static float
compute_overlap(MRI *mri_seg1, MRI *mri_seg2, TRANSFORM *transform1,
                TRANSFORM *transform2) {
  int    x, y, z, width, height, depth, l1, l2, x2, y2, z2 ;
  float  overlap, x1, y1, z1 ;

  TransformInvert(transform1, mri_seg1) ;

  width = mri_seg1->width ;
  height = mri_seg1->height ;
  depth = mri_seg1->depth ;
  for (overlap = 0.0f, x = 0 ; x < width ; x++) {
    for (y = 0 ; y < height ; y++) {
      for (z = 0 ; z < depth ; z++) {
        l1 = MRIvox(mri_seg1, x, y, z) ;
        TransformSample(transform1, x, y, z, &x1, &y1, &z1) ; /* atlas coords of s1 */
        TransformSampleInverseVoxel(transform2, width, height, depth,
                                    nint(x1), nint(y1), nint(z1), &x2, &y2, &z2) ;
        l2 = MRIvox(mri_seg2, x2, y2, z2) ;
        if (l1 == l2)
          overlap++ ;
      }
    }
  }
  return(overlap) ;
}
Exemple #2
0
static int
get_option(int argc, char *argv[])
{
  int  nargs = 0 ;
  char *option ;

  option = argv[1] + 1 ;            /* past '-' */
  StrUpper(option) ;
  if (!stricmp(option, "debug_voxel"))
    {
      Gsx = Gx = atoi(argv[2]) ;
      Gsy = Gy = atoi(argv[3]) ;
      Gsz = Gz = atoi(argv[4]) ;
      nargs = 3 ;
      printf("debugging voxel (%d, %d, %d)\n", Gx, Gy, Gz) ;
    }
  else if (!stricmp(option, "debug_node"))
    {
      Gx = atoi(argv[2]) ;
      Gy = atoi(argv[3]) ;
      Gz = atoi(argv[4]) ;
      nargs = 3 ;
      printf("debugging node (%d, %d, %d)\n", Gx, Gy, Gz) ;
    }
  else if (!stricmp(option, "OPTIMAL"))
    {
      mp.integration_type = GCAM_INTEGRATE_OPTIMAL ;
      printf("using optimal time-step integration\n") ;
    }
  else if (!stricmp(option, "NONEG")) {
    mp.noneg = atoi(argv[2]) ;
    nargs = 1 ;
    printf("%s allowing temporary folds during numerical minimization\n",
           mp.noneg ? "not" : "") ;
  }
  else if (!stricmp(option, "renormalize"))  {
    renormalize = atoi(argv[2]) ;
    nargs = 1 ;
    printf("%srenormalizing intensities\n", renormalize ? "" : "not ");
    if (renormalize == 0)
      {
	match_mean_intensity = match_peak_intensity_ratio = 0 ;
      }
  }
  else if (!stricmp(option, "aseg"))  {
    match_mean_intensity = match_peak_intensity_ratio = 0 ;
    use_aseg = 1 ; 
    mp.l_dtrans = 1 ;
    mp.l_log_likelihood = 0 ;
    renormalize = 0 ;
    printf("treating inputs as segmentations\n") ;
    mp.dtrans_labels = dtrans_labels ;
    mp.ndtrans = NDTRANS_LABELS ;
  }
  else if (!stricmp(option, "diag2"))  {
    mp.mri_diag2 = MRIread(argv[2]) ;
    if (mp.mri_diag2 == NULL)
      ErrorExit(ERROR_NOFILE, "%s: could not read diag volume from %s", Progname, argv[2]) ;
    nargs = 1 ;
    printf("writing d2 diagnostics for input volume %s\n", argv[2]) ;
  }
  else if (!stricmp(option, "MOMENTUM") || !stricmp(option, "FIXED"))
    {
      mp.integration_type = GCAM_INTEGRATE_FIXED ;
      printf("using optimal time-step integration\n") ;
    }
  else if (!stricmp(option, "distance"))
    {
      distance = atof(argv[2]) ;
      nargs = 1 ;
      printf("expanding border by %2.1f mm every outer cycle\n", distance);
    }
  else if (!stricmp(option, "dtrans"))
    {
      mp.l_dtrans = atof(argv[2]) ;
      nargs = 1 ;
      printf("setting distance transform coefficient to %2.3f\n", mp.l_dtrans) ;
    }
  else if (!stricmp(option, "match_peak"))
    {
      match_peak_intensity_ratio = 1 ;
      match_mean_intensity = 0 ;
      printf("matching peak of intensity ratio histogram\n") ;
    }
  else if (!stricmp(option, "erode"))
    {
      erosions = atoi(argv[2]) ;
      nargs = 1 ;
      printf("eroding source and target image %d times before morphing\n",
	     erosions) ;
    }
  else if (!stricmp(option, "match_mean"))
    {
      match_peak_intensity_ratio = 0 ;
      match_mean_intensity = atoi(argv[2]) ;
      nargs = 1 ;
      printf("%smatching peak of intensity ratio histogram\n",
	     match_mean_intensity ? "" : "not ") ;
    }
  else if (!stricmp(option, "intensity") ||!stricmp(option, "ll"))
    {
      mp.l_log_likelihood = atof(argv[2]) ;
      nargs = 1 ;
      printf("setting l_log_likelihood = %2.3f\n", mp.l_log_likelihood );
    }
  else if (!stricmp(option, "noregrid"))
    {
      regrid = 0 ;
      mp.regrid = False ;
      printf("disabling regridding...\n") ;
    }
  else if (!stricmp(option, "regrid"))
    {
      regrid = 1 ;
      mp.regrid = True ;
      printf("enabling regridding...\n") ;
    }
  else if (!stricmp(option, "view"))
    {
      Gsx = atoi(argv[2]) ;
      Gsy = atoi(argv[3]) ;
      Gsz = atoi(argv[4]) ;
      nargs = 3 ;
      printf("viewing voxel (%d, %d, %d)\n", Gsx, Gsy, Gsz) ;
    }
  else if (!stricmp(option, "LEVELS"))
    {
      mp.levels = atoi(argv[2]) ;
      nargs = 1 ;
      printf("levels = %d\n", mp.levels) ;
    }
  else if (!stricmp(option, "area_smoothness") || !stricmp(option, "asmooth"))
    {
      mp.l_area_smoothness = atof(argv[2]) ;
      nargs = 1 ;
      printf("using l_area_smoothness=%2.3f\n", mp.l_area_smoothness) ;
    }
  else if (!stricmp(option, "area"))
    {
      mp.l_area = atof(argv[2]) ;
      nargs = 1 ;
      printf("using l_area=%2.3f\n", mp.l_area) ;
    }
  else if (!stricmp(option, "area_intensity"))
    {
      mp.l_area_intensity = atof(argv[2]) ;
      nargs = 1 ;
      printf("using l_area_intensity=%2.3f\n", mp.l_area_intensity) ;
    }
  else if (!stricmp(option, "tol"))
    {
      mp.tol = atof(argv[2]) ;
      nargs = 1 ;
      printf("using tol=%2.3f\n", mp.tol) ;
    }
  else if (!stricmp(option, "sigma"))
    {
      mp.sigma = atof(argv[2]) ;
      nargs = 1 ;
      printf("using sigma=%2.3f\n", mp.sigma) ;
    }
  else if (!stricmp(option, "min_sigma"))
    {
      mp.min_sigma = atof(argv[2]) ;
      nargs = 1 ;
      printf("using min sigma=%2.3f\n", mp.min_sigma) ;
    }
  else if (!stricmp(option, "ribbon"))
    {
      ribbon_name = argv[2] ;
      printf("reading ribbon from %s and inserting into aseg\n", ribbon_name) ;
      nargs = 1 ;
    }
  else if (!stricmp(option, "rthresh"))
    {
      mp.ratio_thresh = atof(argv[2]) ;
      mp.uncompress = 1 ;
      nargs = 1 ;
      printf("using compression ratio threshold = %2.3f...\n", mp.ratio_thresh) ;
    }
  else if (!stricmp(option, "scale"))
    {
      scale_values = atof(argv[2]) ;
      nargs = 1 ;
      printf("scaling input values by %2.3f\n", scale_values) ;
    }
  else if (!stricmp(option, "dt"))
    {
      mp.dt = atof(argv[2]) ;
      nargs = 1 ;
      printf("using dt = %2.3f\n", mp.dt) ;
    }
  else if (!stricmp(option, "passes"))
    {
      mp.npasses = atoi(argv[2]) ;
      nargs = 1 ;
      printf("integrating in %d passes (default=3)\n", mp.npasses) ;
    }
  else if (!stricmp(option, "skip"))
    {
      skip = atoi(argv[2]);
      printf("skipping %d voxels in source data...\n", skip) ;
      nargs = 1 ;
    }
  else if (!stricmp(option, "apply"))
    {
      apply_transform = atoi(argv[2]) ;
      nargs = 1 ;
      printf("%sapplying transform after registration\n", apply_transform ? "" : "not ") ;
    }
  else switch (*option)
    {
    case 'D':
      mp.l_distance = atof(argv[2]) ;
      nargs = 1 ;
      printf("using l_distance = %2.3f\n", mp.l_distance) ;
      break ;
    case 'M':
      mp.momentum = atof(argv[2]) ;
      nargs = 1 ;
      printf("momentum = %2.2f\n", mp.momentum) ;
      break ;
    case 'N':
      mp.niterations = atoi(argv[2]) ;
      nargs = 1 ;
      printf("using niterations = %d\n", mp.niterations) ;
      break ;
    case 'S':
      mp.l_smoothness = atof(argv[2]) ;
      nargs = 1 ;
      printf("using l_smoothness = %2.3f\n", mp.l_smoothness) ;
      break ;
    case 'T':
      printf("reading transform from %s...\n", argv[2]) ;
      transform = TransformRead(argv[2]) ;
      if (transform == NULL)
	ErrorExit(ERROR_NOFILE,"%s: could not read transform from %s\n",Progname,argv[2]);
      nargs = 1 ;
      if (transform->type == LINEAR_VOX_TO_VOX)
	{
	  printf("converting transform to ras....\n") ;
	  LTAvoxelToRasXform((LTA *)(transform->xform), NULL, NULL) ;
	}
      break ;
    case 'I':
      printf("reading transform from %s...\n", argv[2]) ;
      transform = TransformRead(argv[2]) ;
      if (transform == NULL)
	ErrorExit(ERROR_NOFILE,"%s: could not read transform from %s\n",Progname,argv[2]);
      TransformInvert(transform, NULL) ;
      TransformSwapInverse(transform) ;
      if (transform->type == LINEAR_VOX_TO_VOX)
	{
	  printf("converting transform to ras....\n") ;
	  LTAvoxelToRasXform((LTA *)(transform->xform), NULL, NULL) ;
	}
      nargs = 1 ;
      break ;
    case 'B':
      mp.l_binary = atof(argv[2]) ;
      nargs = 1 ;
      printf("using l_binary=%2.3f\n", mp.l_binary) ;
      break ;
    case 'J':
      mp.l_jacobian = atof(argv[2]) ;
      nargs = 1 ;
      printf("using l_jacobian=%2.3f\n", mp.l_jacobian) ;
      break ;
    case 'Z':
      nozero = (atoi(argv[2]) == 0) ;
      printf("%sdisabling zero image locations\n", nozero ? "" : "not ") ;
      nargs = 1 ;
      break ;
    case 'A':
      mp.navgs = atoi(argv[2]) ;
      nargs = 1 ;
      printf("smoothing gradient with %d averages...\n", mp.navgs) ;
      break ;
    case 'K':
      mp.exp_k = atof(argv[2]) ;
      printf("setting exp_k to %2.2f (default=%2.2f)\n",
	     mp.exp_k, EXP_K) ;
      nargs = 1 ;
      break ;
    case 'W':
      mp.write_iterations = atoi(argv[2]) ;
      Gdiag |= DIAG_WRITE ;
      nargs = 1 ;
      printf("setting write iterations = %d\n", mp.write_iterations) ;
      break ;
    case '?':
    case 'U':
      usage_exit(1);
      break ;
    default:
      printf("unknown option %s\n", argv[1]) ;
      usage_exit(1) ;
      break ;
    }
  return(nargs) ;
}
Exemple #3
0
int
main(int argc, char *argv[])
{
  char   **av ;
  int    ac, nargs, n ;
  MRI    *mri_src, *mri_dst = NULL, *mri_bias, *mri_orig, *mri_aseg = NULL ;
  char   *in_fname, *out_fname ;
  int          msec, minutes, seconds ;
  struct timeb start ;

