monitor", NULL);
#else
  PetscOptionsSetValue("-ts_monitor", NULL);
  PetscOptionsSetValue("-snes_monitor", NULL);
  PetscOptionsSetValue("-ksp_monitor", NULL);
#endif

  /*ierr = TSSetMaxTime(ts,1.0);CHKERRQ(ierr);*/
  ierr = TSSetExactFinalTime(ts, TS_EXACTFINALTIME_STEPOVER);
  CHKERRQ(ierr);

  ierr = TSSetSolution(ts, u);
  CHKERRQ(ierr);
  ierr = TSSetTimeStep(ts, dt);
  CHKERRQ(ierr);
  ierr = TSSetTime(ts, time - dt);
  CHKERRQ(ierr);
#if !PETSC_VERSION_LESS_THAN(3, 8, 0)
  ierr = TSGetStepNumber(ts, &current_step);
  CHKERRQ(ierr);
  ierr = TSSetMaxSteps(ts, current_step + 1);
  CHKERRQ(ierr);
#else
  SETERRQ(PetscObjectComm((PetscObject)ts), PETSC_ERR_SUP, "Require PETSc-3.8.x or higher ");
#endif
  /*  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
   Sets various TS parameters from user options
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetFromOptions(ts);
  CHKERRQ(ierr);
  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Solve nonlinear system
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSolve(ts, u);
  CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
Exemple #4
0
/*@
   TSAdaptCheckStage - checks whether to accept a stage, (e.g. reject and change time step size if nonlinear solve fails)

   Collective on TSAdapt

   Input Arguments:
+  adapt - adaptive controller context
.  ts - time stepper
.  t - Current simulation time
-  Y - Current solution vector

   Output Arguments:
.  accept - PETSC_TRUE to accept the stage, PETSC_FALSE to reject

   Level: developer

.seealso:
@*/
PetscErrorCode TSAdaptCheckStage(TSAdapt adapt,TS ts,PetscReal t,Vec Y,PetscBool *accept)
{
  PetscErrorCode      ierr;
  SNESConvergedReason snesreason = SNES_CONVERGED_ITERATING;

  PetscFunctionBegin;
  PetscValidHeaderSpecific(adapt,TSADAPT_CLASSID,1);
  PetscValidHeaderSpecific(ts,TS_CLASSID,2);
  PetscValidIntPointer(accept,3);

  if (ts->snes) {ierr = SNESGetConvergedReason(ts->snes,&snesreason);CHKERRQ(ierr);}
  if (snesreason < 0) {
    *accept = PETSC_FALSE;
    if (++ts->num_snes_failures >= ts->max_snes_failures && ts->max_snes_failures > 0) {
      ts->reason = TS_DIVERGED_NONLINEAR_SOLVE;
      ierr = PetscInfo2(ts,"Step=%D, nonlinear solve failures %D greater than current TS allowed, stopping solve\n",ts->steps,ts->num_snes_failures);CHKERRQ(ierr);
      if (adapt->monitor) {
        ierr = PetscViewerASCIIAddTab(adapt->monitor,((PetscObject)adapt)->tablevel);CHKERRQ(ierr);
        ierr = PetscViewerASCIIPrintf(adapt->monitor,"    TSAdapt %s step %3D stage rejected t=%-11g+%10.3e, nonlinear solve failures %D greater than current TS allowed\n",((PetscObject)adapt)->type_name,ts->steps,(double)ts->ptime,(double)ts->time_step,ts->num_snes_failures);CHKERRQ(ierr);
        ierr = PetscViewerASCIISubtractTab(adapt->monitor,((PetscObject)adapt)->tablevel);CHKERRQ(ierr);
      }
    }
  } else {
    *accept = PETSC_TRUE;
    ierr = TSFunctionDomainError(ts,t,Y,accept);CHKERRQ(ierr);
    if(*accept && adapt->checkstage) {
      ierr = (*adapt->checkstage)(adapt,ts,t,Y,accept);CHKERRQ(ierr);
    }
  }

  if(!(*accept) && !ts->reason) {
    PetscReal dt,new_dt;
    ierr = TSGetTimeStep(ts,&dt);CHKERRQ(ierr);
    new_dt = dt * adapt->scale_solve_failed;
    ierr = TSSetTimeStep(ts,new_dt);CHKERRQ(ierr);
    adapt->timestepjustdecreased += adapt->timestepjustdecreased_delay;
    if (adapt->monitor) {
      ierr = PetscViewerASCIIAddTab(adapt->monitor,((PetscObject)adapt)->tablevel);CHKERRQ(ierr);
      ierr = PetscViewerASCIIPrintf(adapt->monitor,"    TSAdapt %s step %3D stage rejected (%s) t=%-11g+%10.3e retrying with dt=%-10.3e\n",((PetscObject)adapt)->type_name,ts->steps,SNESConvergedReasons[snesreason],(double)ts->ptime,(double)dt,(double)new_dt);CHKERRQ(ierr);
      ierr = PetscViewerASCIISubtractTab(adapt->monitor,((PetscObject)adapt)->tablevel);CHKERRQ(ierr);
    }
  }
  PetscFunctionReturn(0);
}
Exemple #5
0
double TimeIntegration_PETSc::solveTimeStep(Vlasov *vlasov, Fields *fields, TestParticles *particles, Timing &timing)
{
            if(timeIntegrationScheme == "Implicit_RK4") {
                    PETScMatrixVector pMV(vlasov, fields);
                    TSSetTimeStep(ts, dt);
                    TSStep(ts); 
                    // Get Solution
    Vec    Vec_F1;   
    cmplxd  *x_F1; 
    

                    TSGetSolution(ts, &Vec_F1);
                    VecGetArray(Vec_F1, &x_F1);

            // copy whole phase space function (waste but starting point) (important due to bounday conditions
           // we can built wrapper around this and directly pass it
   for(int x = NxLlD, n = 0; x <= NxLuD; x++) { for(int y_k = NkyLlD; y_k <= NkyLuD; y_k++) { for(int z = NzLlD; z <= NzLuD; z++) {
   for(int v = NvLlD       ; v <= NvLuD; v++) { for(int m   = NmLlD ; m   <= NmLuD ; m++  ) { for(int s = NsLlD; s <= NsLuD; s++) {

                vlasov->fs(x,y_k,z,v,m,s) = x_F1[n];
                vlasov->f(x,y_k,z,v,m,s) = x_F1[n++];

           }}} }}}
           
           fields->solve(vlasov->f0,  vlasov->f); 
           VecRestoreArray    (Vec_F1, &x_F1);
            
           timing.time += dt;
            timing.step++;
            writeTimeStep(timing, maxTiming, dt);
        
            }
            else TimeIntegration::solveTimeStep(vlasov, fields, particles, timing);

      return dt;
}
Exemple #6
0
int main(int argc,char **argv)
{
  TS             ts;            /* ODE integrator */
  Vec            U,V;           /* solution will be stored here */
  Vec            F;             /* residual vector */
  Mat            J;             /* Jacobian matrix */
  PetscMPIInt    rank;
  PetscScalar    *u,*v;
  AppCtx         app;
  PetscInt       direction[2];
  PetscBool      terminate[2];
  TSAdapt        adapt;
  PetscErrorCode ierr;

  ierr = PetscInitialize(&argc,&argv,NULL,help);CHKERRQ(ierr);
  ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);CHKERRQ(ierr);

  app.Cd = 0.0;
  app.Cr = 0.9;
  app.bounces = 0;
  app.maxbounces = 10;
  ierr = PetscOptionsBegin(PETSC_COMM_WORLD,NULL,"ex44 options","");CHKERRQ(ierr);
  ierr = PetscOptionsReal("-Cd","Drag coefficient","",app.Cd,&app.Cd,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsReal("-Cr","Restitution coefficient","",app.Cr,&app.Cr,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsInt("-maxbounces","Maximum number of bounces","",app.maxbounces,&app.maxbounces,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsEnd();CHKERRQ(ierr);

  ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr);
  /*ierr = TSSetSaveTrajectory(ts);CHKERRQ(ierr);*/
  ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr);
  ierr = TSSetType(ts,TSALPHA2);CHKERRQ(ierr);

  ierr = TSSetDuration(ts,PETSC_MAX_INT,PETSC_MAX_REAL);CHKERRQ(ierr);
  ierr = TSSetTimeStep(ts,0.1);CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);CHKERRQ(ierr);
  ierr = TSGetAdapt(ts,&adapt);CHKERRQ(ierr);
  ierr = TSAdaptSetStepLimits(adapt,0.0,0.5);CHKERRQ(ierr);

  direction[0] = -1; terminate[0] = PETSC_FALSE;
  direction[1] = -1; terminate[1] = PETSC_TRUE;
  ierr = TSSetEventHandler(ts,2,direction,terminate,Event,PostEvent,&app);CHKERRQ(ierr);

  ierr = MatCreateAIJ(PETSC_COMM_WORLD,1,1,PETSC_DECIDE,PETSC_DECIDE,1,NULL,0,NULL,&J);CHKERRQ(ierr);
  ierr = MatSetFromOptions(J);CHKERRQ(ierr);
  ierr = MatSetUp(J);CHKERRQ(ierr);
  ierr = MatCreateVecs(J,NULL,&F);CHKERRQ(ierr);
  ierr = TSSetI2Function(ts,F,I2Function,&app);CHKERRQ(ierr);
  ierr = TSSetI2Jacobian(ts,J,J,I2Jacobian,&app);CHKERRQ(ierr);
  ierr = VecDestroy(&F);CHKERRQ(ierr);
  ierr = MatDestroy(&J);CHKERRQ(ierr);

  ierr = TSGetI2Jacobian(ts,&J,NULL,NULL,NULL);CHKERRQ(ierr);
  ierr = MatCreateVecs(J,&U,NULL);CHKERRQ(ierr);
  ierr = MatCreateVecs(J,&V,NULL);CHKERRQ(ierr);
  ierr = VecGetArray(U,&u);CHKERRQ(ierr);
  ierr = VecGetArray(V,&v);CHKERRQ(ierr);
  u[0] = 5.0*rank; v[0] = 20.0;
  ierr = VecRestoreArray(U,&u);CHKERRQ(ierr);
  ierr = VecRestoreArray(V,&v);CHKERRQ(ierr);

  ierr = TS2SetSolution(ts,U,V);CHKERRQ(ierr);
  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);
  ierr = TSSolve(ts,NULL);CHKERRQ(ierr);

  ierr = VecDestroy(&U);CHKERRQ(ierr);
  ierr = VecDestroy(&V);CHKERRQ(ierr);
  ierr = TSDestroy(&ts);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return ierr;
}
Exemple #7
0
int main(int argc,char **argv)
{
  TS             ts;            /* nonlinear solver */
  Vec            x;             /* solution, residual vectors */
  Mat            A;             /* Jacobian matrix */
  PetscInt       steps;
  PetscReal      ftime   = 0.5;
  PetscBool      monitor = PETSC_FALSE;
  PetscScalar    *x_ptr;
  PetscMPIInt    size;
  struct _n_User user;
  PetscErrorCode ierr;

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Initialize program
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscInitialize(&argc,&argv,NULL,help);if (ierr) return ierr;
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (size != 1) SETERRQ(PETSC_COMM_SELF,1,"This is a uniprocessor example only!");

  ierr = RegisterMyARK2();CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Set runtime options
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

  user.next_output = 0.0;
  ierr = PetscOptionsGetBool(NULL,NULL,"-monitor",&monitor,NULL);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Create necessary matrix and vectors, solve same ODE on every process
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
  ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,2,2);CHKERRQ(ierr);
  ierr = MatSetFromOptions(A);CHKERRQ(ierr);
  ierr = MatSetUp(A);CHKERRQ(ierr);
  ierr = MatCreateVecs(A,&x,NULL);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Create timestepping solver context
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr);
  ierr = TSSetType(ts,TSBEULER);CHKERRQ(ierr);
  ierr = TSSetIFunction(ts,NULL,IFunction,&user);CHKERRQ(ierr);
  ierr = TSSetIJacobian(ts,A,A,IJacobian,&user);CHKERRQ(ierr);
  ierr = TSSetMaxTime(ts,ftime);CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);CHKERRQ(ierr);
  if (monitor) {
    ierr = TSMonitorSet(ts,Monitor,&user,NULL);CHKERRQ(ierr);
  }

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set initial conditions
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = VecGetArray(x,&x_ptr);CHKERRQ(ierr);
  x_ptr[0] = -2;   x_ptr[1] = -2.355301397608119909925287735864250951918;
  ierr = VecRestoreArray(x,&x_ptr);CHKERRQ(ierr);
  ierr = TSSetTimeStep(ts,.001);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set runtime options
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Solve nonlinear system
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSolve(ts,x);CHKERRQ(ierr);
  ierr = TSGetSolveTime(ts,&ftime);CHKERRQ(ierr);
  ierr = TSGetStepNumber(ts,&steps);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD,"steps %3D, ftime %g\n",steps,(double)ftime);CHKERRQ(ierr);
  ierr = VecView(x,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Free work space.  All PETSc objects should be destroyed when they
     are no longer needed.
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = VecDestroy(&x);CHKERRQ(ierr);
  ierr = TSDestroy(&ts);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return ierr;
}
Exemple #8
0
int main(int argc,char **argv)
{
  TS             ts;                           /* time integrator */
  Vec            x,r;                          /* solution, residual vectors */
  PetscInt       steps,Mx;
  PetscErrorCode ierr;
  DM             da;
  PetscReal      dt;
  UserCtx        ctx;
  PetscBool      mymonitor;
  PetscViewer    viewer;
  PetscBool      flg;

