/** Convert Processor Frequency Data to a string. @param ProcessorFrequency The frequency data to process @param Base10Exponent The exponent based on 10 @param String The string that is created **/ VOID ConvertProcessorToString ( IN UINT16 ProcessorFrequency, IN UINT16 Base10Exponent, OUT CHAR16 **String ) { CHAR16 *StringBuffer; UINTN Index; UINT32 FreqMhz; if (Base10Exponent >= 6) { FreqMhz = ProcessorFrequency; for (Index = 0; Index < (UINTN) (Base10Exponent - 6); Index++) { FreqMhz *= 10; } } else { FreqMhz = 0; } StringBuffer = AllocateZeroPool (0x20); ASSERT (StringBuffer != NULL); Index = UnicodeValueToString (StringBuffer, LEFT_JUSTIFY, FreqMhz / 1000, 3); StrCatS (StringBuffer, 0x20 / sizeof (CHAR16), L"."); UnicodeValueToString (StringBuffer + Index + 1, PREFIX_ZERO, (FreqMhz % 1000) / 10, 2); StrCatS (StringBuffer, 0x20 / sizeof (CHAR16), L" GHz"); *String = (CHAR16 *) StringBuffer; return ; }
/** Convert Memory Size to a string. @param MemorySize The size of the memory to process @param String The string that is created **/ VOID ConvertMemorySizeToString ( IN UINT32 MemorySize, OUT CHAR16 **String ) { CHAR16 *StringBuffer; StringBuffer = AllocateZeroPool (0x20); ASSERT (StringBuffer != NULL); UnicodeValueToString (StringBuffer, LEFT_JUSTIFY, MemorySize, 6); StrCatS (StringBuffer, 0x20 / sizeof (CHAR16), L" MB RAM"); *String = (CHAR16 *) StringBuffer; return ; }
/** Initialize capsule update variables. **/ VOID InitCapsuleUpdateVariable ( VOID ) { EFI_STATUS Status; UINTN Index; CHAR16 CapsuleVarName[30]; CHAR16 *TempVarName; // // Clear all the capsule variables CapsuleUpdateData, CapsuleUpdateData1, CapsuleUpdateData2... // as early as possible which will avoid the next time boot after the capsule update // will still into the capsule loop // StrCpyS (CapsuleVarName, sizeof(CapsuleVarName)/sizeof(CapsuleVarName[0]), EFI_CAPSULE_VARIABLE_NAME); TempVarName = CapsuleVarName + StrLen (CapsuleVarName); Index = 0; while (TRUE) { if (Index > 0) { UnicodeValueToString (TempVarName, 0, Index, 0); } Status = gRT->SetVariable ( CapsuleVarName, &gEfiCapsuleVendorGuid, EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS, 0, (VOID *)NULL ); if (EFI_ERROR (Status)) { // // There is no capsule variables, quit // break; } Index++; } }
/** Perform the memory test base on the memory test intensive level, and update the memory resource. @param Level The memory test intensive level. @retval EFI_STATUS Success test all the system memory and update the memory resource **/ EFI_STATUS EFIAPI BdsMemoryTest ( IN EXTENDMEM_COVERAGE_LEVEL Level ) { EFI_STATUS Status; EFI_STATUS KeyStatus; EFI_STATUS InitStatus; EFI_STATUS ReturnStatus; BOOLEAN RequireSoftECCInit; EFI_GENERIC_MEMORY_TEST_PROTOCOL *GenMemoryTest; UINT64 TestedMemorySize; UINT64 TotalMemorySize; UINTN TestPercent; UINT64 PreviousValue; BOOLEAN ErrorOut; BOOLEAN TestAbort; EFI_INPUT_KEY Key; CHAR16 StrPercent[80]; CHAR16 *StrTotalMemory; CHAR16 *Pos; CHAR16 *TmpStr; EFI_GRAPHICS_OUTPUT_BLT_PIXEL Foreground; EFI_GRAPHICS_OUTPUT_BLT_PIXEL Background; EFI_GRAPHICS_OUTPUT_BLT_PIXEL Color; BOOLEAN IsFirstBoot; UINT32 TempData; UINTN StrTotalMemorySize; ReturnStatus = EFI_SUCCESS; ZeroMem (&Key, sizeof (EFI_INPUT_KEY)); StrTotalMemorySize = 128; Pos = AllocateZeroPool (StrTotalMemorySize); if (Pos == NULL) { return ReturnStatus; } StrTotalMemory = Pos; TestedMemorySize = 0; TotalMemorySize = 0; PreviousValue = 