  char cmdline[CMD_LINE_LEN] ;

  make_cmd_version_string
  (argc, argv,
   "$Id: mri_normalize.c,v 1.80 2012/10/16 21:38:35 nicks Exp $",
   "$Name:  $",
   cmdline);

  /* rkt: check for and handle version tag */
  nargs = handle_version_option
          (argc, argv,
           "$Id: mri_normalize.c,v 1.80 2012/10/16 21:38:35 nicks Exp $",
           "$Name:  $");
  if (nargs && argc - nargs == 1)
  {
    exit (0);
  }
  argc -= nargs;

  Progname = argv[0] ;
  ErrorInit(NULL, NULL, NULL) ;
  DiagInit(NULL, NULL, NULL) ;

  mni.max_gradient = MAX_GRADIENT ;
  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++)
  {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (argc < 3)
  {
    usage_exit(0) ;
  }
  if (argc < 1)
  {
    ErrorExit(ERROR_BADPARM, "%s: no input name specified", Progname) ;
  }
  in_fname = argv[1] ;

  if (argc < 2)
  {
    ErrorExit(ERROR_BADPARM, "%s: no output name specified", Progname) ;
  }
  out_fname = argv[2] ;

  if(verbose)
  {
    printf( "reading from %s...\n", in_fname) ;
  }
  mri_src = MRIread(in_fname) ;
  if (!mri_src)
    ErrorExit(ERROR_NO_FILE, "%s: could not open source file %s",
              Progname, in_fname) ;
  MRIaddCommandLine(mri_src, cmdline) ;

  if(nsurfs > 0)
  {
    MRI_SURFACE *mris ;
    MRI         *mri_dist=NULL, *mri_dist_sup=NULL, *mri_ctrl, *mri_dist_one ;
    LTA          *lta= NULL ;
    int          i ;
    TRANSFORM    *surface_xform ;

    if (control_point_fname)  // do one pass with only file control points first
    {
      MRI3dUseFileControlPoints(mri_src, control_point_fname) ;
      mri_dst =
        MRI3dGentleNormalize(mri_src,
                             NULL,
                             DEFAULT_DESIRED_WHITE_MATTER_VALUE,
                             NULL,
                             intensity_above,
                             intensity_below/2,1,
                             bias_sigma, mri_not_control);
    }
    else
    {
      mri_dst = MRIcopy(mri_src, NULL) ;
    }
    for (i = 0 ; i < nsurfs ; i++)
    {
      mris = MRISread(surface_fnames[i]) ;
      if (mris == NULL)
        ErrorExit(ERROR_NOFILE,"%s: could not surface %s",
                  Progname,surface_fnames[i]);
      surface_xform = surface_xforms[i] ;
      TransformInvert(surface_xform, NULL) ;
      if (surface_xform->type == MNI_TRANSFORM_TYPE ||
          surface_xform->type == TRANSFORM_ARRAY_TYPE ||
          surface_xform->type  == REGISTER_DAT)
      {
        lta = (LTA *)(surface_xform->xform) ;

#if 0
        if (invert)
        {
          VOL_GEOM vgtmp;
          LT *lt;
          MATRIX *m_tmp = lta->xforms[0].m_L ;
          lta->xforms[0].m_L = MatrixInverse(lta->xforms[0].m_L, NULL) ;
          MatrixFree(&m_tmp) ;
          lt = &lta->xforms[0];
          if (lt->dst.valid == 0 || lt->src.valid == 0)
          {
            printf( "WARNING:***************************************************************\n");
            printf( "WARNING:dst volume infor is invalid.  Most likely produce wrong inverse.\n");
            printf( "WARNING:***************************************************************\n");
          }
          copyVolGeom(&lt->dst, &vgtmp);
          copyVolGeom(&lt->src, &lt->dst);
          copyVolGeom(&vgtmp, &lt->src);
        }
#endif
      }

      if (stricmp(surface_xform_fnames[i], "identity.nofile") != 0)
      {
        MRIStransform(mris, NULL, surface_xform, NULL) ;
      }

      mri_dist_one = MRIcloneDifferentType(mri_dst, MRI_FLOAT) ;
      printf("computing distance transform\n") ;
      MRIScomputeDistanceToSurface(mris, mri_dist_one, mri_dist_one->xsize) ;
      if (i == 0)
      {
        mri_dist = MRIcopy(mri_dist_one, NULL) ;
      }
      else
      {
        MRIcombineDistanceTransforms(mri_dist_one, mri_dist, mri_dist) ;
      }
//  MRIminAbs(mri_dist_one, mri_dist, mri_dist) ;
      MRIfree(&mri_dist_one) ;
    }
    MRIscalarMul(mri_dist, mri_dist, -1) ;

    if (nonmax_suppress)
    {
      printf("computing nonmaximum suppression\n") ;
      mri_dist_sup = MRInonMaxSuppress(mri_dist, NULL, 0, 1) ;
      mri_ctrl = MRIcloneDifferentType(mri_dist_sup, MRI_UCHAR) ;
      MRIbinarize(mri_dist_sup, mri_ctrl, min_dist, CONTROL_NONE, CONTROL_MARKED) ;
    }
    else if (erode)
    {
      int i ;
      mri_ctrl = MRIcloneDifferentType(mri_dist, MRI_UCHAR) ;
      MRIbinarize(mri_dist, mri_ctrl, min_dist, CONTROL_NONE, CONTROL_MARKED) ;
      for (i = 0 ; i < erode ; i++)
      {
        MRIerode(mri_ctrl, mri_ctrl) ;
      }
    }
    else
    {
      mri_ctrl = MRIcloneDifferentType(mri_dist, MRI_UCHAR) ;
      MRIbinarize(mri_dist, mri_ctrl, min_dist, CONTROL_NONE, CONTROL_MARKED) ;
    }

    if (control_point_fname)
    {
      MRInormAddFileControlPoints(mri_ctrl, CONTROL_MARKED) ;
    }

    if (mask_sigma > 0)
    {
      MRI *mri_smooth, *mri_mag, *mri_grad ;
      mri_smooth = MRIgaussianSmooth(mri_dst, mask_sigma, 1, NULL) ;
      mri_mag = MRIcloneDifferentType(mri_dst, MRI_FLOAT) ;
      mri_grad = MRIsobel(mri_smooth, NULL, mri_mag) ;
      MRIbinarize(mri_mag, mri_mag, mask_thresh, 1, 0) ;
      MRImask(mri_ctrl, mri_mag, mri_ctrl, 0, CONTROL_NONE) ;
      MRIfree(&mri_grad) ;
      MRIfree(&mri_mag) ;
      MRIfree(&mri_smooth) ;
    }
    if (mask_orig_fname)
    {
      MRI *mri_orig ;

      mri_orig = MRIread(mask_orig_fname) ;
      MRIbinarize(mri_orig, mri_orig, mask_orig_thresh, 0, 1) ;