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Initialize program
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
  ctx.kappa     = 1.0;
  ierr          = PetscOptionsGetReal(NULL,NULL,"-kappa",&ctx.kappa,NULL);CHKERRQ(ierr);
  ctx.allencahn = PETSC_FALSE;
  ierr          = PetscOptionsHasName(NULL,NULL,"-allen-cahn",&ctx.allencahn);CHKERRQ(ierr);
  ierr          = PetscOptionsHasName(NULL,NULL,"-mymonitor",&mymonitor);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Create distributed array (DMDA) to manage parallel grid and vectors
  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = DMDACreate1d(PETSC_COMM_WORLD, DM_BOUNDARY_PERIODIC, 10,1,2,NULL,&da);CHKERRQ(ierr);
  ierr = DMSetFromOptions(da);CHKERRQ(ierr);
  ierr = DMSetUp(da);CHKERRQ(ierr);
  ierr = DMDASetFieldName(da,0,"Heat equation: u");CHKERRQ(ierr);
  ierr = DMDAGetInfo(da,0,&Mx,0,0,0,0,0,0,0,0,0,0,0);CHKERRQ(ierr);
  dt   = 1.0/(ctx.kappa*Mx*Mx);

  /*  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Extract global vectors from DMDA; then duplicate for remaining
     vectors that are the same types
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = DMCreateGlobalVector(da,&x);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&r);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Create timestepping solver context
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr);
  ierr = TSSetDM(ts,da);CHKERRQ(ierr);
  ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr);
  ierr = TSSetRHSFunction(ts,NULL,FormFunction,&ctx);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Customize nonlinear solver
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetType(ts,TSCN);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set initial conditions
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = FormInitialSolution(da,x);CHKERRQ(ierr);
  ierr = TSSetTimeStep(ts,dt);CHKERRQ(ierr);
  ierr = TSSetMaxTime(ts,.02);CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_INTERPOLATE);CHKERRQ(ierr);
  ierr = TSSetSolution(ts,x);CHKERRQ(ierr);


  if (mymonitor) {
    ctx.ports = NULL;
    ierr      = TSMonitorSet(ts,MyMonitor,&ctx,MyDestroy);CHKERRQ(ierr);
  }

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set runtime options
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Solve nonlinear system
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSolve(ts,x);CHKERRQ(ierr);
  ierr = TSGetStepNumber(ts,&steps);CHKERRQ(ierr);
  ierr = PetscOptionsHasName(NULL,NULL,"-square_initial",&flg);CHKERRQ(ierr);
  if (flg) {
    ierr  = PetscViewerBinaryOpen(PETSC_COMM_WORLD,"InitialSolution.heat",FILE_MODE_WRITE,&viewer);CHKERRQ(ierr);
    ierr  = VecView(x,viewer);CHKERRQ(ierr);
    ierr  = PetscViewerDestroy(&viewer);CHKERRQ(ierr);
  }

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Free work space.  All PETSc objects should be destroyed when they
     are no longer needed.
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = VecDestroy(&x);CHKERRQ(ierr);
  ierr = VecDestroy(&r);CHKERRQ(ierr);
  ierr = TSDestroy(&ts);CHKERRQ(ierr);
  ierr = DMDestroy(&da);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return ierr;
}
Exemple #9
0
int main(int argc, char *argv[])
{
  PetscMPIInt    size;
  TS             ts;
  Vec            R;
  Mat            J;
  Vec            U,V;
  PetscScalar    *u,*v;
  UserParams     user = {/*Omega=*/ 1, /*Xi=*/ 0, /*u0=*/ 1, /*,v0=*/ 0};
  PetscErrorCode ierr;

  ierr = PetscInitialize(&argc,&argv,NULL,help);CHKERRQ(ierr);
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (size > 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"Only for sequential runs");

  ierr = PetscOptionsBegin(PETSC_COMM_SELF,"","ex43 options","");CHKERRQ(ierr);
  ierr = PetscOptionsReal("-frequency","Natual frequency",__FILE__,user.Omega,&user.Omega,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsReal("-damping","Damping coefficient",__FILE__,user.Xi,&user.Xi,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsReal("-initial_u","Initial displacement",__FILE__,user.u0,&user.u0,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsReal("-initial_v","Initial velocity",__FILE__,user.v0,&user.v0,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsEnd();CHKERRQ(ierr);

  ierr = TSCreate(PETSC_COMM_SELF,&ts);CHKERRQ(ierr);
  ierr = TSSetType(ts,TSALPHA2);CHKERRQ(ierr);
  ierr = TSSetMaxTime(ts,5*(2*PETSC_PI));CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);CHKERRQ(ierr);
  ierr = TSSetTimeStep(ts,0.01);CHKERRQ(ierr);

  ierr = VecCreateSeq(PETSC_COMM_SELF,1,&R);CHKERRQ(ierr);
  ierr = VecSetUp(R);CHKERRQ(ierr);
  ierr = MatCreateSeqDense(PETSC_COMM_SELF,1,1,NULL,&J);CHKERRQ(ierr);
  ierr = MatSetUp(J);CHKERRQ(ierr);
  if (user.Xi) {
    ierr = TSSetI2Function(ts,R,Residual2,&user);CHKERRQ(ierr);
    ierr = TSSetI2Jacobian(ts,J,J,Tangent2,&user);CHKERRQ(ierr);
  } else {
    ierr = TSSetIFunction(ts,R,Residual1,&user);CHKERRQ(ierr);
    ierr = TSSetIJacobian(ts,J,J,Tangent1,&user);CHKERRQ(ierr);
  }
  ierr = VecDestroy(&R);CHKERRQ(ierr);
  ierr = MatDestroy(&J);CHKERRQ(ierr);
  ierr = TSSetSolutionFunction(ts,Solution,&user);CHKERRQ(ierr);

  ierr = VecCreateSeq(PETSC_COMM_SELF,1,&U);CHKERRQ(ierr);
  ierr = VecCreateSeq(PETSC_COMM_SELF,1,&V);CHKERRQ(ierr);
  ierr = VecGetArray(U,&u);CHKERRQ(ierr);
  ierr = VecGetArray(V,&v);CHKERRQ(ierr);
  u[0] = user.u0;
  v[0] = user.v0;
  ierr = VecRestoreArray(U,&u);CHKERRQ(ierr);
  ierr = VecRestoreArray(V,&v);CHKERRQ(ierr);

  ierr = TS2SetSolution(ts,U,V);CHKERRQ(ierr);
  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);
  ierr = TSSolve(ts,NULL);CHKERRQ(ierr);

  ierr = VecDestroy(&U);CHKERRQ(ierr);
  ierr = VecDestroy(&V);CHKERRQ(ierr);
  ierr = TSDestroy(&ts);CHKERRQ(ierr);
  ierr = PetscFinalize();
  return ierr;
}
Exemple #10
0
/*
   Monitor - User-provided routine to monitor the solution computed at
   each timestep.  This example plots the solution and computes the
   error in two different norms.

   This example also demonstrates changing the timestep via TSSetTimeStep().

   Input Parameters:
   ts     - the timestep context
   step   - the count of the current step (with 0 meaning the
             initial condition)
   crtime  - the current time
   u      - the solution at this timestep
   ctx    - the user-provided context for this monitoring routine.
            In this case we use the application context which contains
            information about the problem size, workspace and the exact
            solution.
*/
PetscErrorCode Monitor(TS ts,PetscInt step,PetscReal crtime,Vec u,void *ctx)
{
  AppCtx         *appctx = (AppCtx*) ctx;   /* user-defined application context */
  PetscErrorCode ierr;
  PetscReal      norm_2, norm_max, dt, dttol;
  PetscBool      flg;

  /*
     View a graph of the current iterate
  */
  ierr = VecView(u,appctx->viewer2);CHKERRQ(ierr);

  /*
     Compute the exact solution
  */
  ierr = ExactSolution(crtime,appctx->solution,appctx);CHKERRQ(ierr);

  /*
     Print debugging information if desired
  */
  if (appctx->debug) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Computed solution vector\n");CHKERRQ(ierr);
    ierr = VecView(u,PETSC_VIEWER_STDOUT_SELF);CHKERRQ(ierr);
    ierr = PetscPrintf(PETSC_COMM_SELF,"Exact solution vector\n");CHKERRQ(ierr);
    ierr = VecView(appctx->solution,PETSC_VIEWER_STDOUT_SELF);CHKERRQ(ierr);
  }

  /*
     Compute the 2-norm and max-norm of the error
  */
  ierr   = VecAXPY(appctx->solution,-1.0,u);CHKERRQ(ierr);
  ierr   = VecNorm(appctx->solution,NORM_2,&norm_2);CHKERRQ(ierr);
  norm_2 = PetscSqrtReal(appctx->h)*norm_2;
  ierr   = VecNorm(appctx->solution,NORM_MAX,&norm_max);CHKERRQ(ierr);

  ierr = TSGetTimeStep(ts,&dt);CHKERRQ(ierr);
  if (norm_2 > 1.e-2) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Timestep %D: step size = %G, time = %G, 2-norm error = %G, max norm error = %G\n",step,dt,crtime,norm_2,norm_max);CHKERRQ(ierr);
  }
  appctx->norm_2   += norm_2;
  appctx->norm_max += norm_max;

  dttol = .0001;
  ierr  = PetscOptionsGetReal(NULL,"-dttol",&dttol,&flg);CHKERRQ(ierr);
  if (dt < dttol) {
    dt  *= .999;
    ierr = TSSetTimeStep(ts,dt);CHKERRQ(ierr);
  }

  /*
     View a graph of the error
  */
  ierr = VecView(appctx->solution,appctx->viewer1);CHKERRQ(ierr);

  /*
     Print debugging information if desired
  */
  if (appctx->debug) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"Error vector\n");CHKERRQ(ierr);
    ierr = VecView(appctx->solution,PETSC_VIEWER_STDOUT_SELF);CHKERRQ(ierr);
  }

  return 0;
}
Exemple #11
0
static PetscErrorCode TSAlpha_Restart(TS ts,PetscBool *initok)
{
  TS_Alpha       *th = (TS_Alpha*)ts->data;
  PetscReal      time_step;
  PetscReal      alpha_m,alpha_f,gamma,beta;
  Vec            X0 = ts->vec_sol, X1, X2 = th->X1;
  Vec            V0 = ts->vec_dot, V1, V2 = th->V1;
  PetscBool      stageok;
  PetscErrorCode ierr;

  PetscFunctionBegin;
  ierr = VecDuplicate(X0,&X1);CHKERRQ(ierr);
  ierr = VecDuplicate(V0,&V1);CHKERRQ(ierr);

  /* Setup backward Euler with halved time step */
  ierr = TSAlpha2GetParams(ts,&alpha_m,&alpha_f,&gamma,&beta);CHKERRQ(ierr);
  ierr = TSAlpha2SetParams(ts,1,1,1,0.5);CHKERRQ(ierr);
  ierr = TSGetTimeStep(ts,&time_step);CHKERRQ(ierr);
  ts->time_step = time_step/2;
  ierr = TSAlpha_StageTime(ts);CHKERRQ(ierr);
  th->stage_time = ts->ptime;
  ierr = VecZeroEntries(th->A0);CHKERRQ(ierr);

  /* First BE step, (t0,X0,V0) -> (t1,X1,V1) */
  th->stage_time += ts->time_step;
  ierr = VecCopy(X0,th->X0);CHKERRQ(ierr);
  ierr = VecCopy(V0,th->V0);CHKERRQ(ierr);
  ierr = TSPreStage(ts,th->stage_time);CHKERRQ(ierr);
  ierr = VecCopy(th->X0,X1);CHKERRQ(ierr);
  ierr = TS_SNESSolve(ts,NULL,X1);CHKERRQ(ierr);
  ierr = VecCopy(th->V1,V1);CHKERRQ(ierr);
  ierr = TSPostStage(ts,th->stage_time,0,&X1);CHKERRQ(ierr);
  ierr = TSAdaptCheckStage(ts->adapt,ts,th->stage_time,X1,&stageok);CHKERRQ(ierr);
  if (!stageok) goto finally;

  /* Second BE step, (t1,X1,V1) -> (t2,X2,V2) */
  th->stage_time += ts->time_step;
  ierr = VecCopy(X1,th->X0);CHKERRQ(ierr);
  ierr = VecCopy(V1,th->V0);CHKERRQ(ierr);
  ierr = TSPreStage(ts,th->stage_time);CHKERRQ(ierr);
  ierr = VecCopy(th->X0,X2);CHKERRQ(ierr);
  ierr = TS_SNESSolve(ts,NULL,X2);CHKERRQ(ierr);
  ierr = VecCopy(th->V1,V2);CHKERRQ(ierr);
  ierr = TSPostStage(ts,th->stage_time,0,&X2);CHKERRQ(ierr);
  ierr = TSAdaptCheckStage(ts->adapt,ts,th->stage_time,X1,&stageok);CHKERRQ(ierr);
  if (!stageok) goto finally;

  /* Compute A0 ~ dV/dt at t0 with backward differences */
  ierr = VecZeroEntries(th->A0);CHKERRQ(ierr);
  ierr = VecAXPY(th->A0,-3/ts->time_step,V0);CHKERRQ(ierr);
  ierr = VecAXPY(th->A0,+4/ts->time_step,V1);CHKERRQ(ierr);
  ierr = VecAXPY(th->A0,-1/ts->time_step,V2);CHKERRQ(ierr);