0; ErrorOut = FALSE; TestAbort = FALSE; SetMem (&Foreground, sizeof (EFI_GRAPHICS_OUTPUT_BLT_PIXEL), 0xff); SetMem (&Background, sizeof (EFI_GRAPHICS_OUTPUT_BLT_PIXEL), 0x0); SetMem (&Color, sizeof (EFI_GRAPHICS_OUTPUT_BLT_PIXEL), 0xff); RequireSoftECCInit = FALSE; Status = gBS->LocateProtocol ( &gEfiGenericMemTestProtocolGuid, NULL, (VOID **) &GenMemoryTest ); if (EFI_ERROR (Status)) { FreePool (Pos); return EFI_SUCCESS; } InitStatus = GenMemoryTest->MemoryTestInit ( GenMemoryTest, Level, &RequireSoftECCInit ); if (InitStatus == EFI_NO_MEDIA) { // // The PEI codes also have the relevant memory test code to check the memory, // it can select to test some range of the memory or all of them. If PEI code // checks all the memory, this BDS memory test will has no not-test memory to // do the test, and then the status of EFI_NO_MEDIA will be returned by // "MemoryTestInit". So it does not need to test memory again, just return. // FreePool (Pos); return EFI_SUCCESS; } if (!FeaturePcdGet(PcdBootlogoOnlyEnable)) { TmpStr = GetStringById (STRING_TOKEN (STR_ESC_TO_SKIP_MEM_TEST)); if (TmpStr != NULL) { PrintXY (10, 10, NULL, NULL, TmpStr); FreePool (TmpStr); } } else { DEBUG ((EFI_D_INFO, "Enter memory test.\n")); } do { Status = GenMemoryTest->PerformMemoryTest ( GenMemoryTest, &TestedMemorySize, &TotalMemorySize, &ErrorOut, TestAbort ); if (ErrorOut && (Status == EFI_DEVICE_ERROR)) { TmpStr = GetStringById (STRING_TOKEN (STR_SYSTEM_MEM_ERROR)); if (TmpStr != NULL) { PrintXY (10, 10, NULL, NULL, TmpStr); FreePool (TmpStr); } ASSERT (0); } if (!FeaturePcdGet(PcdBootlogoOnlyEnable)) { TempData = (UINT32) DivU64x32 (TotalMemorySize, 16); TestPercent = (UINTN) DivU64x32 ( DivU64x32 (MultU64x32 (TestedMemorySize, 100), 16), TempData ); if (TestPercent != PreviousValue) { UnicodeValueToString (StrPercent, 0, TestPercent, 0); TmpStr = GetStringById (STRING_TOKEN (STR_MEMORY_TEST_PERCENT)); if (TmpStr != NULL) { // // TmpStr size is 64, StrPercent is reserved to 16. // StrCatS (StrPercent, sizeof (StrPercent) / sizeof (CHAR16), TmpStr); PrintXY (10, 10, NULL, NULL, StrPercent); FreePool (TmpStr); } TmpStr = GetStringById (STRING_TOKEN (STR_PERFORM_MEM_TEST)); if (TmpStr != NULL) { PlatformBdsShowProgress ( Foreground, Background, TmpStr, Color, TestPercent, (UINTN) PreviousValue ); FreePool (TmpStr); } } PreviousValue = TestPercent; } else { DEBUG ((EFI_D_INFO, "Perform memory test (ESC to skip).\n")); } if (!PcdGetBool (PcdConInConnectOnDemand)) { KeyStatus = gST->ConIn->ReadKeyStroke (gST->ConIn, &Key); if (!EFI_ERROR (KeyStatus) && (Key.ScanCode == SCAN_ESC)) { if (!RequireSoftECCInit) { if (!FeaturePcdGet(PcdBootlogoOnlyEnable)) { TmpStr = GetStringById (STRING_TOKEN (STR_PERFORM_MEM_TEST)); if (TmpStr != NULL) { PlatformBdsShowProgress ( Foreground, Background, TmpStr, Color, 100, (UINTN) PreviousValue ); FreePool (TmpStr); } PrintXY (10, 10, NULL, NULL, L"100"); } Status = GenMemoryTest->Finished (GenMemoryTest); goto Done; } TestAbort = TRUE; } } } while (Status != EFI_NOT_FOUND); Status = GenMemoryTest->Finished (GenMemoryTest); Done: if (!FeaturePcdGet(PcdBootlogoOnlyEnable)) { UnicodeValueToString (StrTotalMemory, COMMA_TYPE, TotalMemorySize, 0); if (StrTotalMemory[0] == L',') { StrTotalMemory++; StrTotalMemorySize -= sizeof (CHAR16); } TmpStr = GetStringById (STRING_TOKEN (STR_MEM_TEST_COMPLETED)); if (TmpStr != NULL) { StrCatS (StrTotalMemory, StrTotalMemorySize / sizeof (CHAR16), TmpStr); FreePool (TmpStr); } PrintXY (10, 10, NULL, NULL, StrTotalMemory); PlatformBdsShowProgress ( Foreground, Background, StrTotalMemory, Color, 100, (UINTN) PreviousValue ); } else { DEBUG ((EFI_D_INFO, "%d bytes of system memory tested OK\r\n", TotalMemorySize)); } FreePool (Pos); // // Use a DynamicHii type pcd to save the boot status, which is used to // control configuration mode, such as FULL/MINIMAL/NO_CHANGES configuration. // IsFirstBoot = PcdGetBool(PcdBootState); if (IsFirstBoot) { PcdSetBool(PcdBootState, FALSE); } return ReturnStatus; }
/** This function update VLAN list in the VLAN configuration Form. @param[in, out] PrivateData Points to VLAN configuration private data. **/ VOID VlanUpdateForm ( IN OUT VLAN_CONFIG_PRIVATE_DATA *PrivateData ) { EFI_VLAN_CONFIG_PROTOCOL *VlanConfig; UINT16 NumberOfVlan; UINTN Index; EFI_VLAN_FIND_DATA *VlanData; VOID *StartOpCodeHandle; EFI_IFR_GUID_LABEL *StartLabel; VOID *EndOpCodeHandle; EFI_IFR_GUID_LABEL *EndLabel; CHAR16 *String; CHAR16 VlanStr[30]; CHAR16 VlanIdStr[6]; UINTN DigitalCount; EFI_STRING_ID StringId; // // Find current VLAN configuration // VlanData = NULL; NumberOfVlan = 0; VlanConfig = PrivateData->VlanConfig; VlanConfig->Find (VlanConfig, NULL, &NumberOfVlan, &VlanData); // // Update VLAN configuration in PrivateData // if (NumberOfVlan > MAX_VLAN_NUMBER) { NumberOfVlan = MAX_VLAN_NUMBER; } PrivateData->NumberOfVlan = NumberOfVlan; // // Init OpCode Handle // StartOpCodeHandle = HiiAllocateOpCodeHandle (); ASSERT (StartOpCodeHandle != NULL); EndOpCodeHandle = HiiAllocateOpCodeHandle (); ASSERT (EndOpCodeHandle != NULL); // // Create Hii Extend Label OpCode as the start opcode // StartLabel = (EFI_IFR_GUID_LABEL *) HiiCreateGuidOpCode ( StartOpCodeHandle, &gEfiIfrTianoGuid, NULL, sizeof (EFI_IFR_GUID_LABEL) ); StartLabel->ExtendOpCode = EFI_IFR_EXTEND_OP_LABEL; StartLabel->Number = LABEL_VLAN_LIST; // // Create Hii Extend Label OpCode as the end opcode // EndLabel = (EFI_IFR_GUID_LABEL *) HiiCreateGuidOpCode ( EndOpCodeHandle, &gEfiIfrTianoGuid, NULL, sizeof (EFI_IFR_GUID_LABEL) ); EndLabel->ExtendOpCode = EFI_IFR_EXTEND_OP_LABEL; EndLabel->Number = LABEL_END; ZeroMem (PrivateData->VlanId, MAX_VLAN_NUMBER); for (Index = 0; Index < NumberOfVlan; Index++) { String = VlanStr; StrCpy (String, L" VLAN ID:"); String += 10; // // Pad VlanId string up to 4 characters with space // DigitalCount = UnicodeValueToString (VlanIdStr, 0, VlanData[Index].VlanId, 5); SetMem16 (String, (4 - DigitalCount) * sizeof (CHAR16), L' '); StrCpy (String + 4 - DigitalCount, VlanIdStr); String += 4; StrCpy (String, L", Priority:"); String += 11; String += UnicodeValueToString (String, 0, VlanData[Index].Priority, 4); *String = 0; StringId = HiiSetString (PrivateData->HiiHandle, 0, VlanStr, NULL); ASSERT (StringId != 0); HiiCreateCheckBoxOpCode ( StartOpCodeHandle, (EFI_QUESTION_ID) (VLAN_LIST_VAR_OFFSET + Index), VLAN_CONFIGURATION_VARSTORE_ID, (UINT16) (VLAN_LIST_VAR_OFFSET + Index), StringId, STRING_TOKEN (STR_VLAN_VLAN_LIST_HELP), 0, 0, NULL ); // // Save VLAN id to private data // PrivateData->VlanId[Index] = VlanData[Index].VlanId; } HiiUpdateForm ( PrivateData->HiiHandle, // HII handle &gVlanConfigFormSetGuid, // Formset GUID VLAN_CONFIGURATION_FORM_ID, // Form ID StartOpCodeHandle, // Label for where to insert opcodes EndOpCodeHandle // Replace data ); HiiFreeOpCodeHandle (StartOpCodeHandle); HiiFreeOpCodeHandle (EndOpCodeHandle); if (VlanData != NULL) { FreePool (VlanData); } }