      MRImask(mri_ctrl, mri_orig, mri_ctrl, 0, CONTROL_NONE) ;
      MRIfree(&mri_orig) ;
    }
    if (Gdiag & DIAG_WRITE && DIAG_VERBOSE_ON)
    {
      MRIwrite(mri_dist, "d.mgz");
      MRIwrite(mri_dist_sup, "dm.mgz");
      MRIwrite(mri_ctrl, "c.mgz");
    }
    MRIeraseBorderPlanes(mri_ctrl, 4) ;
    if (aseg_fname)
    {
      mri_aseg = MRIread(aseg_fname) ;
      if (mri_aseg == NULL)
      {
        ErrorExit(ERROR_NOFILE,
                  "%s: could not load aseg from %s", Progname, aseg_fname) ;
      }
      remove_nonwm_voxels(mri_ctrl, mri_aseg, mri_ctrl) ;
      MRIfree(&mri_aseg) ;
    }
    else
    {
      remove_surface_outliers(mri_ctrl, mri_dist, mri_dst, mri_ctrl) ;
    }
    mri_bias = MRIbuildBiasImage(mri_dst, mri_ctrl, NULL, 0.0) ;
    if (mri_dist)
    {
      MRIfree(&mri_dist) ;
    }
    if (mri_dist_sup)
    {
      MRIfree(&mri_dist_sup) ;
    }
    if (bias_sigma> 0)
    {
      MRI *mri_kernel = MRIgaussian1d(bias_sigma, -1) ;
      if (Gdiag & DIAG_WRITE && DIAG_VERBOSE_ON)
      {
        MRIwrite(mri_bias, "b.mgz") ;
      }
      printf("smoothing bias field\n") ;
      MRIconvolveGaussian(mri_bias, mri_bias, mri_kernel) ;
      if (Gdiag & DIAG_WRITE && DIAG_VERBOSE_ON)
      {
        MRIwrite(mri_bias, "bs.mgz") ;
      }
      MRIfree(&mri_kernel);
    }
    MRIfree(&mri_ctrl) ;
    mri_dst = MRIapplyBiasCorrectionSameGeometry
              (mri_dst, mri_bias, mri_dst,
               DEFAULT_DESIRED_WHITE_MATTER_VALUE) ;
    printf("writing normalized volume to %s\n", out_fname) ;
    MRIwrite(mri_dst, out_fname) ;
    exit(0) ;
  } // end if(surface_fname)

  if (!mriConformed(mri_src) && conform > 0)
  {
    printf("unconformed source detected - conforming...\n") ;
    mri_src = MRIconform(mri_src) ;
  }

  if (mask_fname)
  {
    MRI *mri_mask ;

    mri_mask = MRIread(mask_fname) ;
    if (!mri_mask)
      ErrorExit(ERROR_NOFILE, "%s: could not open mask volume %s.\n",
                Progname, mask_fname) ;
    MRImask(mri_src, mri_mask, mri_src, 0, 0) ;
    MRIfree(&mri_mask) ;
  }

  if (read_flag)
  {
    MRI *mri_ctrl ;
    double scale ;

    mri_bias = MRIread(bias_volume_fname) ;
    if (!mri_bias)
      ErrorExit
      (ERROR_BADPARM,
       "%s: could not read bias volume %s", Progname, bias_volume_fname) ;
    mri_ctrl = MRIread(control_volume_fname) ;
    if (!mri_ctrl)
      ErrorExit
      (ERROR_BADPARM,
       "%s: could not read control volume %s",
       Progname, control_volume_fname) ;
    MRIbinarize(mri_ctrl, mri_ctrl, 1, 0, 128) ;
    mri_dst = MRImultiply(mri_bias, mri_src, NULL) ;
    scale = MRImeanInLabel(mri_dst, mri_ctrl, 128) ;
    printf("mean in wm is %2.0f, scaling by %2.2f\n", scale, 110/scale) ;
    scale = 110/scale ;
    MRIscalarMul(mri_dst, mri_dst, scale) ;
    MRIwrite(mri_dst, out_fname) ;
    exit(0) ;
  }

  if(long_flag)
  {
    MRI *mri_ctrl ;
    double scale ;

    mri_bias = MRIread(long_bias_volume_fname) ;
    if (!mri_bias)
      ErrorExit
      (ERROR_BADPARM,
       "%s: could not read bias volume %s", Progname, long_bias_volume_fname) ;
    mri_ctrl = MRIread(long_control_volume_fname) ;
    if (!mri_ctrl)
      ErrorExit
      (ERROR_BADPARM,
       "%s: could not read control volume %s",
       Progname, long_control_volume_fname) ;
    MRIbinarize(mri_ctrl, mri_ctrl, 1, 0, CONTROL_MARKED) ;
    if (mri_ctrl->type != MRI_UCHAR)
    {
      MRI *mri_tmp ;
      mri_tmp = MRIchangeType(mri_ctrl, MRI_UCHAR, 0, 1,1);
      MRIfree(&mri_ctrl) ;
      mri_ctrl = mri_tmp ;
    }
    scale = MRImeanInLabel(mri_src, mri_ctrl, CONTROL_MARKED) ;
    printf("mean in wm is %2.0f, scaling by %2.2f\n", scale, 110/scale) ;
    scale = DEFAULT_DESIRED_WHITE_MATTER_VALUE/scale ;
    mri_dst = MRIscalarMul(mri_src, NULL, scale) ;
    MRIremoveWMOutliers(mri_dst, mri_ctrl, mri_ctrl, intensity_below/2) ;
    mri_bias = MRIbuildBiasImage(mri_dst, mri_ctrl, NULL, 0.0) ;
    MRIsoapBubble(mri_bias, mri_ctrl, mri_bias, 50, 1) ;
    MRIapplyBiasCorrectionSameGeometry(mri_dst, mri_bias, mri_dst,
                                       DEFAULT_DESIRED_WHITE_MATTER_VALUE);
    //    MRIwrite(mri_dst, out_fname) ;
    //    exit(0) ;
  } // end if(long_flag)

  if (grad_thresh > 0)
  {
    float thresh ;
    MRI   *mri_mag, *mri_grad, *mri_smooth ;
    MRI *mri_kernel = MRIgaussian1d(.5, -1) ;

    mri_not_control = MRIcloneDifferentType(mri_src, MRI_UCHAR) ;
    switch (scan_type)
    {
    case MRI_MGH_MPRAGE:
      thresh = 15 ;
      break ;
    case MRI_WASHU_MPRAGE:
      thresh = 20 ;
      break ;
    case MRI_UNKNOWN:
    default:
      thresh = 12 ;
      break ;
    }
    mri_smooth = MRIconvolveGaussian(mri_src, NULL, mri_kernel) ;
    thresh = grad_thresh ;
    mri_mag = MRIcloneDifferentType(mri_src, MRI_FLOAT) ;
    mri_grad = MRIsobel(mri_smooth, NULL, mri_mag) ;
    MRIwrite(mri_mag, "m.mgz") ;
    MRIbinarize(mri_mag, mri_not_control, thresh, 0, 1) ;
    MRIwrite(mri_not_control, "nc.mgz") ;
    MRIfree(&mri_mag) ;
    MRIfree(&mri_grad) ;
    MRIfree(&mri_smooth) ;
    MRIfree(&mri_kernel) ;
  }
#if 0
#if 0
  if ((mri_src->type != MRI_UCHAR) ||
      (!(mri_src->xsize == 1 && mri_src->ysize == 1 && mri_src->zsize == 1)))
#else
  if (conform || (mri_src->type != MRI_UCHAR && conform > 0))
#endif
  {
    MRI  *mri_tmp ;

    fprintf
    (stderr,
     "downsampling to 8 bits and scaling to isotropic voxels...\n") ;
    mri_tmp = MRIconform(mri_src) ;
    mri_src = mri_tmp ;
  }
#endif

  if(aseg_fname)
  {
    printf("Reading aseg %s\n",aseg_fname);
    mri_aseg = MRIread(aseg_fname) ;
    if (mri_aseg == NULL)
      ErrorExit
      (ERROR_NOFILE,
       "%s: could not read aseg from file %s", Progname, aseg_fname) ;
    if (!mriConformed(mri_aseg))
    {
      ErrorExit(ERROR_UNSUPPORTED, "%s: aseg volume %s must be conformed",
                Progname, aseg_fname) ;
    }
  }
  else
  {
    mri_aseg = NULL ;
  }

  if(verbose)
  {
    printf( "normalizing image...\n") ;
  }
  fflush(stdout);
  fflush(stderr);