  /* Rough, lower-order estimate LTE of the initial step */
  if (th->adapt) {
    ierr = VecZeroEntries(th->vec_lte_work[0]);CHKERRQ(ierr);
    ierr = VecAXPY(th->vec_lte_work[0],+2,X2);CHKERRQ(ierr);
    ierr = VecAXPY(th->vec_lte_work[0],-4,X1);CHKERRQ(ierr);
    ierr = VecAXPY(th->vec_lte_work[0],+2,X0);CHKERRQ(ierr);
  }
  if (th->adapt) {
    ierr = VecZeroEntries(th->vec_lte_work[1]);CHKERRQ(ierr);
    ierr = VecAXPY(th->vec_lte_work[1],+2,V2);CHKERRQ(ierr);
    ierr = VecAXPY(th->vec_lte_work[1],-4,V1);CHKERRQ(ierr);
    ierr = VecAXPY(th->vec_lte_work[1],+2,V0);CHKERRQ(ierr);
  }

 finally:
  /* Revert TSAlpha to the initial state (t0,X0,V0) */
  if (initok) *initok = stageok;
  ierr = TSSetTimeStep(ts,time_step);CHKERRQ(ierr);
  ierr = TSAlpha2SetParams(ts,alpha_m,alpha_f,gamma,beta);CHKERRQ(ierr);
  ierr = VecCopy(ts->vec_sol,th->X0);CHKERRQ(ierr);
  ierr = VecCopy(ts->vec_dot,th->V0);CHKERRQ(ierr);

  ierr = VecDestroy(&X1);CHKERRQ(ierr);
  ierr = VecDestroy(&V1);CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
Exemple #12
0
int main(int argc,char **argv)
{
  TS             ts;            /* nonlinear solver */
  PetscBool      monitor = PETSC_FALSE;
  PetscScalar    *x_ptr,*y_ptr;
  PetscMPIInt    size;
  struct _n_User user;
  PetscErrorCode ierr;

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Initialize program
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscInitialize(&argc,&argv,NULL,help);if (ierr) return ierr;
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (size != 1) SETERRQ(PETSC_COMM_SELF,1,"This is a uniprocessor example only!");

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Set runtime options
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  user.next_output = 0.0;
  user.mu          = 1.0e6;
  user.steps       = 0;
  user.ftime       = 0.5;
  ierr = PetscOptionsGetBool(NULL,NULL,"-monitor",&monitor,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetReal(NULL,NULL,"-mu",&user.mu,NULL);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Create necessary matrix and vectors, solve same ODE on every process
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = MatCreate(PETSC_COMM_WORLD,&user.A);CHKERRQ(ierr);
  ierr = MatSetSizes(user.A,PETSC_DECIDE,PETSC_DECIDE,2,2);CHKERRQ(ierr);
  ierr = MatSetFromOptions(user.A);CHKERRQ(ierr);
  ierr = MatSetUp(user.A);CHKERRQ(ierr);
  ierr = MatCreateVecs(user.A,&user.x,NULL);CHKERRQ(ierr);

  ierr = MatCreate(PETSC_COMM_WORLD,&user.Jacp);CHKERRQ(ierr);
  ierr = MatSetSizes(user.Jacp,PETSC_DECIDE,PETSC_DECIDE,2,1);CHKERRQ(ierr);
  ierr = MatSetFromOptions(user.Jacp);CHKERRQ(ierr);
  ierr = MatSetUp(user.Jacp);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Create timestepping solver context
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr);
  ierr = TSSetType(ts,TSCN);CHKERRQ(ierr);
  ierr = TSSetIFunction(ts,NULL,IFunction,&user);CHKERRQ(ierr);
  ierr = TSSetIJacobian(ts,user.A,user.A,IJacobian,&user);CHKERRQ(ierr);
  ierr = TSSetMaxTime(ts,user.ftime);CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP);CHKERRQ(ierr);
  if (monitor) {
    ierr = TSMonitorSet(ts,Monitor,&user,NULL);CHKERRQ(ierr);
  }

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set initial conditions
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = VecGetArray(user.x,&x_ptr);CHKERRQ(ierr);
  x_ptr[0] = 2.0;   x_ptr[1] = -0.66666654321;
  ierr = VecRestoreArray(user.x,&x_ptr);CHKERRQ(ierr);
  ierr = TSSetTimeStep(ts,.0001);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Save trajectory of solution so that TSAdjointSolve() may be used
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetSaveTrajectory(ts);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set runtime options
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);

  ierr = TSSolve(ts,user.x);CHKERRQ(ierr);
  ierr = TSGetSolveTime(ts,&user.ftime);CHKERRQ(ierr);
  ierr = TSGetStepNumber(ts,&user.steps);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Adjoint model starts here
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = MatCreateVecs(user.A,&user.lambda[0],NULL);CHKERRQ(ierr);
  /*   Set initial conditions for the adjoint integration */
  ierr = VecGetArray(user.lambda[0],&y_ptr);CHKERRQ(ierr);
  y_ptr[0] = 1.0; y_ptr[1] = 0.0;
  ierr = VecRestoreArray(user.lambda[0],&y_ptr);CHKERRQ(ierr);
  ierr = MatCreateVecs(user.A,&user.lambda[1],NULL);CHKERRQ(ierr);
  ierr = VecGetArray(user.lambda[1],&y_ptr);CHKERRQ(ierr);
  y_ptr[0] = 0.0; y_ptr[1] = 1.0;
  ierr = VecRestoreArray(user.lambda[1],&y_ptr);CHKERRQ(ierr);

  ierr = MatCreateVecs(user.Jacp,&user.mup[0],NULL);CHKERRQ(ierr);
  ierr = VecGetArray(user.mup[0],&x_ptr);CHKERRQ(ierr);
  x_ptr[0] = 0.0;
  ierr = VecRestoreArray(user.mup[0],&x_ptr);CHKERRQ(ierr);
  ierr = MatCreateVecs(user.Jacp,&user.mup[1],NULL);CHKERRQ(ierr);
  ierr = VecGetArray(user.mup[1],&x_ptr);CHKERRQ(ierr);
  x_ptr[0] = 0.0;
  ierr = VecRestoreArray(user.mup[1],&x_ptr);CHKERRQ(ierr);

  ierr = TSSetCostGradients(ts,2,user.lambda,user.mup);CHKERRQ(ierr);

  /*   Set RHS JacobianP */
  ierr = TSSetRHSJacobianP(ts,user.Jacp,RHSJacobianP,&user);CHKERRQ(ierr);

  ierr = TSAdjointSolve(ts);CHKERRQ(ierr);

  ierr = PetscPrintf(PETSC_COMM_WORLD,"\n sensitivity wrt initial conditions: d[y(tf)]/d[y0]  d[y(tf)]/d[z0]\n");CHKERRQ(ierr);
  ierr = VecView(user.lambda[0],PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD,"\n sensitivity wrt initial conditions: d[z(tf)]/d[y0]  d[z(tf)]/d[z0]\n");CHKERRQ(ierr);
  ierr = VecView(user.lambda[1],PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD,"\n sensitivity wrt parameters: d[y(tf)]/d[mu]\n");CHKERRQ(ierr);
  ierr = VecView(user.mup[0],PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD,"\n sensivitity wrt parameters: d[z(tf)]/d[mu]\n");CHKERRQ(ierr);
  ierr = VecView(user.mup[1],PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Free work space.  All PETSc objects should be destroyed when they
     are no longer needed.
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = MatDestroy(&user.A);CHKERRQ(ierr);
  ierr = MatDestroy(&user.Jacp);CHKERRQ(ierr);
  ierr = VecDestroy(&user.x);CHKERRQ(ierr);
  ierr = VecDestroy(&user.lambda[0]);CHKERRQ(ierr);
  ierr = VecDestroy(&user.lambda[1]);CHKERRQ(ierr);
  ierr = VecDestroy(&user.mup[0]);CHKERRQ(ierr);
  ierr = VecDestroy(&user.mup[1]);CHKERRQ(ierr);
  ierr = TSDestroy(&ts);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return(ierr);
}
Exemple #13
0
int main(int argc,char **argv)
{
  TS             ts;                  /* nonlinear solver */
  Vec            U;                   /* solution, residual vectors */
  PetscErrorCode ierr;
  DM             da;
  AppCtx         appctx;

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Initialize program
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;

  appctx.epsilon = 1.0e-3;
  appctx.delta   = 1.0;
  appctx.alpha   = 10.0;
  appctx.beta    = 4.0;
  appctx.gamma   = 1.0;
  appctx.kappa   = .75;
  appctx.lambda  = 1.0;
  appctx.mu      = 100.;
  appctx.cstar   = .2;
  appctx.upwind  = PETSC_TRUE;

  ierr = PetscOptionsGetScalar(NULL,NULL,"-delta",&appctx.delta,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetBool(NULL,NULL,"-upwind",&appctx.upwind,NULL);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Create distributed array (DMDA) to manage parallel grid and vectors
  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = DMDACreate1d(PETSC_COMM_WORLD, DM_BOUNDARY_NONE,8,2,1,NULL,&da);CHKERRQ(ierr);
  ierr = DMSetFromOptions(da);CHKERRQ(ierr);
  ierr = DMSetUp(da);CHKERRQ(ierr);
  ierr = DMDASetFieldName(da,0,"rho");CHKERRQ(ierr);
  ierr = DMDASetFieldName(da,1,"c");CHKERRQ(ierr);

  /*  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Extract global vectors from DMDA; then duplicate for remaining
     vectors that are the same types
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = DMCreateGlobalVector(da,&U);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Create timestepping solver context
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr);
  ierr = TSSetType(ts,TSROSW);CHKERRQ(ierr);
  ierr = TSSetDM(ts,da);CHKERRQ(ierr);
  ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr);
  ierr = TSSetIFunction(ts,NULL,IFunction,&appctx);CHKERRQ(ierr);


  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set initial conditions
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = InitialConditions(da,U);CHKERRQ(ierr);
  ierr = TSSetSolution(ts,U);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set solver options
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetTimeStep(ts,.0001);CHKERRQ(ierr);
  ierr = TSSetMaxTime(ts,1.0);CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);CHKERRQ(ierr);
  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Solve nonlinear system
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSolve(ts,U);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Free work space.  All PETSc objects should be destroyed when they
     are no longer needed.
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = VecDestroy(&U);CHKERRQ(ierr);
  ierr = TSDestroy(&ts);CHKERRQ(ierr);
  ierr = DMDestroy(&da);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return ierr;
}
Exemple #14
0
void PETSC_STDCALL  tssettimestep_(TS ts,PetscReal *time_step, int *__ierr ){
*__ierr = TSSetTimeStep(
	(TS)PetscToPointer((ts) ),*time_step);
}
Exemple #15
0
int main(int argc,char **argv)
{
  TS             ts;            /* ODE integrator */
  Vec            U;             /* solution will be stored here */
  PetscErrorCode ierr;
  PetscMPIInt    size;
  PetscInt       n = 2;
  PetscScalar    *u;
  AppCtx         app;
  PetscInt       direction[2];
  PetscBool      terminate[2];
  PetscBool      rhs_form=PETSC_FALSE,hist=PETSC_TRUE;
  TSAdapt        adapt;

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Initialize program
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (size > 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"Only for sequential runs");

  app.nbounces = 0;
  app.maxbounces = 10;
  ierr = PetscOptionsBegin(PETSC_COMM_WORLD,NULL,"ex40 options","");CHKERRQ(ierr);
  ierr = PetscOptionsInt("-maxbounces","","",app.maxbounces,&app.maxbounces,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsBool("-test_adapthistory","","",hist,&hist,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsEnd();CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Create timestepping solver context
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr);
  ierr = TSSetType(ts,TSROSW);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set ODE routines
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr);
  /* Users are advised against the following branching and code duplication.
     For problems without a mass matrix like the one at hand, the RHSFunction
     (and companion RHSJacobian) interface is enough to support both explicit
     and implicit timesteppers. This tutorial example also deals with the
     IFunction/IJacobian interface for demonstration and testing purposes. */
  ierr = PetscOptionsGetBool(NULL,NULL,"-rhs-form",&rhs_form,NULL);CHKERRQ(ierr);
  if (rhs_form) {
    ierr = TSSetRHSFunction(ts,NULL,RHSFunction,NULL);CHKERRQ(ierr);
    ierr = TSSetRHSJacobian(ts,NULL,NULL,RHSJacobian,NULL);CHKERRQ(ierr);
  } else {
    Mat A; /* Jacobian matrix */
    ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
    ierr = MatSetSizes(A,n,n,PETSC_DETERMINE,PETSC_DETERMINE);CHKERRQ(ierr);
    ierr = MatSetType(A,MATDENSE);CHKERRQ(ierr);
    ierr = MatSetFromOptions(A);CHKERRQ(ierr);
    ierr = MatSetUp(A);CHKERRQ(ierr);
    ierr = TSSetIFunction(ts,NULL,IFunction,NULL);CHKERRQ(ierr);
    ierr = TSSetIJacobian(ts,A,A,IJacobian,NULL);CHKERRQ(ierr);
    ierr = MatDestroy(&A);CHKERRQ(ierr);
  }

