int8_t vscp_udpinit( void ) { NODE_INFO remote_node; remote_node.IPAddr.v[ 0 ] = 0xff; // Broadcast remote_node.IPAddr.v[ 1 ] = 0xff; remote_node.IPAddr.v[ 2 ] = 0xff; remote_node.IPAddr.v[ 3 ] = 0xff; remote_node.MACAddr.v[ 0 ] = 0xff; remote_node.MACAddr.v[ 1 ] = 0xff; remote_node.MACAddr.v[ 2 ] = 0xff; remote_node.MACAddr.v[ 3 ] = 0xff; remote_node.MACAddr.v[ 4 ] = 0xff; remote_node.MACAddr.v[ 5 ] = 0xff; // setup receive socket vscp_udp_receivesocket = UDPOpen( VSCP_LEVEL2_UDP_PORT, &remote_node, NULL ); if ( INVALID_SOCKET == vscp_udp_receivesocket ) return FALSE; // Setup transmit socket vscp_udp_transmitsocket = UDPOpen( 30200, &remote_node, VSCP_LEVEL2_UDP_PORT ); if ( INVALID_SOCKET == vscp_udp_transmitsocket ) { UDPClose( vscp_udp_receivesocket ); return FALSE; } }
/*** void UdpServer::resumeListening(void) ** ** Synopsis: ** Resumes listening on a UdpServer that did a StopListening ** ** Parameters: ** None ** ** Return Values: ** None ** ** Errors: ** None ** ** Notes: ** ** If StartListening was never called, this does nothing ** If it is already listening, it does nothing */ void UdpServer::resumeListening(void) { if(!_fStarted) { return; } // say we want to listen, may fail, but we will pick it up when we can. _fListening = true; // make sure we have room to to put our handle in if(_cPending >= _cPendingMax) { return; } // if we need to start listening on a socket if(_rghUDP[_cPending] >= INVALID_UDP_SOCKET) { // do not need to check to see if Ethernet is initialized because I can assign sockets before then _rghUDP[_cPending] = UDPOpen(_localPort, NULL, 0); if(_rghUDP[_cPending] < INVALID_UDP_SOCKET) { // As for the iBuff, when we get data on the socket, the last entry // will be where we put pending Client so just use this iBuff as the cache buffer ExchangeCacheBuffer(_rghUDP[_cPending], GetBufferLocation(_cPending), GetBufferSize()); } } }
/**************************************************************************** Function: UDP_SOCKET ChipKITUDPBegin(UDP_PORT localPort) Description: Implementes the Arduino UDP begin function. Parameters: localPort - The port to start listening on. Returns: The socket that was opened, or INVALID_UDP_SOCKET if it couldn't get one Remarks: Creates a socket and starts listening on the specifed port. Note that Arduino never specifies an IP address with this, that is done on the individual send packetes. If there is not enough space for the socket cache, this API will fail ***************************************************************************/ UDP_SOCKET ChipKITUDPBegin(UDP_PORT localPort) { UDP_SOCKET hUDP = INVALID_UDP_SOCKET; hUDP = UDPOpen(localPort, NULL, 0); if(hUDP < MAX_UDP_SOCKETS && rgUDPSocketBuffers[hUDP] == NULL) { rgUDPSocketBuffers[hUDP] = (UDPSB *) malloc(sizeof(UDPSB)); if(rgUDPSocketBuffers[hUDP] != NULL) { memset(rgUDPSocketBuffers[hUDP], 0, sizeof(sizeof(UDPSB))); } // no space for the buffer, no socket! else { UDPClose(hUDP); hUDP = INVALID_UDP_SOCKET; } } ChipKITPeriodicTasks(); return(hUDP); }
void sendToLocalListeners() { int i, len; char *b; /* Only transmit if at least one listener has registered */ if (!listenerActive) { return; } if(s == INVALID_UDP_SOCKET) { s = UDPOpen(localPort, &remote, localPort); } if(s == INVALID_UDP_SOCKET) { return; } if (!UDPIsPutReady(s)) { return; } b = LMContent(); len = strlen(b); for(i=0; i<len; ++i) { UDPPut(b[i]); } UDPFlush(); }
// UDPGenericOpen callback function int cUDPGenericOpen() { BYTE count = 0; UDP_SOCKET tmp_sock = INVALID_UDP_SOCKET; udpInt = 0; tmp_sock = UDPOpen(xUDPLocalPort, udpIPAddress, xUDPRemotePort); if (tmp_sock == INVALID_UDP_SOCKET) { callbackUdpSocket = 0; return 1; // Error; } else { numUdpSocket++; while (count < MAX_UDP_SOCKETS_FREERTOS) { if (udpSocket[count] == INVALID_UDP_SOCKET) { udpSocket[count] = tmp_sock; xUDPPort[count] = UDPSocketInfo[tmp_sock].localPort; count++; callbackUdpSocket = count; return 0; // Open succes } count++; } callbackUdpSocket = 0; return 1; //Error } }
/** * Initialize SNMP Daemon. * This should be called just one time at first time * * @param none * @return none */ void SnmpXDaemon_init() { int32 snmpfd = 0; int32 fromlen = 0; int32 retStatus = 0; UNUSED(snmpfd); UNUSED(fromlen); UNUSED(retStatus); LOG("\r\n[SNMP : Start SNMP Daemon (Agent)]"); SnmpXInit(); /* // Example Codes for SNMP Trap { dataEntryType enterprise_oid = {8, {0x2b, 6, 1, 4, 1, 0, 0x10, 0}, SNMPDTYPE_OBJ_ID, 8, {"\x2b\x06\x01\x04\x01\x00\x10\x00"}, NULL, NULL}; dataEntryType trap_oid1 = {8, {0x2b, 6, 1, 4, 1, 0, 11, 0}, SNMPDTYPE_OCTET_STRING, 30, {""}, NULL, NULL}; dataEntryType trap_oid2 = {8, {0x2b, 6, 1, 4, 1, 0, 12, 0}, SNMPDTYPE_INTEGER, 4, {""}, NULL, NULL}; strcpy((char *)trap_oid1.u.octetstring, "Alert!!!"); trap_oid2.u.intval = 123456; //SnmpXTrapSend("222.98.173.250", "127.0.0.0", "public", enterprise_oid, 1, 0, 0); //SnmpXTrapSend("222.98.173.250", "127.0.0.0", "public", enterprise_oid, 6, 0, 2, &trap_oid1, &trap_oid2); SnmpXTrapSend("192.168.11.250", "192.168.11.251", "public", enterprise_oid, 1, 0, 0); SnmpXTrapSend("192.168.11.250", "127.0.0.0", "public", enterprise_oid, 6, 0, 2, &trap_oid1, &trap_oid2); } */ UDPOpen(SOCK_SNMP, 161); }
void loopback_udp(uint8 ch, uint16 port) { int ret; uint32 destip = 0; uint16 destport; ret = UDPRecv(ch, data_buf, TX_RX_MAX_BUF_SIZE, (uint8*)&destip, &destport); if(ret > 0) { // Received ret = UDPSend(ch, data_buf, ret, (uint8*)&destip ,destport); if(ret == ERROR_TIME_OUT) { ERR("Timeout"); UDPClose(ch); DBG("UDP Socket Close"); } } else if(ret == ERROR_NOT_UDP_SOCKET) { // Not UDP Socket, It's TCP Socket DBG("TCP Socket Close"); TCPClose(ch); } else if(ret == ERROR_CLOSED) { // Socket Closed LOGA("UDP Loop-Back Started - ch(%d)",(uint16)ch); UDPOpen(ch, port); } }
/***************************************************************************** Function: void UDPPerformanceTask(void) Summary: Tests the transmit performance of the UDP module. Description: This function tests the transmit performance of the UDP module. At boot, this module will transmit 1024 large UDP broadcast packets of 1024 bytes each. Using a packet sniffer, one can determine how long this process takes and calculate the transmit rate of the stack. This function tests true UDP performance in that it will open a socket, transmit one packet, and close the socket for each loop. After this initial transmission, the module can be re-enabled by holding button 3. This function is particularly useful after development to determine the impact of your application code on the stack's performance. A before and after comparison will indicate if your application is unacceptably blocking the processor or taking too long to execute. Precondition: UDP is initialized. Parameters: None Returns: None ***************************************************************************/ void UDPPerformanceTask(void) { UDP_SOCKET MySocket; NODE_INFO Remote; WORD wTemp; static DWORD dwCounter = 1; if((BUTTON3_IO) && (dwCounter > 1024)) return; // Suppress transmissions if we don't have an Ethernet link so our counter starts correctly at 0x00000001 if(!MACIsLinked()) return; // Set the socket's destination to be a broadcast over our IP // subnet // Set the MAC destination to be a broadcast memset(&Remote, 0xFF, sizeof(Remote)); // Open a UDP socket for outbound transmission MySocket = UDPOpen(0, &Remote, PERFORMANCE_PORT); // Abort operation if no UDP sockets are available // If this ever happens, incrementing MAX_UDP_SOCKETS in // StackTsk.h may help (at the expense of more global memory // resources). if(MySocket == INVALID_UDP_SOCKET) return; // Make certain the socket can be written to if(!UDPIsPutReady(MySocket)) { UDPClose(MySocket); return; } // Put counter value into first 4 bytes of the packet UDPPutArray((BYTE*)&dwCounter, sizeof(dwCounter)); dwCounter++; wTemp = UDPPutROMArray((ROM BYTE*) "The quick brown fox tried to jump over the yellow dog. Unfortunately, the yellow dog stood up while the fox was in mid-jump. As a result, the two collided. Then, the dog, being the omnivore that it is, ate the quick brown fox. This line is 256 bytes.\r\n" "The quick brown fox tried to jump over the yellow dog. Unfortunately, the yellow dog stood up while the fox was in mid-jump. As a result, the two collided. Then, the dog, being the omnivore that it is, ate the quick brown fox. This line is 256 bytes.\r\n" "The quick brown fox tried to jump over the yellow dog. Unfortunately, the yellow dog stood up while the fox was in mid-jump. As a result, the two collided. Then, the dog, being the omnivore that it is, ate the quick brown fox. This line is 256 bytes.\r\n" "The quick brown fox tried to jump over the yellow dog. Unfortunately, the yellow dog stood up while the fox was in mid-jump. As a result, the two collided. Then, the dog, being the omnivore that it is, ate the quick brown fox. This line is 252b. \r\n", 1020); // Send the packet UDPFlush(); // Close the socket so it can be used by other modules UDPClose(MySocket); }