/** Get the mac address string from the device path. if the device path has the vlan, get the vanid also. @param MacAddressNode Device path begin with mac address @param PBuffer Output string buffer contain mac address. **/ BOOLEAN GetMacAddressString( IN MAC_ADDR_DEVICE_PATH *MacAddressNode, OUT CHAR16 **PBuffer ) { UINTN HwAddressSize; UINTN Index; UINT8 *HwAddress; EFI_DEVICE_PATH_PROTOCOL *Node; UINT16 VlanId; CHAR16 *String; UINTN BufferLen; VlanId = 0; String = NULL; ASSERT(MacAddressNode != NULL); HwAddressSize = sizeof (EFI_MAC_ADDRESS); if (MacAddressNode->IfType == 0x01 || MacAddressNode->IfType == 0x00) { HwAddressSize = 6; } // // The output format is MAC:XX:XX:XX:...\XXXX // The size is the Number size + ":" size + Vlan size(\XXXX) + End // BufferLen = (4 + 2 * HwAddressSize + (HwAddressSize - 1) + 5 + 1) * sizeof (CHAR16); String = AllocateZeroPool (BufferLen); if (String == NULL) { return FALSE; } *PBuffer = String; StrCpyS(String, BufferLen / sizeof (CHAR16), L"MAC:"); String += 4; // // Convert the MAC address into a unicode string. // HwAddress = &MacAddressNode->MacAddress.Addr[0]; for (Index = 0; Index < HwAddressSize; Index++) { String += UnicodeValueToString (String, PREFIX_ZERO | RADIX_HEX, *(HwAddress++), 2); if (Index < HwAddressSize - 1) { *String++ = L':'; } } // // If VLAN is configured, it will need extra 5 characters like "\0005". // Plus one unicode character for the null-terminator. // Node = (EFI_DEVICE_PATH_PROTOCOL *)MacAddressNode; while (!IsDevicePathEnd (Node)) { if (Node->Type == MESSAGING_DEVICE_PATH && Node->SubType == MSG_VLAN_DP) { VlanId = ((VLAN_DEVICE_PATH *) Node)->VlanId; } Node = NextDevicePathNode (Node); } if (VlanId != 0) { *String++ = L'\\'; String += UnicodeValueToString (String, PREFIX_ZERO | RADIX_HEX, VlanId, 4); } // // Null terminate the Unicode string // *String = L'\0'; return TRUE; }
/** Passes capsules to the firmware with both virtual and physical mapping. Depending on the intended consumption, the firmware may process the capsule immediately. If the payload should persist across a system reset, the reset value returned from EFI_QueryCapsuleCapabilities must be passed into ResetSystem() and will cause the capsule to be processed by the firmware as part of the reset process. @param CapsuleHeaderArray Virtual pointer to an array of virtual pointers to the capsules being passed into update capsule. @param CapsuleCount Number of pointers to EFI_CAPSULE_HEADER in CaspuleHeaderArray. @param ScatterGatherList Physical pointer to a set of EFI_CAPSULE_BLOCK_DESCRIPTOR that describes the location in physical memory of a set of capsules. @retval EFI_SUCCESS Valid capsule was passed. If CAPSULE_FLAGS_PERSIT_ACROSS_RESET is not set, the capsule has been successfully processed by the firmware. @retval EFI_DEVICE_ERROR The capsule update was started, but failed due to a device error. @retval EFI_INVALID_PARAMETER CapsuleSize is NULL, or an incompatible set of flags were set in the capsule header. @retval EFI_INVALID_PARAMETER CapsuleCount is Zero. @retval EFI_INVALID_PARAMETER For across reset capsule image, ScatterGatherList is NULL. @retval EFI_UNSUPPORTED CapsuleImage is not recognized by the firmware. @retval EFI_OUT_OF_RESOURCES When ExitBootServices() has been previously called this error indicates the capsule is compatible with