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set initial conditions
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = VecCreate(PETSC_COMM_WORLD,&U);CHKERRQ(ierr);
  ierr = VecSetSizes(U,n,PETSC_DETERMINE);CHKERRQ(ierr);
  ierr = VecSetUp(U);CHKERRQ(ierr);
  ierr = VecGetArray(U,&u);CHKERRQ(ierr);
  u[0] = 0.0;
  u[1] = 20.0;
  ierr = VecRestoreArray(U,&u);CHKERRQ(ierr);
  ierr = TSSetSolution(ts,U);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set solver options
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetSaveTrajectory(ts);CHKERRQ(ierr);
  ierr = TSSetMaxTime(ts,30.0);CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);CHKERRQ(ierr);
  ierr = TSSetTimeStep(ts,0.1);CHKERRQ(ierr);
  /* The adapative time step controller could take very large timesteps resulting in
     the same event occuring multiple times in the same interval. A maximum step size
     limit is enforced here to avoid this issue. */
  ierr = TSGetAdapt(ts,&adapt);CHKERRQ(ierr);
  ierr = TSAdaptSetStepLimits(adapt,0.0,0.5);CHKERRQ(ierr);

  /* Set directions and terminate flags for the two events */
  direction[0] = -1;            direction[1] = -1;
  terminate[0] = PETSC_FALSE;   terminate[1] = PETSC_TRUE;
  ierr = TSSetEventHandler(ts,2,direction,terminate,EventFunction,PostEventFunction,(void*)&app);CHKERRQ(ierr);

  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Run timestepping solver
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSolve(ts,U);CHKERRQ(ierr);

  if (hist) { /* replay following history */
    TSTrajectory tj;
    PetscReal    tf,t0,dt;

    app.nbounces = 0;
    ierr = TSGetTime(ts,&tf);CHKERRQ(ierr);
    ierr = TSSetMaxTime(ts,tf);CHKERRQ(ierr);
    ierr = TSSetStepNumber(ts,0);CHKERRQ(ierr);
    ierr = TSRestartStep(ts);CHKERRQ(ierr);
    ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP);CHKERRQ(ierr);
    ierr = TSSetFromOptions(ts);CHKERRQ(ierr);
    ierr = TSGetAdapt(ts,&adapt);CHKERRQ(ierr);
    ierr = TSAdaptSetType(adapt,TSADAPTHISTORY);CHKERRQ(ierr);
    ierr = TSGetTrajectory(ts,&tj);CHKERRQ(ierr);
    ierr = TSAdaptHistorySetTrajectory(adapt,tj,PETSC_FALSE);CHKERRQ(ierr);
    ierr = TSAdaptHistoryGetStep(adapt,0,&t0,&dt);CHKERRQ(ierr);
    /* this example fails with single (or smaller) precision */
#if defined(PETSC_USE_REAL_SINGLE) || defined(PETSC_USE_REAL__FP16)
    ierr = TSAdaptSetType(adapt,TSADAPTBASIC);CHKERRQ(ierr);
    ierr = TSAdaptSetStepLimits(adapt,0.0,0.5);CHKERRQ(ierr);
    ierr = TSSetFromOptions(ts);CHKERRQ(ierr);
#endif
    ierr = TSSetTime(ts,t0);CHKERRQ(ierr);
    ierr = TSSetTimeStep(ts,dt);CHKERRQ(ierr);
    ierr = TSResetTrajectory(ts);CHKERRQ(ierr);
    ierr = VecGetArray(U,&u);CHKERRQ(ierr);
    u[0] = 0.0;
    u[1] = 20.0;
    ierr = VecRestoreArray(U,&u);CHKERRQ(ierr);
    ierr = TSSolve(ts,U);CHKERRQ(ierr);
  }
  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Free work space.  All PETSc objects should be destroyed when they are no longer needed.
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = VecDestroy(&U);CHKERRQ(ierr);
  ierr = TSDestroy(&ts);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return ierr;
}
Exemple #16
0
int main(int argc, char **argv)
{
  TS             ts;       /* time-stepping context */
  Vec            x;       /* State vector */
  Mat            J; /* Jacobian matrix */
  AppCtx         user; /* user-defined context */
  PetscErrorCode ierr;
  PetscReal      ftime;
  PetscInt       its;
  PetscMPIInt    size;

  PetscInitialize(&argc, &argv, NULL, help);
  ierr = MPI_Comm_size(PETSC_COMM_WORLD, &size);
  if(size != 1) SETERRQ(PETSC_COMM_WORLD, PETSC_ERR_SUP, "This is a uniprocessor example only");

  /*
   * Allow user to set the grid dimensions and the equations parameters
   */

  user.nb_cells = 50;
  user.alpha = 10.;
  user.beta = 1.;
  user.rho_a = 1.;
  user.rho_h = 2.;
  user.mu_a = 2.;
  user.mu_h = 3.;
  user.D_a = 0.;
  user.D_h = 30.;

  ierr = PetscOptionsBegin(PETSC_COMM_WORLD, "", "Problem settings", "PROBLEM");
  ierr = PetscOptionsInt("-nb_cells", "Number of cells", "ex42.c",user.nb_cells, &user.nb_cells,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsReal("-alpha", "Autocatalysis factor", "ex42.c",user.alpha, &user.alpha,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsReal("-beta", "Inhibition factor", "ex42.c",user.beta, &user.beta,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsReal("-rho_a", "Default production of the activator", "ex42.c",user.rho_a, &user.rho_a,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsReal("-mu_a", "Degradation rate of the activator", "ex42.c",user.mu_a, &user.mu_a,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsReal("-D_a", "Diffusion rate of the activator", "ex42.c",user.D_a, &user.D_a,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsReal("-rho_h", "Default production of the inhibitor", "ex42.c",user.rho_h, &user.rho_h,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsReal("-mu_h", "Degradation rate of the inhibitor", "ex42.c",user.mu_h, &user.mu_h,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsReal("-D_h", "Diffusion rate of the inhibitor", "ex42.c",user.D_h, &user.D_h,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsEnd();

  ierr = PetscPrintf(PETSC_COMM_WORLD, "nb_cells: %D\n", user.nb_cells);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD, "alpha: %5.5g\n", user.alpha);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD, "beta:  %5.5g\n", user.beta);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD, "rho_a: %5.5g\n", user.rho_a);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD, "mu_a:  %5.5g\n", user.mu_a);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD, "D_a:   %5.5g\n", user.D_a);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD, "rho_h: %5.5g\n", user.rho_h);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD, "mu_h:  %5.5g\n", user.mu_h);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD, "D_h:   %5.5g\n", user.D_h);CHKERRQ(ierr);

  /*
   * Create vector to hold the solution
   */
  ierr = VecCreateSeq(PETSC_COMM_WORLD, 2*user.nb_cells, &x);CHKERRQ(ierr);

  /*
   * Create time-stepper context
   */
  ierr = TSCreate(PETSC_COMM_WORLD, &ts);CHKERRQ(ierr);
  ierr = TSSetProblemType(ts, TS_NONLINEAR);CHKERRQ(ierr);

  /*
   * Tell the time-stepper context where to compute the solution
   */
  ierr = TSSetSolution(ts, x);CHKERRQ(ierr);

  /*
   * Allocate the jacobian matrix
   */
  ierr = MatCreateSeqAIJ(PETSC_COMM_WORLD, 2*user.nb_cells, 2*user.nb_cells, 4, 0, &J);CHKERRQ(ierr);

  /*
   * Provide the call-back for the non-linear function we are evaluating.
   */
  ierr = TSSetRHSFunction(ts, NULL, RHSFunction, &user);CHKERRQ(ierr);

  /*
   * Set the Jacobian matrix and the function user to compute Jacobians
   */
  ierr = TSSetRHSJacobian(ts, J, J, RHSJacobian, &user);CHKERRQ(ierr);

  /*
   * Set the function checking the domain
   */
  ierr = TSSetFunctionDomainError(ts, &DomainErrorFunction);CHKERRQ(ierr);

  /*
   * Initialize the problem with random values
   */
  ierr = FormInitialState(x, &user);CHKERRQ(ierr);

  /*
   * Read the solver type from options
   */
  ierr = TSSetType(ts, TSPSEUDO);CHKERRQ(ierr);

  /*
   * Set a large number of timesteps and final duration time to insure
   * convergenge to steady state
   */
  ierr = TSSetDuration(ts, 5000, 1e12);

  /*
   * Set a larger number of potential errors
   */
  ierr = TSSetMaxStepRejections(ts, 50);CHKERRQ(ierr);

  /*
   * Also start with a very small dt
   */
  ierr = TSSetTimeStep(ts, 0.05);CHKERRQ(ierr);

  /*
   * Set a larger time step increment
   */
  ierr = TSPseudoSetTimeStepIncrement(ts, 1.5);CHKERRQ(ierr);

  /*
   * Let the user personalise TS
   */
  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);

  /*
   * Set the context for the time stepper
   */
  ierr = TSSetApplicationContext(ts, &user);CHKERRQ(ierr);

  /*
   * Setup the time stepper, ready for evaluation
   */
  ierr = TSSetUp(ts);CHKERRQ(ierr);

  /*
   * Perform the solve.
   */
  ierr = TSSolve(ts, x);CHKERRQ(ierr);
  ierr = TSGetSolveTime(ts, &ftime);CHKERRQ(ierr);
  ierr = TSGetTimeStepNumber(ts,&its);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD, "Number of time steps = %D, final time: %4.2e\nResult:\n\n", its, (double)ftime);CHKERRQ(ierr);
  ierr = PrintSolution(x, &user);CHKERRQ(ierr);

  /*
   * Free the data structures
   */
  ierr = VecDestroy(&x);CHKERRQ(ierr);
  ierr = MatDestroy(&J);CHKERRQ(ierr);
  ierr = TSDestroy(&ts);CHKERRQ(ierr);
  ierr = PetscFinalize();
    return 0;
}
Exemple #17
0
int main(int argc,char **argv)
{
  TS             ts;            /* ODE integrator */
  Vec            U;             /* solution will be stored here */
  Vec            Utrue;
  PetscErrorCode ierr;
  PetscMPIInt    size;
  AppCtx         ctx;
  PetscScalar    *u;
  IS             iss;
  IS             isf;
  PetscInt       *indicess;
  PetscInt       *indicesf;
  PetscInt       n=2;
  PetscReal      error,tt;

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Initialize program
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (size > 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"Only for sequential runs");

   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Create index for slow part and fast part
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscMalloc1(1,&indicess);CHKERRQ(ierr);
  indicess[0]=0;
  ierr = PetscMalloc1(1,&indicesf);CHKERRQ(ierr);
  indicesf[0]=1;
  ierr = ISCreateGeneral(PETSC_COMM_SELF,1,indicess,PETSC_COPY_VALUES,&iss);CHKERRQ(ierr);
  ierr = ISCreateGeneral(PETSC_COMM_SELF,1,indicesf,PETSC_COPY_VALUES,&isf);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Create necesary vector
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = VecCreate(PETSC_COMM_WORLD,&U);CHKERRQ(ierr);
  ierr = VecSetSizes(U,n,PETSC_DETERMINE);CHKERRQ(ierr);
  ierr = VecSetFromOptions(U);CHKERRQ(ierr);
  ierr = VecDuplicate(U,&Utrue);
  ierr = VecCopy(U,Utrue);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Set initial condition
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = VecGetArray(U,&u);CHKERRQ(ierr);
  u[0] = PetscSqrtScalar(2.0);
  u[1] = PetscSqrtScalar(3.0);
  ierr = VecRestoreArray(U,&u);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Create timestepping solver context
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr);
  ierr = TSSetType(ts,TSMPRK);CHKERRQ(ierr);

  ierr = TSSetRHSFunction(ts,NULL,(TSRHSFunction)RHSFunction,&ctx);CHKERRQ(ierr);
  ierr = TSRHSSplitSetIS(ts,"slow",iss);CHKERRQ(ierr);
  ierr = TSRHSSplitSetIS(ts,"fast",isf);CHKERRQ(ierr);
  ierr = TSRHSSplitSetRHSFunction(ts,"slow",NULL,(TSRHSFunctionslow)RHSFunctionslow,&ctx);CHKERRQ(ierr);
  ierr = TSRHSSplitSetRHSFunction(ts,"fast",NULL,(TSRHSFunctionfast)RHSFunctionfast,&ctx);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set initial conditions
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetSolution(ts,U);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set solver options
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscOptionsBegin(PETSC_COMM_WORLD,NULL,"ODE options","");CHKERRQ(ierr);
  {
    ctx.Tf = 0.3;
    ctx.dt = 0.01;
    ierr   = PetscOptionsScalar("-Tf","","",ctx.Tf,&ctx.Tf,NULL);CHKERRQ(ierr);
    ierr   = PetscOptionsScalar("-dt","","",ctx.dt,&ctx.dt,NULL);CHKERRQ(ierr);
  }
  ierr = PetscOptionsEnd();CHKERRQ(ierr);
  ierr = TSSetMaxTime(ts,ctx.Tf);CHKERRQ(ierr);
  ierr = TSSetTimeStep(ts,ctx.dt);CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP);CHKERRQ(ierr);
  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Solve linear system
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSolve(ts,U);CHKERRQ(ierr);
  ierr = VecView(U,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);