/********************************************************************* * Function: void AnnounceIP(void) * * Summary: Transmits an Announce packet. * * PreCondition: Stack is initialized() * * Input: None * * Output: None * * Side Effects: None * * Overview: AnnounceIP opens a UDP socket and transmits a * broadcast packet to port 30303. If a computer is * on the same subnet and a utility is looking for * packets on the UDP port, it will receive the * broadcast. For this application, it is used to * announce the change of this board's IP address. * The messages can be viewed with the MCHPDetect.exe * program. * * Note: A UDP socket must be available before this * function is called. It is freed at the end of * the function. MAX_UDP_SOCKETS may need to be * increased if other modules use UDP sockets. ********************************************************************/ void AnnounceIP(void) { UDP_SOCKET MySocket; BYTE i; // Open a UDP socket for outbound broadcast transmission MySocket = UDPOpen(2860, NULL, ANNOUNCE_PORT); // Abort operation if no UDP sockets are available // If this ever happens, incrementing MAX_UDP_SOCKETS in // StackTsk.h may help (at the expense of more global memory // resources). if(MySocket == INVALID_UDP_SOCKET) return; // Make certain the socket can be written to while(!UDPIsPutReady(MySocket)); // Begin sending our MAC address in human readable form. // The MAC address theoretically could be obtained from the // packet header when the computer receives our UDP packet, // however, in practice, the OS will abstract away the useful // information and it would be difficult to obtain. It also // would be lost if this broadcast packet were forwarded by a // router to a different portion of the network (note that // broadcasts are normally not forwarded by routers). UDPPutArray((BYTE*)AppConfig.NetBIOSName, sizeof(AppConfig.NetBIOSName)-1); UDPPut('\r'); UDPPut('\n'); // Convert the MAC address bytes to hex (text) and then send it i = 0; while(1) { UDPPut(btohexa_high(AppConfig.MyMACAddr.v[i])); UDPPut(btohexa_low(AppConfig.MyMACAddr.v[i])); if(++i == 6u) break; UDPPut('-'); } // Send some other human readable information. UDPPutROMString((ROM BYTE*)"\r\nDHCP/Power event occurred"); // Send the packet UDPFlush(); // Close the socket so it can be used by other modules UDPClose(MySocket); }
void act_nopen_a(int8 type, int8 save, uint16 sport, uint8 *dip, uint16 dport) { int8 ret, sock, i; for(i=ATC_SOCK_NUM_START; i<=ATC_SOCK_NUM_END; i++) { if(sockstat[i] != SOCK_STAT_IDLE && sockport[i] == sport) { DBGA("src port(%d) is using now by sock(%d)", sport, i); MAKE_TCMD_DIGIT(atci.tcmd.arg1, 2); CMD_RESP_RET(RET_WRONG_ARG, VAL_NONE); } } if(save == 'S' || save == 'A') { } if(save == 'O' || save == 'A') { if(type == 'S') { sock = sock_get(SOCK_STAT_TCP_SRV, sport); if(sock == RET_NOK) CMD_RESP_RET(RET_NO_SOCK, VAL_NONE); ret = TCPServerOpen(sock, sport); if(ret != RET_OK) CMD_RESP_RET(RET_UNSPECIFIED, VAL_NONE); sockwatch_set(sock, WATCH_SOCK_CONN_EVT); CMD_RESP_RET(RET_OK, sock); } else if(type == 'C') { sock = sock_get(SOCK_STAT_TCP_CLT, sport); if(sock == RET_NOK) CMD_RESP_RET(RET_NO_SOCK, VAL_NONE); ret = TCPCltOpenNB(sock, sport, dip, dport); if(ret != RET_OK) { DBGA("TCPCltOpenNB fail - ret(%d)", ret); CMD_RESP_RET(RET_WRONG_ADDR, VAL_NONE); } sockwatch_set(sock, WATCH_SOCK_CONN_TRY); sockbusy[sock] = VAL_TRUE; CMD_RESP_RET(RET_ASYNC, sock); } else { if(dip != NULL) { memcpy(udpip[sock], dip, 4); udpport[sock] = dport; } sock = sock_get(SOCK_STAT_UDP, sport); if(sock == RET_NOK) CMD_RESP_RET(RET_NO_SOCK, VAL_NONE); UDPOpen(sock, sport); sockwatch_set(sock, WATCH_SOCK_RECV); CMD_RESP_RET(RET_OK, sock); } } }
/********************************************************************* * Function: TFTP_RESULT TFTPIsOpened(void) * * PreCondition: TFTPOpen() is already called. * * Input: None * * Output: TFTP_OK if previous call to TFTPOpen is complete * * TFTP_TIMEOUT if remote host did not respond to * previous ARP request. * * TFTP_NOT_READY if remote has still not responded * and timeout has not expired. * * Side Effects: None * * Overview: Waits for ARP reply and opens a UDP socket * to perform further TFTP operations. * * Note: Once opened, application may keep TFTP socket * open and future TFTP operations. * If TFTPClose() is called to close the connection * TFTPOpen() must be called again before performing * any other TFTP operations. ********************************************************************/ TFTP_RESULT TFTPIsOpened(void) { switch(_tftpState) { default: DEBUG(printf("Resolving remote IP...\n")); // Check to see if adddress is resolved. if ( ARPIsResolved(&MutExVar.group1._hostInfo.IPAddr, &MutExVar.group1._hostInfo.MACAddr) ) { _tftpSocket = UDPOpen(TFTP_CLIENT_PORT, &MutExVar.group1._hostInfo, TFTP_SERVER_PORT); if( _tftpSocket == INVALID_UDP_SOCKET ) { #if (DEBUG_TFTPC >= LOG_ERROR) debugPutMsg(1); //@mxd:1:Could not open UDP socket #endif } _tftpState = SM_TFTP_READY; } else break; case SM_TFTP_READY: // Wait for UDP to be ready. Immediately after this user will // may TFTPGetFile or TFTPPutFile and we have to make sure that // UDP is read to transmit. These functions do not check for // UDP to get ready. if ( UDPIsPutReady(_tftpSocket) ) return TFTP_OK; } // Make sure that we do not do this forever. if ( TickGetDiff(TickGet(), _tftpStartTick) >= TFTP_ARP_TIMEOUT_VAL ) { _tftpStartTick = TickGet(); // Forget about all previous attempts. _tftpRetries = 1; return TFTP_TIMEOUT; } return TFTP_NOT_READY; }
/********************************************************************* * Function: void RebootTask(NET_CONFIG* pConfig) * * PreCondition: Stack is initialized() * * Input: pConfig - interface * * Output: None * * Side Effects: None * * Overview: Checks for incomming traffic on port 69. * Resets the PIC if a 'R' is received. * * Note: This module is primarily for use with the * Ethernet bootloader. By resetting, the Ethernet * bootloader can take control for a second and let * a firmware upgrade take place. ********************************************************************/ void RebootTask(NET_CONFIG* pConfig) { struct { uint8_t vMACAddress[6]; uint32_t dwIPAddress; uint16_t wChecksum; } BootloaderAddress; int netIx; netIx = _TCPIPStackNetIx(pConfig); if(MySocket[netIx] == INVALID_UDP_SOCKET) { MySocket[netIx] = UDPOpen(0,UDP_OPEN_SERVER,REBOOT_PORT,INVALID_UDP_PORT); if(MySocket[netIx] == INVALID_UDP_SOCKET) { return; } UDPSocketSetNet(MySocket[netIx], pConfig); } // Do nothing if no data is waiting if(!UDPIsGetReady(MySocket[netIx])) return; #if defined(REBOOT_SAME_SUBNET_ONLY) // Respond only to name requests sent to us from nodes on the same subnet if((remoteNode.IPAddr.Val & pConfig->MyMask.Val) != (pConfig->MyIPAddr.Val & pConfig->MyMask.Val)) { UDPDiscard(pConfig); return; } #endif // Get our MAC address, IP address, and compute a checksum of them memcpy((void*)&BootloaderAddress.vMACAddress[0], (void*)&pConfig->MyMACAddr.v[0], sizeof(pConfig->MyMACAddr)); BootloaderAddress.dwIPAddress = pConfig->MyIPAddr.Val; BootloaderAddress.wChecksum = CalcIPChecksum((uint8_t*)&BootloaderAddress, sizeof(BootloaderAddress) - sizeof(BootloaderAddress.wChecksum)); // To enter the bootloader, we reset the system SYS_OUT_MESSAGE("Bootloader Reset"); SYS_Reboot(); }
/***************************************************************************** Function: int bind( SOCKET s, const struct sockaddr* name, int namelen ) Summary: This function assigns a name to the socket descriptor. Description: The bind function assigns a name to an unnamed socket. The name represents the local address of the communication endpoint. For sockets of type SOCK_STREAM, the name of the remote endpoint is assigned when a connect or accept function is executed. Precondition: socket function should be called. Parameters: s - Socket descriptor returned from a previous call to socket. name - pointer to the sockaddr structure containing the local address of the socket. namelen - length of the sockaddr structure. Returns: If bind is successful, a value of 0 is returned. A return value of SOCKET_ERROR indicates an error. Remarks: None. ***************************************************************************/ int bind( SOCKET s, const struct sockaddr* name, int namelen ) { struct BSDSocket *socket; struct sockaddr_in *local_addr; WORD lPort; if( s >= BSD_SOCKET_COUNT ) return SOCKET_ERROR; socket = &BSDSocketArray[s]; if( socket->bsdState != SKT_CREATED ) //only work with recently created socket return SOCKET_ERROR; if( (unsigned int)namelen < sizeof(struct sockaddr_in) ) return SOCKET_ERROR; local_addr = (struct sockaddr_in *)name; lPort = local_addr->sin_port; if( lPort == 0u ) //pick a port { lPort = gAutoPortNumber++; if(gAutoPortNumber > 5000u) // reset the port numbers gAutoPortNumber = 1024; } if(socket->SocketType == SOCK_DGRAM) { socket->SocketID = UDPOpen(lPort, NULL, 0); if(socket->SocketID == INVALID_UDP_SOCKET) return SOCKET_ERROR; } socket->localPort = lPort; socket->bsdState = SKT_BOUND; return 0; //success }
/***************************************************************************** Function: int recvfrom(SOCKET s, char* buf, int len, int flags, struct sockaddr* from, int* fromlen) Summary: The recvfrom() function is used to receive incoming data that has been queued for a socket. Description: The recvfrom() function is used to receive incoming data that has been queued for a socket. This function can be used with both datagram and stream type sockets. If the available data is too large to fit in the supplied application buffer buf, excess bytes are discarded in case of SOCK_DGRAM type sockets. For SOCK_STREAM types, the data is buffered internally so the application can retreive all data by multiple calls of recvfrom. Precondition: socket function should be called. Parameters: s - Socket descriptor returned from a previous call to socket. buf - application data receive buffer. len - buffer length in bytes. flags - message flags. Currently this is not supported. from - pointer to the sockaddr structure that will be filled in with the destination address. fromlen - size of buffer pointed by from. Returns: If recvfrom is successful, the number of bytes copied to application buffer buf is returned. A value of zero indicates no data available. A return value of SOCKET_ERROR (-1) indicates an error condition. Remarks: None. ***************************************************************************/ int recvfrom( SOCKET s, char* buf, int len, int flags, struct sockaddr* from, int* fromlen ) { struct BSDSocket *socket; struct sockaddr_in *rem_addr; SOCKET_INFO *remoteSockInfo; socket = &BSDSocketArray[s]; rem_addr = (struct sockaddr_in *)from; if(socket->SocketType == SOCK_DGRAM) //UDP { if(socket->bsdState != SKT_EST) { socket->SocketID = UDPOpen(socket->localPort, NULL, socket->localPort); //recieve on the same port. socket->bsdState = SKT_EST; } if(socket->bsdState == SKT_EST) { if(UDPIsGetReady(socket->SocketID) > 0) { return UDPGetArray((BYTE*)buf, len); } } } else //TCP recieve from already connected socket. { if(from && fromlen && ((unsigned int)*fromlen >= sizeof(struct sockaddr_in))) { remoteSockInfo = TCPGetRemoteInfo(socket->SocketID); rem_addr->sin_addr.S_un.S_addr = remoteSockInfo->remote.IPAddr.Val; rem_addr->sin_port = remoteSockInfo->remotePort.Val; *fromlen = sizeof(struct sockaddr_in); } return recv(s, buf, len, 0); } return 0; }