  TimerStart(&start) ;

  if (control_point_fname)
  {
    MRI3dUseFileControlPoints(mri_src, control_point_fname) ;
  }

  // this just setup writing control-point volume saving
  if(control_volume_fname)
  {
    MRI3dWriteControlPoints(control_volume_fname) ;
  }


  /* first do a gentle normalization to get
     things in the right intensity range */
  if(long_flag == 0)   // if long, then this will already have been done with base control points
  {
    if(control_point_fname != NULL)  /* do one pass with only
                                         file control points first */
      mri_dst =
        MRI3dGentleNormalize(mri_src,
                             NULL,
                             DEFAULT_DESIRED_WHITE_MATTER_VALUE,
                             NULL,
                             intensity_above,
                             intensity_below/2,1,
                             bias_sigma, mri_not_control);
    else
    {
      mri_dst = MRIcopy(mri_src, NULL) ;
    }
  }
  fflush(stdout);
  fflush(stderr);

  if(mri_aseg)
  {
    MRI *mri_ctrl, *mri_bias ;
    int  i ;

    printf("processing with aseg\n");

    mri_ctrl = MRIclone(mri_aseg, NULL) ;
    for (i = 0 ; i < NWM_LABELS ; i++)
    {
      MRIcopyLabel(mri_aseg, mri_ctrl, aseg_wm_labels[i]) ;
    }
    printf("removing outliers in the aseg WM...\n") ;
    MRIremoveWMOutliersAndRetainMedialSurface(mri_dst,
        mri_ctrl,
        mri_ctrl,
        intensity_below) ;
    MRIbinarize(mri_ctrl, mri_ctrl, 1, CONTROL_NONE, CONTROL_MARKED) ;
    MRInormAddFileControlPoints(mri_ctrl, CONTROL_MARKED) ;

    if (interior_fname1)
    {
      MRIS *mris_interior1, *mris_interior2 ;
      mris_interior1 = MRISread(interior_fname1) ;
      if (mris_interior1 == NULL)
        ErrorExit(ERROR_NOFILE,
                  "%s: could not read white matter surface from %s\n",
                  Progname, interior_fname1) ;
      mris_interior2 = MRISread(interior_fname2) ;
      if (mris_interior2 == NULL)
        ErrorExit(ERROR_NOFILE,
                  "%s: could not read white matter surface from %s\n",
                  Progname, interior_fname2) ;
      add_interior_points(mri_ctrl,
                          mri_dst,
                          intensity_above,
                          1.25*intensity_below,
                          mris_interior1,
                          mris_interior2,
                          mri_aseg,
                          mri_ctrl) ;
      MRISfree(&mris_interior1) ;
      MRISfree(&mris_interior2) ;
    }
    if (Gdiag & DIAG_WRITE && DIAG_VERBOSE_ON)
    {
      MRIwrite(mri_ctrl, "norm_ctrl.mgz") ;
    }

    printf("Building bias image\n");
    fflush(stdout);
    fflush(stderr);
    mri_bias = MRIbuildBiasImage(mri_dst, mri_ctrl, NULL, 0.0) ;
    fflush(stdout);
    fflush(stderr);

    if (bias_sigma> 0)
    {
      printf("Smoothing with sigma %g\n",bias_sigma);
      MRI *mri_kernel = MRIgaussian1d(bias_sigma, -1) ;
      MRIconvolveGaussian(mri_bias, mri_bias, mri_kernel) ;
      MRIfree(&mri_kernel);
      fflush(stdout);
      fflush(stderr);
    }
    MRIfree(&mri_ctrl) ;
    MRIfree(&mri_aseg) ;
    printf("Applying bias correction\n");
    mri_dst = MRIapplyBiasCorrectionSameGeometry
              (mri_dst, mri_bias, mri_dst,
               DEFAULT_DESIRED_WHITE_MATTER_VALUE) ;
    if (Gdiag & DIAG_WRITE && DIAG_VERBOSE_ON)
    {
      MRIwrite(mri_dst, "norm_1.mgz") ;
    }
    fflush(stdout);
    fflush(stderr);
  } // if(mri_aseg)
  else
  {
    printf("processing without aseg, no1d=%d\n",no1d);
    if (!no1d)
    {
      printf("MRInormInit(): \n");
      MRInormInit(mri_src, &mni, 0, 0, 0, 0, 0.0f) ;
      printf("MRInormalize(): \n");
      mri_dst = MRInormalize(mri_src, NULL, &mni) ;
      if (!mri_dst)
      {
        no1d = 1 ;
        printf("1d normalization failed - trying no1d...\n") ;
        // ErrorExit(ERROR_BADPARM, "%s: normalization failed", Progname) ;
      }
    }
    if(no1d)
    {
      if ((file_only && nosnr) ||
          ((gentle_flag != 0) && (control_point_fname != NULL)))
      {
        if (mri_dst == NULL)
        {
          mri_dst = MRIcopy(mri_src, NULL) ;
        }
      }
      else
      {
        if (nosnr)
        {
          if (interior_fname1)
          {
            MRIS *mris_interior1, *mris_interior2 ;
            MRI  *mri_ctrl ;

            printf("computing initial normalization using surface interiors\n");
            mri_ctrl = MRIcloneDifferentType(mri_src, MRI_UCHAR) ;
            mris_interior1 = MRISread(interior_fname1) ;
            if (mris_interior1 == NULL)
              ErrorExit(ERROR_NOFILE,
                        "%s: could not read white matter surface from %s\n",
                        Progname, interior_fname1) ;
            mris_interior2 = MRISread(interior_fname2) ;
            if (mris_interior2 == NULL)
              ErrorExit(ERROR_NOFILE,
                        "%s: could not read white matter surface from %s\n",
                        Progname, interior_fname2) ;
            add_interior_points(mri_ctrl,
                                mri_dst,
                                intensity_above,
                                1.25*intensity_below,
                                mris_interior1,
                                mris_interior2,
                                mri_aseg,
                                mri_ctrl) ;
            MRISfree(&mris_interior1) ;
            MRISfree(&mris_interior2) ;
            mri_bias = MRIbuildBiasImage(mri_dst, mri_ctrl, NULL, 0.0) ;
            if (bias_sigma> 0)
            {
              MRI *mri_kernel = MRIgaussian1d(bias_sigma, -1) ;
              MRIconvolveGaussian(mri_bias, mri_bias, mri_kernel) ;
              MRIfree(&mri_kernel);
            }
            mri_dst = MRIapplyBiasCorrectionSameGeometry
                      (mri_src,
                       mri_bias,
                       mri_dst,
                       DEFAULT_DESIRED_WHITE_MATTER_VALUE) ;
            MRIfree(&mri_ctrl) ;
          }
          else if (long_flag == 0)  // no initial normalization specified
          {
            mri_dst = MRIcopy(mri_src, NULL) ;
          }
        }
        else
        {
          printf("computing initial normalization using SNR...\n") ;
          mri_dst = MRInormalizeHighSignalLowStd
                    (mri_src, mri_dst, bias_sigma,
                     DEFAULT_DESIRED_WHITE_MATTER_VALUE) ;
        }
      }
      if (!mri_dst)
        ErrorExit
        (ERROR_BADPARM, "%s: could not allocate volume", Progname) ;
    }
  } // else (not using aseg)
  fflush(stdout);
  fflush(stderr);

  if (file_only == 0)
    MRI3dGentleNormalize(mri_dst, NULL, DEFAULT_DESIRED_WHITE_MATTER_VALUE,
                         mri_dst,
                         intensity_above, intensity_below/2,
                         file_only, bias_sigma, mri_not_control);

  mri_orig = MRIcopy(mri_dst, NULL) ;
  printf("\n");
  printf("Iterating %d times\n",num_3d_iter);
  for (n = 0 ; n < num_3d_iter ; n++)
  {
    if(file_only)
    {
      break ;
    }

    printf( "---------------------------------\n");
    printf( "3d normalization pass %d of %d\n", n+1, num_3d_iter) ;
    if (gentle_flag)
      MRI3dGentleNormalize(mri_dst, NULL, DEFAULT_DESIRED_WHITE_MATTER_VALUE,
                           mri_dst,
                           intensity_above/2, intensity_below/2,
                           file_only, bias_sigma, mri_not_control);
    else
      MRI3dNormalize(mri_orig, mri_dst, DEFAULT_DESIRED_WHITE_MATTER_VALUE,
                     mri_dst,
                     intensity_above, intensity_below,
                     file_only, prune, bias_sigma, scan_type, mri_not_control);
  }
  printf( "Done iterating ---------------------------------\n");