 /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Check the error of the Petsc solution
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSGetTime(ts,&tt);CHKERRQ(ierr);
  ierr = sol_true(tt,Utrue);CHKERRQ(ierr);
  ierr = VecAXPY(Utrue,-1.0,U);CHKERRQ(ierr);
  ierr = VecNorm(Utrue,NORM_2,&error);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Print norm2 error
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscPrintf(PETSC_COMM_WORLD,"l2 error norm: %g\n", error);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Free work space.  All PETSc objects should be destroyed when they are no longer needed.
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = VecDestroy(&U);CHKERRQ(ierr);
  ierr = TSDestroy(&ts);CHKERRQ(ierr);
  ierr = VecDestroy(&Utrue);CHKERRQ(ierr);
  ierr = ISDestroy(&iss);CHKERRQ(ierr);
  ierr = ISDestroy(&isf);CHKERRQ(ierr);
  ierr = PetscFree(indicess);CHKERRQ(ierr);
  ierr = PetscFree(indicesf);CHKERRQ(ierr);
  ierr = PetscFinalize();
  return ierr;
}
Exemple #18
0
int main(int argc,char **argv)
{
  AppCtx         appctx;                 /* user-defined application context */
  TS             ts;                     /* timestepping context */
  Vec            U;                      /* approximate solution vector */
  PetscErrorCode ierr;
  PetscReal      dt;
  DM             da;
  PetscInt       M;
  PetscMPIInt    rank;
  PetscBool      useLaxWendroff = PETSC_TRUE;

  /* Initialize program and set problem parameters */
  ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
  ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);CHKERRQ(ierr);

  appctx.a  = -1.0;
  ierr      = PetscOptionsGetReal(NULL,NULL,"-a",&appctx.a,NULL);CHKERRQ(ierr);

  ierr = DMDACreate1d(PETSC_COMM_WORLD,DM_BOUNDARY_PERIODIC, 60, 1, 1,NULL,&da);CHKERRQ(ierr);
  ierr = DMSetFromOptions(da);CHKERRQ(ierr);
  ierr = DMSetUp(da);CHKERRQ(ierr);

  /* Create vector data structures for approximate and exact solutions */
  ierr = DMCreateGlobalVector(da,&U);CHKERRQ(ierr);

  /* Create timestepping solver context */
  ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr);
  ierr = TSSetDM(ts,da);CHKERRQ(ierr);

  /* Function evaluation */
  ierr = PetscOptionsGetBool(NULL,NULL,"-useLaxWendroff",&useLaxWendroff,NULL);CHKERRQ(ierr);
  if (useLaxWendroff) {
    if (!rank) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"... Use Lax-Wendroff finite volume\n");CHKERRQ(ierr);
    }
    ierr = TSSetIFunction(ts,NULL,IFunction_LaxWendroff,&appctx);CHKERRQ(ierr);
  } else {
    if (!rank) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"... Use Lax-LaxFriedrichs finite difference\n");CHKERRQ(ierr);
    }
    ierr = TSSetIFunction(ts,NULL,IFunction_LaxFriedrichs,&appctx);CHKERRQ(ierr);
  }

  /* Customize timestepping solver */
  ierr = DMDAGetInfo(da,PETSC_IGNORE,&M,0,0,0,0,0,0,0,0,0,0,0);CHKERRQ(ierr);
  dt = 1.0/(PetscAbsReal(appctx.a)*M);
  ierr = TSSetTimeStep(ts,dt);CHKERRQ(ierr);
  ierr = TSSetMaxSteps(ts,100);CHKERRQ(ierr);
  ierr = TSSetMaxTime(ts,100.0);CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);CHKERRQ(ierr);
  ierr = TSSetType(ts,TSBEULER);CHKERRQ(ierr);
  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);

  /* Evaluate initial conditions */
  ierr = InitialConditions(ts,U,&appctx);CHKERRQ(ierr);

  /* For testing accuracy of TS with already known solution, e.g., '-ts_monitor_lg_error' */
  ierr = TSSetSolutionFunction(ts,(PetscErrorCode (*)(TS,PetscReal,Vec,void*))Solution,&appctx);CHKERRQ(ierr);

  /* Run the timestepping solver */
  ierr = TSSolve(ts,U);CHKERRQ(ierr);

  /* Free work space */
  ierr = TSDestroy(&ts);CHKERRQ(ierr);
  ierr = VecDestroy(&U);CHKERRQ(ierr);
  ierr = DMDestroy(&da);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return ierr;
}
Exemple #19
0
PetscErrorCode TSEventHandler(TS ts)
{
  PetscErrorCode ierr;
  TSEvent        event;
  PetscReal      t;
  Vec            U;
  PetscInt       i;
  PetscReal      dt,dt_min;
  PetscInt       rollback=0,in[2],out[2];
  PetscInt       fvalue_sign,fvalueprev_sign;

  PetscFunctionBegin;
  PetscValidHeaderSpecific(ts,TS_CLASSID,1);
  if (!ts->event) PetscFunctionReturn(0);
  event = ts->event;

  ierr = TSGetTime(ts,&t);CHKERRQ(ierr);
  ierr = TSGetTimeStep(ts,&dt);CHKERRQ(ierr);
  ierr = TSGetSolution(ts,&U);CHKERRQ(ierr);

  if (event->status == TSEVENT_NONE) {
    if (ts->steps == 1) /* After first successful step */
      event->timestep_orig = ts->ptime - ts->ptime_prev;
    event->timestep_prev = dt;
  }

  if (event->status == TSEVENT_RESET_NEXTSTEP) {
    /* Restore time step */
    dt = PetscMin(event->timestep_orig,event->timestep_prev);
    ierr = TSSetTimeStep(ts,dt);CHKERRQ(ierr);
    event->status = TSEVENT_NONE;
  }

  if (event->status == TSEVENT_NONE) {
    event->ptime_end = t;
  }

  ierr = VecLockPush(U);CHKERRQ(ierr);
  ierr = (*event->eventhandler)(ts,t,U,event->fvalue,event->ctx);CHKERRQ(ierr);
  ierr = VecLockPop(U);CHKERRQ(ierr);

  for (i=0; i < event->nevents; i++) {
    if (PetscAbsScalar(event->fvalue[i]) < event->vtol[i]) {
      event->status = TSEVENT_ZERO;
      event->fvalue_right[i] = event->fvalue[i];
      continue;
    }
    fvalue_sign = PetscSign(PetscRealPart(event->fvalue[i]));
    fvalueprev_sign = PetscSign(PetscRealPart(event->fvalue_prev[i]));
    if (fvalueprev_sign != 0 && (fvalue_sign != fvalueprev_sign) && (PetscAbsScalar(event->fvalue_prev[i]) > event->vtol[i])) {
      switch (event->direction[i]) {
      case -1:
        if (fvalue_sign < 0) {
          rollback = 1;

          /* Compute new time step */
          dt = TSEventComputeStepSize(event->ptime_prev,t,event->ptime_right,event->fvalue_prev[i],event->fvalue[i],event->fvalue_right[i],event->side[i],dt);

          if (event->monitor) {
            ierr = PetscViewerASCIIPrintf(event->monitor,"TSEvent: iter %D - Event %D interval detected [%g - %g]\n",event->iterctr,i,(double)event->ptime_prev,(double)t);CHKERRQ(ierr);
          }
          event->fvalue_right[i] = event->fvalue[i];
          event->side[i] = 1;

          if (!event->iterctr) event->zerocrossing[i] = PETSC_TRUE;
          event->status = TSEVENT_LOCATED_INTERVAL;
        }
        break;
      case 1:
        if (fvalue_sign > 0) {
          rollback = 1;

          /* Compute new time step */
          dt = TSEventComputeStepSize(event->ptime_prev,t,event->ptime_right,event->fvalue_prev[i],event->fvalue[i],event->fvalue_right[i],event->side[i],dt);

          if (event->monitor) {
            ierr = PetscViewerASCIIPrintf(event->monitor,"TSEvent: iter %D - Event %D interval detected [%g - %g]\n",event->iterctr,i,(double)event->ptime_prev,(double)t);CHKERRQ(ierr);
          }
          event->fvalue_right[i] = event->fvalue[i];
          event->side[i] = 1;

          if (!event->iterctr) event->zerocrossing[i] = PETSC_TRUE;
          event->status = TSEVENT_LOCATED_INTERVAL;
        }
        break;
      case 0:
        rollback = 1;

        /* Compute new time step */
        dt = TSEventComputeStepSize(event->ptime_prev,t,event->ptime_right,event->fvalue_prev[i],event->fvalue[i],event->fvalue_right[i],event->side[i],dt);

        if (event->monitor) {
          ierr = PetscViewerASCIIPrintf(event->monitor,"TSEvent: iter %D - Event %D interval detected [%g - %g]\n",event->iterctr,i,(double)event->ptime_prev,(double)t);CHKERRQ(ierr);
        }
        event->fvalue_right[i] = event->fvalue[i];
        event->side[i] = 1;

        if (!event->iterctr) event->zerocrossing[i] = PETSC_TRUE;
        event->status = TSEVENT_LOCATED_INTERVAL;

        break;
      }
    }
  }

  in[0] = event->status; in[1] = rollback;
  ierr = MPIU_Allreduce(in,out,2,MPIU_INT,MPI_MAX,PetscObjectComm((PetscObject)ts));CHKERRQ(ierr);
  event->status = (TSEventStatus)out[0]; rollback = out[1];
  if (rollback) event->status = TSEVENT_LOCATED_INTERVAL;

  event->nevents_zero = 0;
  if (event->status == TSEVENT_ZERO) {
    for (i=0; i < event->nevents; i++) {
      if (PetscAbsScalar(event->fvalue[i]) < event->vtol[i]) {
        event->events_zero[event->nevents_zero++] = i;
        if (event->monitor) {
          ierr = PetscViewerASCIIPrintf(event->monitor,"TSEvent: Event %D zero crossing at time %g located in %D iterations\n",i,(double)t,event->iterctr);CHKERRQ(ierr);
        }
        event->zerocrossing[i] = PETSC_FALSE;
      }
      event->side[i] = 0;
    }
    ierr = TSPostEvent(ts,t,U);CHKERRQ(ierr);

    dt = event->ptime_end - t;
    if (PetscAbsReal(dt) < PETSC_SMALL) { /* we hit the event, continue with the candidate time step */
      dt = event->timestep_prev;
      event->status = TSEVENT_NONE;
    }
    ierr = TSSetTimeStep(ts,dt);CHKERRQ(ierr);
    event->iterctr = 0;
    PetscFunctionReturn(0);
  }

  if (event->status == TSEVENT_LOCATED_INTERVAL) {
    ierr = TSRollBack(ts);CHKERRQ(ierr);
    ierr = TSSetConvergedReason(ts,TS_CONVERGED_ITERATING);CHKERRQ(ierr);
    event->status = TSEVENT_PROCESSING;
    event->ptime_right = t;
  } else {
    for (i=0; i < event->nevents; i++) {
      if (event->status == TSEVENT_PROCESSING && event->zerocrossing[i]) {
        /* Compute new time step */
        dt = TSEventComputeStepSize(event->ptime_prev,t,event->ptime_right,event->fvalue_prev[i],event->fvalue[i],event->fvalue_right[i],event->side[i],dt);
        event->side[i] = -1;
      }
      event->fvalue_prev[i] = event->fvalue[i];
    }
    if (event->monitor && event->status == TSEVENT_PROCESSING) {
      ierr = PetscViewerASCIIPrintf(event->monitor,"TSEvent: iter %D - Stepping forward as no event detected in interval [%g - %g]\n",event->iterctr,(double)event->ptime_prev,(double)t);CHKERRQ(ierr);
    }
    event->ptime_prev = t;
  }

  if (event->status == TSEVENT_PROCESSING) event->iterctr++;

  ierr = MPIU_Allreduce(&dt,&dt_min,1,MPIU_REAL,MPIU_MIN,PetscObjectComm((PetscObject)ts));CHKERRQ(ierr);
  ierr = TSSetTimeStep(ts,dt_min);CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
Exemple #20
0
int main(int argc,char **argv)
{
  TS                ts;            /* ODE integrator */
  Vec               U;             /* solution will be stored here */
  Mat               A;             /* Jacobian matrix */
  PetscErrorCode    ierr;
  PetscMPIInt       size;
  PetscInt          n = 2,idx;
  AppCtx            user;
  PetscScalar       *u;
  SNES              snes;
  PetscScalar       *mat;
  const PetscScalar *x,*rmat;
  Mat               B;
  PetscScalar       *amat;
  PetscViewer       viewer;



  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Initialize program
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (size > 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"Only for sequential runs");

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Create necessary matrix and vectors
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
  ierr = MatSetSizes(A,n,n,PETSC_DETERMINE,PETSC_DETERMINE);CHKERRQ(ierr);
  ierr = MatSetFromOptions(A);CHKERRQ(ierr);
  ierr = MatSetUp(A);CHKERRQ(ierr);

  ierr = MatCreateVecs(A,&U,NULL);CHKERRQ(ierr);

  /* Create wind speed data using Weibull distribution */
  ierr = WindSpeeds(&user);CHKERRQ(ierr);
  /* Set parameters for wind turbine and induction generator */
  ierr = SetWindTurbineParams(&user);CHKERRQ(ierr);
  ierr = SetInductionGeneratorParams(&user);CHKERRQ(ierr);

  ierr = VecGetArray(U,&u);CHKERRQ(ierr);
  u[0] = vwa;
  u[1] = s;
  ierr = VecRestoreArray(U,&u);CHKERRQ(ierr);

  /* Create matrix to save solutions at each time step */
  user.stepnum = 0;

  ierr = MatCreateSeqDense(PETSC_COMM_SELF,3,2010,NULL,&user.Sol);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Create timestepping solver context
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr);
  ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr);
  ierr = TSSetType(ts,TSBEULER);CHKERRQ(ierr);
  ierr = TSSetIFunction(ts,NULL,(TSIFunction) IFunction,&user);CHKERRQ(ierr);

  ierr = TSGetSNES(ts,&snes);CHKERRQ(ierr);
  ierr = SNESSetJacobian(snes,A,A,SNESComputeJacobianDefault,NULL);CHKERRQ(ierr);
  /*  ierr = TSSetIJacobian(ts,A,A,(TSIJacobian)IJacobian,&user);CHKERRQ(ierr); */
  ierr = TSSetApplicationContext(ts,&user);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set initial conditions
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetSolution(ts,U);CHKERRQ(ierr);