/** * Initializes "UDP Command Port" and "UDP Event Port". These * ports are used for sending and receiving and commands via the UDP port. * */ void evtInit(void) { NODE_INFO udpServerNode; activeEventPorts = 0; //Initialize to idle state smEvt = SM_EVT_INIT; //Initialize remote IP and MAC address of udpServerNode with 0, seeing that we don't know them for the node //that will send us an UDP message. The first time a message is received addressed to this port, the //remote IP and MAC addresses are automatically updated with the addresses of the remote node. memclr(&udpServerNode, sizeof(udpServerNode)); //Configure for local port 54124 and remote port INVALID_UDP_PORT. This opens the socket to //listen on the given port. udpSocketEvt = UDPOpen(EVENT_UDPPORT, &udpServerNode, INVALID_UDP_PORT); //An error occurred during the UDPOpen() function if (udpSocketEvt == INVALID_UDP_SOCKET) { #if (DEBUG_CMD >= LOG_ERROR) debugPutMsg(17); //@mxd:17:Could not open UDP event port #endif } }
/***************************************************************************** Function: BOOL DNSIsResolved(IP_ADDR* HostIP) Summary: Determines if the DNS resolution is complete and provides the IP. Description: Call this function to determine if the DNS resolution of an address has been completed. If so, the resolved address will be provided in HostIP. Precondition: DNSResolve or DNSResolveROM has been called. Parameters: HostIP - A pointer to an IP_ADDR structure in which to store the resolved IP address once resolution is complete. Return Values: TRUE - The DNS client has obtained an IP, or the DNS process has encountered an error. HostIP will be 0.0.0.0 on error. Possible errors include server timeout (i.e. DNS server not available), hostname not in the DNS, or DNS server errors. FALSE - The resolution process is still in progress. ***************************************************************************/ BOOL DNSIsResolved(IP_ADDR* HostIP) { static DWORD StartTime; static WORD_VAL SentTransactionID __attribute__((persistent)); static BYTE vARPAttemptCount; static BYTE vDNSAttemptCount; BYTE i; WORD_VAL w; DNS_HEADER DNSHeader; DNS_ANSWER_HEADER DNSAnswerHeader; switch(smDNS) { case DNS_START: vARPAttemptCount = 0; vDNSAttemptCount = 0; // No break; case DNS_ARP_START_RESOLVE: ARPResolve(&AppConfig.PrimaryDNSServer); vARPAttemptCount++; StartTime = TickGet(); smDNS = DNS_ARP_RESOLVE; break; case DNS_ARP_RESOLVE: if(!ARPIsResolved(&AppConfig.PrimaryDNSServer, &ResolvedInfo.MACAddr)) { if(TickGet() - StartTime > DNS_TIMEOUT) smDNS = (vARPAttemptCount >= 3u) ? DNS_FAIL : DNS_ARP_START_RESOLVE; break; } ResolvedInfo.IPAddr.Val = AppConfig.PrimaryDNSServer.Val; smDNS = DNS_OPEN_SOCKET; // No break: DNS_OPEN_SOCKET is the correct next state case DNS_OPEN_SOCKET: MySocket = UDPOpen(0, &ResolvedInfo, DNS_PORT); if(MySocket == INVALID_UDP_SOCKET) break; smDNS = DNS_QUERY; // No need to break, we can immediately start resolution case DNS_QUERY: if(!UDPIsPutReady(MySocket)) break; // Put DNS query here SentTransactionID.Val++; UDPPut(SentTransactionID.v[1]);// User chosen transaction ID UDPPut(SentTransactionID.v[0]); UDPPut(0x01); // Standard query with recursion UDPPut(0x00); UDPPut(0x00); // 0x0001 questions UDPPut(0x01); UDPPut(0x00); // 0x0000 answers UDPPut(0x00); UDPPut(0x00); // 0x0000 name server resource records UDPPut(0x00); UDPPut(0x00); // 0x0000 additional records UDPPut(0x00); // Put hostname string to resolve if(DNSHostName) DNSPutString(DNSHostName); else DNSPutROMString(DNSHostNameROM); UDPPut(0x00); // Type: DNS_TYPE_A A (host address) or DNS_TYPE_MX for mail exchange UDPPut(RecordType); UDPPut(0x00); // Class: IN (Internet) UDPPut(0x01); UDPFlush(); StartTime = TickGet(); smDNS = DNS_GET_RESULT; break; case DNS_GET_RESULT: if(!UDPIsGetReady(MySocket)) { if(TickGet() - StartTime > DNS_TIMEOUT) smDNS = DNS_FAIL; break; } // Retrieve the DNS header and de-big-endian it UDPGet(&DNSHeader.TransactionID.v[1]); UDPGet(&DNSHeader.TransactionID.v[0]); // Throw this packet away if it isn't in response to our last query if(DNSHeader.TransactionID.Val != SentTransactionID.Val) { UDPDiscard(); break; } UDPGet(&DNSHeader.Flags.v[1]); UDPGet(&DNSHeader.Flags.v[0]); UDPGet(&DNSHeader.Questions.v[1]); UDPGet(&DNSHeader.Questions.v[0]); UDPGet(&DNSHeader.Answers.v[1]); UDPGet(&DNSHeader.Answers.v[0]); UDPGet(&DNSHeader.AuthoritativeRecords.v[1]); UDPGet(&DNSHeader.AuthoritativeRecords.v[0]); UDPGet(&DNSHeader.AdditionalRecords.v[1]); UDPGet(&DNSHeader.AdditionalRecords.v[0]); // Remove all questions (queries) while(DNSHeader.Questions.Val--) { DNSDiscardName(); UDPGet(&w.v[1]); // Question type UDPGet(&w.v[0]); UDPGet(&w.v[1]); // Question class UDPGet(&w.v[0]); } // Scan through answers while(DNSHeader.Answers.Val--) { DNSDiscardName(); // Throw away response name UDPGet(&DNSAnswerHeader.ResponseType.v[1]); // Response type UDPGet(&DNSAnswerHeader.ResponseType.v[0]); UDPGet(&DNSAnswerHeader.ResponseClass.v[1]); // Response class UDPGet(&DNSAnswerHeader.ResponseClass.v[0]); UDPGet(&DNSAnswerHeader.ResponseTTL.v[3]); // Time to live UDPGet(&DNSAnswerHeader.ResponseTTL.v[2]); UDPGet(&DNSAnswerHeader.ResponseTTL.v[1]); UDPGet(&DNSAnswerHeader.ResponseTTL.v[0]); UDPGet(&DNSAnswerHeader.ResponseLen.v[1]); // Response length UDPGet(&DNSAnswerHeader.ResponseLen.v[0]); // Make sure that this is a 4 byte IP address, response type A or MX, class 1 // Check if this is Type A or MX if( DNSAnswerHeader.ResponseType.Val == 0x0001u && DNSAnswerHeader.ResponseClass.Val == 0x0001u && // Internet class DNSAnswerHeader.ResponseLen.Val == 0x0004u) { Flags.bits.AddressValid = TRUE; UDPGet(&ResolvedInfo.IPAddr.v[0]); UDPGet(&ResolvedInfo.IPAddr.v[1]); UDPGet(&ResolvedInfo.IPAddr.v[2]); UDPGet(&ResolvedInfo.IPAddr.v[3]); goto DoneSearchingRecords; } else { while(DNSAnswerHeader.ResponseLen.Val--) { UDPGet(&i); } } } // Remove all Authoritative Records while(DNSHeader.AuthoritativeRecords.Val--) { DNSDiscardName(); // Throw away response name UDPGet(&DNSAnswerHeader.ResponseType.v[1]); // Response type UDPGet(&DNSAnswerHeader.ResponseType.v[0]); UDPGet(&DNSAnswerHeader.ResponseClass.v[1]); // Response class UDPGet(&DNSAnswerHeader.ResponseClass.v[0]); UDPGet(&DNSAnswerHeader.ResponseTTL.v[3]); // Time to live UDPGet(&DNSAnswerHeader.ResponseTTL.v[2]); UDPGet(&DNSAnswerHeader.ResponseTTL.v[1]); UDPGet(&DNSAnswerHeader.ResponseTTL.v[0]); UDPGet(&DNSAnswerHeader.ResponseLen.v[1]); // Response length UDPGet(&DNSAnswerHeader.ResponseLen.v[0]); // Make sure that this is a 4 byte IP address, response type A or MX, class 1 // Check if this is Type A if( DNSAnswerHeader.ResponseType.Val == 0x0001u && DNSAnswerHeader.ResponseClass.Val == 0x0001u && // Internet class DNSAnswerHeader.ResponseLen.Val == 0x0004u) { Flags.bits.AddressValid = TRUE; UDPGet(&ResolvedInfo.IPAddr.v[0]); UDPGet(&ResolvedInfo.IPAddr.v[1]); UDPGet(&ResolvedInfo.IPAddr.v[2]); UDPGet(&ResolvedInfo.IPAddr.v[3]); goto DoneSearchingRecords; } else { while(DNSAnswerHeader.ResponseLen.Val--) { UDPGet(&i); } } } // Remove all Additional Records while(DNSHeader.AdditionalRecords.Val--) { DNSDiscardName(); // Throw away response name UDPGet(&DNSAnswerHeader.ResponseType.v[1]); // Response type UDPGet(&DNSAnswerHeader.ResponseType.v[0]); UDPGet(&DNSAnswerHeader.ResponseClass.v[1]); // Response class UDPGet(&DNSAnswerHeader.ResponseClass.v[0]); UDPGet(&DNSAnswerHeader.ResponseTTL.v[3]); // Time to live UDPGet(&DNSAnswerHeader.ResponseTTL.v[2]); UDPGet(&DNSAnswerHeader.ResponseTTL.v[1]); UDPGet(&DNSAnswerHeader.ResponseTTL.v[0]); UDPGet(&DNSAnswerHeader.ResponseLen.v[1]); // Response length UDPGet(&DNSAnswerHeader.ResponseLen.v[0]); // Make sure that this is a 4 byte IP address, response type A or MX, class 1 // Check if this is Type A if( DNSAnswerHeader.ResponseType.Val == 0x0001u && DNSAnswerHeader.ResponseClass.Val == 0x0001u && // Internet class DNSAnswerHeader.ResponseLen.Val == 0x0004u) { Flags.bits.AddressValid = TRUE; UDPGet(&ResolvedInfo.IPAddr.v[0]); UDPGet(&ResolvedInfo.IPAddr.v[1]); UDPGet(&ResolvedInfo.IPAddr.v[2]); UDPGet(&ResolvedInfo.IPAddr.v[3]); goto DoneSearchingRecords; } else { while(DNSAnswerHeader.ResponseLen.Val--) { UDPGet(&i); } } } DoneSearchingRecords: UDPDiscard(); UDPClose(MySocket); MySocket = INVALID_UDP_SOCKET; smDNS = DNS_DONE; // No break, DNS_DONE is the correct step case DNS_DONE: // Return 0.0.0.0 if DNS resolution failed, otherwise return the // resolved IP address if(!Flags.bits.AddressValid) ResolvedInfo.IPAddr.Val = 0; HostIP->Val = ResolvedInfo.IPAddr.Val; return TRUE; case DNS_FAIL: // If 3 attempts or more, quit if(vDNSAttemptCount >= 2u) { // Return an invalid IP address 0.0.0.0 if we can't finish ARP or DNS query step HostIP->Val = 0x00000000; return TRUE; } vDNSAttemptCount++; // Swap primary and secondary DNS servers if there is a secondary DNS server programmed if(AppConfig.SecondaryDNSServer.Val) { AppConfig.PrimaryDNSServer.Val ^= AppConfig.SecondaryDNSServer.Val; AppConfig.SecondaryDNSServer.Val ^= AppConfig.PrimaryDNSServer.Val; AppConfig.PrimaryDNSServer.Val ^= AppConfig.SecondaryDNSServer.Val; // Start another ARP resolution for the secondary server (now primary) vARPAttemptCount = 0; if(MySocket != INVALID_UDP_SOCKET) { UDPClose(MySocket); MySocket = INVALID_UDP_SOCKET; } smDNS = DNS_ARP_START_RESOLVE; } break; } return FALSE; }