  // this just setup writing control-point volume saving
  if(control_volume_fname)
  {
    MRI3dWriteControlPoints(control_volume_fname) ;
  }

  if(bias_volume_fname)
  {
    mri_bias = compute_bias(mri_src, mri_dst, NULL) ;
    printf("writing bias field to %s....\n", bias_volume_fname) ;
    MRIwrite(mri_bias, bias_volume_fname) ;
    MRIfree(&mri_bias) ;
  }

  if (verbose)
  {
    printf("writing output to %s\n", out_fname) ;
  }
  MRIwrite(mri_dst, out_fname) ;
  msec = TimerStop(&start) ;

  MRIfree(&mri_src);
  MRIfree(&mri_dst);

  seconds = nint((float)msec/1000.0f) ;
  minutes = seconds / 60 ;
  seconds = seconds % 60 ;
  printf( "3D bias adjustment took %d minutes and %d seconds.\n",
          minutes, seconds) ;
  exit(0) ;
  return(0) ;
}
int
main(int argc, char *argv[]) {
    char         **av, fname[STRLEN], *out_fname, *subject_name, *cp ;
    int          ac, nargs, i, n, noint = 0, options ;
    int          msec, minutes, seconds, nsubjects, input ;
    struct timeb start ;
    GCA          *gca ;
    MRI          *mri_seg, *mri_tmp, *mri_inputs ;
    TRANSFORM    *transform ;
    LTA          *lta;
    GCA_BOUNDARY *gcab ;

    Progname = argv[0] ;

    ErrorInit(NULL, NULL, NULL) ;
    DiagInit(NULL, NULL, NULL) ;

    TimerStart(&start) ;

    parms.use_gradient = 0 ;
    spacing = 8 ;

    /* rkt: check for and handle version tag */
    nargs = handle_version_option
            (argc, argv,
             "$Id: mri_gcab_train.c,v 1.4 2011/03/16 20:23:33 fischl Exp $",
             "$Name:  $");
    if (nargs && argc - nargs == 1)
        exit (0);
    argc -= nargs;

    // parse command line args
    ac = argc ;
    av = argv ;
    for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) {
        nargs = get_option(argc, argv) ;
        argc -= nargs ;
        argv += nargs ;
    }

    printf("reading gca from %s\n", argv[1]) ;
    gca = GCAread(argv[1]) ;
    if (!gca)
        exit(Gerror) ;

    if (!strlen(subjects_dir)) /* hasn't been set on command line */
    {
        cp = getenv("SUBJECTS_DIR") ;
        if (!cp)
            ErrorExit(ERROR_BADPARM, "%s: SUBJECTS_DIR not defined in environment",
                      Progname);
        strcpy(subjects_dir, cp) ;
        if (argc < 4)
            usage_exit(1) ;
    }

    // options parsed.   subjects and gca name remaining
    out_fname = argv[argc-1] ;
    nsubjects = argc-3 ;
    for (options = i = 0 ; i < nsubjects ; i++) {
        if (argv[i+1][0] == '-') {
            nsubjects-- ;
            options++ ;
        }
    }

    printf("training on %d subject and writing results to %s\n",
           nsubjects, out_fname) ;

    n = 0 ;

    gcab = GCABalloc(gca, 8, 0, 30, 10, target_label);
    strcpy(gcab->gca_fname, argv[1]) ;
    // going through the subject one at a time
    for (nargs = i = 0 ; i < nsubjects+options ; i++) {
        subject_name = argv[i+2] ;
        //////////////////////////////////////////////////////////////
        printf("***************************************"
               "************************************\n");
        printf("processing subject %s, %d of %d...\n", subject_name,i+1-nargs,
               nsubjects);

        if (stricmp(subject_name, "-NOINT") == 0) {
            printf("not using intensity information for subsequent subjects...\n");
            noint = 1 ;
            nargs++ ;
            continue ;
        } else if (stricmp(subject_name, "-INT") == 0) {
            printf("using intensity information for subsequent subjects...\n");
            noint = 0 ;
            nargs++ ;
            continue ;
        }
        // reading this subject segmentation
        sprintf(fname, "%s/%s/mri/%s", subjects_dir, subject_name, seg_dir) ;
        if (Gdiag & DIAG_SHOW && DIAG_VERBOSE_ON)
            fprintf(stderr, "Reading segmentation from %s...\n", fname) ;
        mri_seg = MRIread(fname) ;
        if (!mri_seg)
            ErrorExit(ERROR_NOFILE, "%s: could not read segmentation file %s",
                      Progname, fname) ;
        if ((mri_seg->type != MRI_UCHAR) && (mri_seg->type != MRI_FLOAT)) {
            ErrorExit
            (ERROR_NOFILE,
             "%s: segmentation file %s is not type UCHAR or FLOAT",
             Progname, fname) ;
        }

        if (binarize) {
            int j ;
            for (j = 0 ; j < 256 ; j++) {
                if (j == binarize_in)
                    MRIreplaceValues(mri_seg, mri_seg, j, binarize_out) ;
                else
                    MRIreplaceValues(mri_seg, mri_seg, j, 0) ;
            }
        }
        if (insert_fname) {
            MRI *mri_insert ;

            sprintf(fname, "%s/%s/mri/%s",
                    subjects_dir, subject_name, insert_fname) ;
            mri_insert = MRIread(fname) ;
            if (mri_insert == NULL)
                ErrorExit(ERROR_NOFILE,
                          "%s: could not read volume from %s for insertion",
                          Progname, insert_fname) ;

            MRIbinarize(mri_insert, mri_insert, 1, 0, insert_label) ;
            MRIcopyLabel(mri_insert, mri_seg, insert_label) ;
            MRIfree(&mri_insert) ;
        }

        replaceLabels(mri_seg) ;
        MRIeraseBorderPlanes(mri_seg, 1) ;

        for (input = 0 ; input < gca->ninputs ; input++) {
            //////////// set the gca type //////////////////////////////
            // is this T1/PD training?
            // how can we allow flash data training ???????
            // currently checks the TE, TR, FA to be the same for all inputs
            // thus we cannot allow flash data training.
            ////////////////////////////////////////////////////////////

            sprintf(fname, "%s/%s/mri/%s",
                    subjects_dir, subject_name,input_names[input]);
            if (DIAG_VERBOSE_ON)
                printf("reading co-registered input from %s...\n", fname) ;
            fprintf(stderr, "   reading input %d: %s\n", input, fname);
            mri_tmp = MRIread(fname) ;
            if (!mri_tmp)
                ErrorExit
                (ERROR_NOFILE,
                 "%s: could not read image from file %s", Progname, fname) ;
            // input check 1
            if (getSliceDirection(mri_tmp) != MRI_CORONAL) {
                ErrorExit
                (ERROR_BADPARM,
                 "%s: must be in coronal direction, but it is not\n",
                 fname);
            }
            // input check 2
            if (mri_tmp->xsize != 1 || mri_tmp->ysize != 1 || mri_tmp->zsize != 1) {
                ErrorExit
                (ERROR_BADPARM,
                 "%s: must have 1mm voxel size, but have (%f, %f, %f)\n",
                 fname, mri_tmp->xsize, mri_tmp->ysize, mri_tmp->ysize);
            }
            // input check 3 is removed.  now we can handle c_(ras) != 0 case
            // input check 4
            if (i == 0) {
                TRs[input] = mri_tmp->tr ;
                FAs[input] = mri_tmp->flip_angle ;
                TEs[input] = mri_tmp->te ;
            } else if (!FEQUAL(TRs[input],mri_tmp->tr) ||
                       !FEQUAL(FAs[input],mri_tmp->flip_angle) ||
                       !FEQUAL(TEs[input], mri_tmp->te))
                ErrorExit
                (ERROR_BADPARM,
                 "%s: subject %s input volume %s: sequence parameters "
                 "(%2.1f, %2.1f, %2.1f)"
                 "don't match other inputs (%2.1f, %2.1f, %2.1f)",
                 Progname, subject_name, fname,
                 mri_tmp->tr, DEGREES(mri_tmp->flip_angle), mri_tmp->te,
                 TRs[input], DEGREES(FAs[input]), TEs[input]) ;
            // first time do the following
            if (input == 0) {
                int nframes = gca->ninputs ;

                ///////////////////////////////////////////////////////////
                mri_inputs =
                    MRIallocSequence(mri_tmp->width, mri_tmp->height, mri_tmp->depth,
                                     mri_tmp->type, nframes) ;
                if (!mri_inputs)
                    ErrorExit
                    (ERROR_NOMEMORY,
                     "%s: could not allocate input volume %dx%dx%dx%d",
                     mri_tmp->width, mri_tmp->height, mri_tmp->depth,nframes) ;
                MRIcopyHeader(mri_tmp, mri_inputs) ;
            }
            // -mask option ////////////////////////////////////////////
            if (mask_fname)
            {
                MRI *mri_mask ;

                sprintf(fname, "%s/%s/mri/%s",
                        subjects_dir, subject_name, mask_fname);
                printf("reading volume %s for masking...\n", fname) ;
                mri_mask = MRIread(fname) ;
                if (!mri_mask)
                    ErrorExit(ERROR_NOFILE, "%s: could not open mask volume %s.\n",
                              Progname, fname) ;