  /* Save initial solution */
  idx=3*user.stepnum;

  ierr = MatDenseGetArray(user.Sol,&mat);CHKERRQ(ierr);
  ierr = VecGetArrayRead(U,&x);CHKERRQ(ierr);

  mat[idx] = 0.0;

  ierr = PetscMemcpy(mat+idx+1,x,2*sizeof(PetscScalar));CHKERRQ(ierr);
  ierr = MatDenseRestoreArray(user.Sol,&mat);CHKERRQ(ierr);
  ierr = VecRestoreArrayRead(U,&x);CHKERRQ(ierr);
  user.stepnum++;


  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set solver options
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetMaxTime(ts,20.0);CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP);CHKERRQ(ierr);
  ierr = TSSetTimeStep(ts,.01);CHKERRQ(ierr);
  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);
  ierr = TSSetPostStep(ts,SaveSolution);CHKERRQ(ierr);
  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Solve nonlinear system
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSolve(ts,U);CHKERRQ(ierr);

  ierr = MatCreateSeqDense(PETSC_COMM_SELF,3,user.stepnum,NULL,&B);CHKERRQ(ierr);
  ierr = MatDenseGetArrayRead(user.Sol,&rmat);CHKERRQ(ierr);
  ierr = MatDenseGetArray(B,&amat);CHKERRQ(ierr);
  ierr = PetscMemcpy(amat,rmat,user.stepnum*3*sizeof(PetscScalar));CHKERRQ(ierr);
  ierr = MatDenseRestoreArray(B,&amat);CHKERRQ(ierr);
  ierr = MatDenseRestoreArrayRead(user.Sol,&rmat);CHKERRQ(ierr);

  ierr = PetscViewerBinaryOpen(PETSC_COMM_SELF,"out.bin",FILE_MODE_WRITE,&viewer);CHKERRQ(ierr);
  ierr = MatView(B,viewer);CHKERRQ(ierr);
  ierr = PetscViewerDestroy(&viewer);CHKERRQ(ierr);
  ierr = MatDestroy(&user.Sol);CHKERRQ(ierr);
  ierr = MatDestroy(&B);CHKERRQ(ierr);
  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Free work space.  All PETSc objects should be destroyed when they are no longer needed.
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = VecDestroy(&user.wind_data);CHKERRQ(ierr);
  ierr = VecDestroy(&user.t_wind);CHKERRQ(ierr);
  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = VecDestroy(&U);CHKERRQ(ierr);
  ierr = TSDestroy(&ts);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return ierr;
}
Exemple #21
0
int main(int argc,char **argv)
{
  TS             ts;            /* ODE integrator */
  Vec            U;             /* solution will be stored here */
  Mat            A;             /* Jacobian matrix */
  Mat            Ap;            /* dfdp */
  PetscErrorCode ierr;
  PetscMPIInt    size;
  PetscInt       n = 2;
  PetscScalar    *u,*v;
  AppCtx         app;
  PetscInt       direction[1];
  PetscBool      terminate[1];
  Vec            lambda[2],mu[2];
  PetscReal      tend;

  FILE           *f;
  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Initialize program
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (size > 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"Only for sequential runs");
  app.mode = 1;
  app.lambda1 = 2.75;
  app.lambda2 = 0.36;
  tend = 0.125;
  ierr = PetscOptionsBegin(PETSC_COMM_WORLD,NULL,"ex1adj options","");CHKERRQ(ierr);
  {
    ierr = PetscOptionsReal("-lambda1","","",app.lambda1,&app.lambda1,NULL);CHKERRQ(ierr);
    ierr = PetscOptionsReal("-lambda2","","",app.lambda2,&app.lambda2,NULL);CHKERRQ(ierr);
    ierr = PetscOptionsReal("-tend","","",tend,&tend,NULL);CHKERRQ(ierr);
  }
  ierr = PetscOptionsEnd();CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Create necessary matrix and vectors
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
  ierr = MatSetSizes(A,n,n,PETSC_DETERMINE,PETSC_DETERMINE);CHKERRQ(ierr);
  ierr = MatSetType(A,MATDENSE);CHKERRQ(ierr);
  ierr = MatSetFromOptions(A);CHKERRQ(ierr);
  ierr = MatSetUp(A);CHKERRQ(ierr);

  ierr = MatCreateVecs(A,&U,NULL);CHKERRQ(ierr);

  ierr = MatCreate(PETSC_COMM_WORLD,&Ap);CHKERRQ(ierr);
  ierr = MatSetSizes(Ap,n,1,PETSC_DETERMINE,PETSC_DETERMINE);CHKERRQ(ierr);
  ierr = MatSetType(Ap,MATDENSE);CHKERRQ(ierr);
  ierr = MatSetFromOptions(Ap);CHKERRQ(ierr);
  ierr = MatSetUp(Ap);CHKERRQ(ierr);
  ierr = MatZeroEntries(Ap);CHKERRQ(ierr); /* initialize to zeros */

  ierr = VecGetArray(U,&u);CHKERRQ(ierr);
  u[0] = 0;
  u[1] = 1;
  ierr = VecRestoreArray(U,&u);CHKERRQ(ierr);
  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Create timestepping solver context
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr);
  ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr);
  ierr = TSSetType(ts,TSCN);CHKERRQ(ierr);
  ierr = TSSetIFunction(ts,NULL,(TSIFunction)IFunction,&app);CHKERRQ(ierr);
  ierr = TSSetIJacobian(ts,A,A,(TSIJacobian)IJacobian,&app);CHKERRQ(ierr);
  ierr = TSSetRHSJacobianP(ts,Ap,RHSJacobianP,&app);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set initial conditions
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetSolution(ts,U);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Save trajectory of solution so that TSAdjointSolve() may be used
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetSaveTrajectory(ts);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set solver options
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetMaxTime(ts,tend);CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP);CHKERRQ(ierr);
  ierr = TSSetTimeStep(ts,1./256.);CHKERRQ(ierr);
  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);

  /* Set directions and terminate flags for the two events */
  direction[0] = 0;
  terminate[0] = PETSC_FALSE;
  ierr = TSSetEventHandler(ts,1,direction,terminate,EventFunction,PostEventFunction,(void*)&app);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Run timestepping solver
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSolve(ts,U);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Adjoint model starts here
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = MatCreateVecs(A,&lambda[0],NULL);CHKERRQ(ierr);
  ierr = MatCreateVecs(A,&lambda[1],NULL);CHKERRQ(ierr);
  /*   Set initial conditions for the adjoint integration */
  ierr = VecZeroEntries(lambda[0]);CHKERRQ(ierr);
  ierr = VecZeroEntries(lambda[1]);CHKERRQ(ierr);
  ierr = VecGetArray(lambda[0],&u);CHKERRQ(ierr);
  u[0] = 1.;
  ierr = VecRestoreArray(lambda[0],&u);CHKERRQ(ierr);
  ierr = VecGetArray(lambda[1],&u);CHKERRQ(ierr);
  u[1] = 1.;
  ierr = VecRestoreArray(lambda[1],&u);CHKERRQ(ierr);

  ierr = MatCreateVecs(Ap,&mu[0],NULL);CHKERRQ(ierr);
  ierr = MatCreateVecs(Ap,&mu[1],NULL);CHKERRQ(ierr);
  ierr = VecZeroEntries(mu[0]);CHKERRQ(ierr);
  ierr = VecZeroEntries(mu[1]);CHKERRQ(ierr);
  ierr = TSSetCostGradients(ts,2,lambda,mu);CHKERRQ(ierr);

  ierr = TSAdjointSolve(ts);CHKERRQ(ierr);

  /*
  ierr = VecView(lambda[0],PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = VecView(lambda[1],PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = VecView(mu[0],PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = VecView(mu[1],PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  */
  ierr = VecGetArray(mu[0],&u);CHKERRQ(ierr);
  ierr = VecGetArray(mu[1],&v);CHKERRQ(ierr);
  f = fopen("adj_mu.out", "a");
  ierr = PetscFPrintf(PETSC_COMM_WORLD,f,"%20.15lf %20.15lf %20.15lf\n",tend,u[0],v[0]);CHKERRQ(ierr);
  ierr = VecRestoreArray(mu[0],&u);CHKERRQ(ierr);
  ierr = VecRestoreArray(mu[1],&v);CHKERRQ(ierr);
  fclose(f);
  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Free work space.  All PETSc objects should be destroyed when they are no longer needed.
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = VecDestroy(&U);CHKERRQ(ierr);
  ierr = TSDestroy(&ts);CHKERRQ(ierr);

  ierr = MatDestroy(&Ap);CHKERRQ(ierr);
  ierr = VecDestroy(&lambda[0]);CHKERRQ(ierr);
  ierr = VecDestroy(&lambda[1]);CHKERRQ(ierr);
  ierr = VecDestroy(&mu[0]);CHKERRQ(ierr);
  ierr = VecDestroy(&mu[1]);CHKERRQ(ierr);
  ierr = PetscFinalize();
  return ierr;
}
Exemple #22
0
/*
 * time_step solves for the time_dependence of the system
 * that was previously setup using the add_to_ham and add_lin
 * routines. Solver selection and parameters can be controlled via PETSc
 * command line options. Default solver is TSRK3BS
 *
 * Inputs:
 *       Vec     x:       The density matrix, with appropriate inital conditions
 *       double dt:       initial timestep. For certain explicit methods, this timestep
 *                        can be changed, as those methods have adaptive time steps
 *       double time_max: the maximum time to integrate to
 *       int steps_max:   max number of steps to take
 */
void time_step(Vec x, PetscReal init_time, PetscReal time_max,PetscReal dt,PetscInt steps_max){
  PetscViewer    mat_view;
  TS             ts; /* timestepping context */
  PetscInt       i,j,Istart,Iend,steps,row,col;
  PetscScalar    mat_tmp;
  PetscReal      tmp_real;
  Mat            AA;
  PetscInt       nevents,direction;
  PetscBool      terminate;
  operator       op;
  int            num_pop;
  double         *populations;
  Mat            solve_A,solve_stiff_A;


  PetscLogStagePop();
  PetscLogStagePush(solve_stage);
  if (_lindblad_terms) {
    if (nid==0) {
      printf("Lindblad terms found, using Lindblad solver.\n");
    }
    solve_A = full_A;
    if (_stiff_solver) {
      if(nid==0) printf("ERROR! Lindblad-stiff solver untested.");
      exit(0);
    }
  } else {
    if (nid==0) {
      printf("No Lindblad terms found, using (more efficient) Schrodinger solver.\n");
    }
    solve_A = ham_A;
    solve_stiff_A = ham_stiff_A;
    if (_num_time_dep&&_stiff_solver) {
      if(nid==0) printf("ERROR! Schrodinger-stiff + timedep solver untested.");
      exit(0);
    }
  }

  /* Possibly print dense ham. No stabilization is needed? */
  if (nid==0) {
    /* Print dense ham, if it was asked for */
    if (_print_dense_ham){
      FILE *fp_ham;
      fp_ham = fopen("ham","w");

      if (nid==0){
        for (i=0;i<total_levels;i++){
          for (j=0;j<total_levels;j++){
            fprintf(fp_ham,"%e %e ",PetscRealPart(_hamiltonian[i][j]),PetscImaginaryPart(_hamiltonian[i][j]));
          }
          fprintf(fp_ham,"\n");
        }
      }
      fclose(fp_ham);
      for (i=0;i<total_levels;i++){
        free(_hamiltonian[i]);
      }
      free(_hamiltonian);
      _print_dense_ham = 0;
    }
  }


  /* Remove stabilization if it was previously added */
  if (stab_added){
    if (nid==0) printf("Removing stabilization...\n");
    /*
     * We add 1.0 in the 0th spot and every n+1 after
     */
    if (nid==0) {
      row = 0;
      for (i=0;i<total_levels;i++){
        col = i*(total_levels+1);
        mat_tmp = -1.0 + 0.*PETSC_i;
        MatSetValue(full_A,row,col,mat_tmp,ADD_VALUES);
      }
    }
  }

  MatGetOwnershipRange(solve_A,&Istart,&Iend);
  /*
   * Explicitly add 0.0 to all diagonal elements;
   * this fixes a 'matrix in wrong state' message that PETSc
   * gives if the diagonal was never initialized.
   */
  //if (nid==0) printf("Adding 0 to diagonal elements...\n");
  for (i=Istart;i<Iend;i++){
    mat_tmp = 0 + 0.*PETSC_i;
    MatSetValue(solve_A,i,i,mat_tmp,ADD_VALUES);
  }
  if(_stiff_solver){
    MatGetOwnershipRange(solve_stiff_A,&Istart,&Iend);
    for (i=Istart;i<Iend;i++){
      mat_tmp = 0 + 0.*PETSC_i;
      MatSetValue(solve_stiff_A,i,i,mat_tmp,ADD_VALUES);
    }

  }

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -*
   *       Create the timestepping solver and set various options       *
   *- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

  /*
   * Create timestepping solver context
   */
  TSCreate(PETSC_COMM_WORLD,&ts);
  TSSetProblemType(ts,TS_LINEAR);