static void dhcp_run(void) { static bool udp_open_fail = FALSE; if(di.state == DHCP_STATE_INIT && di.action != DHCP_ACT_START) { DBG("wrong attempt"); return; } else if(GetUDPSocketStatus(di.sock) == SOCKSTAT_CLOSED) { if(udp_open_fail == TRUE && !IS_TIME_PASSED(dhcp_run_tick, DHCP_RETRY_DELAY)) goto RET_ALARM; ClsNetInfo(NI_IP_ADDR); ClsNetInfo(NI_SN_MASK); ClsNetInfo(NI_GW_ADDR); ClsNetInfo(NI_DNS_ADDR); if(UDPOpen(di.sock, DHCP_CLIENT_PORT) == RET_OK) { if(dhcp_async) sockwatch_open(di.sock, dhcp_async_cb); udp_open_fail = FALSE; dhcp_run_tick = wizpf_get_systick(); dhcp_run_cnt = 0; } else { ERR("UDPOpen fail"); udp_open_fail = TRUE; dhcp_run_tick = wizpf_get_systick(); goto RET_ALARM; } } switch(di.state) { case DHCP_STATE_INIT: if(dhcp_run_cnt==0 && !IS_TIME_PASSED(dhcp_run_tick, DHCP_OPEN_DELAY)) goto RET_ALARM; if(dhcp_run_cnt < DHCP_SEND_RETRY_COUNT) { dhcp_run_cnt++; if(send_discover() == RET_OK) { // Discover ok if(dhcp_async) { DBG("DHCP Discovery Send Async"); sockwatch_set(di.sock, WATCH_SOCK_UDP_SEND); return; // alarm set is not needed } else { DBG("DHCP Discovery Sent"); SET_STATE(DHCP_STATE_SEARCHING); dhcp_run_tick = wizpf_get_systick(); } } else { ERRA("DHCP Discovery SEND fail - (%d)times", dhcp_run_cnt); dhcp_run_tick = wizpf_get_systick(); } } else { ERRA("DHCP Discovery SEND fail - (%d)times", dhcp_run_cnt); dhcp_run_cnt = 0; UDPClose(di.sock); if(dhcp_async) sockwatch_close(di.sock); dhcp_fail(); return; // alarm set is not needed } break; case DHCP_STATE_SEARCHING: if(!IS_TIME_PASSED(dhcp_run_tick, DHCP_RETRY_DELAY)) { int8 ret = recv_handler(); if(ret == DHCP_MSG_OFFER) { SET_STATE(DHCP_STATE_SELECTING); dhcp_run_tick = wizpf_get_systick(); dhcp_run_cnt = 0; } else if(ret != RET_NOK) DBGCRTCA(TRUE, "recv wrong packet(%d)", ret); } else { ERRA("DHCP Offer RECV fail - for (%d)msec", DHCP_RETRY_DELAY); SET_STATE(DHCP_STATE_INIT); dhcp_run_tick = wizpf_get_systick(); } break; case DHCP_STATE_SELECTING: if(dhcp_run_cnt < DHCP_SEND_RETRY_COUNT) { dhcp_run_cnt++; if(send_request() == RET_OK) { // Request ok if(dhcp_async) { DBG("DHCP Request Send Async"); sockwatch_set(di.sock, WATCH_SOCK_UDP_SEND); return; // alarm set is not needed } else { DBG("DHCP Request Sent"); SET_STATE(DHCP_STATE_REQUESTING); dhcp_run_tick = wizpf_get_systick(); } } else { ERRA("DHCP Request SEND fail - (%d)times", dhcp_run_cnt); dhcp_run_tick = wizpf_get_systick(); } } else { ERRA("DHCP Request SEND fail - (%d)times", dhcp_run_cnt); dhcp_run_cnt = 0; UDPClose(di.sock); if(dhcp_async) sockwatch_close(di.sock); dhcp_fail(); return; // alarm set is not needed } break; case DHCP_STATE_REQUESTING: if(!IS_TIME_PASSED(dhcp_run_tick, DHCP_RETRY_DELAY)) { int8 ret = recv_handler(); if(ret == DHCP_MSG_ACK) { // Recv ACK LOG("DHCP Success"); SET_STATE(DHCP_STATE_IP_CHECK); dhcp_run_tick = wizpf_get_systick(); dhcp_run_cnt = 0; } else if(ret == DHCP_MSG_NAK) { // Recv NAK if(di.action == DHCP_ACT_START) { SET_STATE(DHCP_STATE_INIT); dhcp_run_tick = wizpf_get_systick(); } else { SET_STATE(DHCP_STATE_BOUND); } dhcp_run_cnt = 0; } else if(ret != RET_NOK) DBGCRTCA(TRUE, "recv wrong packet(%d)", ret); } else { ERRA("DHCP ACK RECV fail - for (%d)msec", DHCP_RETRY_DELAY); if(di.action == DHCP_ACT_START) { SET_STATE(DHCP_STATE_INIT); dhcp_run_tick = wizpf_get_systick(); } else { SET_STATE(DHCP_STATE_BOUND); } } break; case DHCP_STATE_IP_CHECK: //if(send_checker() == RET_OK) { SET_STATE(DHCP_STATE_BOUND); SetNetInfo(&workinfo); if(di.ip_update) di.ip_update(); LOGA("DHCP ok - New IP (%d.%d.%d.%d)", workinfo.ip[0], workinfo.ip[1], workinfo.ip[2], workinfo.ip[3]); //} else { // SET_STATE(DHCP_STATE_INIT); // ERR("IP Addr conflicted - IP(%d.%d.%d.%d)", workinfo.ip[0], workinfo.ip[1], workinfo.ip[2], workinfo.ip[3]); // send_rel_dec(DHCP_MSG_DECLINE); // if(di.ip_conflict) (*di.ip_conflict)(); //} break; case DHCP_STATE_BOUND: di.action = DHCP_ACT_NONE; UDPClose(di.sock); if(dhcp_async) sockwatch_close(di.sock); return; // alarm set is not needed case DHCP_STATE_FAILED: return; // alarm set is not needed default: ERRA("wrong state(%d)", di.state); return; // alarm set is not needed } RET_ALARM: if(dhcp_alarm) alarm_set(10, dhcp_alarm_cb, 0); }
/* * Main entry point. */ void main(void) { TICK8 tsecWait = 0; //General purpose wait timer TICK16 tsecMsgSent = 0; //Time last message was sent TICK16 tsecBlinker = 0; BYTE main_state; // what are the inputs BYTE main_inputs; // who has the transmit char c; NODE_INFO udpServerNode; //Initialize AppConfig structure appcfgInit(); //Initialize any application specific hardware. InitializeBoard(); //Initialize all stack related components. TickInit(); //Initialize the TCP/IP stack StackInit(); ///////////////////////////////////////////////// //Initialize UDP socket //Initialize remote IP and address with 10.1.0.101. The MAC address is //is not intialized yet, but after we receive an ARP responce. //Configure for local port 54123 and remote port 54124. udpServerNode.IPAddr.v[0] = 255; udpServerNode.IPAddr.v[1] = 255; udpServerNode.IPAddr.v[2] = 255; udpServerNode.IPAddr.v[3] = 255; udpSocketUser = UDPOpen(54123, &udpServerNode, 54124); //udpSocketUser = UDPOpen(54123, NULL, 54124); smUdp = SM_UDP_RESOLVED; //An error occurred during the UDPOpen() function if (udpSocketUser == INVALID_UDP_SOCKET) { //Add user code here to take action if required! } /* * Once all items are initialized, go into infinite loop and let stack items execute * their tasks. If the application needs to perform its own task, it should be done at * the end of while loop. Note that this is a "co-operative mult-tasking" mechanism where * every task performs its tasks (whether all in one shot or part of it) and returns so * that other tasks can do their job. If a task needs very long time to do its job, it * must broken down into smaller pieces so that other tasks can have CPU time. */ while(1) { ServiceBoard(); if (TickGetSecDiff(tsecBlinker) >= (TICK16)1) { tsecBlinker = TickGetSec(); //Update with current time //Toggle system LED #ifdef BLINKTIME TRISB_RB6 = 0; LATB6 ^= 1; #endif } switch (smUdp) { case SM_UDP_SEND_ARP: if (ARPIsTxReady()) { tsecWait = TickGet8bitSec(); //Remember when we sent last request //Send ARP request for given IP address ARPResolve(&udpServerNode.IPAddr); smUdp = SM_UDP_WAIT_RESOLVE; } break; case SM_UDP_WAIT_RESOLVE: //The IP address has been resolved, we now have the MAC address of the //node at 10.1.0.101 if (ARPIsResolved(&udpServerNode.IPAddr, &udpServerNode.MACAddr)) { smUdp = SM_UDP_RESOLVED; } //If not resolved after 2 seconds, send next request else { if (TickGetDiff8bitSec(tsecWait) >= (TICK8)2) { smUdp = SM_UDP_SEND_ARP; } } break; case SM_UDP_RESOLVED: if ( 1 || !PORTB_RB0) { //Send a message every second for as long as PIC port pin B0 is = 0 if ((TickGetSecDiff(tsecMsgSent) >= (TICK16)1) || ((main_state != old_state) || (main_inputs != old_inputs))) { //Checks if there is a transmit buffer ready for accepting data, and that the given socket //is valid (not equal to INVALID_UDP_SOCKET for example) if (UDPIsPutReady(udpSocketUser)) { tsecMsgSent = TickGetSec(); //Update with current time //Send a UDP Datagram with one byte only indicating the status We are only interrested in the first byte of the message. UDPPut('H');UDPPut('E');UDPPut('L');UDPPut('L');UDPPut('O'); UDPPut(old_state); UDPPut(old_inputs); main_state = old_state; main_inputs = old_inputs; //Send contents of transmit buffer, and free buffer UDPFlush(); //Toggle system LED each time a message is sent TRISB_RB6 = 0; LATB6 ^= 1; } } } break; } //This task performs normal stack task including checking for incoming packet, //type of packet and calling appropriate stack entity to process it. StackTask(); //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! // ADD USER CODE HERE //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! } }