                MRImask(mri_tmp, mri_mask, mri_tmp, 0, 0) ;
                MRIfree(&mri_mask) ;
            }
            MRIcopyFrame(mri_tmp, mri_inputs, 0, input) ;
            MRIfree(&mri_tmp) ;
        }// end of inputs per subject


        /////////////////////////////////////////////////////////
        // xform_name is given, then we can use the consistent c_(r,a,s) for gca
        /////////////////////////////////////////////////////////
        if (xform_name)
        {
            // we read talairach.xfm which is a RAS-to-RAS
            sprintf(fname, "%s/%s/mri/transforms/%s",
                    subjects_dir, subject_name, xform_name) ;
            if (Gdiag & DIAG_SHOW && DIAG_VERBOSE_ON)
                printf("INFO: reading transform file %s...\n", fname);
            if (!FileExists(fname))
            {
                fprintf(stderr,"ERROR: cannot find transform file %s\n",fname);
                exit(1);
            }
            transform = TransformRead(fname);
            if (!transform)
                ErrorExit(ERROR_NOFILE, "%s: could not read transform from file %s",
                          Progname, fname);

            modify_transform(transform, mri_inputs, gca);
            // Here we do 2 things
            // 1. modify gca direction cosines to
            // that of the transform destination (both linear and non-linear)
            // 2. if ras-to-ras transform,
            // then change it to vox-to-vox transform (linear case)

            // modify transform to store inverse also
            TransformInvert(transform, mri_inputs) ;
            // verify inverse
            lta = (LTA *) transform->xform;
        }
        else
        {
            GCAreinit(mri_inputs, gca);
            // just use the input value, since dst = src volume
            transform = TransformAlloc(LINEAR_VOXEL_TO_VOXEL, NULL) ;
        }


        ////////////////////////////////////////////////////////////////////
        // train gca
        ////////////////////////////////////////////////////////////////////
        // segmentation is seg volume
        // inputs       is the volumes of all inputs
        // transform    is for this subject
        // noint        is whether to use intensity information or not
        GCABtrain(gcab, mri_inputs, mri_seg, transform, target_label) ;
        MRIfree(&mri_seg) ;
        MRIfree(&mri_inputs) ;
        TransformFree(&transform) ;
    }
    GCABcompleteTraining(gcab) ;

    if (smooth > 0) {
        printf("regularizing conditional densities with smooth=%2.2f\n", smooth) ;
        GCAregularizeConditionalDensities(gca, smooth) ;
    }
    if (navgs) {
        printf("applying mean filter %d times to conditional densities\n", navgs) ;
        GCAmeanFilterConditionalDensities(gca, navgs) ;
    }

    printf("writing trained GCAB to %s...\n", out_fname) ;
    if (GCABwrite(gcab, out_fname) != NO_ERROR)
        ErrorExit
        (ERROR_BADFILE, "%s: could not write gca to %s", Progname, out_fname) ;

    if (Gdiag & DIAG_WRITE && DIAG_VERBOSE_ON)
    {
        MRI *mri ;

        mri = GCAbuildMostLikelyVolume(gca, NULL) ;
        MRIwrite(mri, "m.mgz") ;
        MRIfree(&mri) ;
    }

    if (histo_fname) {
        FILE *fp ;
        int   histo_counts[10000], xn, yn, zn, max_count ;
        GCA_NODE  *gcan ;

        memset(histo_counts, 0, sizeof(histo_counts)) ;
        fp = fopen(histo_fname, "w") ;
        if (!fp)
            ErrorExit(ERROR_BADFILE, "%s: could not open histo file %s",
                      Progname, histo_fname) ;

        max_count = 0 ;
        for (xn = 0 ; xn < gca->node_width;  xn++) {
            for (yn = 0 ; yn < gca->node_height ; yn++) {
                for (zn = 0 ; zn < gca->node_depth ; zn++) {
                    gcan = &gca->nodes[xn][yn][zn] ;
                    if (gcan->nlabels < 1)
                        continue ;
                    if (gcan->nlabels == 1 && IS_UNKNOWN(gcan->labels[0]))
                        continue ;
                    histo_counts[gcan->nlabels]++ ;
                    if (gcan->nlabels > max_count)
                        max_count = gcan->nlabels ;
                }
            }
        }
        max_count = 20 ;
        for (xn = 1 ; xn < max_count ;  xn++)
            fprintf(fp, "%d %d\n", xn, histo_counts[xn]) ;
        fclose(fp) ;
    }

    GCAfree(&gca) ;
    msec = TimerStop(&start) ;
    seconds = nint((float)msec/1000.0f) ;
    minutes = seconds / 60 ;
    seconds = seconds % 60 ;
    printf("classifier array training took %d minutes"
           " and %d seconds.\n", minutes, seconds) ;
    exit(0) ;
    return(0) ;
}
int compute_tissue_modes( MRI *mri_inputs,
                          GCA *gca,
                          GCA_SAMPLE *gcas,
                          TRANSFORM *transform,
                          int nsamples,
                          double *pwm, double *pgm, double *pfluid )
{
    int        x, y, z, width, height, depth, i, xp, yp, zp ;
    float      vals[MAX_GCA_INPUTS] ;
    int        countOutside = 0, ngm, nwm, nfluid;
    double     gm, wm, fluid ;

    /* go through each GC in the sample and compute the probability of
       the image at that point.
    */
    width = mri_inputs->width ;
    height = mri_inputs->height;
    depth = mri_inputs->depth ;
    // store inverse transformation .. forward:input->gca template,
    // inv: gca template->input
    TransformInvert(transform, mri_inputs) ;

    // go through all sample points
    for (ngm = nwm = nfluid = 0, wm = gm = fluid = 0.0, i = 0 ;
            i < nsamples ;
            i++)
    {
        /////////////////// diag code /////////////////////////////
        if (i == Gdiag_no)
        {
            DiagBreak() ;
        }
        if (Gdiag_no == gcas[i].label)
        {
            DiagBreak() ;
        }
        if (i == Gdiag_no ||
                (gcas[i].xp == Gxp && gcas[i].yp == Gyp && gcas[i].zp == Gzp))
        {
            DiagBreak() ;
        }
        ///////////////////////////////////////////////////////////

        // get prior coordinates
        xp = gcas[i].xp ;
        yp = gcas[i].yp ;
        zp = gcas[i].zp ;
        // if it is inside the source voxel
        if (!GCApriorToSourceVoxel(gca, mri_inputs, transform,
                                   xp, yp, zp, &x, &y, &z))
        {
            if (x == Gx && y == Gy && z == Gz)
            {
                DiagBreak() ;
            }

            // (x,y,z) is the source voxel position
            gcas[i].x = x ;
            gcas[i].y = y ;
            gcas[i].z = z ;

            // get values from all inputs
            load_vals(mri_inputs, x, y, z, vals, gca->ninputs) ;
            if (FZERO(vals[0]) && gcas[i].label == Gdiag_no)
            {
                DiagBreak() ;
            }

            if (gcas[i].tissue_class == GM_CLASS)
            {
                ngm++ ;
                gm += vals[0] ;
            }
            else if (gcas[i].tissue_class == WM_CLASS)
            {
                nwm++ ;
                wm += vals[0] ;
            }
            else if (gcas[i].tissue_class == FLUID_CLASS)
            {
                nfluid++ ;
                fluid += vals[0] ;
            }

            if (!FZERO(vals[0]))
            {
                DiagBreak() ;
            }
            if (gcas[i].label != Unknown)
            {
                DiagBreak() ;
            }
            if (i == Gdiag_no)
            {
                DiagBreak() ;
            }
        }
        else  // outside the volume
        {
            countOutside++;
        }
    }

    if (nfluid == 0)
    {
        nfluid = 1 ;
    }
    if (ngm == 0)
    {
        ngm = 1 ;
    }
    if (nwm == 0)
    {
        nwm = 1 ;
    }
    wm /= nwm ;
    gm /= ngm ;
    fluid /= nfluid ;
    G_wm_mean = *pwm = wm ;
    G_gm_mean = *pgm = gm ;
    G_fluid_mean = *pfluid = fluid ;

    return(NO_ERROR) ;
}
int
main(int argc, char *argv[]) {
  char         *gca_fname, *in_fname, **av, *xform_fname ;
  MRI          *mri_in, *mri_tmp, *mri_orig = NULL ;
  GCA          *gca ;
  int          ac, nargs, input, ninputs ;
  TRANSFORM    *transform = NULL ;
  char         cmdline[CMD_LINE_LEN] ;
  double       ll ;

  make_cmd_version_string
  (argc, argv,
   "$Id: mri_log_likelihood.c,v 1.4 2011/03/02 00:04:22 nicks Exp $",
   "$Name: stable5 $", cmdline);