this platform but is not capable of being submitted or processed in runtime. The caller may resubmit the capsule prior to ExitBootServices(). @retval EFI_OUT_OF_RESOURCES When ExitBootServices() has not been previously called then this error indicates the capsule is compatible with this platform but there are insufficient resources to process. **/ EFI_STATUS EFIAPI UpdateCapsule ( IN EFI_CAPSULE_HEADER **CapsuleHeaderArray, IN UINTN CapsuleCount, IN EFI_PHYSICAL_ADDRESS ScatterGatherList OPTIONAL ) { UINTN ArrayNumber; EFI_STATUS Status; EFI_CAPSULE_HEADER *CapsuleHeader; BOOLEAN NeedReset; BOOLEAN InitiateReset; CHAR16 CapsuleVarName[30]; CHAR16 *TempVarName; // // Capsule Count can't be less than one. // if (CapsuleCount < 1) { return EFI_INVALID_PARAMETER; } NeedReset = FALSE; InitiateReset = FALSE; CapsuleHeader = NULL; CapsuleVarName[0] = 0; for (ArrayNumber = 0; ArrayNumber < CapsuleCount; ArrayNumber++) { // // A capsule which has the CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE flag must have // CAPSULE_FLAGS_PERSIST_ACROSS_RESET set in its header as well. // CapsuleHeader = CapsuleHeaderArray[ArrayNumber]; if ((CapsuleHeader->Flags & (CAPSULE_FLAGS_PERSIST_ACROSS_RESET | CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE)) == CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE) { return EFI_INVALID_PARAMETER; } // // A capsule which has the CAPSULE_FLAGS_INITIATE_RESET flag must have // CAPSULE_FLAGS_PERSIST_ACROSS_RESET set in its header as well. // if ((CapsuleHeader->Flags & (CAPSULE_FLAGS_PERSIST_ACROSS_RESET | CAPSULE_FLAGS_INITIATE_RESET)) == CAPSULE_FLAGS_INITIATE_RESET) { return EFI_INVALID_PARAMETER; } // // Check FMP capsule flag // if (CompareGuid(&CapsuleHeader->CapsuleGuid, &gEfiFmpCapsuleGuid) && (CapsuleHeader->Flags & CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE) != 0 ) { return EFI_INVALID_PARAMETER; } // // Check Capsule image without populate flag by firmware support capsule function // if ((CapsuleHeader->Flags & CAPSULE_FLAGS_POPULATE_SYSTEM_TABLE) == 0) { Status = SupportCapsuleImage (CapsuleHeader); if (EFI_ERROR(Status)) { return Status; } } } // // Walk through all capsules, record whether there is a capsule needs reset // or initiate reset. And then process capsules which has no reset flag directly. // for (ArrayNumber = 0; ArrayNumber < CapsuleCount ; ArrayNumber++) { CapsuleHeader = CapsuleHeaderArray[ArrayNumber]; // // Here should be in the boot-time for non-reset capsule image // Platform specific update for the non-reset capsule image. // if ((CapsuleHeader->Flags & CAPSULE_FLAGS_PERSIST_ACROSS_RESET) == 0) { if (EfiAtRuntime ()) { Status = EFI_OUT_OF_RESOURCES; } else { Status = ProcessCapsuleImage(CapsuleHeader); } if (EFI_ERROR(Status)) { return Status; } } else { NeedReset = TRUE; if ((CapsuleHeader->Flags & CAPSULE_FLAGS_INITIATE_RESET) != 0) { InitiateReset = TRUE; } } } // // After launching all capsules who has no reset flag, if no more capsules claims // for a system reset just return. // if (!NeedReset) { return EFI_SUCCESS; } // // ScatterGatherList is only referenced if the capsules are defined to persist across // system reset. // if (ScatterGatherList == (EFI_PHYSICAL_ADDRESS) (UINTN) NULL) { return EFI_INVALID_PARAMETER; } // // Check if the platform supports update capsule across a system reset // if (!FeaturePcdGet(PcdSupportUpdateCapsuleReset)) { return