/***************************************************************************** Function: void DHCPServerTask(NET_CONFIG* pConfig) Summary: Performs periodic DHCP server tasks. Description: This function performs any periodic tasks requied by the DHCP server module, such as processing DHCP requests and distributing IP addresses. Precondition: None Parameters: pConfig - interface Returns: None ***************************************************************************/ void DHCPServerTask(NET_CONFIG* pConfig) { uint8_t i; uint8_t Option, Len; BOOTP_HEADER BOOTPHeader; uint32_t dw; bool bAccept; int netIx; UDP_SOCKET s; #if defined(TCPIP_STACK_USE_DHCP_CLIENT) // Make sure we don't clobber anyone else's DHCP server if(DHCPIsServerDetected(pConfig)) return; #endif netIx = _TCPIPStackNetIx(pConfig); if(!bDHCPServerEnabled[netIx]) return; s = MySocket[netIx]; switch(smDHCPServer[netIx]) { case DHCP_OPEN_SOCKET: // Obtain a UDP socket to listen/transmit on MySocket[netIx] = UDPOpen(0,UDP_OPEN_SERVER,DHCP_SERVER_PORT, DHCP_CLIENT_PORT); if(MySocket[netIx] == INVALID_UDP_SOCKET) break; UDPSocketSetNet(MySocket[netIx], pConfig); // Decide which address to lease out // Note that this needs to be changed if we are to // support more than one lease DHCPNextLease[netIx].Val = (pConfig->MyIPAddr.Val & pConfig->MyMask.Val) + 0x02000000; if(DHCPNextLease[netIx].v[3] == 255u) DHCPNextLease[netIx].v[3] += 0x03; if(DHCPNextLease[netIx].v[3] == 0u) DHCPNextLease[netIx].v[3] += 0x02; smDHCPServer[netIx]++; case DHCP_LISTEN: // Check to see if a valid DHCP packet has arrived if(UDPIsGetReady(s) < 241u) break; // Retrieve the BOOTP header UDPGetArray(s, (uint8_t*)&BOOTPHeader, sizeof(BOOTPHeader)); bAccept = (BOOTPHeader.ClientIP.Val == DHCPNextLease[netIx].Val) || (BOOTPHeader.ClientIP.Val == 0x00000000u); // Validate first three fields if(BOOTPHeader.MessageType != 1u) break; if(BOOTPHeader.HardwareType != 1u) break; if(BOOTPHeader.HardwareLen != 6u) break; // Throw away 10 unused bytes of hardware address, // server host name, and boot file name -- unsupported/not needed. for(i = 0; i < 64+128+(16-sizeof(MAC_ADDR)); i++) UDPGet(s, &Option); // Obtain Magic Cookie and verify UDPGetArray(s, (uint8_t*)&dw, sizeof(uint32_t)); if(dw != 0x63538263ul) break; // Obtain options while(1) { // Get option type if(!UDPGet(s, &Option)) break; if(Option == DHCP_END_OPTION) break; // Get option length UDPGet(s, &Len); // Process option switch(Option) { case DHCP_MESSAGE_TYPE: UDPGet(s, &i); switch(i) { case DHCP_DISCOVER_MESSAGE: DHCPReplyToDiscovery(&BOOTPHeader, netIx); break; case DHCP_REQUEST_MESSAGE: // NOTE : This #if section was missing from 5.36 #if defined(TCPIP_STACK_USE_ZEROCONF_LINK_LOCAL) if ( (BOOTPHeader.ClientIP.Val == 0x00000000u) && (bLeaseAvailable[netIx] == false) ) { // Lease available only to the current lease holder break; } #endif DHCPReplyToRequest(&BOOTPHeader, bAccept, netIx); // NOTE : This #if section was missing from 5.36 #if defined(TCPIP_STACK_USE_ZEROCONF_LINK_LOCAL) bLeaseAvailable[netIx] = false; #endif break; // Need to handle these if supporting more than one DHCP lease case DHCP_RELEASE_MESSAGE: case DHCP_DECLINE_MESSAGE: break; } break; case DHCP_PARAM_REQUEST_IP_ADDRESS: if(Len == 4u) { // Get the requested IP address and see if it is the one we have on offer. UDPGetArray(s, (uint8_t*)&dw, 4); Len -= 4; bAccept = (dw == DHCPNextLease[netIx].Val); } break; case DHCP_END_OPTION: UDPDiscard(s); return; } // Remove any unprocessed bytes that we don't care about while(Len--) { UDPGet(s, &i); } } UDPDiscard(s); break; } }
/***************************************************************************** Function: void DHCPServerTask(void) Summary: Performs periodic DHCP server tasks. Description: This function performs any periodic tasks requied by the DHCP server module, such as processing DHCP requests and distributing IP addresses. Precondition: None Parameters: None Returns: None ***************************************************************************/ void DHCPServerTask(void) { BYTE i; BYTE Option, Len; BOOTP_HEADER BOOTPHeader; DWORD dw; BOOL bAccept; static enum { DHCP_OPEN_SOCKET, DHCP_LISTEN } smDHCPServer = DHCP_OPEN_SOCKET; #if defined(STACK_USE_DHCP_CLIENT) // Make sure we don't clobber anyone else's DHCP server if(DHCPFlags.bits.bDHCPServerDetected) return; #endif if(!bDHCPServerEnabled) return; switch(smDHCPServer) { case DHCP_OPEN_SOCKET: // Obtain a UDP socket to listen/transmit on MySocket = UDPOpen(DHCP_SERVER_PORT, NULL, DHCP_CLIENT_PORT); if(MySocket == INVALID_UDP_SOCKET) break; // Decide which address to lease out // Note that this needs to be changed if we are to // support more than one lease DHCPNextLease.Val = (AppConfig.MyIPAddr.Val & AppConfig.MyMask.Val) + 0x02000000; if(DHCPNextLease.v[3] == 255u) DHCPNextLease.v[3] += 0x03; if(DHCPNextLease.v[3] == 0u) DHCPNextLease.v[3] += 0x02; smDHCPServer++; case DHCP_LISTEN: // Check to see if a valid DHCP packet has arrived if(UDPIsGetReady(MySocket) < 241u) break; // Retrieve the BOOTP header UDPGetArray((BYTE*)&BOOTPHeader, sizeof(BOOTPHeader)); bAccept = (BOOTPHeader.ClientIP.Val == DHCPNextLease.Val) || (BOOTPHeader.ClientIP.Val == 0x00000000u); // Validate first three fields if(BOOTPHeader.MessageType != 1u) break; if(BOOTPHeader.HardwareType != 1u) break; if(BOOTPHeader.HardwareLen != 6u) break; // Throw away 10 unused bytes of hardware address, // server host name, and boot file name -- unsupported/not needed. for(i = 0; i < 64+128+(16-sizeof(MAC_ADDR)); i++) UDPGet(&Option); // Obtain Magic Cookie and verify UDPGetArray((BYTE*)&dw, sizeof(DWORD)); if(dw != 0x63538263ul) break; // Obtain options while(1) { // Get option type if(!UDPGet(&Option)) break; if(Option == DHCP_END_OPTION) break; // Get option length UDPGet(&Len); // Process option switch(Option) { case DHCP_MESSAGE_TYPE: UDPGet(&i); switch(i) { case DHCP_DISCOVER_MESSAGE: DHCPReplyToDiscovery(&BOOTPHeader); break; case DHCP_REQUEST_MESSAGE: DHCPReplyToRequest(&BOOTPHeader, bAccept); break; // Need to handle these if supporting more than one DHCP lease case DHCP_RELEASE_MESSAGE: case DHCP_DECLINE_MESSAGE: break; } break; case DHCP_PARAM_REQUEST_IP_ADDRESS: if(Len == 4u) { // Get the requested IP address and see if it is the one we have on offer. UDPGetArray((BYTE*)&dw, 4); Len -= 4; bAccept = (dw == DHCPNextLease.Val); } break; case DHCP_END_OPTION: UDPDiscard(); return; } // Remove any unprocessed bytes that we don't care about while(Len--) { UDPGet(&i); } } UDPDiscard(); break; } }
/***************************************************************************** Function: void DHCPTask(void) Summary: Performs periodic DHCP tasks. Description: This function performs any periodic tasks requied by the DHCP module, such as sending and receiving messages involved with obtaining and maintaining a lease. Precondition: None Parameters: None Returns: None ***************************************************************************/ void DHCPTask(void) { static TICK eventTime; switch(smDHCPState) { case SM_DHCP_GET_SOCKET: // Open a socket to send and receive broadcast messages on DHCPSocket = UDPOpen(DHCP_CLIENT_PORT, NULL, DHCP_SERVER_PORT); if(DHCPSocket == INVALID_UDP_SOCKET) break; smDHCPState = SM_DHCP_SEND_DISCOVERY; // No break case SM_DHCP_SEND_DISCOVERY: if(UDPIsPutReady(DHCPSocket) < 300u) break; // Ensure that we transmit to the broadcast IP and MAC addresses // The UDP Socket remembers who it was last talking to memset((void*)&UDPSocketInfo[DHCPSocket].remoteNode, 0xFF, sizeof(UDPSocketInfo[DHCPSocket].remoteNode)); // Assume default IP Lease time of 60 seconds. // This should be minimum possible to make sure that if // server did not specify lease time, we try again after this minimum time. DHCPLeaseTime.Val = 60; ValidValues.Val = 0x00; DHCPBindCount = 0; DHCPFlags.bits.bIsBound = FALSE; DHCPFlags.bits.bOfferReceived = FALSE; // Send the DHCP Discover broadcast _DHCPSend(DHCP_DISCOVER_MESSAGE, FALSE); // Start a timer and begin looking for a response eventTime = TickGet(); smDHCPState = SM_DHCP_GET_OFFER; break; case SM_DHCP_GET_OFFER: // Check to see if a packet has arrived if(UDPIsGetReady(DHCPSocket) < 250u) { // Go back and transmit a new discovery if we didn't get an offer after 2 seconds if(TickGet() - eventTime >= DHCP_TIMEOUT) smDHCPState = SM_DHCP_SEND_DISCOVERY; break; } // Let the DHCP server module know that there is a DHCP server // on this network DHCPFlags.bits.bDHCPServerDetected = TRUE; // Check to see if we received an offer if(_DHCPReceive() != DHCP_OFFER_MESSAGE) break; smDHCPState = SM_DHCP_SEND_REQUEST; // No break case SM_DHCP_SEND_REQUEST: if(UDPIsPutReady(DHCPSocket) < 258u) break; // Send the DHCP request message _DHCPSend(DHCP_REQUEST_MESSAGE, FALSE); // Start a timer and begin looking for a response eventTime = TickGet(); smDHCPState = SM_DHCP_GET_REQUEST_ACK; break; case SM_DHCP_GET_REQUEST_ACK: // Check to see if a packet has arrived if(UDPIsGetReady(DHCPSocket) < 250u) { // Go back and transmit a new discovery if we didn't get an ACK after 2 seconds if(TickGet() - eventTime >= DHCP_TIMEOUT) smDHCPState = SM_DHCP_SEND_DISCOVERY; break; } // Check to see if we received an offer switch(_DHCPReceive()) { case DHCP_ACK_MESSAGE: UDPClose(DHCPSocket); DHCPSocket = INVALID_UDP_SOCKET; eventTime = TickGet(); smDHCPState = SM_DHCP_BOUND; DHCPFlags.bits.bIsBound = TRUE; DHCPBindCount++; if(ValidValues.bits.IPAddress) AppConfig.MyIPAddr = tempIPAddress; if(ValidValues.bits.Mask) AppConfig.MyMask = tempMask; if(ValidValues.bits.Gateway) AppConfig.MyGateway = tempGateway; #if defined(STACK_USE_DNS) if(ValidValues.bits.DNS) AppConfig.PrimaryDNSServer = tempDNS; AppConfig.SecondaryDNSServer.Val = ValidValues.bits.DNS2 ? tempDNS2.Val : 0x00000000ul; #endif // if(ValidValues.bits.HostName) // memcpy(AppConfig.NetBIOSName, (void*)tempHostName, sizeof(AppConfig.NetBIOSName)); break; case DHCP_NAK_MESSAGE: smDHCPState = SM_DHCP_SEND_DISCOVERY; break; } break; case SM_DHCP_BOUND: if(TickGet() - eventTime < TICK_SECOND) break; // Check to see if our lease is still valid, if so, decrement lease // time if(DHCPLeaseTime.Val >= 2ul) { eventTime += TICK_SECOND; DHCPLeaseTime.Val--; break; } // Open a socket to send and receive DHCP messages on DHCPSocket = UDPOpen(DHCP_CLIENT_PORT, NULL, DHCP_SERVER_PORT); if(DHCPSocket == INVALID_UDP_SOCKET) break; smDHCPState = SM_DHCP_SEND_RENEW; // No break case SM_DHCP_SEND_RENEW: case SM_DHCP_SEND_RENEW2: case SM_DHCP_SEND_RENEW3: if(UDPIsPutReady(DHCPSocket) < 258u) break; // Send the DHCP request message _DHCPSend(DHCP_REQUEST_MESSAGE, TRUE); DHCPFlags.bits.bOfferReceived = FALSE; // Start a timer and begin looking for a response eventTime = TickGet(); smDHCPState++; break; case SM_DHCP_GET_RENEW_ACK: case SM_DHCP_GET_RENEW_ACK2: case SM_DHCP_GET_RENEW_ACK3: // Check to see if a packet has arrived if(UDPIsGetReady(DHCPSocket) < 250u) { // Go back and transmit a new discovery if we didn't get an ACK after 2 seconds if(TickGet() - eventTime >= DHCP_TIMEOUT) { if(++smDHCPState > SM_DHCP_GET_RENEW_ACK3) smDHCPState = SM_DHCP_SEND_DISCOVERY; } break; } // Check to see if we received an offer switch(_DHCPReceive()) { case DHCP_ACK_MESSAGE: UDPClose(DHCPSocket); DHCPSocket = INVALID_UDP_SOCKET; eventTime = TickGet(); DHCPBindCount++; smDHCPState = SM_DHCP_BOUND; break; case DHCP_NAK_MESSAGE: smDHCPState = SM_DHCP_SEND_DISCOVERY; break; } break; // Handle SM_DHCP_DISABLED state by doing nothing. Default case needed // to supress compiler diagnostic. default: break; } }