  /* rkt: check for and handle version tag */
  nargs = handle_version_option
          (argc, argv,
           "$Id: mri_log_likelihood.c,v 1.4 2011/03/02 00:04:22 nicks Exp $",
           "$Name: stable5 $");
  if (nargs && argc - nargs == 1)
    exit (0);
  argc -= nargs;

  setRandomSeed(-1L) ;
  Progname = argv[0] ;

  DiagInit(NULL, NULL, NULL) ;
  ErrorInit(NULL, NULL, NULL) ;

  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++) {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (argc < 3)
    ErrorExit
    (ERROR_BADPARM,
     "usage: %s [<options>] <inbrain1> <inbrain2> ... "
     "<atlas> <transform file> ...\n",
     Progname) ;

  ninputs = (argc - 1) / 2 ;
  if (DIAG_VERBOSE_ON)
    printf("reading %d input volume%ss\n", ninputs, ninputs > 1 ? "s" : "") ;
  in_fname = argv[1] ;
  gca_fname = argv[1+ninputs] ;
  xform_fname = argv[2+ninputs] ;
  transform = TransformRead(xform_fname) ;
  if (!transform)
    ErrorExit(ERROR_NOFILE, "%s: could not read input transform from %s",
              Progname, xform_fname) ;

  if (DIAG_VERBOSE_ON)
    printf("reading atlas from '%s'...\n", gca_fname) ;
  gca = GCAread(gca_fname) ;
  if (!gca)
    ErrorExit(ERROR_NOFILE, "%s: could not read input atlas from %s",
              Progname, gca_fname) ;

  fflush(stdout) ;
  for (input = 0 ; input < ninputs ; input++) {
    in_fname = argv[1+input] ;
    if (DIAG_VERBOSE_ON)
      printf("reading input volume from %s...\n", in_fname) ;
    mri_tmp = MRIread(in_fname) ;
    if (!mri_tmp)
      ErrorExit(ERROR_NOFILE, "%s: could not read input MR volume from %s",
                Progname, in_fname) ;
    MRImakePositive(mri_tmp, mri_tmp) ;
    if (input == 0) {
      mri_in =
        MRIallocSequence(mri_tmp->width, mri_tmp->height, mri_tmp->depth,
                         mri_tmp->type, ninputs) ;
      if (!mri_in)
        ErrorExit(ERROR_NOMEMORY,
                  "%s: could not allocate input volume %dx%dx%dx%d",
                  mri_tmp->width,mri_tmp->height,mri_tmp->depth,ninputs) ;
      MRIcopyHeader(mri_tmp, mri_in) ;
    }

    MRIcopyFrame(mri_tmp, mri_in, 0, input) ;
    MRIfree(&mri_tmp) ;
  }
  MRIaddCommandLine(mri_in, cmdline) ;

  TransformInvert(transform, mri_in) ;

  if (orig_fname) {
    mri_orig = MRIread(orig_fname) ;
    if (mri_orig == NULL)
      ErrorExit(ERROR_NOFILE, "%s: could not read orig volume from %s", Progname, orig_fname) ;
  }
  ll = GCAimageLogLikelihood(gca, mri_in, transform, 1, mri_orig) ;
  printf("%2.0f\n", 10000*ll) ;

  MRIfree(&mri_in) ;

  if (gca)
    GCAfree(&gca) ;
  if (mri_in)
    MRIfree(&mri_in) ;
  exit(0) ;
  return(0) ;
}
int
main(int argc, char *argv[])
{
  char         **av, fname[STRLEN], *out_fname, *subject_name, *cp, *tp1_name, *tp2_name ;
  char         s1_name[STRLEN], s2_name[STRLEN], *sname ;
  int          ac, nargs, i, n, options, max_index ;
  int          msec, minutes, seconds, nsubjects, input ;
  struct timeb start ;
  MRI          *mri_seg, *mri_tmp, *mri_in ;
  TRANSFORM    *transform ;
//  int          counts ;
  int          t;
  RANDOM_FOREST *rf = NULL ;
  GCA           *gca = NULL ;

  Progname = argv[0] ;

  ErrorInit(NULL, NULL, NULL) ;
  DiagInit(NULL, NULL, NULL) ;

  TimerStart(&start) ;

  parms.width = parms.height = parms.depth = DEFAULT_VOLUME_SIZE ;
  parms.ntrees = 10 ;
  parms.max_depth = 10 ;
  parms.wsize = 1 ;
  parms.training_size = 100 ;
  parms.training_fraction = .5 ;
  parms.feature_fraction = 1 ;

  /* rkt: check for and handle version tag */
  nargs = handle_version_option
          (argc, argv,
           "$Id: mri_rf_long_train.c,v 1.5 2012/06/15 12:22:28 fischl Exp $",
           "$Name:  $");
  if (nargs && argc - nargs == 1)
    exit (0);
  argc -= nargs;

  // parse command line args
  ac = argc ;
  av = argv ;
  for ( ; argc > 1 && ISOPTION(*argv[1]) ; argc--, argv++)
  {
    nargs = get_option(argc, argv) ;
    argc -= nargs ;
    argv += nargs ;
  }

  if (!strlen(subjects_dir)) /* hasn't been set on command line */
  {
    cp = getenv("SUBJECTS_DIR") ;
    if (!cp)
      ErrorExit(ERROR_BADPARM, "%s: SUBJECTS_DIR not defined in environment",
                Progname);
    strcpy(subjects_dir, cp) ;
  }
  if (argc < 3)
    usage_exit(1) ;


  // options parsed.   subjects, tp1 and tp2 and rf name remaining
  out_fname = argv[argc-1] ;
  nsubjects = (argc-2)/3 ;
  for (options = i = 0 ; i < nsubjects ; i++)
  {
    if (argv[i+1][0] == '-')
    {
      nsubjects-- ;
      options++ ;
    }
  }

  printf("training on %d subject and writing results to %s\n",
         nsubjects, out_fname) ;

  // rf_inputs can be T1, PD, ...per subject
  if (parms.nvols == 0)
    parms.nvols = ninputs ;
  /* gca reads same # of inputs as we read
     from command line - not the case if we are mapping to flash */
  n = 0 ;

  //////////////////////////////////////////////////////////////////
  // set up gca direction cosines, width, height, depth defaults

  gca = GCAread(gca_name) ;
  if (gca == NULL)
    ErrorExit(ERROR_NOFILE, "%s: could not read GCA from %s", Progname, gca_name) ;
  
  
  /////////////////////////////////////////////////////////////////////////
  // weird way options and subject name are mixed here
  
  /////////////////////////////////////////////////////////
  // first calculate mean
  ////////////////////////////////////////////////////////
  // going through the subject one at a time
  max_index = nsubjects+options ;
  nargs = 0 ;
  mri_in = NULL ; 
#ifdef HAVE_OPENMP
  subject_name = NULL ; sname = NULL ; t = 0 ;
//  counts = 0 ;   would be private
  input = 0 ;
  transform = NULL ;
  tp1_name = tp2_name = NULL ;
  mri_tmp = mri_seg = NULL ;
#pragma omp parallel for firstprivate(tp1_name, tp2_name, mri_in,mri_tmp, input, xform_name, transform, subjects_dir, force_inputs, conform, Progname, mri_seg, subject_name, s1_name, s2_name, sname, t, fname) shared(mri_inputs, transforms, mri_segs,argv) schedule(static,1)
#endif
  for (i = 0 ; i < max_index ; i++)
  {
    subject_name = argv[3*i+1] ;
    tp1_name = argv[3*i+2] ;
    tp2_name = argv[3*i+3] ;
    sprintf(s1_name, "%s_%s.long.%s_base", subject_name, tp1_name, subject_name) ;
    sprintf(s2_name, "%s_%s.long.%s_base", subject_name, tp2_name, subject_name) ;

    //////////////////////////////////////////////////////////////
    printf("***************************************"
	   "************************************\n");
    printf("processing subject %s, %d of %d (%s and %s)...\n", subject_name,i+1-nargs,
	   nsubjects, s1_name,s2_name);

    for (t = 0 ; t < 2 ; t++)
    {
      sname = t == 0 ? s1_name : s2_name;