  /*
   * Set function to get information at every timestep
   */
  if (_ts_monitor!=NULL){
    TSMonitorSet(ts,_ts_monitor,_tsctx,NULL);
  }
  /*
   * Set up ODE system
   */

  TSSetRHSFunction(ts,NULL,TSComputeRHSFunctionLinear,NULL);

  if(_stiff_solver) {
    /* TSSetIFunction(ts,NULL,TSComputeRHSFunctionLinear,NULL); */
    if (nid==0) {
      printf("Stiff solver not implemented!\n");
      exit(0);
    }
    if(nid==0) printf("Using stiff solver - TSROSW\n");
  }

  if(_num_time_dep+_num_time_dep_lin) {

    for(i=0;i<_num_time_dep;i++){
      tmp_real = 0.0;
      _add_ops_to_mat_ham(tmp_real,solve_A,_time_dep_list[i].num_ops,_time_dep_list[i].ops);
    }

    for(i=0;i<_num_time_dep_lin;i++){
      tmp_real = 0.0;
      _add_ops_to_mat_lin(tmp_real,solve_A,_time_dep_list_lin[i].num_ops,_time_dep_list_lin[i].ops);
    }

    /* Tell PETSc to assemble the matrix */
    MatAssemblyBegin(solve_A,MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(solve_A,MAT_FINAL_ASSEMBLY);
    if (nid==0) printf("Matrix Assembled.\n");

    MatDuplicate(solve_A,MAT_COPY_VALUES,&AA);
    MatAssemblyBegin(AA,MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(AA,MAT_FINAL_ASSEMBLY);

    TSSetRHSJacobian(ts,AA,AA,_RHS_time_dep_ham_p,NULL);
  } else {
    /* Tell PETSc to assemble the matrix */
    MatAssemblyBegin(solve_A,MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(solve_A,MAT_FINAL_ASSEMBLY);
    if (_stiff_solver){
      MatAssemblyBegin(solve_stiff_A,MAT_FINAL_ASSEMBLY);
      MatAssemblyEnd(solve_stiff_A,MAT_FINAL_ASSEMBLY);
      /* TSSetIJacobian(ts,solve_stiff_A,solve_stiff_A,TSComputeRHSJacobianConstant,NULL); */
      if (nid==0) {
        printf("Stiff solver not implemented!\n");
        exit(0);
      }
    }
    if (nid==0) printf("Matrix Assembled.\n");
    TSSetRHSJacobian(ts,solve_A,solve_A,TSComputeRHSJacobianConstant,NULL);
  }

  /* Print information about the matrix. */
  PetscViewerASCIIOpen(PETSC_COMM_WORLD,NULL,&mat_view);
  PetscViewerPushFormat(mat_view,PETSC_VIEWER_ASCII_INFO);
  /* PetscViewerPushFormat(mat_view,PETSC_VIEWER_ASCII_MATLAB); */
  /* MatView(solve_A,mat_view); */

  /* PetscInt          ncols; */
  /* const PetscInt    *cols; */
  /* const PetscScalar *vals; */

  /* for(i=0;i<total_levels*total_levels;i++){ */
  /*   MatGetRow(solve_A,i,&ncols,&cols,&vals); */
  /*   for (j=0;j<ncols;j++){ */

  /*     if(PetscAbsComplex(vals[j])>1e-5){ */
  /*       printf("%d %d %lf %lf\n",i,cols[j],vals[j]); */
  /*     } */
  /*   } */
  /*   MatRestoreRow(solve_A,i,&ncols,&cols,&vals); */
  /* } */

  if(_stiff_solver){
    MatView(solve_stiff_A,mat_view);
  }
  PetscViewerPopFormat(mat_view);
  PetscViewerDestroy(&mat_view);

  TSSetTimeStep(ts,dt);

  /*
   * Set default options, can be changed at runtime
   */

  TSSetMaxSteps(ts,steps_max);
  TSSetMaxTime(ts,time_max);
  TSSetTime(ts,init_time);
  TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);
  if (_stiff_solver) {
    TSSetType(ts,TSROSW);
  } else {
    TSSetType(ts,TSRK);
    TSRKSetType(ts,TSRK3BS);
  }

  /* If we have gates to apply, set up the event handler. */
  if (_num_quantum_gates > 0) {
    nevents   =  1; //Only one event for now (did we cross a gate?)
    direction = -1; //We only want to count an event if we go from positive to negative
    terminate = PETSC_FALSE; //Keep time stepping after we passed our event
    /* Arguments are: ts context, nevents, direction of zero crossing, whether to terminate,
     * a function to check event status, a function to apply events, private data context.
     */
    TSSetEventHandler(ts,nevents,&direction,&terminate,_QG_EventFunction,_QG_PostEventFunction,NULL);
  }

  if (_num_circuits > 0) {
    nevents   =  1; //Only one event for now (did we cross a gate?)
    direction = -1; //We only want to count an event if we go from positive to negative
    terminate = PETSC_FALSE; //Keep time stepping after we passed our event
    /* Arguments are: ts context, nevents, direction of zero crossing, whether to terminate,
     * a function to check event status, a function to apply events, private data context.
     */
    TSSetEventHandler(ts,nevents,&direction,&terminate,_QC_EventFunction,_QC_PostEventFunction,NULL);
  }

  if (_discrete_ec > 0) {
    nevents   =  1; //Only one event for now (did we cross an ec step?)
    direction = -1; //We only want to count an event if we go from positive to negative
    terminate = PETSC_FALSE; //Keep time stepping after we passed our event
    /* Arguments are: ts context, nevents, direction of zero crossing, whether to terminate,
     * a function to check event status, a function to apply events, private data context.
     */
    TSSetEventHandler(ts,nevents,&direction,&terminate,_DQEC_EventFunction,_DQEC_PostEventFunction,NULL);
  }

  /* if (_lindblad_terms) { */
  /*   nevents   =  1; //Only one event for now (did we cross a gate?) */
  /*   direction =  0; //We only want to count an event if we go from positive to negative */
  /*   terminate = PETSC_FALSE; //Keep time stepping after we passed our event */
  /*   TSSetEventHandler(ts,nevents,&direction,&terminate,_Normalize_EventFunction,_Normalize_PostEventFunction,NULL); */
  /* } */
  TSSetFromOptions(ts);
  TSSolve(ts,x);
  TSGetStepNumber(ts,&steps);

  num_pop = get_num_populations();
  populations = malloc(num_pop*sizeof(double));
  get_populations(x,&populations);
  /* if(nid==0){ */
  /*   printf("Final populations: "); */
  /*   for(i=0;i<num_pop;i++){ */
  /*     printf(" %e ",populations[i]); */
  /*   } */
  /*   printf("\n"); */
  /* } */

  /* PetscPrintf(PETSC_COMM_WORLD,"Steps %D\n",steps); */

  /* Free work space */
  TSDestroy(&ts);
  if(_num_time_dep+_num_time_dep_lin){
    MatDestroy(&AA);
  }
  free(populations);
  PetscLogStagePop();
  PetscLogStagePush(post_solve_stage);

  return;
}
Exemple #23
0
int main(int argc,char **argv)
{
  AppCtx         appctx;                 /* user-defined application context */
  PetscErrorCode ierr;
  PetscInt       i, xs, xm, ind, j, lenglob;
  PetscReal      x, *wrk_ptr1, *wrk_ptr2;
  MatNullSpace   nsp;
  PetscMPIInt    size;

   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Initialize program and set problem parameters
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  PetscFunctionBegin;

  ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;

  /*initialize parameters */
  appctx.param.N    = 10;  /* order of the spectral element */
  appctx.param.E    = 10;  /* number of elements */
  appctx.param.L    = 4.0;  /* length of the domain */
  appctx.param.mu   = 0.01; /* diffusion coefficient */
  appctx.initial_dt = 5e-3;
  appctx.param.steps = PETSC_MAX_INT;
  appctx.param.Tend  = 4;

  ierr = PetscOptionsGetInt(NULL,NULL,"-N",&appctx.param.N,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(NULL,NULL,"-E",&appctx.param.E,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetReal(NULL,NULL,"-Tend",&appctx.param.Tend,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetReal(NULL,NULL,"-mu",&appctx.param.mu,NULL);CHKERRQ(ierr);
  appctx.param.Le = appctx.param.L/appctx.param.E;

  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (appctx.param.E % size) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_ARG_WRONG,"Number of elements must be divisible by number of processes");

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Create GLL data structures
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscGLLCreate(appctx.param.N,PETSCGLL_VIA_LINEARALGEBRA,&appctx.SEMop.gll);CHKERRQ(ierr);
  lenglob  = appctx.param.E*(appctx.param.N-1);

  /*
     Create distributed array (DMDA) to manage parallel grid and vectors
     and to set up the ghost point communication pattern.  There are E*(Nl-1)+1
     total grid values spread equally among all the processors, except first and last
  */

  ierr = DMDACreate1d(PETSC_COMM_WORLD,DM_BOUNDARY_PERIODIC,lenglob,1,1,NULL,&appctx.da);CHKERRQ(ierr);
  ierr = DMSetFromOptions(appctx.da);CHKERRQ(ierr);
  ierr = DMSetUp(appctx.da);CHKERRQ(ierr);
 
  /*
     Extract global and local vectors from DMDA; we use these to store the
     approximate solution.  Then duplicate these for remaining vectors that
     have the same types.
  */

  ierr = DMCreateGlobalVector(appctx.da,&appctx.dat.curr_sol);CHKERRQ(ierr);
  ierr = VecDuplicate(appctx.dat.curr_sol,&appctx.SEMop.grid);CHKERRQ(ierr);
  ierr = VecDuplicate(appctx.dat.curr_sol,&appctx.SEMop.mass);CHKERRQ(ierr);

  ierr = DMDAGetCorners(appctx.da,&xs,NULL,NULL,&xm,NULL,NULL);CHKERRQ(ierr);
  ierr = DMDAVecGetArray(appctx.da,appctx.SEMop.grid,&wrk_ptr1);CHKERRQ(ierr);
  ierr = DMDAVecGetArray(appctx.da,appctx.SEMop.mass,&wrk_ptr2);CHKERRQ(ierr);
  
  /* Compute function over the locally owned part of the grid */
  
    xs=xs/(appctx.param.N-1);
    xm=xm/(appctx.param.N-1);
  
  /* 
     Build total grid and mass over entire mesh (multi-elemental) 
  */ 

  for (i=xs; i<xs+xm; i++) {
    for (j=0; j<appctx.param.N-1; j++) {
      x = (appctx.param.Le/2.0)*(appctx.SEMop.gll.nodes[j]+1.0)+appctx.param.Le*i; 
      ind=i*(appctx.param.N-1)+j;
      wrk_ptr1[ind]=x;
      wrk_ptr2[ind]=.5*appctx.param.Le*appctx.SEMop.gll.weights[j];
      if (j==0) wrk_ptr2[ind]+=.5*appctx.param.Le*appctx.SEMop.gll.weights[j];
    } 
  }
  ierr = DMDAVecRestoreArray(appctx.da,appctx.SEMop.grid,&wrk_ptr1);CHKERRQ(ierr);
  ierr = DMDAVecRestoreArray(appctx.da,appctx.SEMop.mass,&wrk_ptr2);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
   Create matrix data structure; set matrix evaluation routine.
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = DMSetMatrixPreallocateOnly(appctx.da, PETSC_TRUE);CHKERRQ(ierr);
  ierr = DMCreateMatrix(appctx.da,&appctx.SEMop.stiff);CHKERRQ(ierr);
  ierr = DMCreateMatrix(appctx.da,&appctx.SEMop.grad);CHKERRQ(ierr);
  /*
   For linear problems with a time-dependent f(u,t) in the equation
   u_t = f(u,t), the user provides the discretized right-hand-side
   as a time-dependent matrix.
   */
  ierr = RHSMatrixLaplaciangllDM(appctx.ts,0.0,appctx.dat.curr_sol,appctx.SEMop.stiff,appctx.SEMop.stiff,&appctx);CHKERRQ(ierr);
  ierr = RHSMatrixAdvectiongllDM(appctx.ts,0.0,appctx.dat.curr_sol,appctx.SEMop.grad,appctx.SEMop.grad,&appctx);CHKERRQ(ierr);
   /*
       For linear problems with a time-dependent f(u,t) in the equation
       u_t = f(u,t), the user provides the discretized right-hand-side
       as a time-dependent matrix.
    */
  
  ierr = MatDuplicate(appctx.SEMop.stiff,MAT_COPY_VALUES,&appctx.SEMop.keptstiff);CHKERRQ(ierr);

  /* attach the null space to the matrix, this probably is not needed but does no harm */
  ierr = MatNullSpaceCreate(PETSC_COMM_WORLD,PETSC_TRUE,0,NULL,&nsp);CHKERRQ(ierr);
  ierr = MatSetNullSpace(appctx.SEMop.stiff,nsp);CHKERRQ(ierr);
  ierr = MatSetNullSpace(appctx.SEMop.keptstiff,nsp);CHKERRQ(ierr);  
  ierr = MatNullSpaceTest(nsp,appctx.SEMop.stiff,NULL);CHKERRQ(ierr);
  ierr = MatNullSpaceDestroy(&nsp);CHKERRQ(ierr);
  /* attach the null space to the matrix, this probably is not needed but does no harm */
  ierr = MatNullSpaceCreate(PETSC_COMM_WORLD,PETSC_TRUE,0,NULL,&nsp);CHKERRQ(ierr);
  ierr = MatSetNullSpace(appctx.SEMop.grad,nsp);CHKERRQ(ierr);
  ierr = MatNullSpaceTest(nsp,appctx.SEMop.grad,NULL);CHKERRQ(ierr);
  ierr = MatNullSpaceDestroy(&nsp);CHKERRQ(ierr);