void Diagnostic(void) { switch (Diag_Comm2) { case 0 : Pcomm_List = &Comm_List[0][0]; //Init pointers 1 time Pcomm_List2 = &Comm_List[0][0]; Diag_Comm2 = 20; break; case 1 : Pcomm_List2 = &Comm_List[0][0]; if (Pcomm_List2 != Pcomm_List) { if(UDPIsPutReady(socket1)) { UDPPutString(Comm_List[0]); UDPFlush(); Pcomm_List2+=4; Diag_Comm2 = 2; break; } } break; case 2 : if (Pcomm_List2 != Pcomm_List) { if(UDPIsPutReady(socket1)) { UDPPutString(Comm_List[1]); UDPFlush(); Pcomm_List2+=4; Diag_Comm2 = 3; break; } } break; case 3 : if (Pcomm_List2 != Pcomm_List) { if(UDPIsPutReady(socket1)) { UDPPutString(Comm_List[2]); UDPFlush(); Pcomm_List2+=4; Diag_Comm2 = 4; break; } } break; case 4 : if (Pcomm_List2 != Pcomm_List) { if(UDPIsPutReady(socket1)) { UDPPutString(Comm_List[3]); UDPFlush(); Pcomm_List2+=4; Diag_Comm2 = 5; break; } } break; case 5 : if (Pcomm_List2 != Pcomm_List) { if(UDPIsPutReady(socket1)) { UDPPutString(Comm_List[4]); UDPFlush(); Pcomm_List2+=4; Diag_Comm2 = 6; break; } } break; case 6 : if (Pcomm_List2 != Pcomm_List) { if(UDPIsPutReady(socket1)) { UDPPutString(Comm_List[5]); UDPFlush(); Pcomm_List2+=4; Diag_Comm2 = 7; break; } } break; case 7 : if (Pcomm_List2 != Pcomm_List) { if(UDPIsPutReady(socket1)) { UDPPutString(Comm_List[6]); UDPFlush(); Pcomm_List2+=4; Diag_Comm2 = 8; break; } } break; case 8 : if (Pcomm_List2 != Pcomm_List) { if(UDPIsPutReady(socket1)) { UDPPutString(Comm_List[7]); UDPFlush(); Pcomm_List2 = &Comm_List[0][0]; // point to Comm_List[0] Diag_Comm2 = 1; } } break; case 20 : if(!MACIsLinked()) { return; } #if defined(STACK_USE_DHCP_CLIENT) { static DWORD dwTimer = 0; // Wait until DHCP module is finished if(!DHCPIsBound(0)) { dwTimer = TickGet(); return; } // Wait an additional half second after DHCP is finished to let the announce module and any other stack state machines to reach normal operation if(TickGet() - dwTimer < TICK_SECOND/2) return; } #endif Diag_Comm2 = 21; break; case 21 : if (MAC_IP_READY == True) { TestTarget.MACAddr.v[0] = MACPC[0];//0x00; TestTarget.MACAddr.v[1] = MACPC[1];//0x0E; TestTarget.MACAddr.v[2] = MACPC[2];//0x0C; TestTarget.MACAddr.v[3] = MACPC[3];//0x74; TestTarget.MACAddr.v[4] = MACPC[4];//0xCC; TestTarget.MACAddr.v[5] = MACPC[5];//0x08; TestTarget.IPAddr.v[0] = IPPC[0];//192; TestTarget.IPAddr.v[1] = IPPC[1];//168; TestTarget.IPAddr.v[2] = IPPC[2];//1; TestTarget.IPAddr.v[3] = IPPC[3];//24; socket1 = UDPOpen(0x7000, &TestTarget, 0x7000); //open the socket if(socket1 == 0xFF) //Invalid socket { break; } else{Diag_Comm2 = 1;} } break; case 22 : break; default : break; } }
void Command() { switch (Cmd_Read_Switch) { case 0 : if(UDPIsGetReady(socket2)) { SuccesFull_Read = UDPGetArray(Cmd, 0x3); if (Cmd[0] == Enter || Cmd[0] == 0 || SuccesFull_Read < 3) { Cmd_Read_Switch = 0; Cmd[0] = 0; break; } else if (Cmd[2] == Enter) { Cmd_Read_Switch = 0; Command_Exe(Cmd); } Cmd_Read_Switch = 0; Cmd[0] = 0; Cmd[1] = 0; Cmd[2] = 0; break; } break; case 20 : if(!MACIsLinked()) { return; } #if defined(STACK_USE_DHCP_CLIENT) { static DWORD dwTimer = 0; // Wait until DHCP module is finished if(!DHCPIsBound(0)) { dwTimer = TickGet(); return; } // Wait an additional half second after DHCP is finished to let the announce module and any other stack state machines to reach normal operation if(TickGet() - dwTimer < TICK_SECOND/2) return; } #endif Cmd_Read_Switch = 21; break; case 21 : socket2 = UDPOpen(0x6FFF, NULL, 0x6FFF); //open the socket if(socket2 == 0xFF) //Invalid socket { break; } else{Cmd_Read_Switch = 0;} Led1=1; Output_Enable = 1; break; default : break; } }
/***************************************************************************** Function: int connect( SOCKET s, struct sockaddr* name, int namelen ) Summary: This function connects to the peer communications end point. Description: The connect function assigns the address of the peer communications endpoint. For stream sockets, connection is established between the endpoints. For datagram sockets, an address filter is established between the endpoints until changed with another connect() function. Precondition: socket function should be called. Parameters: s - Socket descriptor returned from a previous call to socket. name - pointer to the sockaddr structure containing the peer address and port number. namelen - length of the sockaddr structure. Returns: If the connect() function succeeds, it returns 0. Otherwise, the value SOCKET_ERROR is returned to indicate an error condition. For stream based socket, if the connection is not established yet, connect returns SOCKET_CNXN_IN_PROGRESS. Remarks: None. ***************************************************************************/ int connect( SOCKET s, struct sockaddr* name, int namelen ) { struct BSDSocket *socket; struct sockaddr_in *addr; DWORD remoteIP; WORD remotePort; WORD localPort; if( s >= BSD_SOCKET_COUNT ) return SOCKET_ERROR; socket = &BSDSocketArray[s]; if( socket->bsdState < SKT_CREATED ) return SOCKET_ERROR; if( (unsigned int)namelen < sizeof(struct sockaddr_in)) return SOCKET_ERROR; addr = (struct sockaddr_in *)name; remotePort = addr->sin_port; remoteIP = addr->sin_addr.S_un.S_addr; if( remoteIP == 0u || remotePort == 0u ) return SOCKET_ERROR; if( socket->SocketType == SOCK_STREAM ) { switch(socket->bsdState) { case SKT_EST: return 0; // already established case SKT_IN_PROGRESS: if(HandlePossibleTCPDisconnection(s)) return SOCKET_ERROR; if(!TCPIsConnected(socket->SocketID)) return SOCKET_CNXN_IN_PROGRESS; socket->bsdState = SKT_EST; return 0; //success case SKT_CREATED: case SKT_BOUND: socket->SocketID = TCPOpen(remoteIP, TCP_OPEN_IP_ADDRESS, remotePort, TCP_PURPOSE_BERKELEY_CLIENT); if(socket->SocketID == INVALID_SOCKET) return SOCKET_ERROR; // Clear the first reset flag TCPWasReset(socket->SocketID); socket->isServer = FALSE; socket->bsdState = SKT_IN_PROGRESS; return SOCKET_CNXN_IN_PROGRESS; default: return SOCKET_ERROR; } } else { // If not explicitly bound to a local port, implicitly do the binding if(socket->bsdState == SKT_CREATED) { localPort = gAutoPortNumber++; if(gAutoPortNumber > 5000u) // reset the port numbers gAutoPortNumber = 1024; socket->SocketID = UDPOpen(localPort, NULL, remotePort); if(socket->SocketID == INVALID_UDP_SOCKET) return SOCKET_ERROR; socket->bsdState = SKT_BOUND; } if(socket->bsdState != SKT_BOUND) return SOCKET_ERROR; // UDP: remote port is used as a filter. Need to call connect when using // send/recv calls. No need to call 'connect' if using sendto/recvfrom // calls. socket->remotePort = remotePort; socket->remoteIP = remoteIP; return 0; //success } return SOCKET_ERROR; }
void NTPTask(void) { NTP_PACKET pkt; WORD w; switch(NTPState) { case NTP_HOME: debug_ntp(debug_putc, "\r\n\nRefreshing Time\r\n"); // Obtain ownership of the DNS resolution module if(!DNSBeginUsage()) break; // Obtain the IP address associated with the server name DNSResolveROM((ROM BYTE*)NTP_SERVER, DNS_TYPE_A); rtcTimer = time(NULL); NTPState = NTP_NAME_RESOLVE; break; case NTP_NAME_RESOLVE: // Wait for DNS resolution to complete if(!DNSIsResolved(&Server.IPAddr)) { if((time(NULL) - rtcTimer) >= NTP_RESOLVE_TIMEOUT) { DNSEndUsage(); rtcTimer = time(NULL); NTPState = NTP_SHORT_WAIT; } break; } // Obtain DNS resolution result if(!DNSEndUsage()) { // No valid IP address was returned from the DNS // server. Quit and fail for a while if host is not valid. rtcTimer = time(NULL); NTPState = NTP_SHORT_WAIT; break; } NTPState = NTP_ARP_START_RESOLVE; // No need to break case NTP_ARP_START_RESOLVE: case NTP_ARP_START_RESOLVE2: case NTP_ARP_START_RESOLVE3: // Obtain the MAC address associated with the server's IP address ARPResolve(&Server.IPAddr); rtcTimer = time(NULL); NTPState++; break; case NTP_ARP_RESOLVE: case NTP_ARP_RESOLVE2: case NTP_ARP_RESOLVE3: // Wait for the MAC address to finish being obtained if(!ARPIsResolved(&Server.IPAddr, &Server.MACAddr)) { // Time out if too much time is spent in this state if(time(NULL) - rtcTimer >= NTP_ARP_TIMEOUT) { // Retransmit ARP request by going to next SM_ARP_START_RESOLVE state or fail by going to SM_ARP_RESOLVE_FAIL state. NTPState++; } break; } NTPState = NTP_UDP_SEND; break; case NTP_ARP_RESOLVE_FAIL: // ARP failed after 3 tries, abort and wait for next time query rtcTimer = time(NULL); NTPState = NTP_SHORT_WAIT; break; case NTP_UDP_SEND: // Open up the sending UDP socket MySocket = UDPOpen(NTP_LOCAL_PORT, &Server, NTP_SERVER_PORT); if(MySocket == INVALID_UDP_SOCKET) break; // Make certain the socket can be written to if(!UDPIsPutReady(MySocket)) { UDPClose(MySocket); break; } // Transmit a time request packet memset(&pkt, 0, sizeof(pkt)); pkt.flags.versionNumber = 3; // NTP Version 3 pkt.flags.mode = 3; // NTP Client pkt.orig_ts_secs = swapl(NTP_EPOCH); UDPPutArray((BYTE*) &pkt, sizeof(pkt)); UDPFlush(); //dwTimer = TickGet(); rtcTimer = time(NULL); NTPState = NTP_UDP_RECV; break; case NTP_UDP_RECV: // Look for a response time packet if(!UDPIsGetReady(MySocket)) { if((time(NULL)) - rtcTimer >= NTP_REPLY_TIMEOUT) { // Abort the request and wait until the next timeout period UDPClose(MySocket); rtcTimer = time(NULL); NTPState = NTP_SHORT_WAIT; break; } break; } // Get the response time packet w = UDPGetArray((BYTE*) &pkt, sizeof(pkt)); UDPClose(MySocket); rtcTimer = time(NULL); // Validate packet size if(w != sizeof(pkt)) { NTPState = NTP_SHORT_WAIT; break; } g_NTPOk = TRUE; NTPState = NTP_WAIT; // Set out local time to match the returned time NTPLastUpdate = swapl(pkt.tx_ts_secs) - NTP_EPOCH; // Do rounding. If the partial seconds is > 0.5 then add 1 to the seconds count. if(((BYTE*)&pkt.tx_ts_fraq)[0] & 0x80) NTPLastUpdate++; SetTimeSec(NTPLastUpdate); break; case NTP_SHORT_WAIT: // Attempt to requery the NTP server after a specified NTP_FAST_QUERY_INTERVAL time (ex: 8 seconds) has elapsed. g_NTPOk = FALSE; if(time(NULL) - rtcTimer >= NTP_WAIT_INTERVAL) NTPState = NTP_HOME; break; case NTP_WAIT: // Requery the NTP server after a specified NTP_QUERY_INTERVAL time (ex: 10 minutes) has elapsed. if(time(NULL) - NTPLastUpdate >= NTP_QUERY_INTERVAL) NTPState = NTP_HOME; break; } }