      // reading this subject segmentation
      sprintf(fname, "%s/%s/mri/%s", subjects_dir, sname, seg_dir) ;
      if (Gdiag & DIAG_SHOW && DIAG_VERBOSE_ON)
	fprintf(stderr, "Reading segmentation from %s...\n", fname) ;
      mri_seg = MRIread(fname) ;
      if (!mri_seg)
	ErrorExit(ERROR_NOFILE, "%s: could not read segmentation file %s",
		  Progname, fname) ;

      if ((mri_seg->type != MRI_UCHAR) && (make_uchar != 0))
      {
	MRI *mri_tmp ;
	mri_tmp = MRIchangeType(mri_seg, MRI_UCHAR, 0, 1,1);
	MRIfree(&mri_seg) ;
	mri_seg = mri_tmp ;
      }

      if (wmsa_fname)
      {
	MRI *mri_wmsa ;
	sprintf(fname, "%s/%s/mri/%s", subjects_dir, sname, wmsa_fname) ;
	printf("reading WMSA labels from %s...\n", fname) ;
	mri_wmsa = MRIread(fname) ;
	if (mri_wmsa == NULL)
	  ErrorExit(ERROR_NOFILE, "%s: could not read WMSA file %s", fname) ;
	MRIbinarize(mri_wmsa, mri_wmsa,  1, 0, WM_hypointensities) ;
	MRIcopyLabel(mri_wmsa, mri_seg, WM_hypointensities) ;
	lateralize_hypointensities(mri_seg) ;
	if (Gdiag & DIAG_WRITE && DIAG_VERBOSE_ON )
	{
	  char s[STRLEN] ;
	  sprintf(s, "%s/%s/mri/seg_%s",
		  subjects_dir, subject_name, wmsa_fname) ;
	  MRIwrite(mri_seg, s) ;
	}
      }
      if (binarize)
      {
	int j ;
	for (j = 0 ; j < 256 ; j++)
	{
	  if (j == binarize_in)
	    MRIreplaceValues(mri_seg, mri_seg, j, binarize_out) ;
	  else
	    MRIreplaceValues(mri_seg, mri_seg, j, 0) ;
	}
      }
      if (insert_fname)
      {
	MRI *mri_insert ;
	
	sprintf(fname, "%s/%s/mri/%s",
		subjects_dir, subject_name, insert_fname) ;
	mri_insert = MRIread(fname) ;
	if (mri_insert == NULL)
	  ErrorExit(ERROR_NOFILE,
		    "%s: could not read volume from %s for insertion",
		    Progname, insert_fname) ;
	
	MRIbinarize(mri_insert, mri_insert, 1, 0, insert_label) ;
	MRIcopyLabel(mri_insert, mri_seg, insert_label) ;
	MRIfree(&mri_insert) ;
      }
      
      replaceLabels(mri_seg) ;
      MRIeraseBorderPlanes(mri_seg, 1) ;

      ////////////////////////////////////////////////////////////
      if (DIAG_VERBOSE_ON)
	fprintf(stderr,
		"Gather all input volumes for the subject %s.\n",
		subject_name);
      // inputs must be coregistered
      // note that inputs are T1, PD, ... per subject (same TE, TR, FA)
      for (input = 0 ; input < ninputs ; input++)
      {
	//////////// set the gca type //////////////////////////////
	// is this T1/PD training?
	// how can we allow flash data training ???????
	// currently checks the TE, TR, FA to be the same for all inputs
	// thus we cannot allow flash data training.
	////////////////////////////////////////////////////////////
	
	sprintf(fname, "%s/%s/mri/%s", subjects_dir, sname,input_names[input]);
	if (DIAG_VERBOSE_ON)
	  printf("reading co-registered input from %s...\n", fname) ;
	fprintf(stderr, "   reading input %d: %s\n", input, fname);
	mri_tmp = MRIread(fname) ;
	if (!mri_tmp)
	  ErrorExit
	    (ERROR_NOFILE,
	     "%s: could not read image from file %s", Progname, fname) ;
	// input check 1
	if (getSliceDirection(mri_tmp) != MRI_CORONAL)
	{
	  ErrorExit
	    (ERROR_BADPARM,
	     "%s: must be in coronal direction, but it is not\n",
	     fname);
	}
	// input check 2
	if (conform &&
	    (mri_tmp->xsize != 1 || mri_tmp->ysize != 1 || mri_tmp->zsize != 1))
	{
	  ErrorExit
	    (ERROR_BADPARM,
	     "%s: must have 1mm voxel size, but have (%f, %f, %f)\n",
	     fname, mri_tmp->xsize, mri_tmp->ysize, mri_tmp->ysize);
	}
	// input check 3 is removed.  now we can handle c_(ras) != 0 case
	// input check 4
	if (i == 0)
	{
	  TRs[input] = mri_tmp->tr ;
	  FAs[input] = mri_tmp->flip_angle ;
	  TEs[input] = mri_tmp->te ;
	}
	else if ((force_inputs == 0) &&
		 (!FEQUAL(TRs[input],mri_tmp->tr) ||
		  !FEQUAL(FAs[input],mri_tmp->flip_angle) ||
		  !FEQUAL(TEs[input], mri_tmp->te)))
	  ErrorExit
	    (ERROR_BADPARM,
	     "%s: subject %s input volume %s: sequence parameters "
	     "(%2.1f, %2.1f, %2.1f)"
	     "don't match other inputs (%2.1f, %2.1f, %2.1f)",
	     Progname, subject_name, fname,
	     mri_tmp->tr, DEGREES(mri_tmp->flip_angle), mri_tmp->te,
	     TRs[input], DEGREES(FAs[input]), TEs[input]) ;
	// first time do the following
	if (input == 0)
	{
	  int nframes = ninputs ;
	  
	  ///////////////////////////////////////////////////////////
	  mri_in = MRIallocSequence(mri_tmp->width, mri_tmp->height, mri_tmp->depth,
				    mri_tmp->type, nframes) ;
	  if (!mri_in)
	    ErrorExit
	      (ERROR_NOMEMORY,
	       "%s: could not allocate input volume %dx%dx%dx%d",
	       mri_tmp->width, mri_tmp->height, mri_tmp->depth,nframes) ;
	  MRIcopyHeader(mri_tmp, mri_in) ;
	}
	// -mask option ////////////////////////////////////////////
	if (mask_fname)
	{
	  MRI *mri_mask ;
	  
	  sprintf(fname, "%s/%s/mri/%s",
		  subjects_dir, subject_name, mask_fname);
	  printf("reading volume %s for masking...\n", fname) ;
	  mri_mask = MRIread(fname) ;
	  if (!mri_mask)
	  ErrorExit(ERROR_NOFILE, "%s: could not open mask volume %s.\n",
		    Progname, fname) ;
	
	  MRImask(mri_tmp, mri_mask, mri_tmp, 0, 0) ;
	  MRIfree(&mri_mask) ;
	}
	MRIcopyFrame(mri_tmp, mri_in, 0, input) ;
	MRIfree(&mri_tmp) ;

      }// end of inputs per subject
    
    
      /////////////////////////////////////////////////////////
      // xform_name is given, then we can use the consistent c_(r,a,s) for gca
      /////////////////////////////////////////////////////////
      if (xform_name)
      {
	// we read talairach.xfm which is a RAS-to-RAS
	sprintf(fname, "%s/%s/mri/transforms/%s", subjects_dir, sname, xform_name) ;
	if (Gdiag & DIAG_SHOW && DIAG_VERBOSE_ON)
	  printf("INFO: reading transform file %s...\n", fname);
	if (!FileExists(fname))
	{
	  fprintf(stderr,"ERROR: cannot find transform file %s\n",fname);
	  exit(1);
	}
	transform = TransformRead(fname);
	if (!transform)
	  ErrorExit(ERROR_NOFILE, "%s: could not read transform from file %s",
		    Progname, fname);
	
//        modify_transform(transform, mri_in, gca);
	// Here we do 2 things
	// 1. modify gca direction cosines to
	// that of the transform destination (both linear and non-linear)
	// 2. if ras-to-ras transform,
      // then change it to vox-to-vox transform (linear case)
	
      // modify transform to store inverse also
	TransformInvert(transform, mri_in) ;
      }
      else
      {
//        GCAreinit(mri_in, gca);
	// just use the input value, since dst = src volume
	transform = TransformAlloc(LINEAR_VOXEL_TO_VOXEL, NULL) ;
      }
      
      /////////////////////////////////////////////////////////
      if (do_sanity_check)
      {
	// conduct a sanity check of particular labels, most importantly
	// hippocampus, that such labels do not exist in talairach coords
	// where they are known not to belong (indicating a bad manual edit)
	int errs = check(mri_seg, subjects_dir, subject_name);
	if (errs) 
	{
	  printf(
	    "ERROR: mri_ca_train: possible bad training data! subject:\n"
	    "\t%s/%s\n\n", subjects_dir, subject_name);
	  fflush(stdout) ;
	  sanity_check_badsubj_count++;
	}
      }
      
      mri_segs[i][t] = mri_seg ;
      mri_inputs[i][t] = mri_in ;
      transforms[i][t] = transform ;
    }
  }
  rf = train_rforest(mri_inputs, mri_segs, transforms, nsubjects, gca, &parms, wm_thresh,wmsa_whalf, 2) ;
  printf("writing random forest to %s\n", out_fname) ;
  if (RFwrite(rf, out_fname) != NO_ERROR)
    ErrorExit
      (ERROR_BADFILE, "%s: could not write rf to %s", Progname, out_fname) ;
  
  msec = TimerStop(&start) ;
  seconds = nint((float)msec/1000.0f) ;
  minutes = seconds / 60 ;
  seconds = seconds % 60 ;
  printf("classifier array training took %d minutes and %d seconds.\n", minutes, seconds) ;
  exit(0) ;
  return(0) ;
  }