  /* Create the TS solver that solves the ODE and its adjoint; set its options */
  ierr = TSCreate(PETSC_COMM_WORLD,&appctx.ts);CHKERRQ(ierr);
  ierr = TSSetProblemType(appctx.ts,TS_NONLINEAR);CHKERRQ(ierr);
  ierr = TSSetType(appctx.ts,TSRK);CHKERRQ(ierr);
  ierr = TSSetDM(appctx.ts,appctx.da);CHKERRQ(ierr);
  ierr = TSSetTime(appctx.ts,0.0);CHKERRQ(ierr);
  ierr = TSSetTimeStep(appctx.ts,appctx.initial_dt);CHKERRQ(ierr);
  ierr = TSSetMaxSteps(appctx.ts,appctx.param.steps);CHKERRQ(ierr);
  ierr = TSSetMaxTime(appctx.ts,appctx.param.Tend);CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(appctx.ts,TS_EXACTFINALTIME_MATCHSTEP);CHKERRQ(ierr);
  ierr = TSSetTolerances(appctx.ts,1e-7,NULL,1e-7,NULL);CHKERRQ(ierr);
  ierr = TSSetSaveTrajectory(appctx.ts);CHKERRQ(ierr);
  ierr = TSSetFromOptions(appctx.ts);CHKERRQ(ierr);
  ierr = TSSetRHSFunction(appctx.ts,NULL,RHSFunction,&appctx);CHKERRQ(ierr);
  ierr = TSSetRHSJacobian(appctx.ts,appctx.SEMop.stiff,appctx.SEMop.stiff,RHSJacobian,&appctx);CHKERRQ(ierr);

  /* Set Initial conditions for the problem  */
  ierr = TrueSolution(appctx.ts,0,appctx.dat.curr_sol,&appctx);CHKERRQ(ierr);

  ierr = TSSetSolutionFunction(appctx.ts,(PetscErrorCode (*)(TS,PetscReal,Vec,void *))TrueSolution,&appctx);CHKERRQ(ierr);
  ierr = TSSetTime(appctx.ts,0.0);CHKERRQ(ierr);
  ierr = TSSetStepNumber(appctx.ts,0);CHKERRQ(ierr);

  ierr = TSSolve(appctx.ts,appctx.dat.curr_sol);CHKERRQ(ierr);

  ierr = MatDestroy(&appctx.SEMop.stiff);CHKERRQ(ierr);
  ierr = MatDestroy(&appctx.SEMop.keptstiff);CHKERRQ(ierr);
  ierr = MatDestroy(&appctx.SEMop.grad);CHKERRQ(ierr);
  ierr = VecDestroy(&appctx.SEMop.grid);CHKERRQ(ierr);
  ierr = VecDestroy(&appctx.SEMop.mass);CHKERRQ(ierr);
  ierr = VecDestroy(&appctx.dat.curr_sol);CHKERRQ(ierr);
  ierr = PetscGLLDestroy(&appctx.SEMop.gll);CHKERRQ(ierr);
  ierr = DMDestroy(&appctx.da);CHKERRQ(ierr);
  ierr = TSDestroy(&appctx.ts);CHKERRQ(ierr);

  /*
     Always call PetscFinalize() before exiting a program.  This routine
       - finalizes the PETSc libraries as well as MPI
       - provides summary and diagnostic information if certain runtime
         options are chosen (e.g., -log_summary).
  */
    ierr = PetscFinalize();
    return ierr;
}
Exemple #24
0
int main(int argc,char **argv)
{
  TS             ts,quadts;     /* ODE integrator */
  Vec            U;             /* solution will be stored here */
  Mat            A;             /* Jacobian matrix */
  Mat            Jacp;          /* Jacobian matrix */
  Mat            DRDU,DRDP;
  PetscErrorCode ierr;
  PetscMPIInt    size;
  PetscInt       n = 2;
  AppCtx         ctx;
  PetscScalar    *u;
  PetscReal      du[2] = {0.0,0.0};
  PetscBool      ensemble = PETSC_FALSE,flg1,flg2;
  PetscReal      ftime;
  PetscInt       steps;
  PetscScalar    *x_ptr,*y_ptr;
  Vec            lambda[1],q,mu[1];

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Initialize program
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (size > 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"Only for sequential runs");

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Create necessary matrix and vectors
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
  ierr = MatSetSizes(A,n,n,PETSC_DETERMINE,PETSC_DETERMINE);CHKERRQ(ierr);
  ierr = MatSetType(A,MATDENSE);CHKERRQ(ierr);
  ierr = MatSetFromOptions(A);CHKERRQ(ierr);
  ierr = MatSetUp(A);CHKERRQ(ierr);

  ierr = MatCreateVecs(A,&U,NULL);CHKERRQ(ierr);

  ierr = MatCreate(PETSC_COMM_WORLD,&Jacp);CHKERRQ(ierr);
  ierr = MatSetSizes(Jacp,PETSC_DECIDE,PETSC_DECIDE,2,1);CHKERRQ(ierr);
  ierr = MatSetFromOptions(Jacp);CHKERRQ(ierr);
  ierr = MatSetUp(Jacp);CHKERRQ(ierr);

  ierr = MatCreateDense(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,1,1,NULL,&DRDP);CHKERRQ(ierr);
  ierr = MatSetUp(DRDP);CHKERRQ(ierr);
  ierr = MatCreateDense(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,1,1,NULL,&DRDU);CHKERRQ(ierr);
  ierr = MatSetUp(DRDU);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Set runtime options
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscOptionsBegin(PETSC_COMM_WORLD,NULL,"Swing equation options","");CHKERRQ(ierr);
  {
    ctx.beta    = 2;
    ctx.c       = 10000.0;
    ctx.u_s     = 1.0;
    ctx.omega_s = 1.0;
    ctx.omega_b = 120.0*PETSC_PI;
    ctx.H       = 5.0;
    ierr        = PetscOptionsScalar("-Inertia","","",ctx.H,&ctx.H,NULL);CHKERRQ(ierr);
    ctx.D       = 5.0;
    ierr        = PetscOptionsScalar("-D","","",ctx.D,&ctx.D,NULL);CHKERRQ(ierr);
    ctx.E       = 1.1378;
    ctx.V       = 1.0;
    ctx.X       = 0.545;
    ctx.Pmax    = ctx.E*ctx.V/ctx.X;;
    ierr        = PetscOptionsScalar("-Pmax","","",ctx.Pmax,&ctx.Pmax,NULL);CHKERRQ(ierr);
    ctx.Pm      = 1.1;
    ierr        = PetscOptionsScalar("-Pm","","",ctx.Pm,&ctx.Pm,NULL);CHKERRQ(ierr);
    ctx.tf      = 0.1;
    ctx.tcl     = 0.2;
    ierr        = PetscOptionsReal("-tf","Time to start fault","",ctx.tf,&ctx.tf,NULL);CHKERRQ(ierr);
    ierr        = PetscOptionsReal("-tcl","Time to end fault","",ctx.tcl,&ctx.tcl,NULL);CHKERRQ(ierr);
    ierr        = PetscOptionsBool("-ensemble","Run ensemble of different initial conditions","",ensemble,&ensemble,NULL);CHKERRQ(ierr);
    if (ensemble) {
      ctx.tf      = -1;
      ctx.tcl     = -1;
    }

    ierr = VecGetArray(U,&u);CHKERRQ(ierr);
    u[0] = PetscAsinScalar(ctx.Pm/ctx.Pmax);
    u[1] = 1.0;
    ierr = PetscOptionsRealArray("-u","Initial solution","",u,&n,&flg1);CHKERRQ(ierr);
    n    = 2;
    ierr = PetscOptionsRealArray("-du","Perturbation in initial solution","",du,&n,&flg2);CHKERRQ(ierr);
    u[0] += du[0];
    u[1] += du[1];
    ierr = VecRestoreArray(U,&u);CHKERRQ(ierr);
    if (flg1 || flg2) {
      ctx.tf      = -1;
      ctx.tcl     = -1;
    }
  }
  ierr = PetscOptionsEnd();CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Create timestepping solver context
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr);
  ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr);
  ierr = TSSetType(ts,TSRK);CHKERRQ(ierr);
  ierr = TSSetRHSFunction(ts,NULL,(TSRHSFunction)RHSFunction,&ctx);CHKERRQ(ierr);
  ierr = TSSetRHSJacobian(ts,A,A,(TSRHSJacobian)RHSJacobian,&ctx);CHKERRQ(ierr);
  ierr = TSCreateQuadratureTS(ts,PETSC_TRUE,&quadts);CHKERRQ(ierr);
  ierr = TSSetRHSFunction(quadts,NULL,(TSRHSFunction)CostIntegrand,&ctx);CHKERRQ(ierr);
  ierr = TSSetRHSJacobian(quadts,DRDU,DRDU,(TSRHSJacobian)DRDUJacobianTranspose,&ctx);CHKERRQ(ierr);
  ierr = TSSetRHSJacobianP(quadts,DRDP,(TSRHSJacobianP)DRDPJacobianTranspose,&ctx);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set initial conditions
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetSolution(ts,U);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Save trajectory of solution so that TSAdjointSolve() may be used
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetSaveTrajectory(ts);CHKERRQ(ierr);

  ierr = MatCreateVecs(A,&lambda[0],NULL);CHKERRQ(ierr);
  /*   Set initial conditions for the adjoint integration */
  ierr = VecGetArray(lambda[0],&y_ptr);CHKERRQ(ierr);
  y_ptr[0] = 0.0; y_ptr[1] = 0.0;
  ierr = VecRestoreArray(lambda[0],&y_ptr);CHKERRQ(ierr);

  ierr = MatCreateVecs(Jacp,&mu[0],NULL);CHKERRQ(ierr);
  ierr = VecGetArray(mu[0],&x_ptr);CHKERRQ(ierr);
  x_ptr[0] = -1.0;
  ierr = VecRestoreArray(mu[0],&x_ptr);CHKERRQ(ierr);
  ierr = TSSetCostGradients(ts,1,lambda,mu);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set solver options
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetMaxTime(ts,10.0);CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP);CHKERRQ(ierr);
  ierr = TSSetTimeStep(ts,.01);CHKERRQ(ierr);
  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Solve nonlinear system
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  if (ensemble) {
    for (du[1] = -2.5; du[1] <= .01; du[1] += .1) {
      ierr = VecGetArray(U,&u);CHKERRQ(ierr);
      u[0] = PetscAsinScalar(ctx.Pm/ctx.Pmax);
      u[1] = ctx.omega_s;
      u[0] += du[0];
      u[1] += du[1];
      ierr = VecRestoreArray(U,&u);CHKERRQ(ierr);
      ierr = TSSetTimeStep(ts,.01);CHKERRQ(ierr);
      ierr = TSSolve(ts,U);CHKERRQ(ierr);
    }
  } else {
    ierr = TSSolve(ts,U);CHKERRQ(ierr);
  }
  ierr = VecView(U,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = TSGetSolveTime(ts,&ftime);CHKERRQ(ierr);
  ierr = TSGetStepNumber(ts,&steps);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Adjoint model starts here
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  /*   Set initial conditions for the adjoint integration */
  ierr = VecGetArray(lambda[0],&y_ptr);CHKERRQ(ierr);
  y_ptr[0] = 0.0; y_ptr[1] = 0.0;
  ierr = VecRestoreArray(lambda[0],&y_ptr);CHKERRQ(ierr);

  ierr = VecGetArray(mu[0],&x_ptr);CHKERRQ(ierr);
  x_ptr[0] = -1.0;
  ierr = VecRestoreArray(mu[0],&x_ptr);CHKERRQ(ierr);

  /*   Set RHS JacobianP */
  ierr = TSSetRHSJacobianP(ts,Jacp,RHSJacobianP,&ctx);CHKERRQ(ierr);

  ierr = TSAdjointSolve(ts);CHKERRQ(ierr);

  ierr = PetscPrintf(PETSC_COMM_WORLD,"\n sensitivity wrt initial conditions: d[Psi(tf)]/d[phi0]  d[Psi(tf)]/d[omega0]\n");CHKERRQ(ierr);
  ierr = VecView(lambda[0],PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = VecView(mu[0],PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = TSGetCostIntegral(ts,&q);CHKERRQ(ierr);
  ierr = VecView(q,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = VecGetArray(q,&x_ptr);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD,"\n cost function=%g\n",(double)(x_ptr[0]-ctx.Pm));CHKERRQ(ierr);
  ierr = VecRestoreArray(q,&x_ptr);CHKERRQ(ierr);

  ierr = ComputeSensiP(lambda[0],mu[0],&ctx);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Free work space.  All PETSc objects should be destroyed when they are no longer needed.
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = MatDestroy(&Jacp);CHKERRQ(ierr);
  ierr = MatDestroy(&DRDU);CHKERRQ(ierr);
  ierr = MatDestroy(&DRDP);CHKERRQ(ierr);
  ierr = VecDestroy(&U);CHKERRQ(ierr);
  ierr = VecDestroy(&lambda[0]);CHKERRQ(ierr);
  ierr = VecDestroy(&mu[0]);CHKERRQ(ierr);
  ierr = TSDestroy(&ts);CHKERRQ(ierr);
  ierr = PetscFinalize();
  return ierr;
}