/********************************************************************* * Function: void ANNOUNCE_Task(void) * * Summary: Announce callback task. * * PreCondition: Stack is initialized() * * Input: None * * Output: None * * Side Effects: None * * Overview: Recurring task used to listen for Discovery * messages on the specified ANNOUNCE_PORT. These * messages can be sent using the TCP/IP * Discoverer tool. If one is received, this * function will transmit a reply. * * Note: A UDP socket must be available before this * function is called. It is freed at the end of * the function. UDP_MAX_SOCKETS may need to be * increased if other modules use UDP sockets. ********************************************************************/ void ANNOUNCE_Task(NET_CONFIG * pNetIf) { static enum { DISCOVERY_HOME = 0, DISCOVERY_LISTEN, DISCOVERY_REQUEST_RECEIVED, DISCOVERY_DISABLED } DiscoverySM[TCPIP_NETWORK_INTERFACES] = {DISCOVERY_HOME}; static UDP_SOCKET MySocket[TCPIP_NETWORK_INTERFACES]; uint8_t i; int netIx; UDP_SOCKET s; if(!pNetIf) { return; } else { netIx = _TCPIPStackNetIx(pNetIf); } s = MySocket[netIx]; switch(DiscoverySM[netIx]) { case DISCOVERY_HOME: // Open a UDP socket for inbound and outbound transmission // Since we expect to only receive broadcast packets and // only send unicast packets directly to the node we last // received from, the remote NodeInfo parameter can be anything MySocket[netIx] = UDPOpen(0,UDP_OPEN_SERVER,ANNOUNCE_PORT, ANNOUNCE_PORT); if(MySocket[netIx] == INVALID_UDP_SOCKET) { return; } else { DiscoverySM[netIx]++; UDPSocketSetNet(MySocket[netIx], pNetIf); } break; case DISCOVERY_LISTEN: // Do nothing if no data is waiting if(!UDPIsGetReady(s)) return; // See if this is a discovery query or reply UDPGet(s, &i); UDPDiscard(s); if(i != 'D') return; // We received a discovery request, reply when we can DiscoverySM[netIx]++; // Change the destination to the unicast address of the last received packet TCPIP_IPV4_SetDestAddress(UDPSocketDcpt[s].pTxPkt,remoteNode.IPAddr.Val); memcpy((void*)&UDPSocketDcpt[s].pTxPkt->remoteMACAddr, (const void*)&remoteNode.MACAddr, sizeof(MAC_ADDR)); // No break needed. If we get down here, we are now ready for the DISCOVERY_REQUEST_RECEIVED state case DISCOVERY_REQUEST_RECEIVED: ANNOUNCE_Notify (pNetIf, 0, NULL); // Listen for other discovery requests DiscoverySM[netIx] = DISCOVERY_LISTEN; break; case DISCOVERY_DISABLED: break; } }
/********************************************************************* * Function: void NBNSTask(void) * * PreCondition: None * * Input: None * * Output: Sends responses to NetBIOS name requests * * Side Effects: None * * Overview: None * * Note: None ********************************************************************/ void NBNSTask(void) { static UDP_SOCKET MySocket; BYTE i; WORD_VAL Type, Class; NBNS_HEADER NBNSHeader; BYTE NameString[16]; static enum { NBNS_HOME = 0, NBNS_OPEN_SOCKET, NBNS_LISTEN } smNBNS = NBNS_HOME; switch(smNBNS) { case NBNS_HOME: smNBNS++; break; case NBNS_OPEN_SOCKET: MySocket = UDPOpen(NBNS_PORT, NULL, NBNS_PORT); if(MySocket == INVALID_UDP_SOCKET) break; smNBNS++; case NBNS_LISTEN: if(!UDPIsGetReady(MySocket)) break; // Respond only to name requests sent to us from nodes on the same subnet // This prevents us from sending out the wrong IP address information if // we haven't gotten a DHCP lease yet. if((remoteNode.IPAddr.Val & AppConfig.MyMask.Val) != (AppConfig.MyIPAddr.Val & AppConfig.MyMask.Val)) { UDPDiscard(); break; } // Retrieve the NBNS header and de-big-endian it UDPGet(&NBNSHeader.TransactionID.v[1]); UDPGet(&NBNSHeader.TransactionID.v[0]); UDPGet(&NBNSHeader.Flags.v[1]); UDPGet(&NBNSHeader.Flags.v[0]); UDPGet(&NBNSHeader.Questions.v[1]); UDPGet(&NBNSHeader.Questions.v[0]); UDPGet(&NBNSHeader.Answers.v[1]); UDPGet(&NBNSHeader.Answers.v[0]); UDPGet(&NBNSHeader.AuthoritativeRecords.v[1]); UDPGet(&NBNSHeader.AuthoritativeRecords.v[0]); UDPGet(&NBNSHeader.AdditionalRecords.v[1]); UDPGet(&NBNSHeader.AdditionalRecords.v[0]); // Remove all questions while(NBNSHeader.Questions.Val--) { NBNSGetName(NameString); UDPGet(&i); // <??> Trailing character on string UDPGet(&Type.v[1]); // Question type UDPGet(&Type.v[0]); UDPGet(&Class.v[1]); // Question class UDPGet(&Class.v[0]); if(Type.Val == 0x0020u && Class.Val == 0x0001u && strcmp((char*)NameString, (char*)AppConfig.NetBIOSName) == 0) { while(!UDPIsPutReady(MySocket)); NBNSHeader.Flags.Val = 0x8400; UDPPut(NBNSHeader.TransactionID.v[1]); UDPPut(NBNSHeader.TransactionID.v[0]); UDPPut(NBNSHeader.Flags.v[1]); UDPPut(NBNSHeader.Flags.v[0]); UDPPut(0x00); // 0x0000 Questions UDPPut(0x00); UDPPut(0x00); // 0x0001 Answers UDPPut(0x01); UDPPut(0x00); // 0x0000 Athoritative records UDPPut(0x00); UDPPut(0x00); // 0x0000 Additional records UDPPut(0x00); NBNSPutName(AppConfig.NetBIOSName); UDPPut(0x00); // 0x0020 Type: NetBIOS UDPPut(0x20); UDPPut(0x00); // 0x0001 Class: Internet UDPPut(0x01); UDPPut(0x00); // 0x00000000 Time To Live UDPPut(0x00); UDPPut(0x00); UDPPut(0x00); UDPPut(0x00); // 0x0006 Data length UDPPut(0x06); UDPPut(0x60); // 0x6000 Flags: H-node, Unique UDPPut(0x00); UDPPut(AppConfig.MyIPAddr.v[0]); // Put out IP address UDPPut(AppConfig.MyIPAddr.v[1]); UDPPut(AppConfig.MyIPAddr.v[2]); UDPPut(AppConfig.MyIPAddr.v[3]); // Change the destination address to the unicast address of the last received packet memcpy((void*)&UDPSocketInfo[MySocket].remoteNode, (const void*)&remoteNode, sizeof(remoteNode)); UDPFlush(); } } UDPDiscard(); break; } }
/** * Call DNSIsResolved() until the host is resolved. * You cannot start two DNS resolution proceedures concurrently. * You must not modify *Hostname until DNSIsResolved() returns TRUE. * * @preCondition DNSResolve() was called. * * @param HostIP 4 byte IP address */ BOOL DNSIsResolved(IP_ADDR *HostIP) { static UDP_SOCKET MySocket; static NODE_INFO Remote; static TICK StartTime; BYTE i; WORD_VAL w; DNS_HEADER DNSHeader; DNS_ANSWER_HEADER DNSAnswerHeader; IP_ADDR tmpIpAddr; switch(smDNS) { case DNS_HOME: tmpIpAddr.v[0] = MY_DNS_BYTE1; tmpIpAddr.v[1] = MY_DNS_BYTE2; tmpIpAddr.v[2] = MY_DNS_BYTE3; tmpIpAddr.v[3] = MY_DNS_BYTE4; ARPResolve(&tmpIpAddr); StartTime = TickGet(); smDNS++; break; case DNS_RESOLVE_ARP: if(!ARPIsResolved(&tmpIpAddr, &Remote.MACAddr)) { if(TickGet() - StartTime > DNS_TIMEOUT) { smDNS--; } break; } Remote.IPAddr.Val = tmpIpAddr.Val; smDNS++; // No need to break, we can immediately start resolution case DNS_OPEN_SOCKET: MySocket = UDPOpen(0, &Remote, DNS_PORT); if(MySocket == INVALID_UDP_SOCKET) { #if (DEBUG_DNS >= LOG_ERROR) debugPutMsg(1); //@mxd:1:Could not open UDP socket #endif break; } smDNS++; // No need to break, we can immediately start resolution case DNS_QUERY: if(!UDPIsPutReady(MySocket)) break; // Put DNS query here UDPPut(0x12); // User chosen ID UDPPut(0x34); UDPPut(0x01); // Standard query with recursion UDPPut(0x00); UDPPut(0x00); // 0x0001 questions UDPPut(0x01); UDPPut(0x00); // 0x0000 answers UDPPut(0x00); UDPPut(0x00); // 0x0000 name server resource records UDPPut(0x00); UDPPut(0x00); // 0x0000 additional records UDPPut(0x00); // Put hostname string to resolve DNSPutString(DNSHostName); UDPPut(0x00); // Type: A (host address) UDPPut(0x01); UDPPut(0x00); // Class: IN (Internet) UDPPut(0x01); UDPFlush(); StartTime = TickGet(); smDNS++; break; case DNS_GET_RESULT: if(!UDPIsGetReady(MySocket)) { if(TickGet() - StartTime > DNS_TIMEOUT) { smDNS--; } break; } // Retrieve the DNS header and de-big-endian it UDPGet(&DNSHeader.TransactionID.v[1]); UDPGet(&DNSHeader.TransactionID.v[0]); UDPGet(&DNSHeader.Flags.v[1]); UDPGet(&DNSHeader.Flags.v[0]); UDPGet(&DNSHeader.Questions.v[1]); UDPGet(&DNSHeader.Questions.v[0]); UDPGet(&DNSHeader.Answers.v[1]); UDPGet(&DNSHeader.Answers.v[0]); UDPGet(&DNSHeader.AuthoritativeRecords.v[1]); UDPGet(&DNSHeader.AuthoritativeRecords.v[0]); UDPGet(&DNSHeader.AdditionalRecords.v[1]); UDPGet(&DNSHeader.AdditionalRecords.v[0]); // Remove all questions while(DNSHeader.Questions.Val--) { DNSGetString(NULL); UDPGet(&w.v[1]); // Question type UDPGet(&w.v[0]); UDPGet(&w.v[1]); // Question class UDPGet(&w.v[0]); } // Scan through answers while(DNSHeader.Answers.Val--) { UDPGet(&DNSAnswerHeader.ResponseName.v[1]); // Response name UDPGet(&DNSAnswerHeader.ResponseName.v[0]); UDPGet(&DNSAnswerHeader.ResponseType.v[1]); // Response type UDPGet(&DNSAnswerHeader.ResponseType.v[0]); UDPGet(&DNSAnswerHeader.ResponseClass.v[1]); // Response class UDPGet(&DNSAnswerHeader.ResponseClass.v[0]); UDPGet(&DNSAnswerHeader.ResponseTTL.v[3]); // Time to live UDPGet(&DNSAnswerHeader.ResponseTTL.v[2]); UDPGet(&DNSAnswerHeader.ResponseTTL.v[1]); UDPGet(&DNSAnswerHeader.ResponseTTL.v[0]); UDPGet(&DNSAnswerHeader.ResponseLen.v[1]); // Response length UDPGet(&DNSAnswerHeader.ResponseLen.v[0]); // Make sure that this is a 4 byte IP address, response type A, class 1 // Check if this is Type A if( DNSAnswerHeader.ResponseType.Val == 0x0001u && DNSAnswerHeader.ResponseClass.Val == 0x0001u && // Internet class DNSAnswerHeader.ResponseLen.Val == 0x0004u) { UDPGet(&HostIP->v[0]); UDPGet(&HostIP->v[1]); UDPGet(&HostIP->v[2]); UDPGet(&HostIP->v[3]); break; } else { while(DNSAnswerHeader.ResponseLen.Val--) { UDPGet(&i); } } } UDPDiscard(); UDPClose(MySocket); MySocket = INVALID_UDP_SOCKET; smDNS++; // No need to break, we are done and need to return TRUE case DNS_DONE: return TRUE; } return FALSE; }