EFI_UNSUPPORTED; } // // Construct variable name CapsuleUpdateData, CapsuleUpdateData1, CapsuleUpdateData2... // if user calls UpdateCapsule multiple times. // StrCpy (CapsuleVarName, EFI_CAPSULE_VARIABLE_NAME); TempVarName = CapsuleVarName + StrLen (CapsuleVarName); if (mTimes > 0) { UnicodeValueToString (TempVarName, 0, mTimes, 0); } // // ScatterGatherList is only referenced if the capsules are defined to persist across // system reset. Set its value into NV storage to let pre-boot driver to pick it up // after coming through a system reset. // Status = EfiSetVariable ( CapsuleVarName, &gEfiCapsuleVendorGuid, EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_RUNTIME_ACCESS | EFI_VARIABLE_BOOTSERVICE_ACCESS, sizeof (UINTN), (VOID *) &ScatterGatherList ); if (!EFI_ERROR (Status)) { // // Variable has been set successfully, increase variable index. // mTimes++; if(InitiateReset) { // // Firmware that encounters a capsule which has the CAPSULE_FLAGS_INITIATE_RESET Flag set in its header // will initiate a reset of the platform which is compatible with the passed-in capsule request and will // not return back to the caller. // EfiResetSystem (EfiResetWarm, EFI_SUCCESS, 0, NULL); } } return Status; }
/** Refresh the text mode page. @param CallbackData The BMM context data. **/ VOID UpdateConModePage ( IN BMM_CALLBACK_DATA *CallbackData ) { UINTN Mode; UINTN Index; UINTN Col; UINTN Row; CHAR16 ModeString[50]; CHAR16 *PStr; UINTN MaxMode; UINTN ValidMode; EFI_STRING_ID *ModeToken; EFI_STATUS Status; VOID *OptionsOpCodeHandle; EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *ConOut; ConOut = gST->ConOut; Index = 0; ValidMode = 0; MaxMode = (UINTN) (ConOut->Mode->MaxMode); CallbackData->BmmAskSaveOrNot = TRUE; UpdatePageStart (CallbackData); // // Check valid mode // for (Mode = 0; Mode < MaxMode; Mode++) { Status = ConOut->QueryMode (ConOut, Mode, &Col, &Row); if (EFI_ERROR (Status)) { continue; } ValidMode++; } if (ValidMode == 0) { return; } OptionsOpCodeHandle = HiiAllocateOpCodeHandle (); ASSERT (OptionsOpCodeHandle != NULL); ModeToken = AllocateZeroPool (sizeof (EFI_STRING_ID) * ValidMode); ASSERT(ModeToken != NULL); // // Determin which mode should be the first entry in menu // GetConsoleOutMode (CallbackData); // // Build text mode options // for (Mode = 0; Mode < MaxMode; Mode++) { Status = ConOut->QueryMode (ConOut, Mode, &Col, &Row); if (EFI_ERROR (Status)) { continue; } // // Build mode string Column x Row // UnicodeValueToString (ModeString, 0, Col, 0); PStr = &ModeString[0]; StrnCat (PStr, L" x ", StrLen(L" x ") + 1); PStr = PStr + StrLen (PStr); UnicodeValueToString (PStr , 0, Row, 0); ModeToken[Index] = HiiSetString (CallbackData->BmmHiiHandle, 0, ModeString, NULL); if (Mode == CallbackData->BmmFakeNvData.ConsoleOutMode) { HiiCreateOneOfOptionOpCode ( OptionsOpCodeHandle, ModeToken[Index], EFI_IFR_OPTION_DEFAULT, EFI_IFR_TYPE_NUM_SIZE_16, (UINT16) Mode ); } else { HiiCreateOneOfOptionOpCode ( OptionsOpCodeHandle, ModeToken[Index], 0, EFI_IFR_TYPE_NUM_SIZE_16, (UINT16) Mode ); } Index++; } HiiCreateOneOfOpCode ( mStartOpCodeHandle, (EFI_QUESTION_ID) CON_MODE_QUESTION_ID, VARSTORE_ID_BOOT_MAINT, CON_MODE_VAR_OFFSET, STRING_TOKEN (STR_CON_MODE_SETUP), STRING_TOKEN (STR_CON_MODE_SETUP), EFI_IFR_FLAG_RESET_REQUIRED, EFI_IFR_NUMERIC_SIZE_2, OptionsOpCodeHandle, NULL ); HiiFreeOpCodeHandle (OptionsOpCodeHandle); FreePool (ModeToken); UpdatePageEnd (CallbackData); }