/***************************************************************************** Function: void DHCPTask(void) Summary: Performs periodic DHCP tasks for all interfaces. Description: This function performs any periodic tasks requied by the DHCP module, such as sending and receiving messages involved with obtaining and maintaining a lease. Precondition: None Parameters: None Returns: None ***************************************************************************/ void DHCPTask(void) { BYTE i; for(i = 0; i < NETWORK_INTERFACES; i++) { LoadState(i); switch(DHCPClient.smState) { case SM_DHCP_DISABLED: // When the module is disabled, do absolutely nothing break; case SM_DHCP_GET_SOCKET: // Open a socket to send and receive broadcast messages on DHCPClient.hDHCPSocket = UDPOpen(DHCP_CLIENT_PORT, NULL, DHCP_SERVER_PORT); if(DHCPClient.hDHCPSocket == INVALID_UDP_SOCKET) break; DHCPClient.smState = SM_DHCP_SEND_DISCOVERY; // No break case SM_DHCP_SEND_DISCOVERY: // Assume default IP Lease time of 60 seconds. // This should be minimum possible to make sure that if the // server did not specify lease time, we try again after this // minimum time. DHCPClient.dwLeaseTime = 60; DHCPClient.validValues.val = 0x00; DHCPClient.flags.bits.bIsBound = FALSE; DHCPClient.flags.bits.bOfferReceived = FALSE; // No point in wasting time transmitting a discovery if we are // unlinked. No one will see it. if(!MACIsLinked()) break; // Ensure transmitter is ready to accept data if(UDPIsPutReady(DHCPClient.hDHCPSocket) < 300u) break; // Toggle the BOOTP Broadcast flag to ensure compatibility with // bad DHCP servers that don't know how to handle broadcast // responses. This results in the next discovery attempt to be // made using the opposite mode. DHCPClient.flags.bits.bUseUnicastMode ^= 1; // Ensure that we transmit to the broadcast IP and MAC addresses // The UDP Socket remembers who it was last talking to memset((void*)&UDPSocketInfo[DHCPClient.hDHCPSocket].remoteNode, 0xFF, sizeof(UDPSocketInfo[0].remoteNode)); // Send the DHCP Discover broadcast _DHCPSend(DHCP_DISCOVER_MESSAGE, FALSE); // Start a timer and begin looking for a response DHCPClient.dwTimer = TickGet(); DHCPClient.smState = SM_DHCP_GET_OFFER; break; case SM_DHCP_GET_OFFER: // Check to see if a packet has arrived if(UDPIsGetReady(DHCPClient.hDHCPSocket) < 250u) { // Go back and transmit a new discovery if we didn't get an offer after 2 seconds if(TickGet() - DHCPClient.dwTimer >= DHCP_TIMEOUT) DHCPClient.smState = SM_DHCP_SEND_DISCOVERY; break; } // Let the DHCP server module know that there is a DHCP server // on this network DHCPClient.flags.bits.bDHCPServerDetected = TRUE; // Check to see if we received an offer if(_DHCPReceive() != DHCP_OFFER_MESSAGE) break; DHCPClient.smState = SM_DHCP_SEND_REQUEST; // No break case SM_DHCP_SEND_REQUEST: if(UDPIsPutReady(DHCPClient.hDHCPSocket) < 258u) break; // Ensure that we transmit to the broadcast IP and MAC addresses // The UDP Socket remembers who it was last talking to, so // we must set this back to the broadcast address since the // current socket values are the unicast addresses of the DHCP // server. memset((void*)&UDPSocketInfo[DHCPClient.hDHCPSocket].remoteNode, 0xFF, sizeof(UDPSocketInfo[0].remoteNode)); // Send the DHCP request message _DHCPSend(DHCP_REQUEST_MESSAGE, FALSE); // Start a timer and begin looking for a response DHCPClient.dwTimer = TickGet(); DHCPClient.smState = SM_DHCP_GET_REQUEST_ACK; break; case SM_DHCP_GET_REQUEST_ACK: // Check to see if a packet has arrived if(UDPIsGetReady(DHCPClient.hDHCPSocket) < 250u) { // Go back and transmit a new discovery if we didn't get an ACK after 2 seconds if(TickGet() - DHCPClient.dwTimer >= DHCP_TIMEOUT) DHCPClient.smState = SM_DHCP_SEND_DISCOVERY; break; } // Check to see if we received an offer switch(_DHCPReceive()) { case DHCP_ACK_MESSAGE: UDPClose(DHCPClient.hDHCPSocket); DHCPClient.hDHCPSocket = INVALID_UDP_SOCKET; DHCPClient.dwTimer = TickGet(); DHCPClient.smState = SM_DHCP_BOUND; DHCPClient.flags.bits.bEvent = 1; DHCPClient.flags.bits.bIsBound = TRUE; if(DHCPClient.validValues.bits.IPAddress) AppConfig.MyIPAddr = DHCPClient.tempIPAddress; if(DHCPClient.validValues.bits.Mask) AppConfig.MyMask = DHCPClient.tempMask; if(DHCPClient.validValues.bits.Gateway) AppConfig.MyGateway = DHCPClient.tempGateway; #if defined(STACK_USE_DNS) if(DHCPClient.validValues.bits.DNS) AppConfig.PrimaryDNSServer.Val = DHCPClient.tempDNS.Val; AppConfig.SecondaryDNSServer.Val = 0x00000000ul; if(DHCPClient.validValues.bits.DNS2) AppConfig.SecondaryDNSServer.Val = DHCPClient.tempDNS2.Val; #endif //if(DHCPClient.validValues.bits.HostName) // memcpy(AppConfig.NetBIOSName, (void*)DHCPClient.tempHostName, sizeof(AppConfig.NetBIOSName)); break; case DHCP_NAK_MESSAGE: DHCPClient.smState = SM_DHCP_SEND_DISCOVERY; break; } break; case SM_DHCP_BOUND: if(TickGet() - DHCPClient.dwTimer < TICK_SECOND) break; // Check to see if our lease is still valid, if so, decrement lease // time if(DHCPClient.dwLeaseTime >= 2ul) { DHCPClient.dwTimer += TICK_SECOND; DHCPClient.dwLeaseTime--; break; } // Open a socket to send and receive DHCP messages on DHCPClient.hDHCPSocket = UDPOpen(DHCP_CLIENT_PORT, NULL, DHCP_SERVER_PORT); if(DHCPClient.hDHCPSocket == INVALID_UDP_SOCKET) break; DHCPClient.smState = SM_DHCP_SEND_RENEW; // No break case SM_DHCP_SEND_RENEW: case SM_DHCP_SEND_RENEW2: case SM_DHCP_SEND_RENEW3: if(UDPIsPutReady(DHCPClient.hDHCPSocket) < 258u) break; // Send the DHCP request message _DHCPSend(DHCP_REQUEST_MESSAGE, TRUE); DHCPClient.flags.bits.bOfferReceived = FALSE; // Start a timer and begin looking for a response DHCPClient.dwTimer = TickGet(); DHCPClient.smState++; break; case SM_DHCP_GET_RENEW_ACK: case SM_DHCP_GET_RENEW_ACK2: case SM_DHCP_GET_RENEW_ACK3: // Check to see if a packet has arrived if(UDPIsGetReady(DHCPClient.hDHCPSocket) < 250u) { // Go back and transmit a new discovery if we didn't get an ACK after 2 seconds if(TickGet() - DHCPClient.dwTimer >= DHCP_TIMEOUT) { if(++DHCPClient.smState > SM_DHCP_GET_RENEW_ACK3) DHCPClient.smState = SM_DHCP_SEND_DISCOVERY; } break; } // Check to see if we received an offer switch(_DHCPReceive()) { case DHCP_ACK_MESSAGE: UDPClose(DHCPClient.hDHCPSocket); DHCPClient.hDHCPSocket = INVALID_UDP_SOCKET; DHCPClient.dwTimer = TickGet(); DHCPClient.smState = SM_DHCP_BOUND; DHCPClient.flags.bits.bEvent = 1; break; case DHCP_NAK_MESSAGE: DHCPClient.smState = SM_DHCP_SEND_DISCOVERY; break; } break; } } }
/********************************************************************* * Function: void DiscoveryTask(void) * * Summary: Announce callback task. * * PreCondition: Stack is initialized() * * Input: None * * Output: None * * Side Effects: None * * Overview: Recurring task used to listen for Discovery * messages on the specified ANNOUNCE_PORT. These * messages can be sent using the Microchip Device * Discoverer tool. If one is received, this * function will transmit a reply. * * Note: A UDP socket must be available before this * function is called. It is freed at the end of * the function. MAX_UDP_SOCKETS may need to be * increased if other modules use UDP sockets. ********************************************************************/ void DiscoveryTask(void) { static enum { DISCOVERY_HOME = 0, DISCOVERY_LISTEN, DISCOVERY_REQUEST_RECEIVED, DISCOVERY_DISABLED } DiscoverySM = DISCOVERY_HOME; static UDP_SOCKET MySocket; BYTE i; switch(DiscoverySM) { case DISCOVERY_HOME: // Open a UDP socket for inbound and outbound transmission // Since we expect to only receive broadcast packets and // only send unicast packets directly to the node we last // received from, the remote NodeInfo parameter can be anything MySocket = UDPOpen(ANNOUNCE_PORT, NULL, ANNOUNCE_PORT); if(MySocket == INVALID_UDP_SOCKET) return; else DiscoverySM++; break; case DISCOVERY_LISTEN: // Do nothing if no data is waiting if(!UDPIsGetReady(MySocket)) return; // See if this is a discovery query or reply UDPGet(&i); UDPDiscard(); if(i != 'D') return; // We received a discovery request, reply when we can DiscoverySM++; // Change the destination to the unicast address of the last received packet memcpy((void*)&UDPSocketInfo[MySocket].remoteNode, (const void*)&remoteNode, sizeof(remoteNode)); // No break needed. If we get down here, we are now ready for the DISCOVERY_REQUEST_RECEIVED state case DISCOVERY_REQUEST_RECEIVED: if(!UDPIsPutReady(MySocket)) return; // Begin sending our MAC address in human readable form. // The MAC address theoretically could be obtained from the // packet header when the computer receives our UDP packet, // however, in practice, the OS will abstract away the useful // information and it would be difficult to obtain. It also // would be lost if this broadcast packet were forwarded by a // router to a different portion of the network (note that // broadcasts are normally not forwarded by routers). UDPPutArray((BYTE*)AppConfig.NetBIOSName, sizeof(AppConfig.NetBIOSName)-1); UDPPut('\r'); UDPPut('\n'); // Convert the MAC address bytes to hex (text) and then send it i = 0; while(1) { UDPPut(btohexa_high(AppConfig.MyMACAddr.v[i])); UDPPut(btohexa_low(AppConfig.MyMACAddr.v[i])); if(++i == 6u) break; UDPPut('-'); } UDPPut('\r'); UDPPut('\n'); // Send the packet UDPFlush(); // Listen for other discovery requests DiscoverySM = DISCOVERY_LISTEN; break; case DISCOVERY_DISABLED: break; } }